Jonas Paulsson 46f83caebc [InlineAsm] Add support for address operands ("p").
This patch adds support for inline assembly address operands using the "p"
constraint on X86 and SystemZ.

This was in fact broken on X86 (see example at
https://reviews.llvm.org/D110267, Nov 23).

These operands should probably be treated the same as memory operands by
CodeGenPrepare, which have been commented with "TODO" there.

Review: Xiang Zhang and Ulrich Weigand

Differential Revision: https://reviews.llvm.org/D122220
2022-04-13 12:50:21 +02:00

1549 lines
52 KiB
C++

//===--- X86.cpp - Implement X86 target feature support -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements X86 TargetInfo objects.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/TargetBuiltins.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/X86TargetParser.h"
namespace clang {
namespace targets {
const Builtin::Info BuiltinInfoX86[] = {
#define BUILTIN(ID, TYPE, ATTRS) \
{#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
#define TARGET_BUILTIN(ID, TYPE, ATTRS, FEATURE) \
{#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, FEATURE},
#define TARGET_HEADER_BUILTIN(ID, TYPE, ATTRS, HEADER, LANGS, FEATURE) \
{#ID, TYPE, ATTRS, HEADER, LANGS, FEATURE},
#include "clang/Basic/BuiltinsX86.def"
#define BUILTIN(ID, TYPE, ATTRS) \
{#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
#define TARGET_BUILTIN(ID, TYPE, ATTRS, FEATURE) \
{#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, FEATURE},
#define TARGET_HEADER_BUILTIN(ID, TYPE, ATTRS, HEADER, LANGS, FEATURE) \
{#ID, TYPE, ATTRS, HEADER, LANGS, FEATURE},
#include "clang/Basic/BuiltinsX86_64.def"
};
static const char *const GCCRegNames[] = {
"ax", "dx", "cx", "bx", "si", "di", "bp", "sp",
"st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)",
"argp", "flags", "fpcr", "fpsr", "dirflag", "frame", "xmm0", "xmm1",
"xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "mm0", "mm1",
"mm2", "mm3", "mm4", "mm5", "mm6", "mm7", "r8", "r9",
"r10", "r11", "r12", "r13", "r14", "r15", "xmm8", "xmm9",
"xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "ymm0", "ymm1",
"ymm2", "ymm3", "ymm4", "ymm5", "ymm6", "ymm7", "ymm8", "ymm9",
"ymm10", "ymm11", "ymm12", "ymm13", "ymm14", "ymm15", "xmm16", "xmm17",
"xmm18", "xmm19", "xmm20", "xmm21", "xmm22", "xmm23", "xmm24", "xmm25",
"xmm26", "xmm27", "xmm28", "xmm29", "xmm30", "xmm31", "ymm16", "ymm17",
"ymm18", "ymm19", "ymm20", "ymm21", "ymm22", "ymm23", "ymm24", "ymm25",
"ymm26", "ymm27", "ymm28", "ymm29", "ymm30", "ymm31", "zmm0", "zmm1",
"zmm2", "zmm3", "zmm4", "zmm5", "zmm6", "zmm7", "zmm8", "zmm9",
"zmm10", "zmm11", "zmm12", "zmm13", "zmm14", "zmm15", "zmm16", "zmm17",
"zmm18", "zmm19", "zmm20", "zmm21", "zmm22", "zmm23", "zmm24", "zmm25",
"zmm26", "zmm27", "zmm28", "zmm29", "zmm30", "zmm31", "k0", "k1",
"k2", "k3", "k4", "k5", "k6", "k7",
"cr0", "cr2", "cr3", "cr4", "cr8",
"dr0", "dr1", "dr2", "dr3", "dr6", "dr7",
"bnd0", "bnd1", "bnd2", "bnd3",
"tmm0", "tmm1", "tmm2", "tmm3", "tmm4", "tmm5", "tmm6", "tmm7",
};
const TargetInfo::AddlRegName AddlRegNames[] = {
{{"al", "ah", "eax", "rax"}, 0},
{{"bl", "bh", "ebx", "rbx"}, 3},
{{"cl", "ch", "ecx", "rcx"}, 2},
{{"dl", "dh", "edx", "rdx"}, 1},
{{"esi", "rsi"}, 4},
{{"edi", "rdi"}, 5},
{{"esp", "rsp"}, 7},
{{"ebp", "rbp"}, 6},
{{"r8d", "r8w", "r8b"}, 38},
{{"r9d", "r9w", "r9b"}, 39},
{{"r10d", "r10w", "r10b"}, 40},
{{"r11d", "r11w", "r11b"}, 41},
{{"r12d", "r12w", "r12b"}, 42},
{{"r13d", "r13w", "r13b"}, 43},
{{"r14d", "r14w", "r14b"}, 44},
{{"r15d", "r15w", "r15b"}, 45},
};
} // namespace targets
} // namespace clang
using namespace clang;
using namespace clang::targets;
bool X86TargetInfo::setFPMath(StringRef Name) {
if (Name == "387") {
FPMath = FP_387;
return true;
}
if (Name == "sse") {
FPMath = FP_SSE;
return true;
}
return false;
}
bool X86TargetInfo::initFeatureMap(
llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
const std::vector<std::string> &FeaturesVec) const {
// FIXME: This *really* should not be here.
// X86_64 always has SSE2.
if (getTriple().getArch() == llvm::Triple::x86_64)
setFeatureEnabled(Features, "sse2", true);
using namespace llvm::X86;
SmallVector<StringRef, 16> CPUFeatures;
getFeaturesForCPU(CPU, CPUFeatures);
for (auto &F : CPUFeatures)
setFeatureEnabled(Features, F, true);
std::vector<std::string> UpdatedFeaturesVec;
for (const auto &Feature : FeaturesVec) {
// Expand general-regs-only to -x86, -mmx and -sse
if (Feature == "+general-regs-only") {
UpdatedFeaturesVec.push_back("-x87");
UpdatedFeaturesVec.push_back("-mmx");
UpdatedFeaturesVec.push_back("-sse");
continue;
}
UpdatedFeaturesVec.push_back(Feature);
}
if (!TargetInfo::initFeatureMap(Features, Diags, CPU, UpdatedFeaturesVec))
return false;
// Can't do this earlier because we need to be able to explicitly enable
// or disable these features and the things that they depend upon.
// Enable popcnt if sse4.2 is enabled and popcnt is not explicitly disabled.
auto I = Features.find("sse4.2");
if (I != Features.end() && I->getValue() &&
!llvm::is_contained(UpdatedFeaturesVec, "-popcnt"))
Features["popcnt"] = true;
// Additionally, if SSE is enabled and mmx is not explicitly disabled,
// then enable MMX.
I = Features.find("sse");
if (I != Features.end() && I->getValue() &&
!llvm::is_contained(UpdatedFeaturesVec, "-mmx"))
Features["mmx"] = true;
// Enable xsave if avx is enabled and xsave is not explicitly disabled.
I = Features.find("avx");
if (I != Features.end() && I->getValue() &&
!llvm::is_contained(UpdatedFeaturesVec, "-xsave"))
Features["xsave"] = true;
// Enable CRC32 if SSE4.2 is enabled and CRC32 is not explicitly disabled.
I = Features.find("sse4.2");
if (I != Features.end() && I->getValue() &&
!llvm::is_contained(UpdatedFeaturesVec, "-crc32"))
Features["crc32"] = true;
return true;
}
void X86TargetInfo::setFeatureEnabled(llvm::StringMap<bool> &Features,
StringRef Name, bool Enabled) const {
if (Name == "sse4") {
// We can get here via the __target__ attribute since that's not controlled
// via the -msse4/-mno-sse4 command line alias. Handle this the same way
// here - turn on the sse4.2 if enabled, turn off the sse4.1 level if
// disabled.
if (Enabled)
Name = "sse4.2";
else
Name = "sse4.1";
}
Features[Name] = Enabled;
llvm::X86::updateImpliedFeatures(Name, Enabled, Features);
}
/// handleTargetFeatures - Perform initialization based on the user
/// configured set of features.
bool X86TargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
DiagnosticsEngine &Diags) {
for (const auto &Feature : Features) {
if (Feature[0] != '+')
continue;
if (Feature == "+aes") {
HasAES = true;
} else if (Feature == "+vaes") {
HasVAES = true;
} else if (Feature == "+pclmul") {
HasPCLMUL = true;
} else if (Feature == "+vpclmulqdq") {
HasVPCLMULQDQ = true;
} else if (Feature == "+lzcnt") {
HasLZCNT = true;
} else if (Feature == "+rdrnd") {
HasRDRND = true;
} else if (Feature == "+fsgsbase") {
HasFSGSBASE = true;
} else if (Feature == "+bmi") {
HasBMI = true;
} else if (Feature == "+bmi2") {
HasBMI2 = true;
} else if (Feature == "+popcnt") {
HasPOPCNT = true;
} else if (Feature == "+rtm") {
HasRTM = true;
} else if (Feature == "+prfchw") {
HasPRFCHW = true;
} else if (Feature == "+rdseed") {
HasRDSEED = true;
} else if (Feature == "+adx") {
HasADX = true;
} else if (Feature == "+tbm") {
HasTBM = true;
} else if (Feature == "+lwp") {
HasLWP = true;
} else if (Feature == "+fma") {
HasFMA = true;
} else if (Feature == "+f16c") {
HasF16C = true;
} else if (Feature == "+gfni") {
HasGFNI = true;
} else if (Feature == "+avx512cd") {
HasAVX512CD = true;
} else if (Feature == "+avx512vpopcntdq") {
HasAVX512VPOPCNTDQ = true;
} else if (Feature == "+avx512vnni") {
HasAVX512VNNI = true;
} else if (Feature == "+avx512bf16") {
HasAVX512BF16 = true;
} else if (Feature == "+avx512er") {
HasAVX512ER = true;
} else if (Feature == "+avx512fp16") {
HasAVX512FP16 = true;
HasFloat16 = true;
} else if (Feature == "+avx512pf") {
HasAVX512PF = true;
} else if (Feature == "+avx512dq") {
HasAVX512DQ = true;
} else if (Feature == "+avx512bitalg") {
HasAVX512BITALG = true;
} else if (Feature == "+avx512bw") {
HasAVX512BW = true;
} else if (Feature == "+avx512vl") {
HasAVX512VL = true;
} else if (Feature == "+avx512vbmi") {
HasAVX512VBMI = true;
} else if (Feature == "+avx512vbmi2") {
HasAVX512VBMI2 = true;
} else if (Feature == "+avx512ifma") {
HasAVX512IFMA = true;
} else if (Feature == "+avx512vp2intersect") {
HasAVX512VP2INTERSECT = true;
} else if (Feature == "+sha") {
HasSHA = true;
} else if (Feature == "+shstk") {
HasSHSTK = true;
} else if (Feature == "+movbe") {
HasMOVBE = true;
} else if (Feature == "+sgx") {
HasSGX = true;
} else if (Feature == "+cx8") {
HasCX8 = true;
} else if (Feature == "+cx16") {
HasCX16 = true;
} else if (Feature == "+fxsr") {
HasFXSR = true;
} else if (Feature == "+xsave") {
HasXSAVE = true;
} else if (Feature == "+xsaveopt") {
HasXSAVEOPT = true;
} else if (Feature == "+xsavec") {
HasXSAVEC = true;
} else if (Feature == "+xsaves") {
HasXSAVES = true;
} else if (Feature == "+mwaitx") {
HasMWAITX = true;
} else if (Feature == "+pku") {
HasPKU = true;
} else if (Feature == "+clflushopt") {
HasCLFLUSHOPT = true;
} else if (Feature == "+clwb") {
HasCLWB = true;
} else if (Feature == "+wbnoinvd") {
HasWBNOINVD = true;
} else if (Feature == "+prefetchwt1") {
HasPREFETCHWT1 = true;
} else if (Feature == "+clzero") {
HasCLZERO = true;
} else if (Feature == "+cldemote") {
HasCLDEMOTE = true;
} else if (Feature == "+rdpid") {
HasRDPID = true;
} else if (Feature == "+kl") {
HasKL = true;
} else if (Feature == "+widekl") {
HasWIDEKL = true;
} else if (Feature == "+retpoline-external-thunk") {
HasRetpolineExternalThunk = true;
} else if (Feature == "+sahf") {
HasLAHFSAHF = true;
} else if (Feature == "+waitpkg") {
HasWAITPKG = true;
} else if (Feature == "+movdiri") {
HasMOVDIRI = true;
} else if (Feature == "+movdir64b") {
HasMOVDIR64B = true;
} else if (Feature == "+pconfig") {
HasPCONFIG = true;
} else if (Feature == "+ptwrite") {
HasPTWRITE = true;
} else if (Feature == "+invpcid") {
HasINVPCID = true;
} else if (Feature == "+enqcmd") {
HasENQCMD = true;
} else if (Feature == "+hreset") {
HasHRESET = true;
} else if (Feature == "+amx-bf16") {
HasAMXBF16 = true;
} else if (Feature == "+amx-int8") {
HasAMXINT8 = true;
} else if (Feature == "+amx-tile") {
HasAMXTILE = true;
} else if (Feature == "+avxvnni") {
HasAVXVNNI = true;
} else if (Feature == "+serialize") {
HasSERIALIZE = true;
} else if (Feature == "+tsxldtrk") {
HasTSXLDTRK = true;
} else if (Feature == "+uintr") {
HasUINTR = true;
} else if (Feature == "+crc32") {
HasCRC32 = true;
} else if (Feature == "+x87") {
HasX87 = true;
}
X86SSEEnum Level = llvm::StringSwitch<X86SSEEnum>(Feature)
.Case("+avx512f", AVX512F)
.Case("+avx2", AVX2)
.Case("+avx", AVX)
.Case("+sse4.2", SSE42)
.Case("+sse4.1", SSE41)
.Case("+ssse3", SSSE3)
.Case("+sse3", SSE3)
.Case("+sse2", SSE2)
.Case("+sse", SSE1)
.Default(NoSSE);
SSELevel = std::max(SSELevel, Level);
MMX3DNowEnum ThreeDNowLevel = llvm::StringSwitch<MMX3DNowEnum>(Feature)
.Case("+3dnowa", AMD3DNowAthlon)
.Case("+3dnow", AMD3DNow)
.Case("+mmx", MMX)
.Default(NoMMX3DNow);
MMX3DNowLevel = std::max(MMX3DNowLevel, ThreeDNowLevel);
XOPEnum XLevel = llvm::StringSwitch<XOPEnum>(Feature)
.Case("+xop", XOP)
.Case("+fma4", FMA4)
.Case("+sse4a", SSE4A)
.Default(NoXOP);
XOPLevel = std::max(XOPLevel, XLevel);
}
// LLVM doesn't have a separate switch for fpmath, so only accept it if it
// matches the selected sse level.
if ((FPMath == FP_SSE && SSELevel < SSE1) ||
(FPMath == FP_387 && SSELevel >= SSE1)) {
Diags.Report(diag::err_target_unsupported_fpmath)
<< (FPMath == FP_SSE ? "sse" : "387");
return false;
}
SimdDefaultAlign =
hasFeature("avx512f") ? 512 : hasFeature("avx") ? 256 : 128;
// FIXME: We should allow long double type on 32-bits to match with GCC.
// This requires backend to be able to lower f80 without x87 first.
if (!HasX87 && LongDoubleFormat == &llvm::APFloat::x87DoubleExtended())
HasLongDouble = false;
return true;
}
/// X86TargetInfo::getTargetDefines - Return the set of the X86-specific macro
/// definitions for this particular subtarget.
void X86TargetInfo::getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
// Inline assembly supports X86 flag outputs.
Builder.defineMacro("__GCC_ASM_FLAG_OUTPUTS__");
std::string CodeModel = getTargetOpts().CodeModel;
if (CodeModel == "default")
CodeModel = "small";
Builder.defineMacro("__code_model_" + CodeModel + "__");
// Target identification.
if (getTriple().getArch() == llvm::Triple::x86_64) {
Builder.defineMacro("__amd64__");
Builder.defineMacro("__amd64");
Builder.defineMacro("__x86_64");
Builder.defineMacro("__x86_64__");
if (getTriple().getArchName() == "x86_64h") {
Builder.defineMacro("__x86_64h");
Builder.defineMacro("__x86_64h__");
}
} else {
DefineStd(Builder, "i386", Opts);
}
Builder.defineMacro("__SEG_GS");
Builder.defineMacro("__SEG_FS");
Builder.defineMacro("__seg_gs", "__attribute__((address_space(256)))");
Builder.defineMacro("__seg_fs", "__attribute__((address_space(257)))");
// Subtarget options.
// FIXME: We are hard-coding the tune parameters based on the CPU, but they
// truly should be based on -mtune options.
using namespace llvm::X86;
switch (CPU) {
case CK_None:
break;
case CK_i386:
// The rest are coming from the i386 define above.
Builder.defineMacro("__tune_i386__");
break;
case CK_i486:
case CK_WinChipC6:
case CK_WinChip2:
case CK_C3:
defineCPUMacros(Builder, "i486");
break;
case CK_PentiumMMX:
Builder.defineMacro("__pentium_mmx__");
Builder.defineMacro("__tune_pentium_mmx__");
LLVM_FALLTHROUGH;
case CK_i586:
case CK_Pentium:
defineCPUMacros(Builder, "i586");
defineCPUMacros(Builder, "pentium");
break;
case CK_Pentium3:
case CK_PentiumM:
Builder.defineMacro("__tune_pentium3__");
LLVM_FALLTHROUGH;
case CK_Pentium2:
case CK_C3_2:
Builder.defineMacro("__tune_pentium2__");
LLVM_FALLTHROUGH;
case CK_PentiumPro:
case CK_i686:
defineCPUMacros(Builder, "i686");
defineCPUMacros(Builder, "pentiumpro");
break;
case CK_Pentium4:
defineCPUMacros(Builder, "pentium4");
break;
case CK_Yonah:
case CK_Prescott:
case CK_Nocona:
defineCPUMacros(Builder, "nocona");
break;
case CK_Core2:
case CK_Penryn:
defineCPUMacros(Builder, "core2");
break;
case CK_Bonnell:
defineCPUMacros(Builder, "atom");
break;
case CK_Silvermont:
defineCPUMacros(Builder, "slm");
break;
case CK_Goldmont:
defineCPUMacros(Builder, "goldmont");
break;
case CK_GoldmontPlus:
defineCPUMacros(Builder, "goldmont_plus");
break;
case CK_Tremont:
defineCPUMacros(Builder, "tremont");
break;
case CK_Nehalem:
case CK_Westmere:
case CK_SandyBridge:
case CK_IvyBridge:
case CK_Haswell:
case CK_Broadwell:
case CK_SkylakeClient:
case CK_SkylakeServer:
case CK_Cascadelake:
case CK_Cooperlake:
case CK_Cannonlake:
case CK_IcelakeClient:
case CK_Rocketlake:
case CK_IcelakeServer:
case CK_Tigerlake:
case CK_SapphireRapids:
case CK_Alderlake:
// FIXME: Historically, we defined this legacy name, it would be nice to
// remove it at some point. We've never exposed fine-grained names for
// recent primary x86 CPUs, and we should keep it that way.
defineCPUMacros(Builder, "corei7");
break;
case CK_KNL:
defineCPUMacros(Builder, "knl");
break;
case CK_KNM:
break;
case CK_Lakemont:
defineCPUMacros(Builder, "i586", /*Tuning*/false);
defineCPUMacros(Builder, "pentium", /*Tuning*/false);
Builder.defineMacro("__tune_lakemont__");
break;
case CK_K6_2:
Builder.defineMacro("__k6_2__");
Builder.defineMacro("__tune_k6_2__");
LLVM_FALLTHROUGH;
case CK_K6_3:
if (CPU != CK_K6_2) { // In case of fallthrough
// FIXME: GCC may be enabling these in cases where some other k6
// architecture is specified but -m3dnow is explicitly provided. The
// exact semantics need to be determined and emulated here.
Builder.defineMacro("__k6_3__");
Builder.defineMacro("__tune_k6_3__");
}
LLVM_FALLTHROUGH;
case CK_K6:
defineCPUMacros(Builder, "k6");
break;
case CK_Athlon:
case CK_AthlonXP:
defineCPUMacros(Builder, "athlon");
if (SSELevel != NoSSE) {
Builder.defineMacro("__athlon_sse__");
Builder.defineMacro("__tune_athlon_sse__");
}
break;
case CK_K8:
case CK_K8SSE3:
case CK_x86_64:
defineCPUMacros(Builder, "k8");
break;
case CK_x86_64_v2:
case CK_x86_64_v3:
case CK_x86_64_v4:
break;
case CK_AMDFAM10:
defineCPUMacros(Builder, "amdfam10");
break;
case CK_BTVER1:
defineCPUMacros(Builder, "btver1");
break;
case CK_BTVER2:
defineCPUMacros(Builder, "btver2");
break;
case CK_BDVER1:
defineCPUMacros(Builder, "bdver1");
break;
case CK_BDVER2:
defineCPUMacros(Builder, "bdver2");
break;
case CK_BDVER3:
defineCPUMacros(Builder, "bdver3");
break;
case CK_BDVER4:
defineCPUMacros(Builder, "bdver4");
break;
case CK_ZNVER1:
defineCPUMacros(Builder, "znver1");
break;
case CK_ZNVER2:
defineCPUMacros(Builder, "znver2");
break;
case CK_ZNVER3:
defineCPUMacros(Builder, "znver3");
break;
case CK_Geode:
defineCPUMacros(Builder, "geode");
break;
}
// Target properties.
Builder.defineMacro("__REGISTER_PREFIX__", "");
// Define __NO_MATH_INLINES on linux/x86 so that we don't get inline
// functions in glibc header files that use FP Stack inline asm which the
// backend can't deal with (PR879).
Builder.defineMacro("__NO_MATH_INLINES");
if (HasAES)
Builder.defineMacro("__AES__");
if (HasVAES)
Builder.defineMacro("__VAES__");
if (HasPCLMUL)
Builder.defineMacro("__PCLMUL__");
if (HasVPCLMULQDQ)
Builder.defineMacro("__VPCLMULQDQ__");
// Note, in 32-bit mode, GCC does not define the macro if -mno-sahf. In LLVM,
// the feature flag only applies to 64-bit mode.
if (HasLAHFSAHF || getTriple().getArch() == llvm::Triple::x86)
Builder.defineMacro("__LAHF_SAHF__");
if (HasLZCNT)
Builder.defineMacro("__LZCNT__");
if (HasRDRND)
Builder.defineMacro("__RDRND__");
if (HasFSGSBASE)
Builder.defineMacro("__FSGSBASE__");
if (HasBMI)
Builder.defineMacro("__BMI__");
if (HasBMI2)
Builder.defineMacro("__BMI2__");
if (HasPOPCNT)
Builder.defineMacro("__POPCNT__");
if (HasRTM)
Builder.defineMacro("__RTM__");
if (HasPRFCHW)
Builder.defineMacro("__PRFCHW__");
if (HasRDSEED)
Builder.defineMacro("__RDSEED__");
if (HasADX)
Builder.defineMacro("__ADX__");
if (HasTBM)
Builder.defineMacro("__TBM__");
if (HasLWP)
Builder.defineMacro("__LWP__");
if (HasMWAITX)
Builder.defineMacro("__MWAITX__");
if (HasMOVBE)
Builder.defineMacro("__MOVBE__");
switch (XOPLevel) {
case XOP:
Builder.defineMacro("__XOP__");
LLVM_FALLTHROUGH;
case FMA4:
Builder.defineMacro("__FMA4__");
LLVM_FALLTHROUGH;
case SSE4A:
Builder.defineMacro("__SSE4A__");
LLVM_FALLTHROUGH;
case NoXOP:
break;
}
if (HasFMA)
Builder.defineMacro("__FMA__");
if (HasF16C)
Builder.defineMacro("__F16C__");
if (HasGFNI)
Builder.defineMacro("__GFNI__");
if (HasAVX512CD)
Builder.defineMacro("__AVX512CD__");
if (HasAVX512VPOPCNTDQ)
Builder.defineMacro("__AVX512VPOPCNTDQ__");
if (HasAVX512VNNI)
Builder.defineMacro("__AVX512VNNI__");
if (HasAVX512BF16)
Builder.defineMacro("__AVX512BF16__");
if (HasAVX512ER)
Builder.defineMacro("__AVX512ER__");
if (HasAVX512FP16)
Builder.defineMacro("__AVX512FP16__");
if (HasAVX512PF)
Builder.defineMacro("__AVX512PF__");
if (HasAVX512DQ)
Builder.defineMacro("__AVX512DQ__");
if (HasAVX512BITALG)
Builder.defineMacro("__AVX512BITALG__");
if (HasAVX512BW)
Builder.defineMacro("__AVX512BW__");
if (HasAVX512VL)
Builder.defineMacro("__AVX512VL__");
if (HasAVX512VBMI)
Builder.defineMacro("__AVX512VBMI__");
if (HasAVX512VBMI2)
Builder.defineMacro("__AVX512VBMI2__");
if (HasAVX512IFMA)
Builder.defineMacro("__AVX512IFMA__");
if (HasAVX512VP2INTERSECT)
Builder.defineMacro("__AVX512VP2INTERSECT__");
if (HasSHA)
Builder.defineMacro("__SHA__");
if (HasFXSR)
Builder.defineMacro("__FXSR__");
if (HasXSAVE)
Builder.defineMacro("__XSAVE__");
if (HasXSAVEOPT)
Builder.defineMacro("__XSAVEOPT__");
if (HasXSAVEC)
Builder.defineMacro("__XSAVEC__");
if (HasXSAVES)
Builder.defineMacro("__XSAVES__");
if (HasPKU)
Builder.defineMacro("__PKU__");
if (HasCLFLUSHOPT)
Builder.defineMacro("__CLFLUSHOPT__");
if (HasCLWB)
Builder.defineMacro("__CLWB__");
if (HasWBNOINVD)
Builder.defineMacro("__WBNOINVD__");
if (HasSHSTK)
Builder.defineMacro("__SHSTK__");
if (HasSGX)
Builder.defineMacro("__SGX__");
if (HasPREFETCHWT1)
Builder.defineMacro("__PREFETCHWT1__");
if (HasCLZERO)
Builder.defineMacro("__CLZERO__");
if (HasKL)
Builder.defineMacro("__KL__");
if (HasWIDEKL)
Builder.defineMacro("__WIDEKL__");
if (HasRDPID)
Builder.defineMacro("__RDPID__");
if (HasCLDEMOTE)
Builder.defineMacro("__CLDEMOTE__");
if (HasWAITPKG)
Builder.defineMacro("__WAITPKG__");
if (HasMOVDIRI)
Builder.defineMacro("__MOVDIRI__");
if (HasMOVDIR64B)
Builder.defineMacro("__MOVDIR64B__");
if (HasPCONFIG)
Builder.defineMacro("__PCONFIG__");
if (HasPTWRITE)
Builder.defineMacro("__PTWRITE__");
if (HasINVPCID)
Builder.defineMacro("__INVPCID__");
if (HasENQCMD)
Builder.defineMacro("__ENQCMD__");
if (HasHRESET)
Builder.defineMacro("__HRESET__");
if (HasAMXTILE)
Builder.defineMacro("__AMXTILE__");
if (HasAMXINT8)
Builder.defineMacro("__AMXINT8__");
if (HasAMXBF16)
Builder.defineMacro("__AMXBF16__");
if (HasAVXVNNI)
Builder.defineMacro("__AVXVNNI__");
if (HasSERIALIZE)
Builder.defineMacro("__SERIALIZE__");
if (HasTSXLDTRK)
Builder.defineMacro("__TSXLDTRK__");
if (HasUINTR)
Builder.defineMacro("__UINTR__");
if (HasCRC32)
Builder.defineMacro("__CRC32__");
// Each case falls through to the previous one here.
switch (SSELevel) {
case AVX512F:
Builder.defineMacro("__AVX512F__");
LLVM_FALLTHROUGH;
case AVX2:
Builder.defineMacro("__AVX2__");
LLVM_FALLTHROUGH;
case AVX:
Builder.defineMacro("__AVX__");
LLVM_FALLTHROUGH;
case SSE42:
Builder.defineMacro("__SSE4_2__");
LLVM_FALLTHROUGH;
case SSE41:
Builder.defineMacro("__SSE4_1__");
LLVM_FALLTHROUGH;
case SSSE3:
Builder.defineMacro("__SSSE3__");
LLVM_FALLTHROUGH;
case SSE3:
Builder.defineMacro("__SSE3__");
LLVM_FALLTHROUGH;
case SSE2:
Builder.defineMacro("__SSE2__");
Builder.defineMacro("__SSE2_MATH__"); // -mfp-math=sse always implied.
LLVM_FALLTHROUGH;
case SSE1:
Builder.defineMacro("__SSE__");
Builder.defineMacro("__SSE_MATH__"); // -mfp-math=sse always implied.
LLVM_FALLTHROUGH;
case NoSSE:
break;
}
if (Opts.MicrosoftExt && getTriple().getArch() == llvm::Triple::x86) {
switch (SSELevel) {
case AVX512F:
case AVX2:
case AVX:
case SSE42:
case SSE41:
case SSSE3:
case SSE3:
case SSE2:
Builder.defineMacro("_M_IX86_FP", Twine(2));
break;
case SSE1:
Builder.defineMacro("_M_IX86_FP", Twine(1));
break;
default:
Builder.defineMacro("_M_IX86_FP", Twine(0));
break;
}
}
// Each case falls through to the previous one here.
switch (MMX3DNowLevel) {
case AMD3DNowAthlon:
Builder.defineMacro("__3dNOW_A__");
LLVM_FALLTHROUGH;
case AMD3DNow:
Builder.defineMacro("__3dNOW__");
LLVM_FALLTHROUGH;
case MMX:
Builder.defineMacro("__MMX__");
LLVM_FALLTHROUGH;
case NoMMX3DNow:
break;
}
if (CPU >= CK_i486 || CPU == CK_None) {
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
}
if (HasCX8)
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
if (HasCX16 && getTriple().getArch() == llvm::Triple::x86_64)
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16");
if (HasFloat128)
Builder.defineMacro("__SIZEOF_FLOAT128__", "16");
}
bool X86TargetInfo::isValidFeatureName(StringRef Name) const {
return llvm::StringSwitch<bool>(Name)
.Case("3dnow", true)
.Case("3dnowa", true)
.Case("adx", true)
.Case("aes", true)
.Case("amx-bf16", true)
.Case("amx-int8", true)
.Case("amx-tile", true)
.Case("avx", true)
.Case("avx2", true)
.Case("avx512f", true)
.Case("avx512cd", true)
.Case("avx512vpopcntdq", true)
.Case("avx512vnni", true)
.Case("avx512bf16", true)
.Case("avx512er", true)
.Case("avx512fp16", true)
.Case("avx512pf", true)
.Case("avx512dq", true)
.Case("avx512bitalg", true)
.Case("avx512bw", true)
.Case("avx512vl", true)
.Case("avx512vbmi", true)
.Case("avx512vbmi2", true)
.Case("avx512ifma", true)
.Case("avx512vp2intersect", true)
.Case("avxvnni", true)
.Case("bmi", true)
.Case("bmi2", true)
.Case("cldemote", true)
.Case("clflushopt", true)
.Case("clwb", true)
.Case("clzero", true)
.Case("crc32", true)
.Case("cx16", true)
.Case("enqcmd", true)
.Case("f16c", true)
.Case("fma", true)
.Case("fma4", true)
.Case("fsgsbase", true)
.Case("fxsr", true)
.Case("general-regs-only", true)
.Case("gfni", true)
.Case("hreset", true)
.Case("invpcid", true)
.Case("kl", true)
.Case("widekl", true)
.Case("lwp", true)
.Case("lzcnt", true)
.Case("mmx", true)
.Case("movbe", true)
.Case("movdiri", true)
.Case("movdir64b", true)
.Case("mwaitx", true)
.Case("pclmul", true)
.Case("pconfig", true)
.Case("pku", true)
.Case("popcnt", true)
.Case("prefetchwt1", true)
.Case("prfchw", true)
.Case("ptwrite", true)
.Case("rdpid", true)
.Case("rdrnd", true)
.Case("rdseed", true)
.Case("rtm", true)
.Case("sahf", true)
.Case("serialize", true)
.Case("sgx", true)
.Case("sha", true)
.Case("shstk", true)
.Case("sse", true)
.Case("sse2", true)
.Case("sse3", true)
.Case("ssse3", true)
.Case("sse4", true)
.Case("sse4.1", true)
.Case("sse4.2", true)
.Case("sse4a", true)
.Case("tbm", true)
.Case("tsxldtrk", true)
.Case("uintr", true)
.Case("vaes", true)
.Case("vpclmulqdq", true)
.Case("wbnoinvd", true)
.Case("waitpkg", true)
.Case("x87", true)
.Case("xop", true)
.Case("xsave", true)
.Case("xsavec", true)
.Case("xsaves", true)
.Case("xsaveopt", true)
.Default(false);
}
bool X86TargetInfo::hasFeature(StringRef Feature) const {
return llvm::StringSwitch<bool>(Feature)
.Case("adx", HasADX)
.Case("aes", HasAES)
.Case("amx-bf16", HasAMXBF16)
.Case("amx-int8", HasAMXINT8)
.Case("amx-tile", HasAMXTILE)
.Case("avxvnni", HasAVXVNNI)
.Case("avx", SSELevel >= AVX)
.Case("avx2", SSELevel >= AVX2)
.Case("avx512f", SSELevel >= AVX512F)
.Case("avx512cd", HasAVX512CD)
.Case("avx512vpopcntdq", HasAVX512VPOPCNTDQ)
.Case("avx512vnni", HasAVX512VNNI)
.Case("avx512bf16", HasAVX512BF16)
.Case("avx512er", HasAVX512ER)
.Case("avx512fp16", HasAVX512FP16)
.Case("avx512pf", HasAVX512PF)
.Case("avx512dq", HasAVX512DQ)
.Case("avx512bitalg", HasAVX512BITALG)
.Case("avx512bw", HasAVX512BW)
.Case("avx512vl", HasAVX512VL)
.Case("avx512vbmi", HasAVX512VBMI)
.Case("avx512vbmi2", HasAVX512VBMI2)
.Case("avx512ifma", HasAVX512IFMA)
.Case("avx512vp2intersect", HasAVX512VP2INTERSECT)
.Case("bmi", HasBMI)
.Case("bmi2", HasBMI2)
.Case("cldemote", HasCLDEMOTE)
.Case("clflushopt", HasCLFLUSHOPT)
.Case("clwb", HasCLWB)
.Case("clzero", HasCLZERO)
.Case("crc32", HasCRC32)
.Case("cx8", HasCX8)
.Case("cx16", HasCX16)
.Case("enqcmd", HasENQCMD)
.Case("f16c", HasF16C)
.Case("fma", HasFMA)
.Case("fma4", XOPLevel >= FMA4)
.Case("fsgsbase", HasFSGSBASE)
.Case("fxsr", HasFXSR)
.Case("gfni", HasGFNI)
.Case("hreset", HasHRESET)
.Case("invpcid", HasINVPCID)
.Case("kl", HasKL)
.Case("widekl", HasWIDEKL)
.Case("lwp", HasLWP)
.Case("lzcnt", HasLZCNT)
.Case("mm3dnow", MMX3DNowLevel >= AMD3DNow)
.Case("mm3dnowa", MMX3DNowLevel >= AMD3DNowAthlon)
.Case("mmx", MMX3DNowLevel >= MMX)
.Case("movbe", HasMOVBE)
.Case("movdiri", HasMOVDIRI)
.Case("movdir64b", HasMOVDIR64B)
.Case("mwaitx", HasMWAITX)
.Case("pclmul", HasPCLMUL)
.Case("pconfig", HasPCONFIG)
.Case("pku", HasPKU)
.Case("popcnt", HasPOPCNT)
.Case("prefetchwt1", HasPREFETCHWT1)
.Case("prfchw", HasPRFCHW)
.Case("ptwrite", HasPTWRITE)
.Case("rdpid", HasRDPID)
.Case("rdrnd", HasRDRND)
.Case("rdseed", HasRDSEED)
.Case("retpoline-external-thunk", HasRetpolineExternalThunk)
.Case("rtm", HasRTM)
.Case("sahf", HasLAHFSAHF)
.Case("serialize", HasSERIALIZE)
.Case("sgx", HasSGX)
.Case("sha", HasSHA)
.Case("shstk", HasSHSTK)
.Case("sse", SSELevel >= SSE1)
.Case("sse2", SSELevel >= SSE2)
.Case("sse3", SSELevel >= SSE3)
.Case("ssse3", SSELevel >= SSSE3)
.Case("sse4.1", SSELevel >= SSE41)
.Case("sse4.2", SSELevel >= SSE42)
.Case("sse4a", XOPLevel >= SSE4A)
.Case("tbm", HasTBM)
.Case("tsxldtrk", HasTSXLDTRK)
.Case("uintr", HasUINTR)
.Case("vaes", HasVAES)
.Case("vpclmulqdq", HasVPCLMULQDQ)
.Case("wbnoinvd", HasWBNOINVD)
.Case("waitpkg", HasWAITPKG)
.Case("x86", true)
.Case("x86_32", getTriple().getArch() == llvm::Triple::x86)
.Case("x86_64", getTriple().getArch() == llvm::Triple::x86_64)
.Case("x87", HasX87)
.Case("xop", XOPLevel >= XOP)
.Case("xsave", HasXSAVE)
.Case("xsavec", HasXSAVEC)
.Case("xsaves", HasXSAVES)
.Case("xsaveopt", HasXSAVEOPT)
.Default(false);
}
// We can't use a generic validation scheme for the features accepted here
// versus subtarget features accepted in the target attribute because the
// bitfield structure that's initialized in the runtime only supports the
// below currently rather than the full range of subtarget features. (See
// X86TargetInfo::hasFeature for a somewhat comprehensive list).
bool X86TargetInfo::validateCpuSupports(StringRef FeatureStr) const {
return llvm::StringSwitch<bool>(FeatureStr)
#define X86_FEATURE_COMPAT(ENUM, STR, PRIORITY) .Case(STR, true)
#include "llvm/Support/X86TargetParser.def"
.Default(false);
}
static llvm::X86::ProcessorFeatures getFeature(StringRef Name) {
return llvm::StringSwitch<llvm::X86::ProcessorFeatures>(Name)
#define X86_FEATURE_COMPAT(ENUM, STR, PRIORITY) \
.Case(STR, llvm::X86::FEATURE_##ENUM)
#include "llvm/Support/X86TargetParser.def"
;
// Note, this function should only be used after ensuring the value is
// correct, so it asserts if the value is out of range.
}
unsigned X86TargetInfo::multiVersionSortPriority(StringRef Name) const {
// Valid CPUs have a 'key feature' that compares just better than its key
// feature.
using namespace llvm::X86;
CPUKind Kind = parseArchX86(Name);
if (Kind != CK_None) {
ProcessorFeatures KeyFeature = getKeyFeature(Kind);
return (getFeaturePriority(KeyFeature) << 1) + 1;
}
// Now we know we have a feature, so get its priority and shift it a few so
// that we have sufficient room for the CPUs (above).
return getFeaturePriority(getFeature(Name)) << 1;
}
bool X86TargetInfo::validateCPUSpecificCPUDispatch(StringRef Name) const {
return llvm::StringSwitch<bool>(Name)
#define CPU_SPECIFIC(NAME, TUNE_NAME, MANGLING, FEATURES) .Case(NAME, true)
#define CPU_SPECIFIC_ALIAS(NEW_NAME, TUNE_NAME, NAME) .Case(NEW_NAME, true)
#include "llvm/Support/X86TargetParser.def"
.Default(false);
}
static StringRef CPUSpecificCPUDispatchNameDealias(StringRef Name) {
return llvm::StringSwitch<StringRef>(Name)
#define CPU_SPECIFIC_ALIAS(NEW_NAME, TUNE_NAME, NAME) .Case(NEW_NAME, NAME)
#include "llvm/Support/X86TargetParser.def"
.Default(Name);
}
char X86TargetInfo::CPUSpecificManglingCharacter(StringRef Name) const {
return llvm::StringSwitch<char>(CPUSpecificCPUDispatchNameDealias(Name))
#define CPU_SPECIFIC(NAME, TUNE_NAME, MANGLING, FEATURES) .Case(NAME, MANGLING)
#include "llvm/Support/X86TargetParser.def"
.Default(0);
}
void X86TargetInfo::getCPUSpecificCPUDispatchFeatures(
StringRef Name, llvm::SmallVectorImpl<StringRef> &Features) const {
StringRef WholeList =
llvm::StringSwitch<StringRef>(CPUSpecificCPUDispatchNameDealias(Name))
#define CPU_SPECIFIC(NAME, TUNE_NAME, MANGLING, FEATURES) .Case(NAME, FEATURES)
#include "llvm/Support/X86TargetParser.def"
.Default("");
WholeList.split(Features, ',', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
}
StringRef X86TargetInfo::getCPUSpecificTuneName(StringRef Name) const {
return llvm::StringSwitch<StringRef>(Name)
#define CPU_SPECIFIC(NAME, TUNE_NAME, MANGLING, FEATURES) .Case(NAME, TUNE_NAME)
#define CPU_SPECIFIC_ALIAS(NEW_NAME, TUNE_NAME, NAME) .Case(NEW_NAME, TUNE_NAME)
#include "llvm/Support/X86TargetParser.def"
.Default("");
}
// We can't use a generic validation scheme for the cpus accepted here
// versus subtarget cpus accepted in the target attribute because the
// variables intitialized by the runtime only support the below currently
// rather than the full range of cpus.
bool X86TargetInfo::validateCpuIs(StringRef FeatureStr) const {
return llvm::StringSwitch<bool>(FeatureStr)
#define X86_VENDOR(ENUM, STRING) .Case(STRING, true)
#define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) .Case(ALIAS, true)
#define X86_CPU_TYPE(ENUM, STR) .Case(STR, true)
#define X86_CPU_SUBTYPE(ENUM, STR) .Case(STR, true)
#include "llvm/Support/X86TargetParser.def"
.Default(false);
}
static unsigned matchAsmCCConstraint(const char *&Name) {
auto RV = llvm::StringSwitch<unsigned>(Name)
.Case("@cca", 4)
.Case("@ccae", 5)
.Case("@ccb", 4)
.Case("@ccbe", 5)
.Case("@ccc", 4)
.Case("@cce", 4)
.Case("@ccz", 4)
.Case("@ccg", 4)
.Case("@ccge", 5)
.Case("@ccl", 4)
.Case("@ccle", 5)
.Case("@ccna", 5)
.Case("@ccnae", 6)
.Case("@ccnb", 5)
.Case("@ccnbe", 6)
.Case("@ccnc", 5)
.Case("@ccne", 5)
.Case("@ccnz", 5)
.Case("@ccng", 5)
.Case("@ccnge", 6)
.Case("@ccnl", 5)
.Case("@ccnle", 6)
.Case("@ccno", 5)
.Case("@ccnp", 5)
.Case("@ccns", 5)
.Case("@cco", 4)
.Case("@ccp", 4)
.Case("@ccs", 4)
.Default(0);
return RV;
}
bool X86TargetInfo::validateAsmConstraint(
const char *&Name, TargetInfo::ConstraintInfo &Info) const {
switch (*Name) {
default:
return false;
// Constant constraints.
case 'e': // 32-bit signed integer constant for use with sign-extending x86_64
// instructions.
case 'Z': // 32-bit unsigned integer constant for use with zero-extending
// x86_64 instructions.
case 's':
Info.setRequiresImmediate();
return true;
case 'I':
Info.setRequiresImmediate(0, 31);
return true;
case 'J':
Info.setRequiresImmediate(0, 63);
return true;
case 'K':
Info.setRequiresImmediate(-128, 127);
return true;
case 'L':
Info.setRequiresImmediate({int(0xff), int(0xffff), int(0xffffffff)});
return true;
case 'M':
Info.setRequiresImmediate(0, 3);
return true;
case 'N':
Info.setRequiresImmediate(0, 255);
return true;
case 'O':
Info.setRequiresImmediate(0, 127);
return true;
// Register constraints.
case 'Y': // 'Y' is the first character for several 2-character constraints.
// Shift the pointer to the second character of the constraint.
Name++;
switch (*Name) {
default:
return false;
case 'z': // First SSE register.
case '2':
case 't': // Any SSE register, when SSE2 is enabled.
case 'i': // Any SSE register, when SSE2 and inter-unit moves enabled.
case 'm': // Any MMX register, when inter-unit moves enabled.
case 'k': // AVX512 arch mask registers: k1-k7.
Info.setAllowsRegister();
return true;
}
case 'f': // Any x87 floating point stack register.
// Constraint 'f' cannot be used for output operands.
if (Info.ConstraintStr[0] == '=')
return false;
Info.setAllowsRegister();
return true;
case 'a': // eax.
case 'b': // ebx.
case 'c': // ecx.
case 'd': // edx.
case 'S': // esi.
case 'D': // edi.
case 'A': // edx:eax.
case 't': // Top of floating point stack.
case 'u': // Second from top of floating point stack.
case 'q': // Any register accessible as [r]l: a, b, c, and d.
case 'y': // Any MMX register.
case 'v': // Any {X,Y,Z}MM register (Arch & context dependent)
case 'x': // Any SSE register.
case 'k': // Any AVX512 mask register (same as Yk, additionally allows k0
// for intermideate k reg operations).
case 'Q': // Any register accessible as [r]h: a, b, c, and d.
case 'R': // "Legacy" registers: ax, bx, cx, dx, di, si, sp, bp.
case 'l': // "Index" registers: any general register that can be used as an
// index in a base+index memory access.
Info.setAllowsRegister();
return true;
// Floating point constant constraints.
case 'C': // SSE floating point constant.
case 'G': // x87 floating point constant.
return true;
case '@':
// CC condition changes.
if (auto Len = matchAsmCCConstraint(Name)) {
Name += Len - 1;
Info.setAllowsRegister();
return true;
}
return false;
}
}
// Below is based on the following information:
// +------------------------------------+-------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------+
// | Processor Name | Cache Line Size (Bytes) | Source |
// +------------------------------------+-------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------+
// | i386 | 64 | https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf |
// | i486 | 16 | "four doublewords" (doubleword = 32 bits, 4 bits * 32 bits = 16 bytes) https://en.wikichip.org/w/images/d/d3/i486_MICROPROCESSOR_HARDWARE_REFERENCE_MANUAL_%281990%29.pdf and http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.4216&rep=rep1&type=pdf (page 29) |
// | i586/Pentium MMX | 32 | https://www.7-cpu.com/cpu/P-MMX.html |
// | i686/Pentium | 32 | https://www.7-cpu.com/cpu/P6.html |
// | Netburst/Pentium4 | 64 | https://www.7-cpu.com/cpu/P4-180.html |
// | Atom | 64 | https://www.7-cpu.com/cpu/Atom.html |
// | Westmere | 64 | https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client) "Cache Architecture" |
// | Sandy Bridge | 64 | https://en.wikipedia.org/wiki/Sandy_Bridge and https://www.7-cpu.com/cpu/SandyBridge.html |
// | Ivy Bridge | 64 | https://blog.stuffedcow.net/2013/01/ivb-cache-replacement/ and https://www.7-cpu.com/cpu/IvyBridge.html |
// | Haswell | 64 | https://www.7-cpu.com/cpu/Haswell.html |
// | Boadwell | 64 | https://www.7-cpu.com/cpu/Broadwell.html |
// | Skylake (including skylake-avx512) | 64 | https://www.nas.nasa.gov/hecc/support/kb/skylake-processors_550.html "Cache Hierarchy" |
// | Cascade Lake | 64 | https://www.nas.nasa.gov/hecc/support/kb/cascade-lake-processors_579.html "Cache Hierarchy" |
// | Skylake | 64 | https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake "Memory Hierarchy" |
// | Ice Lake | 64 | https://www.7-cpu.com/cpu/Ice_Lake.html |
// | Knights Landing | 64 | https://software.intel.com/en-us/articles/intel-xeon-phi-processor-7200-family-memory-management-optimizations "The Intel® Xeon Phi™ Processor Architecture" |
// | Knights Mill | 64 | https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf?countrylabel=Colombia "2.5.5.2 L1 DCache " |
// +------------------------------------+-------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------+
Optional<unsigned> X86TargetInfo::getCPUCacheLineSize() const {
using namespace llvm::X86;
switch (CPU) {
// i386
case CK_i386:
// i486
case CK_i486:
case CK_WinChipC6:
case CK_WinChip2:
case CK_C3:
// Lakemont
case CK_Lakemont:
return 16;
// i586
case CK_i586:
case CK_Pentium:
case CK_PentiumMMX:
// i686
case CK_PentiumPro:
case CK_i686:
case CK_Pentium2:
case CK_Pentium3:
case CK_PentiumM:
case CK_C3_2:
// K6
case CK_K6:
case CK_K6_2:
case CK_K6_3:
// Geode
case CK_Geode:
return 32;
// Netburst
case CK_Pentium4:
case CK_Prescott:
case CK_Nocona:
// Atom
case CK_Bonnell:
case CK_Silvermont:
case CK_Goldmont:
case CK_GoldmontPlus:
case CK_Tremont:
case CK_Westmere:
case CK_SandyBridge:
case CK_IvyBridge:
case CK_Haswell:
case CK_Broadwell:
case CK_SkylakeClient:
case CK_SkylakeServer:
case CK_Cascadelake:
case CK_Nehalem:
case CK_Cooperlake:
case CK_Cannonlake:
case CK_Tigerlake:
case CK_SapphireRapids:
case CK_IcelakeClient:
case CK_Rocketlake:
case CK_IcelakeServer:
case CK_Alderlake:
case CK_KNL:
case CK_KNM:
// K7
case CK_Athlon:
case CK_AthlonXP:
// K8
case CK_K8:
case CK_K8SSE3:
case CK_AMDFAM10:
// Bobcat
case CK_BTVER1:
case CK_BTVER2:
// Bulldozer
case CK_BDVER1:
case CK_BDVER2:
case CK_BDVER3:
case CK_BDVER4:
// Zen
case CK_ZNVER1:
case CK_ZNVER2:
case CK_ZNVER3:
// Deprecated
case CK_x86_64:
case CK_x86_64_v2:
case CK_x86_64_v3:
case CK_x86_64_v4:
case CK_Yonah:
case CK_Penryn:
case CK_Core2:
return 64;
// The following currently have unknown cache line sizes (but they are probably all 64):
// Core
case CK_None:
return None;
}
llvm_unreachable("Unknown CPU kind");
}
bool X86TargetInfo::validateOutputSize(const llvm::StringMap<bool> &FeatureMap,
StringRef Constraint,
unsigned Size) const {
// Strip off constraint modifiers.
while (Constraint[0] == '=' || Constraint[0] == '+' || Constraint[0] == '&')
Constraint = Constraint.substr(1);
return validateOperandSize(FeatureMap, Constraint, Size);
}
bool X86TargetInfo::validateInputSize(const llvm::StringMap<bool> &FeatureMap,
StringRef Constraint,
unsigned Size) const {
return validateOperandSize(FeatureMap, Constraint, Size);
}
bool X86TargetInfo::validateOperandSize(const llvm::StringMap<bool> &FeatureMap,
StringRef Constraint,
unsigned Size) const {
switch (Constraint[0]) {
default:
break;
case 'k':
// Registers k0-k7 (AVX512) size limit is 64 bit.
case 'y':
return Size <= 64;
case 'f':
case 't':
case 'u':
return Size <= 128;
case 'Y':
// 'Y' is the first character for several 2-character constraints.
switch (Constraint[1]) {
default:
return false;
case 'm':
// 'Ym' is synonymous with 'y'.
case 'k':
return Size <= 64;
case 'z':
// XMM0/YMM/ZMM0
if (hasFeatureEnabled(FeatureMap, "avx512f"))
// ZMM0 can be used if target supports AVX512F.
return Size <= 512U;
else if (hasFeatureEnabled(FeatureMap, "avx"))
// YMM0 can be used if target supports AVX.
return Size <= 256U;
else if (hasFeatureEnabled(FeatureMap, "sse"))
return Size <= 128U;
return false;
case 'i':
case 't':
case '2':
// 'Yi','Yt','Y2' are synonymous with 'x' when SSE2 is enabled.
if (SSELevel < SSE2)
return false;
break;
}
break;
case 'v':
case 'x':
if (hasFeatureEnabled(FeatureMap, "avx512f"))
// 512-bit zmm registers can be used if target supports AVX512F.
return Size <= 512U;
else if (hasFeatureEnabled(FeatureMap, "avx"))
// 256-bit ymm registers can be used if target supports AVX.
return Size <= 256U;
return Size <= 128U;
}
return true;
}
std::string X86TargetInfo::convertConstraint(const char *&Constraint) const {
switch (*Constraint) {
case '@':
if (auto Len = matchAsmCCConstraint(Constraint)) {
std::string Converted = "{" + std::string(Constraint, Len) + "}";
Constraint += Len - 1;
return Converted;
}
return std::string(1, *Constraint);
case 'a':
return std::string("{ax}");
case 'b':
return std::string("{bx}");
case 'c':
return std::string("{cx}");
case 'd':
return std::string("{dx}");
case 'S':
return std::string("{si}");
case 'D':
return std::string("{di}");
case 'p': // Keep 'p' constraint (address).
return std::string("p");
case 't': // top of floating point stack.
return std::string("{st}");
case 'u': // second from top of floating point stack.
return std::string("{st(1)}"); // second from top of floating point stack.
case 'Y':
switch (Constraint[1]) {
default:
// Break from inner switch and fall through (copy single char),
// continue parsing after copying the current constraint into
// the return string.
break;
case 'k':
case 'm':
case 'i':
case 't':
case 'z':
case '2':
// "^" hints llvm that this is a 2 letter constraint.
// "Constraint++" is used to promote the string iterator
// to the next constraint.
return std::string("^") + std::string(Constraint++, 2);
}
LLVM_FALLTHROUGH;
default:
return std::string(1, *Constraint);
}
}
void X86TargetInfo::fillValidCPUList(SmallVectorImpl<StringRef> &Values) const {
bool Only64Bit = getTriple().getArch() != llvm::Triple::x86;
llvm::X86::fillValidCPUArchList(Values, Only64Bit);
}
void X86TargetInfo::fillValidTuneCPUList(SmallVectorImpl<StringRef> &Values) const {
llvm::X86::fillValidTuneCPUList(Values);
}
ArrayRef<const char *> X86TargetInfo::getGCCRegNames() const {
return llvm::makeArrayRef(GCCRegNames);
}
ArrayRef<TargetInfo::AddlRegName> X86TargetInfo::getGCCAddlRegNames() const {
return llvm::makeArrayRef(AddlRegNames);
}
ArrayRef<Builtin::Info> X86_32TargetInfo::getTargetBuiltins() const {
return llvm::makeArrayRef(BuiltinInfoX86, clang::X86::LastX86CommonBuiltin -
Builtin::FirstTSBuiltin + 1);
}
ArrayRef<Builtin::Info> X86_64TargetInfo::getTargetBuiltins() const {
return llvm::makeArrayRef(BuiltinInfoX86,
X86::LastTSBuiltin - Builtin::FirstTSBuiltin);
}