llvm-project/mlir/lib/Dialect/NVGPU/Transforms/OptimizeSharedMemory.cpp
Jacques Pienaar 136d746ec7 [mlir] Flip accessors to prefixed form (NFC)
Another mechanical sweep to keep diff small for flip to _Prefixed.
2022-07-10 21:19:11 -07:00

273 lines
10 KiB
C++

//===- OptimizeSharedMemory.cpp - MLIR NVGPU pass implementation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements transforms to optimize accesses to shared memory.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/NVGPU/Passes.h"
#include "mlir/Dialect/NVGPU/Transforms/Transforms.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
using namespace mlir;
using namespace mlir::nvgpu;
/// The size of a shared memory line according to NV documentation.
constexpr int64_t kSharedMemoryLineSizeBytes = 128;
/// We optimize for 128bit accesses, but this can be made an argument in the
/// future.
constexpr int64_t kDefaultVectorSizeBits = 128;
/// Uses `srcIndexValue` to permute `tgtIndexValue` via
/// `result = xor(floordiv(srcIdxVal,permuteEveryN),
/// floordiv(tgtIdxVal,vectorSize)))
/// + tgtIdxVal % vectorSize`
/// This is done using an optimized sequence of `arith` operations.
static Value permuteVectorOffset(OpBuilder &b, Location loc,
ArrayRef<Value> indices, MemRefType memrefTy,
int64_t srcDim, int64_t tgtDim) {
// Adjust the src index to change how often the permutation changes
// if necessary.
Value src = indices[srcDim];
// We only want to permute every N iterations of the target dim where N is
// ceil(sharedMemoryLineSizeBytes / dimSizeBytes(tgtDim)).
const int64_t permuteEveryN = std::max<int64_t>(
1, kSharedMemoryLineSizeBytes / ((memrefTy.getDimSize(tgtDim) *
memrefTy.getElementTypeBitWidth()) /
8));
// clang-format off
// Index bit representation (b0 = least significant bit) for dim(1)
// of a `memref<?x?xDT>` is as follows:
// N := log2(128/elementSizeBits)
// M := log2(dimSize(1))
// then
// bits[0:N] = sub-vector element offset
// bits[N:M] = vector index
// clang-format on
int64_t N =
llvm::Log2_64(kDefaultVectorSizeBits / memrefTy.getElementTypeBitWidth());
int64_t M = llvm::Log2_64(memrefTy.getDimSize(tgtDim));
// Capture bits[0:(M-N)] of src by first creating a (M-N) mask.
int64_t mask = (1LL << (M - N)) - 1;
if (permuteEveryN > 1)
mask = mask << llvm::Log2_64(permuteEveryN);
Value srcBits = b.create<arith::ConstantIndexOp>(loc, mask);
srcBits = b.create<arith::AndIOp>(loc, src, srcBits);
// Use the src bits to permute the target bits b[N:M] containing the
// vector offset.
if (permuteEveryN > 1) {
int64_t shlBits = N - llvm::Log2_64(permuteEveryN);
if (shlBits > 0) {
Value finalShiftVal = b.create<arith::ConstantIndexOp>(loc, shlBits);
srcBits = b.createOrFold<arith::ShLIOp>(loc, srcBits, finalShiftVal);
} else if (shlBits < 0) {
Value finalShiftVal = b.create<arith::ConstantIndexOp>(loc, -1 * shlBits);
srcBits = b.createOrFold<arith::ShRUIOp>(loc, srcBits, finalShiftVal);
}
} else {
Value finalShiftVal = b.create<arith::ConstantIndexOp>(loc, N);
srcBits = b.createOrFold<arith::ShLIOp>(loc, srcBits, finalShiftVal);
}
Value permutedVectorIdx =
b.create<arith::XOrIOp>(loc, indices[tgtDim], srcBits);
return permutedVectorIdx;
}
static void transformIndices(OpBuilder &builder, Location loc,
SmallVector<Value, 4> &indices,
MemRefType memrefTy, int64_t srcDim,
int64_t tgtDim) {
indices[tgtDim] =
permuteVectorOffset(builder, loc, indices, memrefTy, srcDim, tgtDim);
}
Operation::operand_range getIndices(Operation *op) {
if (auto ldmatrixOp = dyn_cast<LdMatrixOp>(op))
return ldmatrixOp.getIndices();
if (auto copyOp = dyn_cast<DeviceAsyncCopyOp>(op))
return copyOp.getDstIndices();
if (auto loadOp = dyn_cast<memref::LoadOp>(op))
return loadOp.getIndices();
if (auto storeOp = dyn_cast<memref::StoreOp>(op))
return storeOp.getIndices();
if (auto vectorReadOp = dyn_cast<vector::LoadOp>(op))
return vectorReadOp.getIndices();
if (auto vectorStoreOp = dyn_cast<vector::StoreOp>(op))
return vectorStoreOp.getIndices();
llvm_unreachable("unsupported op type");
}
void setIndices(Operation *op, ArrayRef<Value> indices) {
if (auto ldmatrixOp = dyn_cast<LdMatrixOp>(op))
return ldmatrixOp.getIndicesMutable().assign(indices);
if (auto copyOp = dyn_cast<DeviceAsyncCopyOp>(op))
return copyOp.getDstIndicesMutable().assign(indices);
if (auto loadOp = dyn_cast<memref::LoadOp>(op))
return loadOp.getIndicesMutable().assign(indices);
if (auto storeOp = dyn_cast<memref::StoreOp>(op))
return storeOp.getIndicesMutable().assign(indices);
if (auto vectorReadOp = dyn_cast<vector::LoadOp>(op))
return vectorReadOp.getIndicesMutable().assign(indices);
if (auto vectorStoreOp = dyn_cast<vector::StoreOp>(op))
return vectorStoreOp.getIndicesMutable().assign(indices);
llvm_unreachable("unsupported op type");
}
/// Return all operations within `parentOp` that read from or write to
/// `shmMemRef`.
static LogicalResult
getShmReadAndWriteOps(Operation *parentOp, Value shmMemRef,
SmallVector<Operation *, 16> &readOps,
SmallVector<Operation *, 16> &writeOps) {
parentOp->walk([&](Operation *op) {
MemoryEffectOpInterface iface = dyn_cast<MemoryEffectOpInterface>(op);
if (!iface)
return;
Optional<MemoryEffects::EffectInstance> effect =
iface.getEffectOnValue<MemoryEffects::Read>(shmMemRef);
if (effect) {
readOps.push_back(op);
return;
}
effect = iface.getEffectOnValue<MemoryEffects::Write>(shmMemRef);
if (effect)
writeOps.push_back(op);
});
// Restrict to a supported set of ops. We also require at least 2D access,
// although this could be relaxed.
if (llvm::any_of(readOps, [](Operation *op) {
return !isa<memref::LoadOp, vector::LoadOp, nvgpu::LdMatrixOp>(op) ||
getIndices(op).size() < 2;
}))
return failure();
if (llvm::any_of(writeOps, [](Operation *op) {
return !isa<memref::StoreOp, vector::StoreOp, nvgpu::DeviceAsyncCopyOp>(
op) ||
getIndices(op).size() < 2;
}))
return failure();
return success();
}
mlir::LogicalResult
mlir::nvgpu::optimizeSharedMemoryReadsAndWrites(Operation *parentOp,
Value memrefValue) {
auto memRefType = memrefValue.getType().dyn_cast<MemRefType>();
if (!memRefType || memRefType.getMemorySpaceAsInt() !=
gpu::GPUDialect::getWorkgroupAddressSpace())
return failure();
// Abort if the given value has any sub-views; we do not do any alias
// analysis.
bool hasSubView = false;
parentOp->walk([&](memref::SubViewOp subView) { hasSubView = true; });
if (hasSubView)
return failure();
// Check if this is necessary given the assumption of 128b accesses:
// If dim[rank-1] is small enough to fit 8 rows in a 128B line.
const int64_t rowSize = memRefType.getDimSize(memRefType.getRank() - 1);
const int64_t rowsPerLine =
(8 * kSharedMemoryLineSizeBytes / memRefType.getElementTypeBitWidth()) /
rowSize;
const int64_t threadGroupSize =
1LL << (7 - llvm::Log2_64(kDefaultVectorSizeBits / 8));
if (rowsPerLine >= threadGroupSize)
return failure();
// Get sets of operations within the function that read/write to shared
// memory.
SmallVector<Operation *, 16> shmReadOps;
SmallVector<Operation *, 16> shmWriteOps;
if (failed(getShmReadAndWriteOps(parentOp, memrefValue, shmReadOps,
shmWriteOps)))
return failure();
if (shmReadOps.empty() || shmWriteOps.empty())
return failure();
OpBuilder builder(parentOp->getContext());
int64_t tgtDim = memRefType.getRank() - 1;
int64_t srcDim = memRefType.getRank() - 2;
// Transform indices for the ops writing to shared memory.
while (!shmWriteOps.empty()) {
Operation *shmWriteOp = shmWriteOps.back();
shmWriteOps.pop_back();
builder.setInsertionPoint(shmWriteOp);
auto indices = getIndices(shmWriteOp);
SmallVector<Value, 4> transformedIndices(indices.begin(), indices.end());
transformIndices(builder, shmWriteOp->getLoc(), transformedIndices,
memRefType, srcDim, tgtDim);
setIndices(shmWriteOp, transformedIndices);
}
// Transform indices for the ops reading from shared memory.
while (!shmReadOps.empty()) {
Operation *shmReadOp = shmReadOps.back();
shmReadOps.pop_back();
builder.setInsertionPoint(shmReadOp);
auto indices = getIndices(shmReadOp);
SmallVector<Value, 4> transformedIndices(indices.begin(), indices.end());
transformIndices(builder, shmReadOp->getLoc(), transformedIndices,
memRefType, srcDim, tgtDim);
setIndices(shmReadOp, transformedIndices);
}
return success();
}
namespace {
class OptimizeSharedMemoryPass
: public OptimizeSharedMemoryBase<OptimizeSharedMemoryPass> {
public:
OptimizeSharedMemoryPass() = default;
void runOnOperation() override {
Operation *op = getOperation();
SmallVector<memref::AllocOp> shmAllocOps;
op->walk([&](memref::AllocOp allocOp) {
if (allocOp.getMemref()
.getType()
.cast<MemRefType>()
.getMemorySpaceAsInt() !=
gpu::GPUDialect::getWorkgroupAddressSpace())
return;
shmAllocOps.push_back(allocOp);
});
for (auto allocOp : shmAllocOps) {
if (failed(optimizeSharedMemoryReadsAndWrites(getOperation(),
allocOp.getMemref())))
return;
}
}
};
} // namespace
std::unique_ptr<Pass> mlir::nvgpu::createOptimizeSharedMemoryPass() {
return std::make_unique<OptimizeSharedMemoryPass>();
}