mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-26 13:16:06 +00:00
743 lines
27 KiB
C++
743 lines
27 KiB
C++
//===--------------------- RegisterFile.cpp ---------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// This file defines a register mapping file class. This class is responsible
|
|
/// for managing hardware register files and the tracking of data dependencies
|
|
/// between registers.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/MCA/HardwareUnits/RegisterFile.h"
|
|
#include "llvm/MCA/Instruction.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#define DEBUG_TYPE "llvm-mca"
|
|
|
|
namespace llvm {
|
|
namespace mca {
|
|
|
|
const unsigned WriteRef::INVALID_IID = std::numeric_limits<unsigned>::max();
|
|
|
|
WriteRef::WriteRef(unsigned SourceIndex, WriteState *WS)
|
|
: IID(SourceIndex), WriteBackCycle(), WriteResID(), RegisterID(),
|
|
Write(WS) {}
|
|
|
|
void WriteRef::commit() {
|
|
assert(Write && Write->isExecuted() && "Cannot commit before write back!");
|
|
RegisterID = Write->getRegisterID();
|
|
WriteResID = Write->getWriteResourceID();
|
|
Write = nullptr;
|
|
}
|
|
|
|
void WriteRef::notifyExecuted(unsigned Cycle) {
|
|
assert(Write && Write->isExecuted() && "Not executed!");
|
|
WriteBackCycle = Cycle;
|
|
}
|
|
|
|
bool WriteRef::hasKnownWriteBackCycle() const {
|
|
return isValid() && (!Write || Write->isExecuted());
|
|
}
|
|
|
|
bool WriteRef::isWriteZero() const {
|
|
assert(isValid() && "Invalid null WriteState found!");
|
|
return getWriteState()->isWriteZero();
|
|
}
|
|
|
|
unsigned WriteRef::getWriteResourceID() const {
|
|
if (Write)
|
|
return Write->getWriteResourceID();
|
|
return WriteResID;
|
|
}
|
|
|
|
MCPhysReg WriteRef::getRegisterID() const {
|
|
if (Write)
|
|
return Write->getRegisterID();
|
|
return RegisterID;
|
|
}
|
|
|
|
RegisterFile::RegisterFile(const MCSchedModel &SM, const MCRegisterInfo &mri,
|
|
unsigned NumRegs)
|
|
: MRI(mri),
|
|
RegisterMappings(mri.getNumRegs(), {WriteRef(), RegisterRenamingInfo()}),
|
|
ZeroRegisters(mri.getNumRegs(), false), CurrentCycle() {
|
|
initialize(SM, NumRegs);
|
|
}
|
|
|
|
void RegisterFile::initialize(const MCSchedModel &SM, unsigned NumRegs) {
|
|
// Create a default register file that "sees" all the machine registers
|
|
// declared by the target. The number of physical registers in the default
|
|
// register file is set equal to `NumRegs`. A value of zero for `NumRegs`
|
|
// means: this register file has an unbounded number of physical registers.
|
|
RegisterFiles.emplace_back(NumRegs);
|
|
if (!SM.hasExtraProcessorInfo())
|
|
return;
|
|
|
|
// For each user defined register file, allocate a RegisterMappingTracker
|
|
// object. The size of every register file, as well as the mapping between
|
|
// register files and register classes is specified via tablegen.
|
|
const MCExtraProcessorInfo &Info = SM.getExtraProcessorInfo();
|
|
|
|
// Skip invalid register file at index 0.
|
|
for (unsigned I = 1, E = Info.NumRegisterFiles; I < E; ++I) {
|
|
const MCRegisterFileDesc &RF = Info.RegisterFiles[I];
|
|
assert(RF.NumPhysRegs && "Invalid PRF with zero physical registers!");
|
|
|
|
// The cost of a register definition is equivalent to the number of
|
|
// physical registers that are allocated at register renaming stage.
|
|
unsigned Length = RF.NumRegisterCostEntries;
|
|
const MCRegisterCostEntry *FirstElt =
|
|
&Info.RegisterCostTable[RF.RegisterCostEntryIdx];
|
|
addRegisterFile(RF, ArrayRef<MCRegisterCostEntry>(FirstElt, Length));
|
|
}
|
|
}
|
|
|
|
void RegisterFile::cycleStart() {
|
|
for (RegisterMappingTracker &RMT : RegisterFiles)
|
|
RMT.NumMoveEliminated = 0;
|
|
}
|
|
|
|
void RegisterFile::onInstructionExecuted(Instruction *IS) {
|
|
assert(IS && IS->isExecuted() && "Unexpected internal state found!");
|
|
for (WriteState &WS : IS->getDefs()) {
|
|
if (WS.isEliminated())
|
|
return;
|
|
|
|
MCPhysReg RegID = WS.getRegisterID();
|
|
|
|
// This allows InstrPostProcess to remove register Defs
|
|
// by setting their RegisterID to 0.
|
|
if (!RegID)
|
|
continue;
|
|
|
|
assert(WS.getCyclesLeft() != UNKNOWN_CYCLES &&
|
|
"The number of cycles should be known at this point!");
|
|
assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!");
|
|
|
|
MCPhysReg RenameAs = RegisterMappings[RegID].second.RenameAs;
|
|
if (RenameAs && RenameAs != RegID)
|
|
RegID = RenameAs;
|
|
|
|
WriteRef &WR = RegisterMappings[RegID].first;
|
|
if (WR.getWriteState() == &WS)
|
|
WR.notifyExecuted(CurrentCycle);
|
|
|
|
for (MCPhysReg I : MRI.subregs(RegID)) {
|
|
WriteRef &OtherWR = RegisterMappings[I].first;
|
|
if (OtherWR.getWriteState() == &WS)
|
|
OtherWR.notifyExecuted(CurrentCycle);
|
|
}
|
|
|
|
if (!WS.clearsSuperRegisters())
|
|
continue;
|
|
|
|
for (MCPhysReg I : MRI.superregs(RegID)) {
|
|
WriteRef &OtherWR = RegisterMappings[I].first;
|
|
if (OtherWR.getWriteState() == &WS)
|
|
OtherWR.notifyExecuted(CurrentCycle);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RegisterFile::addRegisterFile(const MCRegisterFileDesc &RF,
|
|
ArrayRef<MCRegisterCostEntry> Entries) {
|
|
// A default register file is always allocated at index #0. That register file
|
|
// is mainly used to count the total number of mappings created by all
|
|
// register files at runtime. Users can limit the number of available physical
|
|
// registers in register file #0 through the command line flag
|
|
// `-register-file-size`.
|
|
unsigned RegisterFileIndex = RegisterFiles.size();
|
|
RegisterFiles.emplace_back(RF.NumPhysRegs, RF.MaxMovesEliminatedPerCycle,
|
|
RF.AllowZeroMoveEliminationOnly);
|
|
|
|
// Special case where there is no register class identifier in the set.
|
|
// An empty set of register classes means: this register file contains all
|
|
// the physical registers specified by the target.
|
|
// We optimistically assume that a register can be renamed at the cost of a
|
|
// single physical register. The constructor of RegisterFile ensures that
|
|
// a RegisterMapping exists for each logical register defined by the Target.
|
|
if (Entries.empty())
|
|
return;
|
|
|
|
// Now update the cost of individual registers.
|
|
for (const MCRegisterCostEntry &RCE : Entries) {
|
|
const MCRegisterClass &RC = MRI.getRegClass(RCE.RegisterClassID);
|
|
for (const MCPhysReg Reg : RC) {
|
|
RegisterRenamingInfo &Entry = RegisterMappings[Reg].second;
|
|
IndexPlusCostPairTy &IPC = Entry.IndexPlusCost;
|
|
if (IPC.first && IPC.first != RegisterFileIndex) {
|
|
// The only register file that is allowed to overlap is the default
|
|
// register file at index #0. The analysis is inaccurate if register
|
|
// files overlap.
|
|
errs() << "warning: register " << MRI.getName(Reg)
|
|
<< " defined in multiple register files.";
|
|
}
|
|
IPC = std::make_pair(RegisterFileIndex, RCE.Cost);
|
|
Entry.RenameAs = Reg;
|
|
Entry.AllowMoveElimination = RCE.AllowMoveElimination;
|
|
|
|
// Assume the same cost for each sub-register.
|
|
for (MCPhysReg I : MRI.subregs(Reg)) {
|
|
RegisterRenamingInfo &OtherEntry = RegisterMappings[I].second;
|
|
if (!OtherEntry.IndexPlusCost.first &&
|
|
(!OtherEntry.RenameAs ||
|
|
MRI.isSuperRegister(I, OtherEntry.RenameAs))) {
|
|
OtherEntry.IndexPlusCost = IPC;
|
|
OtherEntry.RenameAs = Reg;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RegisterFile::allocatePhysRegs(const RegisterRenamingInfo &Entry,
|
|
MutableArrayRef<unsigned> UsedPhysRegs) {
|
|
unsigned RegisterFileIndex = Entry.IndexPlusCost.first;
|
|
unsigned Cost = Entry.IndexPlusCost.second;
|
|
if (RegisterFileIndex) {
|
|
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
|
|
RMT.NumUsedPhysRegs += Cost;
|
|
UsedPhysRegs[RegisterFileIndex] += Cost;
|
|
}
|
|
|
|
// Now update the default register mapping tracker.
|
|
RegisterFiles[0].NumUsedPhysRegs += Cost;
|
|
UsedPhysRegs[0] += Cost;
|
|
}
|
|
|
|
void RegisterFile::freePhysRegs(const RegisterRenamingInfo &Entry,
|
|
MutableArrayRef<unsigned> FreedPhysRegs) {
|
|
unsigned RegisterFileIndex = Entry.IndexPlusCost.first;
|
|
unsigned Cost = Entry.IndexPlusCost.second;
|
|
if (RegisterFileIndex) {
|
|
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
|
|
RMT.NumUsedPhysRegs -= Cost;
|
|
FreedPhysRegs[RegisterFileIndex] += Cost;
|
|
}
|
|
|
|
// Now update the default register mapping tracker.
|
|
RegisterFiles[0].NumUsedPhysRegs -= Cost;
|
|
FreedPhysRegs[0] += Cost;
|
|
}
|
|
|
|
void RegisterFile::addRegisterWrite(WriteRef Write,
|
|
MutableArrayRef<unsigned> UsedPhysRegs) {
|
|
WriteState &WS = *Write.getWriteState();
|
|
MCPhysReg RegID = WS.getRegisterID();
|
|
|
|
// This allows InstrPostProcess to remove register Defs
|
|
// by setting their RegisterID to 0.
|
|
if (!RegID)
|
|
return;
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "[PRF] addRegisterWrite [ " << Write.getSourceIndex() << ", "
|
|
<< MRI.getName(RegID) << "]\n";
|
|
});
|
|
|
|
// If RenameAs is equal to RegID, then RegID is subject to register renaming
|
|
// and false dependencies on RegID are all eliminated.
|
|
|
|
// If RenameAs references the invalid register, then we optimistically assume
|
|
// that it can be renamed. In the absence of tablegen descriptors for register
|
|
// files, RenameAs is always set to the invalid register ID. In all other
|
|
// cases, RenameAs must be either equal to RegID, or it must reference a
|
|
// super-register of RegID.
|
|
|
|
// If RenameAs is a super-register of RegID, then a write to RegID has always
|
|
// a false dependency on RenameAs. The only exception is for when the write
|
|
// implicitly clears the upper portion of the underlying register.
|
|
// If a write clears its super-registers, then it is renamed as `RenameAs`.
|
|
bool IsWriteZero = WS.isWriteZero();
|
|
bool IsEliminated = WS.isEliminated();
|
|
bool ShouldAllocatePhysRegs = !IsWriteZero && !IsEliminated;
|
|
const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
|
|
WS.setPRF(RRI.IndexPlusCost.first);
|
|
|
|
if (RRI.RenameAs && RRI.RenameAs != RegID) {
|
|
RegID = RRI.RenameAs;
|
|
WriteRef &OtherWrite = RegisterMappings[RegID].first;
|
|
|
|
if (!WS.clearsSuperRegisters()) {
|
|
// The processor keeps the definition of `RegID` together with register
|
|
// `RenameAs`. Since this partial write is not renamed, no physical
|
|
// register is allocated.
|
|
ShouldAllocatePhysRegs = false;
|
|
|
|
WriteState *OtherWS = OtherWrite.getWriteState();
|
|
if (OtherWS && (OtherWrite.getSourceIndex() != Write.getSourceIndex())) {
|
|
// This partial write has a false dependency on RenameAs.
|
|
assert(!IsEliminated && "Unexpected partial update!");
|
|
OtherWS->addUser(OtherWrite.getSourceIndex(), &WS);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update zero registers.
|
|
MCPhysReg ZeroRegisterID =
|
|
WS.clearsSuperRegisters() ? RegID : WS.getRegisterID();
|
|
ZeroRegisters.setBitVal(ZeroRegisterID, IsWriteZero);
|
|
for (MCPhysReg I : MRI.subregs(ZeroRegisterID))
|
|
ZeroRegisters.setBitVal(I, IsWriteZero);
|
|
|
|
// If this move has been eliminated, then method tryEliminateMoveOrSwap should
|
|
// have already updated all the register mappings.
|
|
if (!IsEliminated) {
|
|
// Check if this is one of multiple writes performed by this
|
|
// instruction to register RegID.
|
|
const WriteRef &OtherWrite = RegisterMappings[RegID].first;
|
|
const WriteState *OtherWS = OtherWrite.getWriteState();
|
|
if (OtherWS && OtherWrite.getSourceIndex() == Write.getSourceIndex()) {
|
|
if (OtherWS->getLatency() > WS.getLatency()) {
|
|
// Conservatively keep the slowest write on RegID.
|
|
if (ShouldAllocatePhysRegs)
|
|
allocatePhysRegs(RegisterMappings[RegID].second, UsedPhysRegs);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Update the mapping for register RegID including its sub-registers.
|
|
RegisterMappings[RegID].first = Write;
|
|
RegisterMappings[RegID].second.AliasRegID = 0U;
|
|
for (MCPhysReg I : MRI.subregs(RegID)) {
|
|
RegisterMappings[I].first = Write;
|
|
RegisterMappings[I].second.AliasRegID = 0U;
|
|
}
|
|
|
|
// No physical registers are allocated for instructions that are optimized
|
|
// in hardware. For example, zero-latency data-dependency breaking
|
|
// instructions don't consume physical registers.
|
|
if (ShouldAllocatePhysRegs)
|
|
allocatePhysRegs(RegisterMappings[RegID].second, UsedPhysRegs);
|
|
}
|
|
|
|
if (!WS.clearsSuperRegisters())
|
|
return;
|
|
|
|
for (MCPhysReg I : MRI.superregs(RegID)) {
|
|
if (!IsEliminated) {
|
|
RegisterMappings[I].first = Write;
|
|
RegisterMappings[I].second.AliasRegID = 0U;
|
|
}
|
|
|
|
ZeroRegisters.setBitVal(I, IsWriteZero);
|
|
}
|
|
}
|
|
|
|
void RegisterFile::removeRegisterWrite(
|
|
const WriteState &WS, MutableArrayRef<unsigned> FreedPhysRegs) {
|
|
// Early exit if this write was eliminated. A write eliminated at register
|
|
// renaming stage generates an alias, and it is not added to the PRF.
|
|
if (WS.isEliminated())
|
|
return;
|
|
|
|
MCPhysReg RegID = WS.getRegisterID();
|
|
|
|
// This allows InstrPostProcess to remove register Defs
|
|
// by setting their RegisterID to 0.
|
|
if (!RegID)
|
|
return;
|
|
|
|
assert(WS.getCyclesLeft() != UNKNOWN_CYCLES &&
|
|
"Invalidating a write of unknown cycles!");
|
|
assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!");
|
|
|
|
bool ShouldFreePhysRegs = !WS.isWriteZero();
|
|
MCPhysReg RenameAs = RegisterMappings[RegID].second.RenameAs;
|
|
if (RenameAs && RenameAs != RegID) {
|
|
RegID = RenameAs;
|
|
|
|
if (!WS.clearsSuperRegisters()) {
|
|
// Keep the definition of `RegID` together with register `RenameAs`.
|
|
ShouldFreePhysRegs = false;
|
|
}
|
|
}
|
|
|
|
if (ShouldFreePhysRegs)
|
|
freePhysRegs(RegisterMappings[RegID].second, FreedPhysRegs);
|
|
|
|
WriteRef &WR = RegisterMappings[RegID].first;
|
|
if (WR.getWriteState() == &WS)
|
|
WR.commit();
|
|
|
|
for (MCPhysReg I : MRI.subregs(RegID)) {
|
|
WriteRef &OtherWR = RegisterMappings[I].first;
|
|
if (OtherWR.getWriteState() == &WS)
|
|
OtherWR.commit();
|
|
}
|
|
|
|
if (!WS.clearsSuperRegisters())
|
|
return;
|
|
|
|
for (MCPhysReg I : MRI.superregs(RegID)) {
|
|
WriteRef &OtherWR = RegisterMappings[I].first;
|
|
if (OtherWR.getWriteState() == &WS)
|
|
OtherWR.commit();
|
|
}
|
|
}
|
|
|
|
bool RegisterFile::canEliminateMove(const WriteState &WS, const ReadState &RS,
|
|
unsigned RegisterFileIndex) const {
|
|
const RegisterMapping &RMFrom = RegisterMappings[RS.getRegisterID()];
|
|
const RegisterMapping &RMTo = RegisterMappings[WS.getRegisterID()];
|
|
const RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
|
|
|
|
// From and To must be owned by the PRF at index `RegisterFileIndex`.
|
|
const RegisterRenamingInfo &RRIFrom = RMFrom.second;
|
|
if (RRIFrom.IndexPlusCost.first != RegisterFileIndex)
|
|
return false;
|
|
|
|
const RegisterRenamingInfo &RRITo = RMTo.second;
|
|
if (RRITo.IndexPlusCost.first != RegisterFileIndex)
|
|
return false;
|
|
|
|
// Early exit if the destination register is from a register class that
|
|
// doesn't allow move elimination.
|
|
if (!RegisterMappings[RRITo.RenameAs].second.AllowMoveElimination)
|
|
return false;
|
|
|
|
// We only allow move elimination for writes that update a full physical
|
|
// register. On X86, move elimination is possible with 32-bit general purpose
|
|
// registers because writes to those registers are not partial writes. If a
|
|
// register move is a partial write, then we conservatively assume that move
|
|
// elimination fails, since it would either trigger a partial update, or the
|
|
// issue of a merge opcode.
|
|
//
|
|
// Note that this constraint may be lifted in future. For example, we could
|
|
// make this model more flexible, and let users customize the set of registers
|
|
// (i.e. register classes) that allow move elimination.
|
|
//
|
|
// For now, we assume that there is a strong correlation between registers
|
|
// that allow move elimination, and how those same registers are renamed in
|
|
// hardware.
|
|
if (RRITo.RenameAs && RRITo.RenameAs != WS.getRegisterID())
|
|
if (!WS.clearsSuperRegisters())
|
|
return false;
|
|
|
|
bool IsZeroMove = ZeroRegisters[RS.getRegisterID()];
|
|
return (!RMT.AllowZeroMoveEliminationOnly || IsZeroMove);
|
|
}
|
|
|
|
bool RegisterFile::tryEliminateMoveOrSwap(MutableArrayRef<WriteState> Writes,
|
|
MutableArrayRef<ReadState> Reads) {
|
|
if (Writes.size() != Reads.size())
|
|
return false;
|
|
|
|
// This logic assumes that writes and reads are contributed by a register move
|
|
// or a register swap operation. In particular, it assumes a simple register
|
|
// move if there is only one write. It assumes a swap operation if there are
|
|
// exactly two writes.
|
|
if (Writes.empty() || Writes.size() > 2)
|
|
return false;
|
|
|
|
// All registers must be owned by the same PRF.
|
|
const RegisterRenamingInfo &RRInfo =
|
|
RegisterMappings[Writes[0].getRegisterID()].second;
|
|
unsigned RegisterFileIndex = RRInfo.IndexPlusCost.first;
|
|
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
|
|
|
|
// Early exit if the PRF cannot eliminate more moves/xchg in this cycle.
|
|
if (RMT.MaxMoveEliminatedPerCycle &&
|
|
(RMT.NumMoveEliminated + Writes.size()) > RMT.MaxMoveEliminatedPerCycle)
|
|
return false;
|
|
|
|
for (size_t I = 0, E = Writes.size(); I < E; ++I) {
|
|
const ReadState &RS = Reads[I];
|
|
const WriteState &WS = Writes[E - (I + 1)];
|
|
if (!canEliminateMove(WS, RS, RegisterFileIndex))
|
|
return false;
|
|
}
|
|
|
|
for (size_t I = 0, E = Writes.size(); I < E; ++I) {
|
|
ReadState &RS = Reads[I];
|
|
WriteState &WS = Writes[E - (I + 1)];
|
|
|
|
const RegisterMapping &RMFrom = RegisterMappings[RS.getRegisterID()];
|
|
const RegisterMapping &RMTo = RegisterMappings[WS.getRegisterID()];
|
|
const RegisterRenamingInfo &RRIFrom = RMFrom.second;
|
|
const RegisterRenamingInfo &RRITo = RMTo.second;
|
|
|
|
// Construct an alias.
|
|
MCPhysReg AliasedReg =
|
|
RRIFrom.RenameAs ? RRIFrom.RenameAs : RS.getRegisterID();
|
|
MCPhysReg AliasReg = RRITo.RenameAs ? RRITo.RenameAs : WS.getRegisterID();
|
|
|
|
const RegisterRenamingInfo &RMAlias = RegisterMappings[AliasedReg].second;
|
|
if (RMAlias.AliasRegID)
|
|
AliasedReg = RMAlias.AliasRegID;
|
|
|
|
RegisterMappings[AliasReg].second.AliasRegID = AliasedReg;
|
|
for (MCPhysReg I : MRI.subregs(AliasReg))
|
|
RegisterMappings[I].second.AliasRegID = AliasedReg;
|
|
|
|
if (ZeroRegisters[RS.getRegisterID()]) {
|
|
WS.setWriteZero();
|
|
RS.setReadZero();
|
|
}
|
|
|
|
WS.setEliminated();
|
|
RMT.NumMoveEliminated++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
unsigned WriteRef::getWriteBackCycle() const {
|
|
assert(hasKnownWriteBackCycle() && "Instruction not executed!");
|
|
assert((!Write || Write->getCyclesLeft() <= 0) &&
|
|
"Inconsistent state found!");
|
|
return WriteBackCycle;
|
|
}
|
|
|
|
unsigned RegisterFile::getElapsedCyclesFromWriteBack(const WriteRef &WR) const {
|
|
assert(WR.hasKnownWriteBackCycle() && "Write hasn't been committed yet!");
|
|
return CurrentCycle - WR.getWriteBackCycle();
|
|
}
|
|
|
|
void RegisterFile::collectWrites(
|
|
const MCSubtargetInfo &STI, const ReadState &RS,
|
|
SmallVectorImpl<WriteRef> &Writes,
|
|
SmallVectorImpl<WriteRef> &CommittedWrites) const {
|
|
const ReadDescriptor &RD = RS.getDescriptor();
|
|
const MCSchedModel &SM = STI.getSchedModel();
|
|
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
|
|
MCPhysReg RegID = RS.getRegisterID();
|
|
assert(RegID && RegID < RegisterMappings.size());
|
|
LLVM_DEBUG(dbgs() << "[PRF] collecting writes for register "
|
|
<< MRI.getName(RegID) << '\n');
|
|
|
|
// Check if this is an alias.
|
|
const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
|
|
if (RRI.AliasRegID)
|
|
RegID = RRI.AliasRegID;
|
|
|
|
const WriteRef &WR = RegisterMappings[RegID].first;
|
|
if (WR.getWriteState()) {
|
|
Writes.push_back(WR);
|
|
} else if (WR.hasKnownWriteBackCycle()) {
|
|
unsigned WriteResID = WR.getWriteResourceID();
|
|
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
|
|
if (ReadAdvance < 0) {
|
|
unsigned Elapsed = getElapsedCyclesFromWriteBack(WR);
|
|
if (Elapsed < static_cast<unsigned>(-ReadAdvance))
|
|
CommittedWrites.push_back(WR);
|
|
}
|
|
}
|
|
|
|
// Handle potential partial register updates.
|
|
for (MCPhysReg I : MRI.subregs(RegID)) {
|
|
const WriteRef &WR = RegisterMappings[I].first;
|
|
if (WR.getWriteState()) {
|
|
Writes.push_back(WR);
|
|
} else if (WR.hasKnownWriteBackCycle()) {
|
|
unsigned WriteResID = WR.getWriteResourceID();
|
|
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
|
|
if (ReadAdvance < 0) {
|
|
unsigned Elapsed = getElapsedCyclesFromWriteBack(WR);
|
|
if (Elapsed < static_cast<unsigned>(-ReadAdvance))
|
|
CommittedWrites.push_back(WR);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove duplicate entries and resize the input vector.
|
|
if (Writes.size() > 1) {
|
|
sort(Writes, [](const WriteRef &Lhs, const WriteRef &Rhs) {
|
|
return Lhs.getWriteState() < Rhs.getWriteState();
|
|
});
|
|
auto It = llvm::unique(Writes);
|
|
Writes.resize(std::distance(Writes.begin(), It));
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
for (const WriteRef &WR : Writes) {
|
|
const WriteState &WS = *WR.getWriteState();
|
|
dbgs() << "[PRF] Found a dependent use of Register "
|
|
<< MRI.getName(WS.getRegisterID()) << " (defined by instruction #"
|
|
<< WR.getSourceIndex() << ")\n";
|
|
}
|
|
});
|
|
}
|
|
|
|
RegisterFile::RAWHazard
|
|
RegisterFile::checkRAWHazards(const MCSubtargetInfo &STI,
|
|
const ReadState &RS) const {
|
|
RAWHazard Hazard;
|
|
SmallVector<WriteRef, 4> Writes;
|
|
SmallVector<WriteRef, 4> CommittedWrites;
|
|
|
|
const MCSchedModel &SM = STI.getSchedModel();
|
|
const ReadDescriptor &RD = RS.getDescriptor();
|
|
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
|
|
|
|
collectWrites(STI, RS, Writes, CommittedWrites);
|
|
for (const WriteRef &WR : Writes) {
|
|
const WriteState *WS = WR.getWriteState();
|
|
unsigned WriteResID = WS->getWriteResourceID();
|
|
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
|
|
|
|
if (WS->getCyclesLeft() == UNKNOWN_CYCLES) {
|
|
if (Hazard.isValid())
|
|
continue;
|
|
|
|
Hazard.RegisterID = WR.getRegisterID();
|
|
Hazard.CyclesLeft = UNKNOWN_CYCLES;
|
|
continue;
|
|
}
|
|
|
|
int CyclesLeft = WS->getCyclesLeft() - ReadAdvance;
|
|
if (CyclesLeft > 0) {
|
|
if (Hazard.CyclesLeft < CyclesLeft) {
|
|
Hazard.RegisterID = WR.getRegisterID();
|
|
Hazard.CyclesLeft = CyclesLeft;
|
|
}
|
|
}
|
|
}
|
|
Writes.clear();
|
|
|
|
for (const WriteRef &WR : CommittedWrites) {
|
|
unsigned WriteResID = WR.getWriteResourceID();
|
|
int NegReadAdvance = -STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
|
|
int Elapsed = static_cast<int>(getElapsedCyclesFromWriteBack(WR));
|
|
int CyclesLeft = NegReadAdvance - Elapsed;
|
|
assert(CyclesLeft > 0 && "Write should not be in the CommottedWrites set!");
|
|
if (Hazard.CyclesLeft < CyclesLeft) {
|
|
Hazard.RegisterID = WR.getRegisterID();
|
|
Hazard.CyclesLeft = CyclesLeft;
|
|
}
|
|
}
|
|
|
|
return Hazard;
|
|
}
|
|
|
|
void RegisterFile::addRegisterRead(ReadState &RS,
|
|
const MCSubtargetInfo &STI) const {
|
|
MCPhysReg RegID = RS.getRegisterID();
|
|
const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
|
|
RS.setPRF(RRI.IndexPlusCost.first);
|
|
if (RS.isIndependentFromDef())
|
|
return;
|
|
|
|
if (ZeroRegisters[RS.getRegisterID()])
|
|
RS.setReadZero();
|
|
|
|
SmallVector<WriteRef, 4> DependentWrites;
|
|
SmallVector<WriteRef, 4> CompletedWrites;
|
|
collectWrites(STI, RS, DependentWrites, CompletedWrites);
|
|
RS.setDependentWrites(DependentWrites.size() + CompletedWrites.size());
|
|
|
|
// We know that this read depends on all the writes in DependentWrites.
|
|
// For each write, check if we have ReadAdvance information, and use it
|
|
// to figure out in how many cycles this read will be available.
|
|
const ReadDescriptor &RD = RS.getDescriptor();
|
|
const MCSchedModel &SM = STI.getSchedModel();
|
|
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
|
|
for (WriteRef &WR : DependentWrites) {
|
|
unsigned WriteResID = WR.getWriteResourceID();
|
|
WriteState &WS = *WR.getWriteState();
|
|
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
|
|
WS.addUser(WR.getSourceIndex(), &RS, ReadAdvance);
|
|
}
|
|
|
|
for (WriteRef &WR : CompletedWrites) {
|
|
unsigned WriteResID = WR.getWriteResourceID();
|
|
assert(WR.hasKnownWriteBackCycle() && "Invalid write!");
|
|
assert(STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID) < 0);
|
|
unsigned ReadAdvance = static_cast<unsigned>(
|
|
-STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID));
|
|
unsigned Elapsed = getElapsedCyclesFromWriteBack(WR);
|
|
assert(Elapsed < ReadAdvance && "Should not have been added to the set!");
|
|
RS.writeStartEvent(WR.getSourceIndex(), WR.getRegisterID(),
|
|
ReadAdvance - Elapsed);
|
|
}
|
|
}
|
|
|
|
unsigned RegisterFile::isAvailable(ArrayRef<MCPhysReg> Regs) const {
|
|
SmallVector<unsigned, 4> NumPhysRegs(getNumRegisterFiles());
|
|
|
|
// Find how many new mappings must be created for each register file.
|
|
for (const MCPhysReg RegID : Regs) {
|
|
const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
|
|
const IndexPlusCostPairTy &Entry = RRI.IndexPlusCost;
|
|
if (Entry.first)
|
|
NumPhysRegs[Entry.first] += Entry.second;
|
|
NumPhysRegs[0] += Entry.second;
|
|
}
|
|
|
|
unsigned Response = 0;
|
|
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
|
|
unsigned NumRegs = NumPhysRegs[I];
|
|
if (!NumRegs)
|
|
continue;
|
|
|
|
const RegisterMappingTracker &RMT = RegisterFiles[I];
|
|
if (!RMT.NumPhysRegs) {
|
|
// The register file has an unbounded number of microarchitectural
|
|
// registers.
|
|
continue;
|
|
}
|
|
|
|
if (RMT.NumPhysRegs < NumRegs) {
|
|
// The current register file is too small. This may occur if the number of
|
|
// microarchitectural registers in register file #0 was changed by the
|
|
// users via flag -reg-file-size. Alternatively, the scheduling model
|
|
// specified a too small number of registers for this register file.
|
|
LLVM_DEBUG(
|
|
dbgs() << "[PRF] Not enough registers in the register file.\n");
|
|
|
|
// FIXME: Normalize the instruction register count to match the
|
|
// NumPhysRegs value. This is a highly unusual case, and is not expected
|
|
// to occur. This normalization is hiding an inconsistency in either the
|
|
// scheduling model or in the value that the user might have specified
|
|
// for NumPhysRegs.
|
|
NumRegs = RMT.NumPhysRegs;
|
|
}
|
|
|
|
if (RMT.NumPhysRegs < (RMT.NumUsedPhysRegs + NumRegs))
|
|
Response |= (1U << I);
|
|
}
|
|
|
|
return Response;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void WriteRef::dump() const {
|
|
dbgs() << "IID=" << getSourceIndex() << ' ';
|
|
if (isValid())
|
|
getWriteState()->dump();
|
|
else
|
|
dbgs() << "(null)";
|
|
}
|
|
|
|
void RegisterFile::dump() const {
|
|
for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I) {
|
|
const RegisterMapping &RM = RegisterMappings[I];
|
|
const RegisterRenamingInfo &RRI = RM.second;
|
|
if (ZeroRegisters[I]) {
|
|
dbgs() << MRI.getName(I) << ", " << I
|
|
<< ", PRF=" << RRI.IndexPlusCost.first
|
|
<< ", Cost=" << RRI.IndexPlusCost.second
|
|
<< ", RenameAs=" << RRI.RenameAs << ", IsZero=" << ZeroRegisters[I]
|
|
<< ",";
|
|
RM.first.dump();
|
|
dbgs() << '\n';
|
|
}
|
|
}
|
|
|
|
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
|
|
dbgs() << "Register File #" << I;
|
|
const RegisterMappingTracker &RMT = RegisterFiles[I];
|
|
dbgs() << "\n TotalMappings: " << RMT.NumPhysRegs
|
|
<< "\n NumUsedMappings: " << RMT.NumUsedPhysRegs << '\n';
|
|
}
|
|
}
|
|
#endif
|
|
|
|
} // namespace mca
|
|
} // namespace llvm
|