mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-29 13:26:09 +00:00

Implement `std::bind_back` function from P2387R3 "Pipe support for user-defined range adaptors".
382 lines
12 KiB
C++
382 lines
12 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// UNSUPPORTED: c++03, c++11, c++14, c++17, c++20
|
|
|
|
// <functional>
|
|
|
|
// template<class F, class... Args>
|
|
// constexpr unspecified bind_back(F&& f, Args&&... args);
|
|
|
|
#include <functional>
|
|
|
|
#include <cassert>
|
|
#include <concepts>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
#include "callable_types.h"
|
|
#include "types.h"
|
|
|
|
constexpr void test_basic_bindings() {
|
|
{ // Bind arguments, call without arguments
|
|
{
|
|
auto f = std::bind_back(MakeTuple{});
|
|
assert(f() == std::make_tuple());
|
|
}
|
|
{
|
|
auto f = std::bind_back(MakeTuple{}, Elem<1>{});
|
|
assert(f() == std::make_tuple(Elem<1>{}));
|
|
}
|
|
{
|
|
auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{});
|
|
assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{}));
|
|
}
|
|
{
|
|
auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
|
|
assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}));
|
|
}
|
|
}
|
|
|
|
{ // Bind no arguments, call with arguments
|
|
{
|
|
auto f = std::bind_back(MakeTuple{});
|
|
assert(f(Elem<1>{}) == std::make_tuple(Elem<1>{}));
|
|
}
|
|
{
|
|
auto f = std::bind_back(MakeTuple{});
|
|
assert(f(Elem<1>{}, Elem<2>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}));
|
|
}
|
|
{
|
|
auto f = std::bind_back(MakeTuple{});
|
|
assert(f(Elem<1>{}, Elem<2>{}, Elem<3>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}));
|
|
}
|
|
}
|
|
|
|
{ // Bind arguments, call with arguments
|
|
{
|
|
auto f = std::bind_back(MakeTuple{}, Elem<1>{});
|
|
assert(f(Elem<10>{}) == std::make_tuple(Elem<10>{}, Elem<1>{}));
|
|
}
|
|
{
|
|
auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{});
|
|
assert(f(Elem<10>{}) == std::make_tuple(Elem<10>{}, Elem<1>{}, Elem<2>{}));
|
|
}
|
|
{
|
|
auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
|
|
assert(f(Elem<10>{}) == std::make_tuple(Elem<10>{}, Elem<1>{}, Elem<2>{}, Elem<3>{}));
|
|
}
|
|
|
|
{
|
|
auto f = std::bind_back(MakeTuple{}, Elem<1>{});
|
|
assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<10>{}, Elem<11>{}, Elem<1>{}));
|
|
}
|
|
{
|
|
auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{});
|
|
assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<10>{}, Elem<11>{}, Elem<1>{}, Elem<2>{}));
|
|
}
|
|
{
|
|
auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
|
|
assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<10>{}, Elem<11>{}, Elem<1>{}, Elem<2>{}, Elem<3>{}));
|
|
}
|
|
{
|
|
auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
|
|
assert(f(Elem<10>{}, Elem<11>{}, Elem<12>{}) ==
|
|
std::make_tuple(Elem<10>{}, Elem<11>{}, Elem<12>{}, Elem<1>{}, Elem<2>{}, Elem<3>{}));
|
|
}
|
|
}
|
|
|
|
{ // Basic tests with fundamental types
|
|
int n = 2;
|
|
int m = 1;
|
|
int sum = 0;
|
|
auto add = [](int x, int y) { return x + y; };
|
|
auto add_n = [](int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; };
|
|
auto add_ref = [&](int x, int y) -> int& { return sum = x + y; };
|
|
auto add_rref = [&](int x, int y) -> int&& { return std::move(sum = x + y); };
|
|
|
|
auto a = std::bind_back(add, m, n);
|
|
assert(a() == 3);
|
|
|
|
auto b = std::bind_back(add_n, m, n, m, m, m, m);
|
|
assert(b() == 7);
|
|
|
|
auto c = std::bind_back(add_n, n, m);
|
|
assert(c(1, 1, 1, 1) == 7);
|
|
|
|
auto d = std::bind_back(add_ref, n, m);
|
|
std::same_as<int&> decltype(auto) dresult(d());
|
|
assert(dresult == 3);
|
|
|
|
auto e = std::bind_back(add_rref, n, m);
|
|
std::same_as<int&&> decltype(auto) eresult(e());
|
|
assert(eresult == 3);
|
|
|
|
auto f = std::bind_back(add, n);
|
|
assert(f(3) == 5);
|
|
|
|
auto g = std::bind_back(add, n, 1);
|
|
assert(g() == 3);
|
|
|
|
auto h = std::bind_back(add_n, 1, 1, 1);
|
|
assert(h(2, 2, 2) == 9);
|
|
|
|
auto i = std::bind_back(add_ref, n);
|
|
std::same_as<int&> decltype(auto) iresult(i(5));
|
|
assert(iresult == 7);
|
|
|
|
auto j = std::bind_back(add_rref, m);
|
|
std::same_as<int&&> decltype(auto) jresult(j(4));
|
|
assert(jresult == 5);
|
|
}
|
|
}
|
|
|
|
constexpr void test_edge_cases() {
|
|
{ // Make sure we don't treat std::reference_wrapper specially.
|
|
auto sub = [](std::reference_wrapper<int> a, std::reference_wrapper<int> b) { return a.get() - b.get(); };
|
|
|
|
int i = 1;
|
|
int j = 2;
|
|
auto f = std::bind_back(sub, std::ref(i));
|
|
assert(f(std::ref(j)) == 1);
|
|
}
|
|
|
|
{ // Make sure we can call a function that's a pointer to a member function.
|
|
struct MemberFunction {
|
|
constexpr int foo(int x, int y) { return x * y; }
|
|
};
|
|
|
|
MemberFunction value;
|
|
auto fn = std::bind_back(&MemberFunction::foo, 2, 3);
|
|
assert(fn(value) == 6);
|
|
}
|
|
|
|
{ // Make sure we can call a function that's a pointer to a member object.
|
|
struct MemberObject {
|
|
int obj;
|
|
};
|
|
|
|
MemberObject value{.obj = 3};
|
|
auto fn = std::bind_back(&MemberObject::obj);
|
|
assert(fn(value) == 3);
|
|
}
|
|
}
|
|
|
|
constexpr void test_passing_arguments() {
|
|
{ // Make sure that we copy the bound arguments into the unspecified-type.
|
|
auto add = [](int x, int y) { return x + y; };
|
|
int n = 2;
|
|
auto f = std::bind_back(add, n, 1);
|
|
n = 100;
|
|
assert(f() == 3);
|
|
}
|
|
|
|
{ // Make sure we pass the bound arguments to the function object
|
|
// with the right value category.
|
|
{
|
|
auto was_copied = [](CopyMoveInfo info) { return info.copy_kind == CopyMoveInfo::copy; };
|
|
CopyMoveInfo info;
|
|
auto f = std::bind_back(was_copied, info);
|
|
assert(f());
|
|
}
|
|
|
|
{
|
|
auto was_moved = [](CopyMoveInfo info) { return info.copy_kind == CopyMoveInfo::move; };
|
|
CopyMoveInfo info;
|
|
auto f = std::bind_back(was_moved, info);
|
|
assert(std::move(f)());
|
|
}
|
|
}
|
|
}
|
|
|
|
constexpr void test_function_objects() {
|
|
{ // Make sure we call the correctly cv-ref qualified operator()
|
|
// based on the value category of the bind_back unspecified-type.
|
|
struct X {
|
|
constexpr int operator()() & { return 1; }
|
|
constexpr int operator()() const& { return 2; }
|
|
constexpr int operator()() && { return 3; }
|
|
constexpr int operator()() const&& { return 4; }
|
|
};
|
|
|
|
auto f = std::bind_back(X{});
|
|
using F = decltype(f);
|
|
assert(static_cast<F&>(f)() == 1);
|
|
assert(static_cast<const F&>(f)() == 2);
|
|
assert(static_cast<F&&>(f)() == 3);
|
|
assert(static_cast<const F&&>(f)() == 4);
|
|
}
|
|
|
|
// Make sure the `bind_back` unspecified-type does not model invocable
|
|
// when the call would select a differently-qualified operator().
|
|
//
|
|
// For example, if the call to `operator()() &` is ill-formed, the call to the unspecified-type
|
|
// should be ill-formed and not fall back to the `operator()() const&` overload.
|
|
{ // Make sure we delete the & overload when the underlying call isn't valid.
|
|
{
|
|
struct X {
|
|
void operator()() & = delete;
|
|
void operator()() const&;
|
|
void operator()() &&;
|
|
void operator()() const&&;
|
|
};
|
|
|
|
using F = decltype(std::bind_back(X{}));
|
|
static_assert(!std::invocable<F&>);
|
|
static_assert(std::invocable<const F&>);
|
|
static_assert(std::invocable<F>);
|
|
static_assert(std::invocable<const F>);
|
|
}
|
|
|
|
// There's no way to make sure we delete the const& overload when the underlying call isn't valid,
|
|
// so we can't check this one.
|
|
|
|
{ // Make sure we delete the && overload when the underlying call isn't valid.
|
|
struct X {
|
|
void operator()() &;
|
|
void operator()() const&;
|
|
void operator()() && = delete;
|
|
void operator()() const&&;
|
|
};
|
|
|
|
using F = decltype(std::bind_back(X{}));
|
|
static_assert(std::invocable<F&>);
|
|
static_assert(std::invocable<const F&>);
|
|
static_assert(!std::invocable<F>);
|
|
static_assert(std::invocable<const F>);
|
|
}
|
|
|
|
{ // Make sure we delete the const&& overload when the underlying call isn't valid.
|
|
struct X {
|
|
void operator()() &;
|
|
void operator()() const&;
|
|
void operator()() &&;
|
|
void operator()() const&& = delete;
|
|
};
|
|
|
|
using F = decltype(std::bind_back(X{}));
|
|
static_assert(std::invocable<F&>);
|
|
static_assert(std::invocable<const F&>);
|
|
static_assert(std::invocable<F>);
|
|
static_assert(!std::invocable<const F>);
|
|
}
|
|
}
|
|
|
|
{ // Extra value category tests
|
|
struct X {};
|
|
|
|
{
|
|
struct Y {
|
|
void operator()(X&&) const&;
|
|
void operator()(X&&) && = delete;
|
|
};
|
|
|
|
using F = decltype(std::bind_back(Y{}));
|
|
static_assert(std::invocable<F&, X>);
|
|
static_assert(!std::invocable<F, X>);
|
|
}
|
|
|
|
{
|
|
struct Y {
|
|
void operator()(const X&) const;
|
|
void operator()(X&&) const = delete;
|
|
};
|
|
|
|
using F = decltype(std::bind_back(Y{}, X{}));
|
|
static_assert(std::invocable<F&>);
|
|
static_assert(!std::invocable<F>);
|
|
}
|
|
}
|
|
}
|
|
|
|
constexpr void test_return_type() {
|
|
{ // Test properties of the constructor of the unspecified-type returned by bind_back.
|
|
{ // Test move constructor when function is move only.
|
|
MoveOnlyCallable<bool> value(true);
|
|
auto f = std::bind_back(std::move(value), 1);
|
|
assert(f());
|
|
assert(f(1, 2, 3));
|
|
|
|
auto f1 = std::move(f);
|
|
assert(!f());
|
|
assert(f1());
|
|
assert(f1(1, 2, 3));
|
|
|
|
using F = decltype(f);
|
|
static_assert(std::is_move_constructible<F>::value);
|
|
static_assert(!std::is_copy_constructible<F>::value);
|
|
static_assert(!std::is_move_assignable<F>::value);
|
|
static_assert(!std::is_copy_assignable<F>::value);
|
|
}
|
|
|
|
{ // Test move constructor when function is copyable but not assignable.
|
|
CopyCallable<bool> value(true);
|
|
auto f = std::bind_back(value, 1);
|
|
assert(f());
|
|
assert(f(1, 2, 3));
|
|
|
|
auto f1 = std::move(f);
|
|
assert(!f());
|
|
assert(f1());
|
|
assert(f1(1, 2, 3));
|
|
|
|
auto f2 = std::bind_back(std::move(value), 1);
|
|
assert(f1());
|
|
assert(f2());
|
|
assert(f2(1, 2, 3));
|
|
|
|
using F = decltype(f);
|
|
static_assert(std::is_move_constructible<F>::value);
|
|
static_assert(std::is_copy_constructible<F>::value);
|
|
static_assert(!std::is_move_assignable<F>::value);
|
|
static_assert(!std::is_copy_assignable<F>::value);
|
|
}
|
|
|
|
{ // Test constructors when function is copy assignable.
|
|
using F = decltype(std::bind_back(std::declval<CopyAssignableWrapper&>(), 1));
|
|
static_assert(std::is_move_constructible<F>::value);
|
|
static_assert(std::is_copy_constructible<F>::value);
|
|
static_assert(std::is_move_assignable<F>::value);
|
|
static_assert(std::is_copy_assignable<F>::value);
|
|
}
|
|
|
|
{ // Test constructors when function is move assignable only.
|
|
using F = decltype(std::bind_back(std::declval<MoveAssignableWrapper>(), 1));
|
|
static_assert(std::is_move_constructible<F>::value);
|
|
static_assert(!std::is_copy_constructible<F>::value);
|
|
static_assert(std::is_move_assignable<F>::value);
|
|
static_assert(!std::is_copy_assignable<F>::value);
|
|
}
|
|
}
|
|
|
|
{ // Make sure bind_back's unspecified type's operator() is SFINAE-friendly.
|
|
using F = decltype(std::bind_back(std::declval<int (*)(int, int)>(), 1));
|
|
static_assert(!std::is_invocable<F>::value);
|
|
static_assert(std::is_invocable<F, int>::value);
|
|
static_assert(!std::is_invocable<F, void*>::value);
|
|
static_assert(!std::is_invocable<F, int, int>::value);
|
|
}
|
|
}
|
|
|
|
constexpr bool test() {
|
|
test_basic_bindings();
|
|
test_edge_cases();
|
|
test_passing_arguments();
|
|
test_function_objects();
|
|
test_return_type();
|
|
|
|
return true;
|
|
}
|
|
|
|
int main(int, char**) {
|
|
test();
|
|
static_assert(test());
|
|
|
|
return 0;
|
|
}
|