llvm-project/llvm/lib/MC/MCParser/MasmParser.cpp
2025-03-02 15:54:45 -08:00

6300 lines
207 KiB
C++

//===- AsmParser.cpp - Parser for Assembly Files --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class implements the parser for assembly files.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeView.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/AsmCond.h"
#include "llvm/MC/MCParser/AsmLexer.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCAsmParserExtension.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstddef>
#include <cstdint>
#include <ctime>
#include <deque>
#include <memory>
#include <optional>
#include <sstream>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
namespace {
/// Helper types for tracking macro definitions.
typedef std::vector<AsmToken> MCAsmMacroArgument;
typedef std::vector<MCAsmMacroArgument> MCAsmMacroArguments;
/// Helper class for storing information about an active macro instantiation.
struct MacroInstantiation {
/// The location of the instantiation.
SMLoc InstantiationLoc;
/// The buffer where parsing should resume upon instantiation completion.
unsigned ExitBuffer;
/// The location where parsing should resume upon instantiation completion.
SMLoc ExitLoc;
/// The depth of TheCondStack at the start of the instantiation.
size_t CondStackDepth;
};
struct ParseStatementInfo {
/// The parsed operands from the last parsed statement.
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> ParsedOperands;
/// The opcode from the last parsed instruction.
unsigned Opcode = ~0U;
/// Was there an error parsing the inline assembly?
bool ParseError = false;
/// The value associated with a macro exit.
std::optional<std::string> ExitValue;
SmallVectorImpl<AsmRewrite> *AsmRewrites = nullptr;
ParseStatementInfo() = delete;
ParseStatementInfo(SmallVectorImpl<AsmRewrite> *rewrites)
: AsmRewrites(rewrites) {}
};
enum FieldType {
FT_INTEGRAL, // Initializer: integer expression, stored as an MCExpr.
FT_REAL, // Initializer: real number, stored as an APInt.
FT_STRUCT // Initializer: struct initializer, stored recursively.
};
struct FieldInfo;
struct StructInfo {
StringRef Name;
bool IsUnion = false;
bool Initializable = true;
unsigned Alignment = 0;
unsigned AlignmentSize = 0;
unsigned NextOffset = 0;
unsigned Size = 0;
std::vector<FieldInfo> Fields;
StringMap<size_t> FieldsByName;
FieldInfo &addField(StringRef FieldName, FieldType FT,
unsigned FieldAlignmentSize);
StructInfo() = default;
StructInfo(StringRef StructName, bool Union, unsigned AlignmentValue);
};
// FIXME: This should probably use a class hierarchy, raw pointers between the
// objects, and dynamic type resolution instead of a union. On the other hand,
// ownership then becomes much more complicated; the obvious thing would be to
// use BumpPtrAllocator, but the lack of a destructor makes that messy.
struct StructInitializer;
struct IntFieldInfo {
SmallVector<const MCExpr *, 1> Values;
IntFieldInfo() = default;
IntFieldInfo(const SmallVector<const MCExpr *, 1> &V) { Values = V; }
IntFieldInfo(SmallVector<const MCExpr *, 1> &&V) { Values = std::move(V); }
};
struct RealFieldInfo {
SmallVector<APInt, 1> AsIntValues;
RealFieldInfo() = default;
RealFieldInfo(const SmallVector<APInt, 1> &V) { AsIntValues = V; }
RealFieldInfo(SmallVector<APInt, 1> &&V) { AsIntValues = std::move(V); }
};
struct StructFieldInfo {
std::vector<StructInitializer> Initializers;
StructInfo Structure;
StructFieldInfo() = default;
StructFieldInfo(std::vector<StructInitializer> V, StructInfo S);
};
class FieldInitializer {
public:
FieldType FT;
union {
IntFieldInfo IntInfo;
RealFieldInfo RealInfo;
StructFieldInfo StructInfo;
};
~FieldInitializer();
FieldInitializer(FieldType FT);
FieldInitializer(SmallVector<const MCExpr *, 1> &&Values);
FieldInitializer(SmallVector<APInt, 1> &&AsIntValues);
FieldInitializer(std::vector<StructInitializer> &&Initializers,
struct StructInfo Structure);
FieldInitializer(const FieldInitializer &Initializer);
FieldInitializer(FieldInitializer &&Initializer);
FieldInitializer &operator=(const FieldInitializer &Initializer);
FieldInitializer &operator=(FieldInitializer &&Initializer);
};
struct StructInitializer {
std::vector<FieldInitializer> FieldInitializers;
};
struct FieldInfo {
// Offset of the field within the containing STRUCT.
unsigned Offset = 0;
// Total size of the field (= LengthOf * Type).
unsigned SizeOf = 0;
// Number of elements in the field (1 if scalar, >1 if an array).
unsigned LengthOf = 0;
// Size of a single entry in this field, in bytes ("type" in MASM standards).
unsigned Type = 0;
FieldInitializer Contents;
FieldInfo(FieldType FT) : Contents(FT) {}
};
StructFieldInfo::StructFieldInfo(std::vector<StructInitializer> V,
StructInfo S) {
Initializers = std::move(V);
Structure = S;
}
StructInfo::StructInfo(StringRef StructName, bool Union,
unsigned AlignmentValue)
: Name(StructName), IsUnion(Union), Alignment(AlignmentValue) {}
FieldInfo &StructInfo::addField(StringRef FieldName, FieldType FT,
unsigned FieldAlignmentSize) {
if (!FieldName.empty())
FieldsByName[FieldName.lower()] = Fields.size();
Fields.emplace_back(FT);
FieldInfo &Field = Fields.back();
Field.Offset =
llvm::alignTo(NextOffset, std::min(Alignment, FieldAlignmentSize));
if (!IsUnion) {
NextOffset = std::max(NextOffset, Field.Offset);
}
AlignmentSize = std::max(AlignmentSize, FieldAlignmentSize);
return Field;
}
FieldInitializer::~FieldInitializer() {
switch (FT) {
case FT_INTEGRAL:
IntInfo.~IntFieldInfo();
break;
case FT_REAL:
RealInfo.~RealFieldInfo();
break;
case FT_STRUCT:
StructInfo.~StructFieldInfo();
break;
}
}
FieldInitializer::FieldInitializer(FieldType FT) : FT(FT) {
switch (FT) {
case FT_INTEGRAL:
new (&IntInfo) IntFieldInfo();
break;
case FT_REAL:
new (&RealInfo) RealFieldInfo();
break;
case FT_STRUCT:
new (&StructInfo) StructFieldInfo();
break;
}
}
FieldInitializer::FieldInitializer(SmallVector<const MCExpr *, 1> &&Values)
: FT(FT_INTEGRAL) {
new (&IntInfo) IntFieldInfo(std::move(Values));
}
FieldInitializer::FieldInitializer(SmallVector<APInt, 1> &&AsIntValues)
: FT(FT_REAL) {
new (&RealInfo) RealFieldInfo(std::move(AsIntValues));
}
FieldInitializer::FieldInitializer(
std::vector<StructInitializer> &&Initializers, struct StructInfo Structure)
: FT(FT_STRUCT) {
new (&StructInfo) StructFieldInfo(std::move(Initializers), Structure);
}
FieldInitializer::FieldInitializer(const FieldInitializer &Initializer)
: FT(Initializer.FT) {
switch (FT) {
case FT_INTEGRAL:
new (&IntInfo) IntFieldInfo(Initializer.IntInfo);
break;
case FT_REAL:
new (&RealInfo) RealFieldInfo(Initializer.RealInfo);
break;
case FT_STRUCT:
new (&StructInfo) StructFieldInfo(Initializer.StructInfo);
break;
}
}
FieldInitializer::FieldInitializer(FieldInitializer &&Initializer)
: FT(Initializer.FT) {
switch (FT) {
case FT_INTEGRAL:
new (&IntInfo) IntFieldInfo(Initializer.IntInfo);
break;
case FT_REAL:
new (&RealInfo) RealFieldInfo(Initializer.RealInfo);
break;
case FT_STRUCT:
new (&StructInfo) StructFieldInfo(Initializer.StructInfo);
break;
}
}
FieldInitializer &
FieldInitializer::operator=(const FieldInitializer &Initializer) {
if (FT != Initializer.FT) {
switch (FT) {
case FT_INTEGRAL:
IntInfo.~IntFieldInfo();
break;
case FT_REAL:
RealInfo.~RealFieldInfo();
break;
case FT_STRUCT:
StructInfo.~StructFieldInfo();
break;
}
}
FT = Initializer.FT;
switch (FT) {
case FT_INTEGRAL:
IntInfo = Initializer.IntInfo;
break;
case FT_REAL:
RealInfo = Initializer.RealInfo;
break;
case FT_STRUCT:
StructInfo = Initializer.StructInfo;
break;
}
return *this;
}
FieldInitializer &FieldInitializer::operator=(FieldInitializer &&Initializer) {
if (FT != Initializer.FT) {
switch (FT) {
case FT_INTEGRAL:
IntInfo.~IntFieldInfo();
break;
case FT_REAL:
RealInfo.~RealFieldInfo();
break;
case FT_STRUCT:
StructInfo.~StructFieldInfo();
break;
}
}
FT = Initializer.FT;
switch (FT) {
case FT_INTEGRAL:
IntInfo = Initializer.IntInfo;
break;
case FT_REAL:
RealInfo = Initializer.RealInfo;
break;
case FT_STRUCT:
StructInfo = Initializer.StructInfo;
break;
}
return *this;
}
/// The concrete assembly parser instance.
// Note that this is a full MCAsmParser, not an MCAsmParserExtension!
// It's a peer of AsmParser, not of COFFAsmParser, WasmAsmParser, etc.
class MasmParser : public MCAsmParser {
private:
AsmLexer Lexer;
MCContext &Ctx;
MCStreamer &Out;
const MCAsmInfo &MAI;
SourceMgr &SrcMgr;
SourceMgr::DiagHandlerTy SavedDiagHandler;
void *SavedDiagContext;
std::unique_ptr<MCAsmParserExtension> PlatformParser;
/// This is the current buffer index we're lexing from as managed by the
/// SourceMgr object.
unsigned CurBuffer;
/// time of assembly
struct tm TM;
BitVector EndStatementAtEOFStack;
AsmCond TheCondState;
std::vector<AsmCond> TheCondStack;
/// maps directive names to handler methods in parser
/// extensions. Extensions register themselves in this map by calling
/// addDirectiveHandler.
StringMap<ExtensionDirectiveHandler> ExtensionDirectiveMap;
/// maps assembly-time variable names to variables.
struct Variable {
enum RedefinableKind { NOT_REDEFINABLE, WARN_ON_REDEFINITION, REDEFINABLE };
StringRef Name;
RedefinableKind Redefinable = REDEFINABLE;
bool IsText = false;
std::string TextValue;
};
StringMap<Variable> Variables;
/// Stack of active struct definitions.
SmallVector<StructInfo, 1> StructInProgress;
/// Maps struct tags to struct definitions.
StringMap<StructInfo> Structs;
/// Maps data location names to types.
StringMap<AsmTypeInfo> KnownType;
/// Stack of active macro instantiations.
std::vector<MacroInstantiation*> ActiveMacros;
/// List of bodies of anonymous macros.
std::deque<MCAsmMacro> MacroLikeBodies;
/// Keeps track of how many .macro's have been instantiated.
unsigned NumOfMacroInstantiations;
/// The values from the last parsed cpp hash file line comment if any.
struct CppHashInfoTy {
StringRef Filename;
int64_t LineNumber;
SMLoc Loc;
unsigned Buf;
CppHashInfoTy() : LineNumber(0), Buf(0) {}
};
CppHashInfoTy CppHashInfo;
/// The filename from the first cpp hash file line comment, if any.
StringRef FirstCppHashFilename;
/// List of forward directional labels for diagnosis at the end.
SmallVector<std::tuple<SMLoc, CppHashInfoTy, MCSymbol *>, 4> DirLabels;
/// AssemblerDialect. ~OU means unset value and use value provided by MAI.
/// Defaults to 1U, meaning Intel.
unsigned AssemblerDialect = 1U;
/// is Darwin compatibility enabled?
bool IsDarwin = false;
/// Are we parsing ms-style inline assembly?
bool ParsingMSInlineAsm = false;
// Current <...> expression depth.
unsigned AngleBracketDepth = 0U;
// Number of locals defined.
uint16_t LocalCounter = 0;
public:
MasmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
const MCAsmInfo &MAI, struct tm TM, unsigned CB = 0);
MasmParser(const MasmParser &) = delete;
MasmParser &operator=(const MasmParser &) = delete;
~MasmParser() override;
bool Run(bool NoInitialTextSection, bool NoFinalize = false) override;
void addDirectiveHandler(StringRef Directive,
ExtensionDirectiveHandler Handler) override {
ExtensionDirectiveMap[Directive] = Handler;
DirectiveKindMap.try_emplace(Directive, DK_HANDLER_DIRECTIVE);
}
void addAliasForDirective(StringRef Directive, StringRef Alias) override {
DirectiveKindMap[Directive] = DirectiveKindMap[Alias];
}
/// @name MCAsmParser Interface
/// {
SourceMgr &getSourceManager() override { return SrcMgr; }
MCAsmLexer &getLexer() override { return Lexer; }
MCContext &getContext() override { return Ctx; }
MCStreamer &getStreamer() override { return Out; }
unsigned getAssemblerDialect() override {
if (AssemblerDialect == ~0U)
return MAI.getAssemblerDialect();
else
return AssemblerDialect;
}
void setAssemblerDialect(unsigned i) override {
AssemblerDialect = i;
}
void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) override;
bool Warning(SMLoc L, const Twine &Msg,
SMRange Range = std::nullopt) override;
bool printError(SMLoc L, const Twine &Msg,
SMRange Range = std::nullopt) override;
enum ExpandKind { ExpandMacros, DoNotExpandMacros };
const AsmToken &Lex(ExpandKind ExpandNextToken);
const AsmToken &Lex() override { return Lex(ExpandMacros); }
void setParsingMSInlineAsm(bool V) override {
ParsingMSInlineAsm = V;
// When parsing MS inline asm, we must lex 0b1101 and 0ABCH as binary and
// hex integer literals.
Lexer.setLexMasmIntegers(V);
}
bool isParsingMSInlineAsm() override { return ParsingMSInlineAsm; }
bool isParsingMasm() const override { return true; }
bool defineMacro(StringRef Name, StringRef Value) override;
bool lookUpField(StringRef Name, AsmFieldInfo &Info) const override;
bool lookUpField(StringRef Base, StringRef Member,
AsmFieldInfo &Info) const override;
bool lookUpType(StringRef Name, AsmTypeInfo &Info) const override;
bool parseMSInlineAsm(std::string &AsmString, unsigned &NumOutputs,
unsigned &NumInputs,
SmallVectorImpl<std::pair<void *, bool>> &OpDecls,
SmallVectorImpl<std::string> &Constraints,
SmallVectorImpl<std::string> &Clobbers,
const MCInstrInfo *MII, MCInstPrinter *IP,
MCAsmParserSemaCallback &SI) override;
bool parseExpression(const MCExpr *&Res);
bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc) override;
bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc,
AsmTypeInfo *TypeInfo) override;
bool parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) override;
bool parseAbsoluteExpression(int64_t &Res) override;
/// Parse a floating point expression using the float \p Semantics
/// and set \p Res to the value.
bool parseRealValue(const fltSemantics &Semantics, APInt &Res);
/// Parse an identifier or string (as a quoted identifier)
/// and set \p Res to the identifier contents.
enum IdentifierPositionKind { StandardPosition, StartOfStatement };
bool parseIdentifier(StringRef &Res, IdentifierPositionKind Position);
bool parseIdentifier(StringRef &Res) override {
return parseIdentifier(Res, StandardPosition);
}
void eatToEndOfStatement() override;
bool checkForValidSection() override;
/// }
private:
bool expandMacros();
const AsmToken peekTok(bool ShouldSkipSpace = true);
bool parseStatement(ParseStatementInfo &Info,
MCAsmParserSemaCallback *SI);
bool parseCurlyBlockScope(SmallVectorImpl<AsmRewrite>& AsmStrRewrites);
bool parseCppHashLineFilenameComment(SMLoc L);
bool expandMacro(raw_svector_ostream &OS, StringRef Body,
ArrayRef<MCAsmMacroParameter> Parameters,
ArrayRef<MCAsmMacroArgument> A,
const std::vector<std::string> &Locals, SMLoc L);
/// Are we inside a macro instantiation?
bool isInsideMacroInstantiation() {return !ActiveMacros.empty();}
/// Handle entry to macro instantiation.
///
/// \param M The macro.
/// \param NameLoc Instantiation location.
bool handleMacroEntry(
const MCAsmMacro *M, SMLoc NameLoc,
AsmToken::TokenKind ArgumentEndTok = AsmToken::EndOfStatement);
/// Handle invocation of macro function.
///
/// \param M The macro.
/// \param NameLoc Invocation location.
bool handleMacroInvocation(const MCAsmMacro *M, SMLoc NameLoc);
/// Handle exit from macro instantiation.
void handleMacroExit();
/// Extract AsmTokens for a macro argument.
bool
parseMacroArgument(const MCAsmMacroParameter *MP, MCAsmMacroArgument &MA,
AsmToken::TokenKind EndTok = AsmToken::EndOfStatement);
/// Parse all macro arguments for a given macro.
bool
parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A,
AsmToken::TokenKind EndTok = AsmToken::EndOfStatement);
void printMacroInstantiations();
bool expandStatement(SMLoc Loc);
void printMessage(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Msg,
SMRange Range = std::nullopt) const {
ArrayRef<SMRange> Ranges(Range);
SrcMgr.PrintMessage(Loc, Kind, Msg, Ranges);
}
static void DiagHandler(const SMDiagnostic &Diag, void *Context);
bool lookUpField(const StructInfo &Structure, StringRef Member,
AsmFieldInfo &Info) const;
/// Enter the specified file. This returns true on failure.
bool enterIncludeFile(const std::string &Filename);
/// Reset the current lexer position to that given by \p Loc. The
/// current token is not set; clients should ensure Lex() is called
/// subsequently.
///
/// \param InBuffer If not 0, should be the known buffer id that contains the
/// location.
void jumpToLoc(SMLoc Loc, unsigned InBuffer = 0,
bool EndStatementAtEOF = true);
/// Parse up to a token of kind \p EndTok and return the contents from the
/// current token up to (but not including) this token; the current token on
/// exit will be either this kind or EOF. Reads through instantiated macro
/// functions and text macros.
SmallVector<StringRef, 1> parseStringRefsTo(AsmToken::TokenKind EndTok);
std::string parseStringTo(AsmToken::TokenKind EndTok);
/// Parse up to the end of statement and return the contents from the current
/// token until the end of the statement; the current token on exit will be
/// either the EndOfStatement or EOF.
StringRef parseStringToEndOfStatement() override;
bool parseTextItem(std::string &Data);
unsigned getBinOpPrecedence(AsmToken::TokenKind K,
MCBinaryExpr::Opcode &Kind);
bool parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc);
bool parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc);
bool parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc);
// Generic (target and platform independent) directive parsing.
enum DirectiveKind {
DK_NO_DIRECTIVE, // Placeholder
DK_HANDLER_DIRECTIVE,
DK_ASSIGN,
DK_EQU,
DK_TEXTEQU,
DK_ASCII,
DK_ASCIZ,
DK_STRING,
DK_BYTE,
DK_SBYTE,
DK_WORD,
DK_SWORD,
DK_DWORD,
DK_SDWORD,
DK_FWORD,
DK_QWORD,
DK_SQWORD,
DK_DB,
DK_DD,
DK_DF,
DK_DQ,
DK_DW,
DK_REAL4,
DK_REAL8,
DK_REAL10,
DK_ALIGN,
DK_EVEN,
DK_ORG,
DK_ENDR,
DK_EXTERN,
DK_PUBLIC,
DK_COMM,
DK_COMMENT,
DK_INCLUDE,
DK_REPEAT,
DK_WHILE,
DK_FOR,
DK_FORC,
DK_IF,
DK_IFE,
DK_IFB,
DK_IFNB,
DK_IFDEF,
DK_IFNDEF,
DK_IFDIF,
DK_IFDIFI,
DK_IFIDN,
DK_IFIDNI,
DK_ELSEIF,
DK_ELSEIFE,
DK_ELSEIFB,
DK_ELSEIFNB,
DK_ELSEIFDEF,
DK_ELSEIFNDEF,
DK_ELSEIFDIF,
DK_ELSEIFDIFI,
DK_ELSEIFIDN,
DK_ELSEIFIDNI,
DK_ELSE,
DK_ENDIF,
DK_MACRO,
DK_EXITM,
DK_ENDM,
DK_PURGE,
DK_ERR,
DK_ERRB,
DK_ERRNB,
DK_ERRDEF,
DK_ERRNDEF,
DK_ERRDIF,
DK_ERRDIFI,
DK_ERRIDN,
DK_ERRIDNI,
DK_ERRE,
DK_ERRNZ,
DK_ECHO,
DK_STRUCT,
DK_UNION,
DK_ENDS,
DK_END,
DK_PUSHFRAME,
DK_PUSHREG,
DK_SAVEREG,
DK_SAVEXMM128,
DK_SETFRAME,
DK_RADIX,
};
/// Maps directive name --> DirectiveKind enum, for directives parsed by this
/// class.
StringMap<DirectiveKind> DirectiveKindMap;
bool isMacroLikeDirective();
// Generic (target and platform independent) directive parsing.
enum BuiltinSymbol {
BI_NO_SYMBOL, // Placeholder
BI_DATE,
BI_TIME,
BI_VERSION,
BI_FILECUR,
BI_FILENAME,
BI_LINE,
BI_CURSEG,
BI_CPU,
BI_INTERFACE,
BI_CODE,
BI_DATA,
BI_FARDATA,
BI_WORDSIZE,
BI_CODESIZE,
BI_DATASIZE,
BI_MODEL,
BI_STACK,
};
/// Maps builtin name --> BuiltinSymbol enum, for builtins handled by this
/// class.
StringMap<BuiltinSymbol> BuiltinSymbolMap;
const MCExpr *evaluateBuiltinValue(BuiltinSymbol Symbol, SMLoc StartLoc);
std::optional<std::string> evaluateBuiltinTextMacro(BuiltinSymbol Symbol,
SMLoc StartLoc);
// ".ascii", ".asciz", ".string"
bool parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated);
// "byte", "word", ...
bool emitIntValue(const MCExpr *Value, unsigned Size);
bool parseScalarInitializer(unsigned Size,
SmallVectorImpl<const MCExpr *> &Values,
unsigned StringPadLength = 0);
bool parseScalarInstList(
unsigned Size, SmallVectorImpl<const MCExpr *> &Values,
const AsmToken::TokenKind EndToken = AsmToken::EndOfStatement);
bool emitIntegralValues(unsigned Size, unsigned *Count = nullptr);
bool addIntegralField(StringRef Name, unsigned Size);
bool parseDirectiveValue(StringRef IDVal, unsigned Size);
bool parseDirectiveNamedValue(StringRef TypeName, unsigned Size,
StringRef Name, SMLoc NameLoc);
// "real4", "real8", "real10"
bool emitRealValues(const fltSemantics &Semantics, unsigned *Count = nullptr);
bool addRealField(StringRef Name, const fltSemantics &Semantics, size_t Size);
bool parseDirectiveRealValue(StringRef IDVal, const fltSemantics &Semantics,
size_t Size);
bool parseRealInstList(
const fltSemantics &Semantics, SmallVectorImpl<APInt> &Values,
const AsmToken::TokenKind EndToken = AsmToken::EndOfStatement);
bool parseDirectiveNamedRealValue(StringRef TypeName,
const fltSemantics &Semantics,
unsigned Size, StringRef Name,
SMLoc NameLoc);
bool parseOptionalAngleBracketOpen();
bool parseAngleBracketClose(const Twine &Msg = "expected '>'");
bool parseFieldInitializer(const FieldInfo &Field,
FieldInitializer &Initializer);
bool parseFieldInitializer(const FieldInfo &Field,
const IntFieldInfo &Contents,
FieldInitializer &Initializer);
bool parseFieldInitializer(const FieldInfo &Field,
const RealFieldInfo &Contents,
FieldInitializer &Initializer);
bool parseFieldInitializer(const FieldInfo &Field,
const StructFieldInfo &Contents,
FieldInitializer &Initializer);
bool parseStructInitializer(const StructInfo &Structure,
StructInitializer &Initializer);
bool parseStructInstList(
const StructInfo &Structure, std::vector<StructInitializer> &Initializers,
const AsmToken::TokenKind EndToken = AsmToken::EndOfStatement);
bool emitFieldValue(const FieldInfo &Field);
bool emitFieldValue(const FieldInfo &Field, const IntFieldInfo &Contents);
bool emitFieldValue(const FieldInfo &Field, const RealFieldInfo &Contents);
bool emitFieldValue(const FieldInfo &Field, const StructFieldInfo &Contents);
bool emitFieldInitializer(const FieldInfo &Field,
const FieldInitializer &Initializer);
bool emitFieldInitializer(const FieldInfo &Field,
const IntFieldInfo &Contents,
const IntFieldInfo &Initializer);
bool emitFieldInitializer(const FieldInfo &Field,
const RealFieldInfo &Contents,
const RealFieldInfo &Initializer);
bool emitFieldInitializer(const FieldInfo &Field,
const StructFieldInfo &Contents,
const StructFieldInfo &Initializer);
bool emitStructInitializer(const StructInfo &Structure,
const StructInitializer &Initializer);
// User-defined types (structs, unions):
bool emitStructValues(const StructInfo &Structure, unsigned *Count = nullptr);
bool addStructField(StringRef Name, const StructInfo &Structure);
bool parseDirectiveStructValue(const StructInfo &Structure,
StringRef Directive, SMLoc DirLoc);
bool parseDirectiveNamedStructValue(const StructInfo &Structure,
StringRef Directive, SMLoc DirLoc,
StringRef Name);
// "=", "equ", "textequ"
bool parseDirectiveEquate(StringRef IDVal, StringRef Name,
DirectiveKind DirKind, SMLoc NameLoc);
bool parseDirectiveOrg(); // "org"
bool emitAlignTo(int64_t Alignment);
bool parseDirectiveAlign(); // "align"
bool parseDirectiveEven(); // "even"
// macro directives
bool parseDirectivePurgeMacro(SMLoc DirectiveLoc);
bool parseDirectiveExitMacro(SMLoc DirectiveLoc, StringRef Directive,
std::string &Value);
bool parseDirectiveEndMacro(StringRef Directive);
bool parseDirectiveMacro(StringRef Name, SMLoc NameLoc);
bool parseDirectiveStruct(StringRef Directive, DirectiveKind DirKind,
StringRef Name, SMLoc NameLoc);
bool parseDirectiveNestedStruct(StringRef Directive, DirectiveKind DirKind);
bool parseDirectiveEnds(StringRef Name, SMLoc NameLoc);
bool parseDirectiveNestedEnds();
bool parseDirectiveExtern();
/// Parse a directive like ".globl" which accepts a single symbol (which
/// should be a label or an external).
bool parseDirectiveSymbolAttribute(MCSymbolAttr Attr);
bool parseDirectiveComm(bool IsLocal); // ".comm" and ".lcomm"
bool parseDirectiveComment(SMLoc DirectiveLoc); // "comment"
bool parseDirectiveInclude(); // "include"
// "if" or "ife"
bool parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind);
// "ifb" or "ifnb", depending on ExpectBlank.
bool parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank);
// "ifidn", "ifdif", "ifidni", or "ifdifi", depending on ExpectEqual and
// CaseInsensitive.
bool parseDirectiveIfidn(SMLoc DirectiveLoc, bool ExpectEqual,
bool CaseInsensitive);
// "ifdef" or "ifndef", depending on expect_defined
bool parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined);
// "elseif" or "elseife"
bool parseDirectiveElseIf(SMLoc DirectiveLoc, DirectiveKind DirKind);
// "elseifb" or "elseifnb", depending on ExpectBlank.
bool parseDirectiveElseIfb(SMLoc DirectiveLoc, bool ExpectBlank);
// ".elseifdef" or ".elseifndef", depending on expect_defined
bool parseDirectiveElseIfdef(SMLoc DirectiveLoc, bool expect_defined);
// "elseifidn", "elseifdif", "elseifidni", or "elseifdifi", depending on
// ExpectEqual and CaseInsensitive.
bool parseDirectiveElseIfidn(SMLoc DirectiveLoc, bool ExpectEqual,
bool CaseInsensitive);
bool parseDirectiveElse(SMLoc DirectiveLoc); // "else"
bool parseDirectiveEndIf(SMLoc DirectiveLoc); // "endif"
bool parseEscapedString(std::string &Data) override;
bool parseAngleBracketString(std::string &Data) override;
// Macro-like directives
MCAsmMacro *parseMacroLikeBody(SMLoc DirectiveLoc);
void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
raw_svector_ostream &OS);
void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
SMLoc ExitLoc, raw_svector_ostream &OS);
bool parseDirectiveRepeat(SMLoc DirectiveLoc, StringRef Directive);
bool parseDirectiveFor(SMLoc DirectiveLoc, StringRef Directive);
bool parseDirectiveForc(SMLoc DirectiveLoc, StringRef Directive);
bool parseDirectiveWhile(SMLoc DirectiveLoc);
// "_emit" or "__emit"
bool parseDirectiveMSEmit(SMLoc DirectiveLoc, ParseStatementInfo &Info,
size_t Len);
// "align"
bool parseDirectiveMSAlign(SMLoc DirectiveLoc, ParseStatementInfo &Info);
// "end"
bool parseDirectiveEnd(SMLoc DirectiveLoc);
// ".err"
bool parseDirectiveError(SMLoc DirectiveLoc);
// ".errb" or ".errnb", depending on ExpectBlank.
bool parseDirectiveErrorIfb(SMLoc DirectiveLoc, bool ExpectBlank);
// ".errdef" or ".errndef", depending on ExpectBlank.
bool parseDirectiveErrorIfdef(SMLoc DirectiveLoc, bool ExpectDefined);
// ".erridn", ".errdif", ".erridni", or ".errdifi", depending on ExpectEqual
// and CaseInsensitive.
bool parseDirectiveErrorIfidn(SMLoc DirectiveLoc, bool ExpectEqual,
bool CaseInsensitive);
// ".erre" or ".errnz", depending on ExpectZero.
bool parseDirectiveErrorIfe(SMLoc DirectiveLoc, bool ExpectZero);
// ".radix"
bool parseDirectiveRadix(SMLoc DirectiveLoc);
// "echo"
bool parseDirectiveEcho(SMLoc DirectiveLoc);
void initializeDirectiveKindMap();
void initializeBuiltinSymbolMap();
};
} // end anonymous namespace
namespace llvm {
extern cl::opt<unsigned> AsmMacroMaxNestingDepth;
extern MCAsmParserExtension *createCOFFMasmParser();
} // end namespace llvm
enum { DEFAULT_ADDRSPACE = 0 };
MasmParser::MasmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
const MCAsmInfo &MAI, struct tm TM, unsigned CB)
: Lexer(MAI), Ctx(Ctx), Out(Out), MAI(MAI), SrcMgr(SM),
CurBuffer(CB ? CB : SM.getMainFileID()), TM(TM) {
HadError = false;
// Save the old handler.
SavedDiagHandler = SrcMgr.getDiagHandler();
SavedDiagContext = SrcMgr.getDiagContext();
// Set our own handler which calls the saved handler.
SrcMgr.setDiagHandler(DiagHandler, this);
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
EndStatementAtEOFStack.push_back(true);
// Initialize the platform / file format parser.
switch (Ctx.getObjectFileType()) {
case MCContext::IsCOFF:
PlatformParser.reset(createCOFFMasmParser());
break;
default:
report_fatal_error("llvm-ml currently supports only COFF output.");
break;
}
initializeDirectiveKindMap();
PlatformParser->Initialize(*this);
initializeBuiltinSymbolMap();
NumOfMacroInstantiations = 0;
}
MasmParser::~MasmParser() {
assert((HadError || ActiveMacros.empty()) &&
"Unexpected active macro instantiation!");
// Restore the saved diagnostics handler and context for use during
// finalization.
SrcMgr.setDiagHandler(SavedDiagHandler, SavedDiagContext);
}
void MasmParser::printMacroInstantiations() {
// Print the active macro instantiation stack.
for (std::vector<MacroInstantiation *>::const_reverse_iterator
it = ActiveMacros.rbegin(),
ie = ActiveMacros.rend();
it != ie; ++it)
printMessage((*it)->InstantiationLoc, SourceMgr::DK_Note,
"while in macro instantiation");
}
void MasmParser::Note(SMLoc L, const Twine &Msg, SMRange Range) {
printPendingErrors();
printMessage(L, SourceMgr::DK_Note, Msg, Range);
printMacroInstantiations();
}
bool MasmParser::Warning(SMLoc L, const Twine &Msg, SMRange Range) {
if (getTargetParser().getTargetOptions().MCNoWarn)
return false;
if (getTargetParser().getTargetOptions().MCFatalWarnings)
return Error(L, Msg, Range);
printMessage(L, SourceMgr::DK_Warning, Msg, Range);
printMacroInstantiations();
return false;
}
bool MasmParser::printError(SMLoc L, const Twine &Msg, SMRange Range) {
HadError = true;
printMessage(L, SourceMgr::DK_Error, Msg, Range);
printMacroInstantiations();
return true;
}
bool MasmParser::enterIncludeFile(const std::string &Filename) {
std::string IncludedFile;
unsigned NewBuf =
SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile);
if (!NewBuf)
return true;
CurBuffer = NewBuf;
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
EndStatementAtEOFStack.push_back(true);
return false;
}
void MasmParser::jumpToLoc(SMLoc Loc, unsigned InBuffer,
bool EndStatementAtEOF) {
CurBuffer = InBuffer ? InBuffer : SrcMgr.FindBufferContainingLoc(Loc);
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(),
Loc.getPointer(), EndStatementAtEOF);
}
bool MasmParser::expandMacros() {
const AsmToken &Tok = getTok();
const std::string IDLower = Tok.getIdentifier().lower();
const llvm::MCAsmMacro *M = getContext().lookupMacro(IDLower);
if (M && M->IsFunction && peekTok().is(AsmToken::LParen)) {
// This is a macro function invocation; expand it in place.
const SMLoc MacroLoc = Tok.getLoc();
const StringRef MacroId = Tok.getIdentifier();
Lexer.Lex();
if (handleMacroInvocation(M, MacroLoc)) {
Lexer.UnLex(AsmToken(AsmToken::Error, MacroId));
Lexer.Lex();
}
return false;
}
std::optional<std::string> ExpandedValue;
auto BuiltinIt = BuiltinSymbolMap.find(IDLower);
if (BuiltinIt != BuiltinSymbolMap.end()) {
ExpandedValue =
evaluateBuiltinTextMacro(BuiltinIt->getValue(), Tok.getLoc());
} else {
auto VarIt = Variables.find(IDLower);
if (VarIt != Variables.end() && VarIt->getValue().IsText) {
ExpandedValue = VarIt->getValue().TextValue;
}
}
if (!ExpandedValue)
return true;
std::unique_ptr<MemoryBuffer> Instantiation =
MemoryBuffer::getMemBufferCopy(*ExpandedValue, "<instantiation>");
// Jump to the macro instantiation and prime the lexer.
CurBuffer =
SrcMgr.AddNewSourceBuffer(std::move(Instantiation), Tok.getEndLoc());
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(), nullptr,
/*EndStatementAtEOF=*/false);
EndStatementAtEOFStack.push_back(false);
Lexer.Lex();
return false;
}
const AsmToken &MasmParser::Lex(ExpandKind ExpandNextToken) {
if (Lexer.getTok().is(AsmToken::Error))
Error(Lexer.getErrLoc(), Lexer.getErr());
// if it's a end of statement with a comment in it
if (getTok().is(AsmToken::EndOfStatement)) {
// if this is a line comment output it.
if (!getTok().getString().empty() && getTok().getString().front() != '\n' &&
getTok().getString().front() != '\r' && MAI.preserveAsmComments())
Out.addExplicitComment(Twine(getTok().getString()));
}
const AsmToken *tok = &Lexer.Lex();
bool StartOfStatement = Lexer.isAtStartOfStatement();
while (ExpandNextToken == ExpandMacros && tok->is(AsmToken::Identifier)) {
if (StartOfStatement) {
AsmToken NextTok;
MutableArrayRef<AsmToken> Buf(NextTok);
size_t ReadCount = Lexer.peekTokens(Buf);
if (ReadCount && NextTok.is(AsmToken::Identifier) &&
(NextTok.getString().equals_insensitive("equ") ||
NextTok.getString().equals_insensitive("textequ"))) {
// This looks like an EQU or TEXTEQU directive; don't expand the
// identifier, allowing for redefinitions.
break;
}
}
if (expandMacros())
break;
}
// Parse comments here to be deferred until end of next statement.
while (tok->is(AsmToken::Comment)) {
if (MAI.preserveAsmComments())
Out.addExplicitComment(Twine(tok->getString()));
tok = &Lexer.Lex();
}
// Recognize and bypass line continuations.
while (tok->is(AsmToken::BackSlash) &&
peekTok().is(AsmToken::EndOfStatement)) {
// Eat both the backslash and the end of statement.
Lexer.Lex();
tok = &Lexer.Lex();
}
if (tok->is(AsmToken::Eof)) {
// If this is the end of an included file, pop the parent file off the
// include stack.
SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer);
if (ParentIncludeLoc != SMLoc()) {
EndStatementAtEOFStack.pop_back();
jumpToLoc(ParentIncludeLoc, 0, EndStatementAtEOFStack.back());
return Lex();
}
EndStatementAtEOFStack.pop_back();
assert(EndStatementAtEOFStack.empty());
}
return *tok;
}
const AsmToken MasmParser::peekTok(bool ShouldSkipSpace) {
AsmToken Tok;
MutableArrayRef<AsmToken> Buf(Tok);
size_t ReadCount = Lexer.peekTokens(Buf, ShouldSkipSpace);
if (ReadCount == 0) {
// If this is the end of an included file, pop the parent file off the
// include stack.
SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer);
if (ParentIncludeLoc != SMLoc()) {
EndStatementAtEOFStack.pop_back();
jumpToLoc(ParentIncludeLoc, 0, EndStatementAtEOFStack.back());
return peekTok(ShouldSkipSpace);
}
EndStatementAtEOFStack.pop_back();
assert(EndStatementAtEOFStack.empty());
}
assert(ReadCount == 1);
return Tok;
}
bool MasmParser::Run(bool NoInitialTextSection, bool NoFinalize) {
// Create the initial section, if requested.
if (!NoInitialTextSection)
Out.initSections(false, getTargetParser().getSTI());
// Prime the lexer.
Lex();
HadError = false;
AsmCond StartingCondState = TheCondState;
SmallVector<AsmRewrite, 4> AsmStrRewrites;
// While we have input, parse each statement.
while (Lexer.isNot(AsmToken::Eof) ||
SrcMgr.getParentIncludeLoc(CurBuffer) != SMLoc()) {
// Skip through the EOF at the end of an inclusion.
if (Lexer.is(AsmToken::Eof))
Lex();
ParseStatementInfo Info(&AsmStrRewrites);
bool Parsed = parseStatement(Info, nullptr);
// If we have a Lexer Error we are on an Error Token. Load in Lexer Error
// for printing ErrMsg via Lex() only if no (presumably better) parser error
// exists.
if (Parsed && !hasPendingError() && Lexer.getTok().is(AsmToken::Error)) {
Lex();
}
// parseStatement returned true so may need to emit an error.
printPendingErrors();
// Skipping to the next line if needed.
if (Parsed && !getLexer().isAtStartOfStatement())
eatToEndOfStatement();
}
printPendingErrors();
// All errors should have been emitted.
assert(!hasPendingError() && "unexpected error from parseStatement");
if (TheCondState.TheCond != StartingCondState.TheCond ||
TheCondState.Ignore != StartingCondState.Ignore)
printError(getTok().getLoc(), "unmatched .ifs or .elses");
// Check to see that all assembler local symbols were actually defined.
// Targets that don't do subsections via symbols may not want this, though,
// so conservatively exclude them. Only do this if we're finalizing, though,
// as otherwise we won't necessarily have seen everything yet.
if (!NoFinalize) {
// Temporary symbols like the ones for directional jumps don't go in the
// symbol table. They also need to be diagnosed in all (final) cases.
for (std::tuple<SMLoc, CppHashInfoTy, MCSymbol *> &LocSym : DirLabels) {
if (std::get<2>(LocSym)->isUndefined()) {
// Reset the state of any "# line file" directives we've seen to the
// context as it was at the diagnostic site.
CppHashInfo = std::get<1>(LocSym);
printError(std::get<0>(LocSym), "directional label undefined");
}
}
}
// Finalize the output stream if there are no errors and if the client wants
// us to.
if (!HadError && !NoFinalize)
Out.finish(Lexer.getLoc());
return HadError || getContext().hadError();
}
bool MasmParser::checkForValidSection() {
if (!ParsingMSInlineAsm && !(getStreamer().getCurrentFragment() &&
getStreamer().getCurrentSectionOnly())) {
Out.initSections(false, getTargetParser().getSTI());
return Error(getTok().getLoc(),
"expected section directive before assembly directive");
}
return false;
}
/// Throw away the rest of the line for testing purposes.
void MasmParser::eatToEndOfStatement() {
while (Lexer.isNot(AsmToken::EndOfStatement)) {
if (Lexer.is(AsmToken::Eof)) {
SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer);
if (ParentIncludeLoc == SMLoc()) {
break;
}
EndStatementAtEOFStack.pop_back();
jumpToLoc(ParentIncludeLoc, 0, EndStatementAtEOFStack.back());
}
Lexer.Lex();
}
// Eat EOL.
if (Lexer.is(AsmToken::EndOfStatement))
Lexer.Lex();
}
SmallVector<StringRef, 1>
MasmParser::parseStringRefsTo(AsmToken::TokenKind EndTok) {
SmallVector<StringRef, 1> Refs;
const char *Start = getTok().getLoc().getPointer();
while (Lexer.isNot(EndTok)) {
if (Lexer.is(AsmToken::Eof)) {
SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer);
if (ParentIncludeLoc == SMLoc()) {
break;
}
Refs.emplace_back(Start, getTok().getLoc().getPointer() - Start);
EndStatementAtEOFStack.pop_back();
jumpToLoc(ParentIncludeLoc, 0, EndStatementAtEOFStack.back());
Lexer.Lex();
Start = getTok().getLoc().getPointer();
} else {
Lexer.Lex();
}
}
Refs.emplace_back(Start, getTok().getLoc().getPointer() - Start);
return Refs;
}
std::string MasmParser::parseStringTo(AsmToken::TokenKind EndTok) {
SmallVector<StringRef, 1> Refs = parseStringRefsTo(EndTok);
std::string Str;
for (StringRef S : Refs) {
Str.append(S.str());
}
return Str;
}
StringRef MasmParser::parseStringToEndOfStatement() {
const char *Start = getTok().getLoc().getPointer();
while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof))
Lexer.Lex();
const char *End = getTok().getLoc().getPointer();
return StringRef(Start, End - Start);
}
/// Parse a paren expression and return it.
/// NOTE: This assumes the leading '(' has already been consumed.
///
/// parenexpr ::= expr)
///
bool MasmParser::parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc) {
if (parseExpression(Res))
return true;
EndLoc = Lexer.getTok().getEndLoc();
return parseRParen();
}
/// Parse a bracket expression and return it.
/// NOTE: This assumes the leading '[' has already been consumed.
///
/// bracketexpr ::= expr]
///
bool MasmParser::parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc) {
if (parseExpression(Res))
return true;
EndLoc = getTok().getEndLoc();
if (parseToken(AsmToken::RBrac, "expected ']' in brackets expression"))
return true;
return false;
}
/// Parse a primary expression and return it.
/// primaryexpr ::= (parenexpr
/// primaryexpr ::= symbol
/// primaryexpr ::= number
/// primaryexpr ::= '.'
/// primaryexpr ::= ~,+,-,'not' primaryexpr
/// primaryexpr ::= string
/// (a string is interpreted as a 64-bit number in big-endian base-256)
bool MasmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc,
AsmTypeInfo *TypeInfo) {
SMLoc FirstTokenLoc = getLexer().getLoc();
AsmToken::TokenKind FirstTokenKind = Lexer.getKind();
switch (FirstTokenKind) {
default:
return TokError("unknown token in expression");
// If we have an error assume that we've already handled it.
case AsmToken::Error:
return true;
case AsmToken::Exclaim:
Lex(); // Eat the operator.
if (parsePrimaryExpr(Res, EndLoc, nullptr))
return true;
Res = MCUnaryExpr::createLNot(Res, getContext(), FirstTokenLoc);
return false;
case AsmToken::Dollar:
case AsmToken::At:
case AsmToken::Identifier: {
StringRef Identifier;
if (parseIdentifier(Identifier)) {
// We may have failed but $ may be a valid token.
if (getTok().is(AsmToken::Dollar)) {
if (Lexer.getMAI().getDollarIsPC()) {
Lex();
// This is a '$' reference, which references the current PC. Emit a
// temporary label to the streamer and refer to it.
MCSymbol *Sym = Ctx.createTempSymbol();
Out.emitLabel(Sym);
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
getContext());
EndLoc = FirstTokenLoc;
return false;
}
return Error(FirstTokenLoc, "invalid token in expression");
}
}
// Parse named bitwise negation.
if (Identifier.equals_insensitive("not")) {
if (parsePrimaryExpr(Res, EndLoc, nullptr))
return true;
Res = MCUnaryExpr::createNot(Res, getContext(), FirstTokenLoc);
return false;
}
// Parse directional local label references.
if (Identifier.equals_insensitive("@b") ||
Identifier.equals_insensitive("@f")) {
bool Before = Identifier.equals_insensitive("@b");
MCSymbol *Sym = getContext().getDirectionalLocalSymbol(0, Before);
if (Before && Sym->isUndefined())
return Error(FirstTokenLoc, "Expected @@ label before @B reference");
Res = MCSymbolRefExpr::create(Sym, getContext());
return false;
}
EndLoc = SMLoc::getFromPointer(Identifier.end());
// This is a symbol reference.
StringRef SymbolName = Identifier;
if (SymbolName.empty())
return Error(getLexer().getLoc(), "expected a symbol reference");
// Find the field offset if used.
AsmFieldInfo Info;
auto Split = SymbolName.split('.');
if (Split.second.empty()) {
} else {
SymbolName = Split.first;
if (lookUpField(SymbolName, Split.second, Info)) {
std::pair<StringRef, StringRef> BaseMember = Split.second.split('.');
StringRef Base = BaseMember.first, Member = BaseMember.second;
lookUpField(Base, Member, Info);
} else if (Structs.count(SymbolName.lower())) {
// This is actually a reference to a field offset.
Res = MCConstantExpr::create(Info.Offset, getContext());
return false;
}
}
MCSymbol *Sym = getContext().getInlineAsmLabel(SymbolName);
if (!Sym) {
// If this is a built-in numeric value, treat it as a constant.
auto BuiltinIt = BuiltinSymbolMap.find(SymbolName.lower());
const BuiltinSymbol Symbol = (BuiltinIt == BuiltinSymbolMap.end())
? BI_NO_SYMBOL
: BuiltinIt->getValue();
if (Symbol != BI_NO_SYMBOL) {
const MCExpr *Value = evaluateBuiltinValue(Symbol, FirstTokenLoc);
if (Value) {
Res = Value;
return false;
}
}
// Variables use case-insensitive symbol names; if this is a variable, we
// find the symbol using its canonical name.
auto VarIt = Variables.find(SymbolName.lower());
if (VarIt != Variables.end())
SymbolName = VarIt->second.Name;
Sym = getContext().getOrCreateSymbol(SymbolName);
}
// If this is an absolute variable reference, substitute it now to preserve
// semantics in the face of reassignment.
if (Sym->isVariable()) {
auto V = Sym->getVariableValue(/*SetUsed=*/false);
bool DoInline = isa<MCConstantExpr>(V);
if (auto TV = dyn_cast<MCTargetExpr>(V))
DoInline = TV->inlineAssignedExpr();
if (DoInline) {
Res = Sym->getVariableValue(/*SetUsed=*/false);
return false;
}
}
// Otherwise create a symbol ref.
const MCExpr *SymRef = MCSymbolRefExpr::create(
Sym, MCSymbolRefExpr::VK_None, getContext(), FirstTokenLoc);
if (Info.Offset) {
Res = MCBinaryExpr::create(
MCBinaryExpr::Add, SymRef,
MCConstantExpr::create(Info.Offset, getContext()), getContext());
} else {
Res = SymRef;
}
if (TypeInfo) {
if (Info.Type.Name.empty()) {
auto TypeIt = KnownType.find(Identifier.lower());
if (TypeIt != KnownType.end()) {
Info.Type = TypeIt->second;
}
}
*TypeInfo = Info.Type;
}
return false;
}
case AsmToken::BigNum:
return TokError("literal value out of range for directive");
case AsmToken::Integer: {
int64_t IntVal = getTok().getIntVal();
Res = MCConstantExpr::create(IntVal, getContext());
EndLoc = Lexer.getTok().getEndLoc();
Lex(); // Eat token.
return false;
}
case AsmToken::String: {
// MASM strings (used as constants) are interpreted as big-endian base-256.
SMLoc ValueLoc = getTok().getLoc();
std::string Value;
if (parseEscapedString(Value))
return true;
if (Value.size() > 8)
return Error(ValueLoc, "literal value out of range");
uint64_t IntValue = 0;
for (const unsigned char CharVal : Value)
IntValue = (IntValue << 8) | CharVal;
Res = MCConstantExpr::create(IntValue, getContext());
return false;
}
case AsmToken::Real: {
APFloat RealVal(APFloat::IEEEdouble(), getTok().getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
Res = MCConstantExpr::create(IntVal, getContext());
EndLoc = Lexer.getTok().getEndLoc();
Lex(); // Eat token.
return false;
}
case AsmToken::Dot: {
// This is a '.' reference, which references the current PC. Emit a
// temporary label to the streamer and refer to it.
MCSymbol *Sym = Ctx.createTempSymbol();
Out.emitLabel(Sym);
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
EndLoc = Lexer.getTok().getEndLoc();
Lex(); // Eat identifier.
return false;
}
case AsmToken::LParen:
Lex(); // Eat the '('.
return parseParenExpr(Res, EndLoc);
case AsmToken::LBrac:
if (!PlatformParser->HasBracketExpressions())
return TokError("brackets expression not supported on this target");
Lex(); // Eat the '['.
return parseBracketExpr(Res, EndLoc);
case AsmToken::Minus:
Lex(); // Eat the operator.
if (parsePrimaryExpr(Res, EndLoc, nullptr))
return true;
Res = MCUnaryExpr::createMinus(Res, getContext(), FirstTokenLoc);
return false;
case AsmToken::Plus:
Lex(); // Eat the operator.
if (parsePrimaryExpr(Res, EndLoc, nullptr))
return true;
Res = MCUnaryExpr::createPlus(Res, getContext(), FirstTokenLoc);
return false;
case AsmToken::Tilde:
Lex(); // Eat the operator.
if (parsePrimaryExpr(Res, EndLoc, nullptr))
return true;
Res = MCUnaryExpr::createNot(Res, getContext(), FirstTokenLoc);
return false;
}
}
bool MasmParser::parseExpression(const MCExpr *&Res) {
SMLoc EndLoc;
return parseExpression(Res, EndLoc);
}
/// This function checks if the next token is <string> type or arithmetic.
/// string that begin with character '<' must end with character '>'.
/// otherwise it is arithmetics.
/// If the function returns a 'true' value,
/// the End argument will be filled with the last location pointed to the '>'
/// character.
static bool isAngleBracketString(SMLoc &StrLoc, SMLoc &EndLoc) {
assert((StrLoc.getPointer() != nullptr) &&
"Argument to the function cannot be a NULL value");
const char *CharPtr = StrLoc.getPointer();
while ((*CharPtr != '>') && (*CharPtr != '\n') && (*CharPtr != '\r') &&
(*CharPtr != '\0')) {
if (*CharPtr == '!')
CharPtr++;
CharPtr++;
}
if (*CharPtr == '>') {
EndLoc = StrLoc.getFromPointer(CharPtr + 1);
return true;
}
return false;
}
/// creating a string without the escape characters '!'.
static std::string angleBracketString(StringRef BracketContents) {
std::string Res;
for (size_t Pos = 0; Pos < BracketContents.size(); Pos++) {
if (BracketContents[Pos] == '!')
Pos++;
Res += BracketContents[Pos];
}
return Res;
}
/// Parse an expression and return it.
///
/// expr ::= expr &&,|| expr -> lowest.
/// expr ::= expr |,^,&,! expr
/// expr ::= expr ==,!=,<>,<,<=,>,>= expr
/// expr ::= expr <<,>> expr
/// expr ::= expr +,- expr
/// expr ::= expr *,/,% expr -> highest.
/// expr ::= primaryexpr
///
bool MasmParser::parseExpression(const MCExpr *&Res, SMLoc &EndLoc) {
// Parse the expression.
Res = nullptr;
if (getTargetParser().parsePrimaryExpr(Res, EndLoc) ||
parseBinOpRHS(1, Res, EndLoc))
return true;
// Try to constant fold it up front, if possible. Do not exploit
// assembler here.
int64_t Value;
if (Res->evaluateAsAbsolute(Value))
Res = MCConstantExpr::create(Value, getContext());
return false;
}
bool MasmParser::parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) {
Res = nullptr;
return parseParenExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc);
}
bool MasmParser::parseAbsoluteExpression(int64_t &Res) {
const MCExpr *Expr;
SMLoc StartLoc = Lexer.getLoc();
if (parseExpression(Expr))
return true;
if (!Expr->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr()))
return Error(StartLoc, "expected absolute expression");
return false;
}
static unsigned getGNUBinOpPrecedence(AsmToken::TokenKind K,
MCBinaryExpr::Opcode &Kind,
bool ShouldUseLogicalShr,
bool EndExpressionAtGreater) {
switch (K) {
default:
return 0; // not a binop.
// Lowest Precedence: &&, ||
case AsmToken::AmpAmp:
Kind = MCBinaryExpr::LAnd;
return 2;
case AsmToken::PipePipe:
Kind = MCBinaryExpr::LOr;
return 1;
// Low Precedence: ==, !=, <>, <, <=, >, >=
case AsmToken::EqualEqual:
Kind = MCBinaryExpr::EQ;
return 3;
case AsmToken::ExclaimEqual:
case AsmToken::LessGreater:
Kind = MCBinaryExpr::NE;
return 3;
case AsmToken::Less:
Kind = MCBinaryExpr::LT;
return 3;
case AsmToken::LessEqual:
Kind = MCBinaryExpr::LTE;
return 3;
case AsmToken::Greater:
if (EndExpressionAtGreater)
return 0;
Kind = MCBinaryExpr::GT;
return 3;
case AsmToken::GreaterEqual:
Kind = MCBinaryExpr::GTE;
return 3;
// Low Intermediate Precedence: +, -
case AsmToken::Plus:
Kind = MCBinaryExpr::Add;
return 4;
case AsmToken::Minus:
Kind = MCBinaryExpr::Sub;
return 4;
// High Intermediate Precedence: |, &, ^
case AsmToken::Pipe:
Kind = MCBinaryExpr::Or;
return 5;
case AsmToken::Caret:
Kind = MCBinaryExpr::Xor;
return 5;
case AsmToken::Amp:
Kind = MCBinaryExpr::And;
return 5;
// Highest Precedence: *, /, %, <<, >>
case AsmToken::Star:
Kind = MCBinaryExpr::Mul;
return 6;
case AsmToken::Slash:
Kind = MCBinaryExpr::Div;
return 6;
case AsmToken::Percent:
Kind = MCBinaryExpr::Mod;
return 6;
case AsmToken::LessLess:
Kind = MCBinaryExpr::Shl;
return 6;
case AsmToken::GreaterGreater:
if (EndExpressionAtGreater)
return 0;
Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr;
return 6;
}
}
unsigned MasmParser::getBinOpPrecedence(AsmToken::TokenKind K,
MCBinaryExpr::Opcode &Kind) {
bool ShouldUseLogicalShr = MAI.shouldUseLogicalShr();
return getGNUBinOpPrecedence(K, Kind, ShouldUseLogicalShr,
AngleBracketDepth > 0);
}
/// Parse all binary operators with precedence >= 'Precedence'.
/// Res contains the LHS of the expression on input.
bool MasmParser::parseBinOpRHS(unsigned Precedence, const MCExpr *&Res,
SMLoc &EndLoc) {
SMLoc StartLoc = Lexer.getLoc();
while (true) {
AsmToken::TokenKind TokKind = Lexer.getKind();
if (Lexer.getKind() == AsmToken::Identifier) {
TokKind = StringSwitch<AsmToken::TokenKind>(Lexer.getTok().getString())
.CaseLower("and", AsmToken::Amp)
.CaseLower("not", AsmToken::Exclaim)
.CaseLower("or", AsmToken::Pipe)
.CaseLower("xor", AsmToken::Caret)
.CaseLower("shl", AsmToken::LessLess)
.CaseLower("shr", AsmToken::GreaterGreater)
.CaseLower("eq", AsmToken::EqualEqual)
.CaseLower("ne", AsmToken::ExclaimEqual)
.CaseLower("lt", AsmToken::Less)
.CaseLower("le", AsmToken::LessEqual)
.CaseLower("gt", AsmToken::Greater)
.CaseLower("ge", AsmToken::GreaterEqual)
.Default(TokKind);
}
MCBinaryExpr::Opcode Kind = MCBinaryExpr::Add;
unsigned TokPrec = getBinOpPrecedence(TokKind, Kind);
// If the next token is lower precedence than we are allowed to eat, return
// successfully with what we ate already.
if (TokPrec < Precedence)
return false;
Lex();
// Eat the next primary expression.
const MCExpr *RHS;
if (getTargetParser().parsePrimaryExpr(RHS, EndLoc))
return true;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
MCBinaryExpr::Opcode Dummy;
unsigned NextTokPrec = getBinOpPrecedence(Lexer.getKind(), Dummy);
if (TokPrec < NextTokPrec && parseBinOpRHS(TokPrec + 1, RHS, EndLoc))
return true;
// Merge LHS and RHS according to operator.
Res = MCBinaryExpr::create(Kind, Res, RHS, getContext(), StartLoc);
}
}
/// ParseStatement:
/// ::= % statement
/// ::= EndOfStatement
/// ::= Label* Directive ...Operands... EndOfStatement
/// ::= Label* Identifier OperandList* EndOfStatement
bool MasmParser::parseStatement(ParseStatementInfo &Info,
MCAsmParserSemaCallback *SI) {
assert(!hasPendingError() && "parseStatement started with pending error");
// Eat initial spaces and comments.
while (Lexer.is(AsmToken::Space))
Lex();
if (Lexer.is(AsmToken::EndOfStatement)) {
// If this is a line comment we can drop it safely.
if (getTok().getString().empty() || getTok().getString().front() == '\r' ||
getTok().getString().front() == '\n')
Out.addBlankLine();
Lex();
return false;
}
// If preceded by an expansion operator, first expand all text macros and
// macro functions.
if (getTok().is(AsmToken::Percent)) {
SMLoc ExpansionLoc = getTok().getLoc();
if (parseToken(AsmToken::Percent) || expandStatement(ExpansionLoc))
return true;
}
// Statements always start with an identifier, unless we're dealing with a
// processor directive (.386, .686, etc.) that lexes as a real.
AsmToken ID = getTok();
SMLoc IDLoc = ID.getLoc();
StringRef IDVal;
if (Lexer.is(AsmToken::HashDirective))
return parseCppHashLineFilenameComment(IDLoc);
if (Lexer.is(AsmToken::Dot)) {
// Treat '.' as a valid identifier in this context.
Lex();
IDVal = ".";
} else if (Lexer.is(AsmToken::Real)) {
// Treat ".<number>" as a valid identifier in this context.
IDVal = getTok().getString();
Lex(); // always eat a token
if (!IDVal.starts_with("."))
return Error(IDLoc, "unexpected token at start of statement");
} else if (parseIdentifier(IDVal, StartOfStatement)) {
if (!TheCondState.Ignore) {
Lex(); // always eat a token
return Error(IDLoc, "unexpected token at start of statement");
}
IDVal = "";
}
// Handle conditional assembly here before checking for skipping. We
// have to do this so that .endif isn't skipped in a ".if 0" block for
// example.
StringMap<DirectiveKind>::const_iterator DirKindIt =
DirectiveKindMap.find(IDVal.lower());
DirectiveKind DirKind = (DirKindIt == DirectiveKindMap.end())
? DK_NO_DIRECTIVE
: DirKindIt->getValue();
switch (DirKind) {
default:
break;
case DK_IF:
case DK_IFE:
return parseDirectiveIf(IDLoc, DirKind);
case DK_IFB:
return parseDirectiveIfb(IDLoc, true);
case DK_IFNB:
return parseDirectiveIfb(IDLoc, false);
case DK_IFDEF:
return parseDirectiveIfdef(IDLoc, true);
case DK_IFNDEF:
return parseDirectiveIfdef(IDLoc, false);
case DK_IFDIF:
return parseDirectiveIfidn(IDLoc, /*ExpectEqual=*/false,
/*CaseInsensitive=*/false);
case DK_IFDIFI:
return parseDirectiveIfidn(IDLoc, /*ExpectEqual=*/false,
/*CaseInsensitive=*/true);
case DK_IFIDN:
return parseDirectiveIfidn(IDLoc, /*ExpectEqual=*/true,
/*CaseInsensitive=*/false);
case DK_IFIDNI:
return parseDirectiveIfidn(IDLoc, /*ExpectEqual=*/true,
/*CaseInsensitive=*/true);
case DK_ELSEIF:
case DK_ELSEIFE:
return parseDirectiveElseIf(IDLoc, DirKind);
case DK_ELSEIFB:
return parseDirectiveElseIfb(IDLoc, true);
case DK_ELSEIFNB:
return parseDirectiveElseIfb(IDLoc, false);
case DK_ELSEIFDEF:
return parseDirectiveElseIfdef(IDLoc, true);
case DK_ELSEIFNDEF:
return parseDirectiveElseIfdef(IDLoc, false);
case DK_ELSEIFDIF:
return parseDirectiveElseIfidn(IDLoc, /*ExpectEqual=*/false,
/*CaseInsensitive=*/false);
case DK_ELSEIFDIFI:
return parseDirectiveElseIfidn(IDLoc, /*ExpectEqual=*/false,
/*CaseInsensitive=*/true);
case DK_ELSEIFIDN:
return parseDirectiveElseIfidn(IDLoc, /*ExpectEqual=*/true,
/*CaseInsensitive=*/false);
case DK_ELSEIFIDNI:
return parseDirectiveElseIfidn(IDLoc, /*ExpectEqual=*/true,
/*CaseInsensitive=*/true);
case DK_ELSE:
return parseDirectiveElse(IDLoc);
case DK_ENDIF:
return parseDirectiveEndIf(IDLoc);
}
// Ignore the statement if in the middle of inactive conditional
// (e.g. ".if 0").
if (TheCondState.Ignore) {
eatToEndOfStatement();
return false;
}
// FIXME: Recurse on local labels?
// Check for a label.
// ::= identifier ':'
// ::= number ':'
if (Lexer.is(AsmToken::Colon) && getTargetParser().isLabel(ID)) {
if (checkForValidSection())
return true;
// identifier ':' -> Label.
Lex();
// Diagnose attempt to use '.' as a label.
if (IDVal == ".")
return Error(IDLoc, "invalid use of pseudo-symbol '.' as a label");
// Diagnose attempt to use a variable as a label.
//
// FIXME: Diagnostics. Note the location of the definition as a label.
// FIXME: This doesn't diagnose assignment to a symbol which has been
// implicitly marked as external.
MCSymbol *Sym;
if (ParsingMSInlineAsm && SI) {
StringRef RewrittenLabel =
SI->LookupInlineAsmLabel(IDVal, getSourceManager(), IDLoc, true);
assert(!RewrittenLabel.empty() &&
"We should have an internal name here.");
Info.AsmRewrites->emplace_back(AOK_Label, IDLoc, IDVal.size(),
RewrittenLabel);
IDVal = RewrittenLabel;
}
// Handle directional local labels
if (IDVal == "@@") {
Sym = Ctx.createDirectionalLocalSymbol(0);
} else {
Sym = getContext().getOrCreateSymbol(IDVal);
}
// End of Labels should be treated as end of line for lexing
// purposes but that information is not available to the Lexer who
// does not understand Labels. This may cause us to see a Hash
// here instead of a preprocessor line comment.
if (getTok().is(AsmToken::Hash)) {
std::string CommentStr = parseStringTo(AsmToken::EndOfStatement);
Lexer.Lex();
Lexer.UnLex(AsmToken(AsmToken::EndOfStatement, CommentStr));
}
// Consume any end of statement token, if present, to avoid spurious
// addBlankLine calls().
if (getTok().is(AsmToken::EndOfStatement)) {
Lex();
}
// Emit the label.
if (!getTargetParser().isParsingMSInlineAsm())
Out.emitLabel(Sym, IDLoc);
return false;
}
// If macros are enabled, check to see if this is a macro instantiation.
if (const MCAsmMacro *M = getContext().lookupMacro(IDVal.lower())) {
return handleMacroEntry(M, IDLoc);
}
// Otherwise, we have a normal instruction or directive.
if (DirKind != DK_NO_DIRECTIVE) {
// There are several entities interested in parsing directives:
//
// 1. Asm parser extensions. For example, platform-specific parsers
// (like the ELF parser) register themselves as extensions.
// 2. The target-specific assembly parser. Some directives are target
// specific or may potentially behave differently on certain targets.
// 3. The generic directive parser implemented by this class. These are
// all the directives that behave in a target and platform independent
// manner, or at least have a default behavior that's shared between
// all targets and platforms.
// Special-case handling of structure-end directives at higher priority,
// since ENDS is overloaded as a segment-end directive.
if (IDVal.equals_insensitive("ends") && StructInProgress.size() > 1 &&
getTok().is(AsmToken::EndOfStatement)) {
return parseDirectiveNestedEnds();
}
// First, check the extension directive map to see if any extension has
// registered itself to parse this directive.
std::pair<MCAsmParserExtension *, DirectiveHandler> Handler =
ExtensionDirectiveMap.lookup(IDVal.lower());
if (Handler.first)
return (*Handler.second)(Handler.first, IDVal, IDLoc);
// Next, let the target-specific assembly parser try.
if (ID.isNot(AsmToken::Identifier))
return false;
ParseStatus TPDirectiveReturn = getTargetParser().parseDirective(ID);
assert(TPDirectiveReturn.isFailure() == hasPendingError() &&
"Should only return Failure iff there was an error");
if (TPDirectiveReturn.isFailure())
return true;
if (TPDirectiveReturn.isSuccess())
return false;
// Finally, if no one else is interested in this directive, it must be
// generic and familiar to this class.
switch (DirKind) {
default:
break;
case DK_ASCII:
return parseDirectiveAscii(IDVal, false);
case DK_ASCIZ:
case DK_STRING:
return parseDirectiveAscii(IDVal, true);
case DK_BYTE:
case DK_SBYTE:
case DK_DB:
return parseDirectiveValue(IDVal, 1);
case DK_WORD:
case DK_SWORD:
case DK_DW:
return parseDirectiveValue(IDVal, 2);
case DK_DWORD:
case DK_SDWORD:
case DK_DD:
return parseDirectiveValue(IDVal, 4);
case DK_FWORD:
case DK_DF:
return parseDirectiveValue(IDVal, 6);
case DK_QWORD:
case DK_SQWORD:
case DK_DQ:
return parseDirectiveValue(IDVal, 8);
case DK_REAL4:
return parseDirectiveRealValue(IDVal, APFloat::IEEEsingle(), 4);
case DK_REAL8:
return parseDirectiveRealValue(IDVal, APFloat::IEEEdouble(), 8);
case DK_REAL10:
return parseDirectiveRealValue(IDVal, APFloat::x87DoubleExtended(), 10);
case DK_STRUCT:
case DK_UNION:
return parseDirectiveNestedStruct(IDVal, DirKind);
case DK_ENDS:
return parseDirectiveNestedEnds();
case DK_ALIGN:
return parseDirectiveAlign();
case DK_EVEN:
return parseDirectiveEven();
case DK_ORG:
return parseDirectiveOrg();
case DK_EXTERN:
return parseDirectiveExtern();
case DK_PUBLIC:
return parseDirectiveSymbolAttribute(MCSA_Global);
case DK_COMM:
return parseDirectiveComm(/*IsLocal=*/false);
case DK_COMMENT:
return parseDirectiveComment(IDLoc);
case DK_INCLUDE:
return parseDirectiveInclude();
case DK_REPEAT:
return parseDirectiveRepeat(IDLoc, IDVal);
case DK_WHILE:
return parseDirectiveWhile(IDLoc);
case DK_FOR:
return parseDirectiveFor(IDLoc, IDVal);
case DK_FORC:
return parseDirectiveForc(IDLoc, IDVal);
case DK_EXITM:
Info.ExitValue = "";
return parseDirectiveExitMacro(IDLoc, IDVal, *Info.ExitValue);
case DK_ENDM:
Info.ExitValue = "";
return parseDirectiveEndMacro(IDVal);
case DK_PURGE:
return parseDirectivePurgeMacro(IDLoc);
case DK_END:
return parseDirectiveEnd(IDLoc);
case DK_ERR:
return parseDirectiveError(IDLoc);
case DK_ERRB:
return parseDirectiveErrorIfb(IDLoc, true);
case DK_ERRNB:
return parseDirectiveErrorIfb(IDLoc, false);
case DK_ERRDEF:
return parseDirectiveErrorIfdef(IDLoc, true);
case DK_ERRNDEF:
return parseDirectiveErrorIfdef(IDLoc, false);
case DK_ERRDIF:
return parseDirectiveErrorIfidn(IDLoc, /*ExpectEqual=*/false,
/*CaseInsensitive=*/false);
case DK_ERRDIFI:
return parseDirectiveErrorIfidn(IDLoc, /*ExpectEqual=*/false,
/*CaseInsensitive=*/true);
case DK_ERRIDN:
return parseDirectiveErrorIfidn(IDLoc, /*ExpectEqual=*/true,
/*CaseInsensitive=*/false);
case DK_ERRIDNI:
return parseDirectiveErrorIfidn(IDLoc, /*ExpectEqual=*/true,
/*CaseInsensitive=*/true);
case DK_ERRE:
return parseDirectiveErrorIfe(IDLoc, true);
case DK_ERRNZ:
return parseDirectiveErrorIfe(IDLoc, false);
case DK_RADIX:
return parseDirectiveRadix(IDLoc);
case DK_ECHO:
return parseDirectiveEcho(IDLoc);
}
return Error(IDLoc, "unknown directive");
}
// We also check if this is allocating memory with user-defined type.
auto IDIt = Structs.find(IDVal.lower());
if (IDIt != Structs.end())
return parseDirectiveStructValue(/*Structure=*/IDIt->getValue(), IDVal,
IDLoc);
// Non-conditional Microsoft directives sometimes follow their first argument.
const AsmToken nextTok = getTok();
const StringRef nextVal = nextTok.getString();
const SMLoc nextLoc = nextTok.getLoc();
const AsmToken afterNextTok = peekTok();
// There are several entities interested in parsing infix directives:
//
// 1. Asm parser extensions. For example, platform-specific parsers
// (like the ELF parser) register themselves as extensions.
// 2. The generic directive parser implemented by this class. These are
// all the directives that behave in a target and platform independent
// manner, or at least have a default behavior that's shared between
// all targets and platforms.
getTargetParser().flushPendingInstructions(getStreamer());
// Special-case handling of structure-end directives at higher priority, since
// ENDS is overloaded as a segment-end directive.
if (nextVal.equals_insensitive("ends") && StructInProgress.size() == 1) {
Lex();
return parseDirectiveEnds(IDVal, IDLoc);
}
// First, check the extension directive map to see if any extension has
// registered itself to parse this directive.
std::pair<MCAsmParserExtension *, DirectiveHandler> Handler =
ExtensionDirectiveMap.lookup(nextVal.lower());
if (Handler.first) {
Lex();
Lexer.UnLex(ID);
return (*Handler.second)(Handler.first, nextVal, nextLoc);
}
// If no one else is interested in this directive, it must be
// generic and familiar to this class.
DirKindIt = DirectiveKindMap.find(nextVal.lower());
DirKind = (DirKindIt == DirectiveKindMap.end())
? DK_NO_DIRECTIVE
: DirKindIt->getValue();
switch (DirKind) {
default:
break;
case DK_ASSIGN:
case DK_EQU:
case DK_TEXTEQU:
Lex();
return parseDirectiveEquate(nextVal, IDVal, DirKind, IDLoc);
case DK_BYTE:
if (afterNextTok.is(AsmToken::Identifier) &&
afterNextTok.getString().equals_insensitive("ptr")) {
// Size directive; part of an instruction.
break;
}
[[fallthrough]];
case DK_SBYTE:
case DK_DB:
Lex();
return parseDirectiveNamedValue(nextVal, 1, IDVal, IDLoc);
case DK_WORD:
if (afterNextTok.is(AsmToken::Identifier) &&
afterNextTok.getString().equals_insensitive("ptr")) {
// Size directive; part of an instruction.
break;
}
[[fallthrough]];
case DK_SWORD:
case DK_DW:
Lex();
return parseDirectiveNamedValue(nextVal, 2, IDVal, IDLoc);
case DK_DWORD:
if (afterNextTok.is(AsmToken::Identifier) &&
afterNextTok.getString().equals_insensitive("ptr")) {
// Size directive; part of an instruction.
break;
}
[[fallthrough]];
case DK_SDWORD:
case DK_DD:
Lex();
return parseDirectiveNamedValue(nextVal, 4, IDVal, IDLoc);
case DK_FWORD:
if (afterNextTok.is(AsmToken::Identifier) &&
afterNextTok.getString().equals_insensitive("ptr")) {
// Size directive; part of an instruction.
break;
}
[[fallthrough]];
case DK_DF:
Lex();
return parseDirectiveNamedValue(nextVal, 6, IDVal, IDLoc);
case DK_QWORD:
if (afterNextTok.is(AsmToken::Identifier) &&
afterNextTok.getString().equals_insensitive("ptr")) {
// Size directive; part of an instruction.
break;
}
[[fallthrough]];
case DK_SQWORD:
case DK_DQ:
Lex();
return parseDirectiveNamedValue(nextVal, 8, IDVal, IDLoc);
case DK_REAL4:
Lex();
return parseDirectiveNamedRealValue(nextVal, APFloat::IEEEsingle(), 4,
IDVal, IDLoc);
case DK_REAL8:
Lex();
return parseDirectiveNamedRealValue(nextVal, APFloat::IEEEdouble(), 8,
IDVal, IDLoc);
case DK_REAL10:
Lex();
return parseDirectiveNamedRealValue(nextVal, APFloat::x87DoubleExtended(),
10, IDVal, IDLoc);
case DK_STRUCT:
case DK_UNION:
Lex();
return parseDirectiveStruct(nextVal, DirKind, IDVal, IDLoc);
case DK_ENDS:
Lex();
return parseDirectiveEnds(IDVal, IDLoc);
case DK_MACRO:
Lex();
return parseDirectiveMacro(IDVal, IDLoc);
}
// Finally, we check if this is allocating a variable with user-defined type.
auto NextIt = Structs.find(nextVal.lower());
if (NextIt != Structs.end()) {
Lex();
return parseDirectiveNamedStructValue(/*Structure=*/NextIt->getValue(),
nextVal, nextLoc, IDVal);
}
// __asm _emit or __asm __emit
if (ParsingMSInlineAsm && (IDVal == "_emit" || IDVal == "__emit" ||
IDVal == "_EMIT" || IDVal == "__EMIT"))
return parseDirectiveMSEmit(IDLoc, Info, IDVal.size());
// __asm align
if (ParsingMSInlineAsm && (IDVal == "align" || IDVal == "ALIGN"))
return parseDirectiveMSAlign(IDLoc, Info);
if (ParsingMSInlineAsm && (IDVal == "even" || IDVal == "EVEN"))
Info.AsmRewrites->emplace_back(AOK_EVEN, IDLoc, 4);
if (checkForValidSection())
return true;
// Canonicalize the opcode to lower case.
std::string OpcodeStr = IDVal.lower();
ParseInstructionInfo IInfo(Info.AsmRewrites);
bool ParseHadError = getTargetParser().parseInstruction(IInfo, OpcodeStr, ID,
Info.ParsedOperands);
Info.ParseError = ParseHadError;
// Dump the parsed representation, if requested.
if (getShowParsedOperands()) {
SmallString<256> Str;
raw_svector_ostream OS(Str);
OS << "parsed instruction: [";
for (unsigned i = 0; i != Info.ParsedOperands.size(); ++i) {
if (i != 0)
OS << ", ";
Info.ParsedOperands[i]->print(OS);
}
OS << "]";
printMessage(IDLoc, SourceMgr::DK_Note, OS.str());
}
// Fail even if ParseInstruction erroneously returns false.
if (hasPendingError() || ParseHadError)
return true;
// If parsing succeeded, match the instruction.
if (!ParseHadError) {
uint64_t ErrorInfo;
if (getTargetParser().matchAndEmitInstruction(
IDLoc, Info.Opcode, Info.ParsedOperands, Out, ErrorInfo,
getTargetParser().isParsingMSInlineAsm()))
return true;
}
return false;
}
// Parse and erase curly braces marking block start/end.
bool MasmParser::parseCurlyBlockScope(
SmallVectorImpl<AsmRewrite> &AsmStrRewrites) {
// Identify curly brace marking block start/end.
if (Lexer.isNot(AsmToken::LCurly) && Lexer.isNot(AsmToken::RCurly))
return false;
SMLoc StartLoc = Lexer.getLoc();
Lex(); // Eat the brace.
if (Lexer.is(AsmToken::EndOfStatement))
Lex(); // Eat EndOfStatement following the brace.
// Erase the block start/end brace from the output asm string.
AsmStrRewrites.emplace_back(AOK_Skip, StartLoc, Lexer.getLoc().getPointer() -
StartLoc.getPointer());
return true;
}
/// parseCppHashLineFilenameComment as this:
/// ::= # number "filename"
bool MasmParser::parseCppHashLineFilenameComment(SMLoc L) {
Lex(); // Eat the hash token.
// Lexer only ever emits HashDirective if it fully formed if it's
// done the checking already so this is an internal error.
assert(getTok().is(AsmToken::Integer) &&
"Lexing Cpp line comment: Expected Integer");
int64_t LineNumber = getTok().getIntVal();
Lex();
assert(getTok().is(AsmToken::String) &&
"Lexing Cpp line comment: Expected String");
StringRef Filename = getTok().getString();
Lex();
// Get rid of the enclosing quotes.
Filename = Filename.substr(1, Filename.size() - 2);
// Save the SMLoc, Filename and LineNumber for later use by diagnostics
// and possibly DWARF file info.
CppHashInfo.Loc = L;
CppHashInfo.Filename = Filename;
CppHashInfo.LineNumber = LineNumber;
CppHashInfo.Buf = CurBuffer;
if (FirstCppHashFilename.empty())
FirstCppHashFilename = Filename;
return false;
}
/// will use the last parsed cpp hash line filename comment
/// for the Filename and LineNo if any in the diagnostic.
void MasmParser::DiagHandler(const SMDiagnostic &Diag, void *Context) {
const MasmParser *Parser = static_cast<const MasmParser *>(Context);
raw_ostream &OS = errs();
const SourceMgr &DiagSrcMgr = *Diag.getSourceMgr();
SMLoc DiagLoc = Diag.getLoc();
unsigned DiagBuf = DiagSrcMgr.FindBufferContainingLoc(DiagLoc);
unsigned CppHashBuf =
Parser->SrcMgr.FindBufferContainingLoc(Parser->CppHashInfo.Loc);
// Like SourceMgr::printMessage() we need to print the include stack if any
// before printing the message.
unsigned DiagCurBuffer = DiagSrcMgr.FindBufferContainingLoc(DiagLoc);
if (!Parser->SavedDiagHandler && DiagCurBuffer &&
DiagCurBuffer != DiagSrcMgr.getMainFileID()) {
SMLoc ParentIncludeLoc = DiagSrcMgr.getParentIncludeLoc(DiagCurBuffer);
DiagSrcMgr.PrintIncludeStack(ParentIncludeLoc, OS);
}
// If we have not parsed a cpp hash line filename comment or the source
// manager changed or buffer changed (like in a nested include) then just
// print the normal diagnostic using its Filename and LineNo.
if (!Parser->CppHashInfo.LineNumber || &DiagSrcMgr != &Parser->SrcMgr ||
DiagBuf != CppHashBuf) {
if (Parser->SavedDiagHandler)
Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext);
else
Diag.print(nullptr, OS);
return;
}
// Use the CppHashFilename and calculate a line number based on the
// CppHashInfo.Loc and CppHashInfo.LineNumber relative to this Diag's SMLoc
// for the diagnostic.
const std::string &Filename = std::string(Parser->CppHashInfo.Filename);
int DiagLocLineNo = DiagSrcMgr.FindLineNumber(DiagLoc, DiagBuf);
int CppHashLocLineNo =
Parser->SrcMgr.FindLineNumber(Parser->CppHashInfo.Loc, CppHashBuf);
int LineNo =
Parser->CppHashInfo.LineNumber - 1 + (DiagLocLineNo - CppHashLocLineNo);
SMDiagnostic NewDiag(*Diag.getSourceMgr(), Diag.getLoc(), Filename, LineNo,
Diag.getColumnNo(), Diag.getKind(), Diag.getMessage(),
Diag.getLineContents(), Diag.getRanges());
if (Parser->SavedDiagHandler)
Parser->SavedDiagHandler(NewDiag, Parser->SavedDiagContext);
else
NewDiag.print(nullptr, OS);
}
// This is similar to the IsIdentifierChar function in AsmLexer.cpp, but does
// not accept '.'.
static bool isMacroParameterChar(char C) {
return isAlnum(C) || C == '_' || C == '$' || C == '@' || C == '?';
}
bool MasmParser::expandMacro(raw_svector_ostream &OS, StringRef Body,
ArrayRef<MCAsmMacroParameter> Parameters,
ArrayRef<MCAsmMacroArgument> A,
const std::vector<std::string> &Locals, SMLoc L) {
unsigned NParameters = Parameters.size();
if (NParameters != A.size())
return Error(L, "Wrong number of arguments");
StringMap<std::string> LocalSymbols;
std::string Name;
Name.reserve(6);
for (StringRef Local : Locals) {
raw_string_ostream LocalName(Name);
LocalName << "??"
<< format_hex_no_prefix(LocalCounter++, 4, /*Upper=*/true);
LocalSymbols.insert({Local, Name});
Name.clear();
}
std::optional<char> CurrentQuote;
while (!Body.empty()) {
// Scan for the next substitution.
std::size_t End = Body.size(), Pos = 0;
std::size_t IdentifierPos = End;
for (; Pos != End; ++Pos) {
// Find the next possible macro parameter, including preceding a '&'
// inside quotes.
if (Body[Pos] == '&')
break;
if (isMacroParameterChar(Body[Pos])) {
if (!CurrentQuote)
break;
if (IdentifierPos == End)
IdentifierPos = Pos;
} else {
IdentifierPos = End;
}
// Track quotation status
if (!CurrentQuote) {
if (Body[Pos] == '\'' || Body[Pos] == '"')
CurrentQuote = Body[Pos];
} else if (Body[Pos] == CurrentQuote) {
if (Pos + 1 != End && Body[Pos + 1] == CurrentQuote) {
// Escaped quote, and quotes aren't identifier chars; skip
++Pos;
continue;
} else {
CurrentQuote.reset();
}
}
}
if (IdentifierPos != End) {
// We've recognized an identifier before an apostrophe inside quotes;
// check once to see if we can expand it.
Pos = IdentifierPos;
IdentifierPos = End;
}
// Add the prefix.
OS << Body.slice(0, Pos);
// Check if we reached the end.
if (Pos == End)
break;
unsigned I = Pos;
bool InitialAmpersand = (Body[I] == '&');
if (InitialAmpersand) {
++I;
++Pos;
}
while (I < End && isMacroParameterChar(Body[I]))
++I;
const char *Begin = Body.data() + Pos;
StringRef Argument(Begin, I - Pos);
const std::string ArgumentLower = Argument.lower();
unsigned Index = 0;
for (; Index < NParameters; ++Index)
if (Parameters[Index].Name.equals_insensitive(ArgumentLower))
break;
if (Index == NParameters) {
if (InitialAmpersand)
OS << '&';
auto it = LocalSymbols.find(ArgumentLower);
if (it != LocalSymbols.end())
OS << it->second;
else
OS << Argument;
Pos = I;
} else {
for (const AsmToken &Token : A[Index]) {
// In MASM, you can write '%expr'.
// The prefix '%' evaluates the expression 'expr'
// and uses the result as a string (e.g. replace %(1+2) with the
// string "3").
// Here, we identify the integer token which is the result of the
// absolute expression evaluation and replace it with its string
// representation.
if (Token.getString().front() == '%' && Token.is(AsmToken::Integer))
// Emit an integer value to the buffer.
OS << Token.getIntVal();
else
OS << Token.getString();
}
Pos += Argument.size();
if (Pos < End && Body[Pos] == '&') {
++Pos;
}
}
// Update the scan point.
Body = Body.substr(Pos);
}
return false;
}
static bool isOperator(AsmToken::TokenKind kind) {
switch (kind) {
default:
return false;
case AsmToken::Plus:
case AsmToken::Minus:
case AsmToken::Tilde:
case AsmToken::Slash:
case AsmToken::Star:
case AsmToken::Dot:
case AsmToken::Equal:
case AsmToken::EqualEqual:
case AsmToken::Pipe:
case AsmToken::PipePipe:
case AsmToken::Caret:
case AsmToken::Amp:
case AsmToken::AmpAmp:
case AsmToken::Exclaim:
case AsmToken::ExclaimEqual:
case AsmToken::Less:
case AsmToken::LessEqual:
case AsmToken::LessLess:
case AsmToken::LessGreater:
case AsmToken::Greater:
case AsmToken::GreaterEqual:
case AsmToken::GreaterGreater:
return true;
}
}
namespace {
class AsmLexerSkipSpaceRAII {
public:
AsmLexerSkipSpaceRAII(AsmLexer &Lexer, bool SkipSpace) : Lexer(Lexer) {
Lexer.setSkipSpace(SkipSpace);
}
~AsmLexerSkipSpaceRAII() {
Lexer.setSkipSpace(true);
}
private:
AsmLexer &Lexer;
};
} // end anonymous namespace
bool MasmParser::parseMacroArgument(const MCAsmMacroParameter *MP,
MCAsmMacroArgument &MA,
AsmToken::TokenKind EndTok) {
if (MP && MP->Vararg) {
if (Lexer.isNot(EndTok)) {
SmallVector<StringRef, 1> Str = parseStringRefsTo(EndTok);
for (StringRef S : Str) {
MA.emplace_back(AsmToken::String, S);
}
}
return false;
}
SMLoc StrLoc = Lexer.getLoc(), EndLoc;
if (Lexer.is(AsmToken::Less) && isAngleBracketString(StrLoc, EndLoc)) {
const char *StrChar = StrLoc.getPointer() + 1;
const char *EndChar = EndLoc.getPointer() - 1;
jumpToLoc(EndLoc, CurBuffer, EndStatementAtEOFStack.back());
/// Eat from '<' to '>'.
Lex();
MA.emplace_back(AsmToken::String, StringRef(StrChar, EndChar - StrChar));
return false;
}
unsigned ParenLevel = 0;
// Darwin doesn't use spaces to delmit arguments.
AsmLexerSkipSpaceRAII ScopedSkipSpace(Lexer, IsDarwin);
bool SpaceEaten;
while (true) {
SpaceEaten = false;
if (Lexer.is(AsmToken::Eof) || Lexer.is(AsmToken::Equal))
return TokError("unexpected token");
if (ParenLevel == 0) {
if (Lexer.is(AsmToken::Comma))
break;
if (Lexer.is(AsmToken::Space)) {
SpaceEaten = true;
Lex(); // Eat spaces.
}
// Spaces can delimit parameters, but could also be part an expression.
// If the token after a space is an operator, add the token and the next
// one into this argument
if (!IsDarwin) {
if (isOperator(Lexer.getKind()) && Lexer.isNot(EndTok)) {
MA.push_back(getTok());
Lex();
// Whitespace after an operator can be ignored.
if (Lexer.is(AsmToken::Space))
Lex();
continue;
}
}
if (SpaceEaten)
break;
}
// handleMacroEntry relies on not advancing the lexer here
// to be able to fill in the remaining default parameter values
if (Lexer.is(EndTok) && (EndTok != AsmToken::RParen || ParenLevel == 0))
break;
// Adjust the current parentheses level.
if (Lexer.is(AsmToken::LParen))
++ParenLevel;
else if (Lexer.is(AsmToken::RParen) && ParenLevel)
--ParenLevel;
// Append the token to the current argument list.
MA.push_back(getTok());
Lex();
}
if (ParenLevel != 0)
return TokError("unbalanced parentheses in argument");
if (MA.empty() && MP) {
if (MP->Required) {
return TokError("missing value for required parameter '" + MP->Name +
"'");
} else {
MA = MP->Value;
}
}
return false;
}
// Parse the macro instantiation arguments.
bool MasmParser::parseMacroArguments(const MCAsmMacro *M,
MCAsmMacroArguments &A,
AsmToken::TokenKind EndTok) {
const unsigned NParameters = M ? M->Parameters.size() : 0;
bool NamedParametersFound = false;
SmallVector<SMLoc, 4> FALocs;
A.resize(NParameters);
FALocs.resize(NParameters);
// Parse two kinds of macro invocations:
// - macros defined without any parameters accept an arbitrary number of them
// - macros defined with parameters accept at most that many of them
for (unsigned Parameter = 0; !NParameters || Parameter < NParameters;
++Parameter) {
SMLoc IDLoc = Lexer.getLoc();
MCAsmMacroParameter FA;
if (Lexer.is(AsmToken::Identifier) && peekTok().is(AsmToken::Equal)) {
if (parseIdentifier(FA.Name))
return Error(IDLoc, "invalid argument identifier for formal argument");
if (Lexer.isNot(AsmToken::Equal))
return TokError("expected '=' after formal parameter identifier");
Lex();
NamedParametersFound = true;
}
if (NamedParametersFound && FA.Name.empty())
return Error(IDLoc, "cannot mix positional and keyword arguments");
unsigned PI = Parameter;
if (!FA.Name.empty()) {
assert(M && "expected macro to be defined");
unsigned FAI = 0;
for (FAI = 0; FAI < NParameters; ++FAI)
if (M->Parameters[FAI].Name == FA.Name)
break;
if (FAI >= NParameters) {
return Error(IDLoc, "parameter named '" + FA.Name +
"' does not exist for macro '" + M->Name + "'");
}
PI = FAI;
}
const MCAsmMacroParameter *MP = nullptr;
if (M && PI < NParameters)
MP = &M->Parameters[PI];
SMLoc StrLoc = Lexer.getLoc();
SMLoc EndLoc;
if (Lexer.is(AsmToken::Percent)) {
const MCExpr *AbsoluteExp;
int64_t Value;
/// Eat '%'.
Lex();
if (parseExpression(AbsoluteExp, EndLoc))
return false;
if (!AbsoluteExp->evaluateAsAbsolute(Value,
getStreamer().getAssemblerPtr()))
return Error(StrLoc, "expected absolute expression");
const char *StrChar = StrLoc.getPointer();
const char *EndChar = EndLoc.getPointer();
AsmToken newToken(AsmToken::Integer,
StringRef(StrChar, EndChar - StrChar), Value);
FA.Value.push_back(newToken);
} else if (parseMacroArgument(MP, FA.Value, EndTok)) {
if (M)
return addErrorSuffix(" in '" + M->Name + "' macro");
else
return true;
}
if (!FA.Value.empty()) {
if (A.size() <= PI)
A.resize(PI + 1);
A[PI] = FA.Value;
if (FALocs.size() <= PI)
FALocs.resize(PI + 1);
FALocs[PI] = Lexer.getLoc();
}
// At the end of the statement, fill in remaining arguments that have
// default values. If there aren't any, then the next argument is
// required but missing
if (Lexer.is(EndTok)) {
bool Failure = false;
for (unsigned FAI = 0; FAI < NParameters; ++FAI) {
if (A[FAI].empty()) {
if (M->Parameters[FAI].Required) {
Error(FALocs[FAI].isValid() ? FALocs[FAI] : Lexer.getLoc(),
"missing value for required parameter "
"'" +
M->Parameters[FAI].Name + "' in macro '" + M->Name + "'");
Failure = true;
}
if (!M->Parameters[FAI].Value.empty())
A[FAI] = M->Parameters[FAI].Value;
}
}
return Failure;
}
if (Lexer.is(AsmToken::Comma))
Lex();
}
return TokError("too many positional arguments");
}
bool MasmParser::handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc,
AsmToken::TokenKind ArgumentEndTok) {
// Arbitrarily limit macro nesting depth (default matches 'as'). We can
// eliminate this, although we should protect against infinite loops.
unsigned MaxNestingDepth = AsmMacroMaxNestingDepth;
if (ActiveMacros.size() == MaxNestingDepth) {
std::ostringstream MaxNestingDepthError;
MaxNestingDepthError << "macros cannot be nested more than "
<< MaxNestingDepth << " levels deep."
<< " Use -asm-macro-max-nesting-depth to increase "
"this limit.";
return TokError(MaxNestingDepthError.str());
}
MCAsmMacroArguments A;
if (parseMacroArguments(M, A, ArgumentEndTok))
return true;
// Macro instantiation is lexical, unfortunately. We construct a new buffer
// to hold the macro body with substitutions.
SmallString<256> Buf;
StringRef Body = M->Body;
raw_svector_ostream OS(Buf);
if (expandMacro(OS, Body, M->Parameters, A, M->Locals, getTok().getLoc()))
return true;
// We include the endm in the buffer as our cue to exit the macro
// instantiation.
OS << "endm\n";
std::unique_ptr<MemoryBuffer> Instantiation =
MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
// Create the macro instantiation object and add to the current macro
// instantiation stack.
MacroInstantiation *MI = new MacroInstantiation{
NameLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()};
ActiveMacros.push_back(MI);
++NumOfMacroInstantiations;
// Jump to the macro instantiation and prime the lexer.
CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
EndStatementAtEOFStack.push_back(true);
Lex();
return false;
}
void MasmParser::handleMacroExit() {
// Jump to the token we should return to, and consume it.
EndStatementAtEOFStack.pop_back();
jumpToLoc(ActiveMacros.back()->ExitLoc, ActiveMacros.back()->ExitBuffer,
EndStatementAtEOFStack.back());
Lex();
// Pop the instantiation entry.
delete ActiveMacros.back();
ActiveMacros.pop_back();
}
bool MasmParser::handleMacroInvocation(const MCAsmMacro *M, SMLoc NameLoc) {
if (!M->IsFunction)
return Error(NameLoc, "cannot invoke macro procedure as function");
if (parseToken(AsmToken::LParen, "invoking macro function '" + M->Name +
"' requires arguments in parentheses") ||
handleMacroEntry(M, NameLoc, AsmToken::RParen))
return true;
// Parse all statements in the macro, retrieving the exit value when it ends.
std::string ExitValue;
SmallVector<AsmRewrite, 4> AsmStrRewrites;
while (Lexer.isNot(AsmToken::Eof)) {
ParseStatementInfo Info(&AsmStrRewrites);
bool Parsed = parseStatement(Info, nullptr);
if (!Parsed && Info.ExitValue) {
ExitValue = std::move(*Info.ExitValue);
break;
}
// If we have a Lexer Error we are on an Error Token. Load in Lexer Error
// for printing ErrMsg via Lex() only if no (presumably better) parser error
// exists.
if (Parsed && !hasPendingError() && Lexer.getTok().is(AsmToken::Error)) {
Lex();
}
// parseStatement returned true so may need to emit an error.
printPendingErrors();
// Skipping to the next line if needed.
if (Parsed && !getLexer().isAtStartOfStatement())
eatToEndOfStatement();
}
// Consume the right-parenthesis on the other side of the arguments.
if (parseRParen())
return true;
// Exit values may require lexing, unfortunately. We construct a new buffer to
// hold the exit value.
std::unique_ptr<MemoryBuffer> MacroValue =
MemoryBuffer::getMemBufferCopy(ExitValue, "<macro-value>");
// Jump from this location to the instantiated exit value, and prime the
// lexer.
CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(MacroValue), Lexer.getLoc());
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(), nullptr,
/*EndStatementAtEOF=*/false);
EndStatementAtEOFStack.push_back(false);
Lex();
return false;
}
/// parseIdentifier:
/// ::= identifier
/// ::= string
bool MasmParser::parseIdentifier(StringRef &Res,
IdentifierPositionKind Position) {
// The assembler has relaxed rules for accepting identifiers, in particular we
// allow things like '.globl $foo' and '.def @feat.00', which would normally
// be separate tokens. At this level, we have already lexed so we cannot
// (currently) handle this as a context dependent token, instead we detect
// adjacent tokens and return the combined identifier.
if (Lexer.is(AsmToken::Dollar) || Lexer.is(AsmToken::At)) {
SMLoc PrefixLoc = getLexer().getLoc();
// Consume the prefix character, and check for a following identifier.
AsmToken nextTok = peekTok(false);
if (nextTok.isNot(AsmToken::Identifier))
return true;
// We have a '$' or '@' followed by an identifier, make sure they are adjacent.
if (PrefixLoc.getPointer() + 1 != nextTok.getLoc().getPointer())
return true;
// eat $ or @
Lexer.Lex(); // Lexer's Lex guarantees consecutive token.
// Construct the joined identifier and consume the token.
Res =
StringRef(PrefixLoc.getPointer(), getTok().getIdentifier().size() + 1);
Lex(); // Parser Lex to maintain invariants.
return false;
}
if (Lexer.isNot(AsmToken::Identifier) && Lexer.isNot(AsmToken::String))
return true;
Res = getTok().getIdentifier();
// Consume the identifier token - but if parsing certain directives, avoid
// lexical expansion of the next token.
ExpandKind ExpandNextToken = ExpandMacros;
if (Position == StartOfStatement &&
StringSwitch<bool>(Res)
.CaseLower("echo", true)
.CasesLower("ifdef", "ifndef", "elseifdef", "elseifndef", true)
.Default(false)) {
ExpandNextToken = DoNotExpandMacros;
}
Lex(ExpandNextToken);
return false;
}
/// parseDirectiveEquate:
/// ::= name "=" expression
/// | name "equ" expression (not redefinable)
/// | name "equ" text-list
/// | name "textequ" text-list (redefinability unspecified)
bool MasmParser::parseDirectiveEquate(StringRef IDVal, StringRef Name,
DirectiveKind DirKind, SMLoc NameLoc) {
auto BuiltinIt = BuiltinSymbolMap.find(Name.lower());
if (BuiltinIt != BuiltinSymbolMap.end())
return Error(NameLoc, "cannot redefine a built-in symbol");
Variable &Var = Variables[Name.lower()];
if (Var.Name.empty()) {
Var.Name = Name;
}
SMLoc StartLoc = Lexer.getLoc();
if (DirKind == DK_EQU || DirKind == DK_TEXTEQU) {
// "equ" and "textequ" both allow text expressions.
std::string Value;
std::string TextItem;
if (!parseTextItem(TextItem)) {
Value += TextItem;
// Accept a text-list, not just one text-item.
auto parseItem = [&]() -> bool {
if (parseTextItem(TextItem))
return TokError("expected text item");
Value += TextItem;
return false;
};
if (parseOptionalToken(AsmToken::Comma) && parseMany(parseItem))
return addErrorSuffix(" in '" + Twine(IDVal) + "' directive");
if (!Var.IsText || Var.TextValue != Value) {
switch (Var.Redefinable) {
case Variable::NOT_REDEFINABLE:
return Error(getTok().getLoc(), "invalid variable redefinition");
case Variable::WARN_ON_REDEFINITION:
if (Warning(NameLoc, "redefining '" + Name +
"', already defined on the command line")) {
return true;
}
break;
default:
break;
}
}
Var.IsText = true;
Var.TextValue = Value;
Var.Redefinable = Variable::REDEFINABLE;
return false;
}
}
if (DirKind == DK_TEXTEQU)
return TokError("expected <text> in '" + Twine(IDVal) + "' directive");
// Parse as expression assignment.
const MCExpr *Expr;
SMLoc EndLoc;
if (parseExpression(Expr, EndLoc))
return addErrorSuffix(" in '" + Twine(IDVal) + "' directive");
StringRef ExprAsString = StringRef(
StartLoc.getPointer(), EndLoc.getPointer() - StartLoc.getPointer());
int64_t Value;
if (!Expr->evaluateAsAbsolute(Value, getStreamer().getAssemblerPtr())) {
if (DirKind == DK_ASSIGN)
return Error(
StartLoc,
"expected absolute expression; not all symbols have known values",
{StartLoc, EndLoc});
// Not an absolute expression; define as a text replacement.
if (!Var.IsText || Var.TextValue != ExprAsString) {
switch (Var.Redefinable) {
case Variable::NOT_REDEFINABLE:
return Error(getTok().getLoc(), "invalid variable redefinition");
case Variable::WARN_ON_REDEFINITION:
if (Warning(NameLoc, "redefining '" + Name +
"', already defined on the command line")) {
return true;
}
break;
default:
break;
}
}
Var.IsText = true;
Var.TextValue = ExprAsString.str();
Var.Redefinable = Variable::REDEFINABLE;
return false;
}
MCSymbol *Sym = getContext().getOrCreateSymbol(Var.Name);
const MCConstantExpr *PrevValue =
Sym->isVariable() ? dyn_cast_or_null<MCConstantExpr>(
Sym->getVariableValue(/*SetUsed=*/false))
: nullptr;
if (Var.IsText || !PrevValue || PrevValue->getValue() != Value) {
switch (Var.Redefinable) {
case Variable::NOT_REDEFINABLE:
return Error(getTok().getLoc(), "invalid variable redefinition");
case Variable::WARN_ON_REDEFINITION:
if (Warning(NameLoc, "redefining '" + Name +
"', already defined on the command line")) {
return true;
}
break;
default:
break;
}
}
Var.IsText = false;
Var.TextValue.clear();
Var.Redefinable = (DirKind == DK_ASSIGN) ? Variable::REDEFINABLE
: Variable::NOT_REDEFINABLE;
Sym->setRedefinable(Var.Redefinable != Variable::NOT_REDEFINABLE);
Sym->setVariableValue(Expr);
Sym->setExternal(false);
return false;
}
bool MasmParser::parseEscapedString(std::string &Data) {
if (check(getTok().isNot(AsmToken::String), "expected string"))
return true;
Data = "";
char Quote = getTok().getString().front();
StringRef Str = getTok().getStringContents();
Data.reserve(Str.size());
for (size_t i = 0, e = Str.size(); i != e; ++i) {
Data.push_back(Str[i]);
if (Str[i] == Quote) {
// MASM treats doubled delimiting quotes as an escaped delimiting quote.
// If we're escaping the string's trailing delimiter, we're definitely
// missing a quotation mark.
if (i + 1 == Str.size())
return Error(getTok().getLoc(), "missing quotation mark in string");
if (Str[i + 1] == Quote)
++i;
}
}
Lex();
return false;
}
bool MasmParser::parseAngleBracketString(std::string &Data) {
SMLoc EndLoc, StartLoc = getTok().getLoc();
if (isAngleBracketString(StartLoc, EndLoc)) {
const char *StartChar = StartLoc.getPointer() + 1;
const char *EndChar = EndLoc.getPointer() - 1;
jumpToLoc(EndLoc, CurBuffer, EndStatementAtEOFStack.back());
// Eat from '<' to '>'.
Lex();
Data = angleBracketString(StringRef(StartChar, EndChar - StartChar));
return false;
}
return true;
}
/// textItem ::= textLiteral | textMacroID | % constExpr
bool MasmParser::parseTextItem(std::string &Data) {
switch (getTok().getKind()) {
default:
return true;
case AsmToken::Percent: {
int64_t Res;
if (parseToken(AsmToken::Percent) || parseAbsoluteExpression(Res))
return true;
Data = std::to_string(Res);
return false;
}
case AsmToken::Less:
case AsmToken::LessEqual:
case AsmToken::LessLess:
case AsmToken::LessGreater:
return parseAngleBracketString(Data);
case AsmToken::Identifier: {
// This must be a text macro; we need to expand it accordingly.
StringRef ID;
SMLoc StartLoc = getTok().getLoc();
if (parseIdentifier(ID))
return true;
Data = ID.str();
bool Expanded = false;
while (true) {
// Try to resolve as a built-in text macro
auto BuiltinIt = BuiltinSymbolMap.find(ID.lower());
if (BuiltinIt != BuiltinSymbolMap.end()) {
std::optional<std::string> BuiltinText =
evaluateBuiltinTextMacro(BuiltinIt->getValue(), StartLoc);
if (!BuiltinText) {
// Not a text macro; break without substituting
break;
}
Data = std::move(*BuiltinText);
ID = StringRef(Data);
Expanded = true;
continue;
}
// Try to resolve as a variable text macro
auto VarIt = Variables.find(ID.lower());
if (VarIt != Variables.end()) {
const Variable &Var = VarIt->getValue();
if (!Var.IsText) {
// Not a text macro; break without substituting
break;
}
Data = Var.TextValue;
ID = StringRef(Data);
Expanded = true;
continue;
}
break;
}
if (!Expanded) {
// Not a text macro; not usable in TextItem context. Since we haven't used
// the token, put it back for better error recovery.
getLexer().UnLex(AsmToken(AsmToken::Identifier, ID));
return true;
}
return false;
}
}
llvm_unreachable("unhandled token kind");
}
/// parseDirectiveAscii:
/// ::= ( .ascii | .asciz | .string ) [ "string" ( , "string" )* ]
bool MasmParser::parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated) {
auto parseOp = [&]() -> bool {
std::string Data;
if (checkForValidSection() || parseEscapedString(Data))
return true;
getStreamer().emitBytes(Data);
if (ZeroTerminated)
getStreamer().emitBytes(StringRef("\0", 1));
return false;
};
if (parseMany(parseOp))
return addErrorSuffix(" in '" + Twine(IDVal) + "' directive");
return false;
}
bool MasmParser::emitIntValue(const MCExpr *Value, unsigned Size) {
// Special case constant expressions to match code generator.
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
assert(Size <= 8 && "Invalid size");
int64_t IntValue = MCE->getValue();
if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
return Error(MCE->getLoc(), "out of range literal value");
getStreamer().emitIntValue(IntValue, Size);
} else {
const MCSymbolRefExpr *MSE = dyn_cast<MCSymbolRefExpr>(Value);
if (MSE && MSE->getSymbol().getName() == "?") {
// ? initializer; treat as 0.
getStreamer().emitIntValue(0, Size);
} else {
getStreamer().emitValue(Value, Size, Value->getLoc());
}
}
return false;
}
bool MasmParser::parseScalarInitializer(unsigned Size,
SmallVectorImpl<const MCExpr *> &Values,
unsigned StringPadLength) {
if (Size == 1 && getTok().is(AsmToken::String)) {
std::string Value;
if (parseEscapedString(Value))
return true;
// Treat each character as an initializer.
for (const unsigned char CharVal : Value)
Values.push_back(MCConstantExpr::create(CharVal, getContext()));
// Pad the string with spaces to the specified length.
for (size_t i = Value.size(); i < StringPadLength; ++i)
Values.push_back(MCConstantExpr::create(' ', getContext()));
} else {
const MCExpr *Value;
if (parseExpression(Value))
return true;
if (getTok().is(AsmToken::Identifier) &&
getTok().getString().equals_insensitive("dup")) {
Lex(); // Eat 'dup'.
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
if (!MCE)
return Error(Value->getLoc(),
"cannot repeat value a non-constant number of times");
const int64_t Repetitions = MCE->getValue();
if (Repetitions < 0)
return Error(Value->getLoc(),
"cannot repeat value a negative number of times");
SmallVector<const MCExpr *, 1> DuplicatedValues;
if (parseToken(AsmToken::LParen,
"parentheses required for 'dup' contents") ||
parseScalarInstList(Size, DuplicatedValues) || parseRParen())
return true;
for (int i = 0; i < Repetitions; ++i)
Values.append(DuplicatedValues.begin(), DuplicatedValues.end());
} else {
Values.push_back(Value);
}
}
return false;
}
bool MasmParser::parseScalarInstList(unsigned Size,
SmallVectorImpl<const MCExpr *> &Values,
const AsmToken::TokenKind EndToken) {
while (getTok().isNot(EndToken) &&
(EndToken != AsmToken::Greater ||
getTok().isNot(AsmToken::GreaterGreater))) {
parseScalarInitializer(Size, Values);
// If we see a comma, continue, and allow line continuation.
if (!parseOptionalToken(AsmToken::Comma))
break;
parseOptionalToken(AsmToken::EndOfStatement);
}
return false;
}
bool MasmParser::emitIntegralValues(unsigned Size, unsigned *Count) {
SmallVector<const MCExpr *, 1> Values;
if (checkForValidSection() || parseScalarInstList(Size, Values))
return true;
for (const auto *Value : Values) {
emitIntValue(Value, Size);
}
if (Count)
*Count = Values.size();
return false;
}
// Add a field to the current structure.
bool MasmParser::addIntegralField(StringRef Name, unsigned Size) {
StructInfo &Struct = StructInProgress.back();
FieldInfo &Field = Struct.addField(Name, FT_INTEGRAL, Size);
IntFieldInfo &IntInfo = Field.Contents.IntInfo;
Field.Type = Size;
if (parseScalarInstList(Size, IntInfo.Values))
return true;
Field.SizeOf = Field.Type * IntInfo.Values.size();
Field.LengthOf = IntInfo.Values.size();
const unsigned FieldEnd = Field.Offset + Field.SizeOf;
if (!Struct.IsUnion) {
Struct.NextOffset = FieldEnd;
}
Struct.Size = std::max(Struct.Size, FieldEnd);
return false;
}
/// parseDirectiveValue
/// ::= (byte | word | ... ) [ expression (, expression)* ]
bool MasmParser::parseDirectiveValue(StringRef IDVal, unsigned Size) {
if (StructInProgress.empty()) {
// Initialize data value.
if (emitIntegralValues(Size))
return addErrorSuffix(" in '" + Twine(IDVal) + "' directive");
} else if (addIntegralField("", Size)) {
return addErrorSuffix(" in '" + Twine(IDVal) + "' directive");
}
return false;
}
/// parseDirectiveNamedValue
/// ::= name (byte | word | ... ) [ expression (, expression)* ]
bool MasmParser::parseDirectiveNamedValue(StringRef TypeName, unsigned Size,
StringRef Name, SMLoc NameLoc) {
if (StructInProgress.empty()) {
// Initialize named data value.
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
getStreamer().emitLabel(Sym);
unsigned Count;
if (emitIntegralValues(Size, &Count))
return addErrorSuffix(" in '" + Twine(TypeName) + "' directive");
AsmTypeInfo Type;
Type.Name = TypeName;
Type.Size = Size * Count;
Type.ElementSize = Size;
Type.Length = Count;
KnownType[Name.lower()] = Type;
} else if (addIntegralField(Name, Size)) {
return addErrorSuffix(" in '" + Twine(TypeName) + "' directive");
}
return false;
}
bool MasmParser::parseRealValue(const fltSemantics &Semantics, APInt &Res) {
// We don't truly support arithmetic on floating point expressions, so we
// have to manually parse unary prefixes.
bool IsNeg = false;
SMLoc SignLoc;
if (getLexer().is(AsmToken::Minus)) {
SignLoc = getLexer().getLoc();
Lexer.Lex();
IsNeg = true;
} else if (getLexer().is(AsmToken::Plus)) {
SignLoc = getLexer().getLoc();
Lexer.Lex();
}
if (Lexer.is(AsmToken::Error))
return TokError(Lexer.getErr());
if (Lexer.isNot(AsmToken::Integer) && Lexer.isNot(AsmToken::Real) &&
Lexer.isNot(AsmToken::Identifier))
return TokError("unexpected token in directive");
// Convert to an APFloat.
APFloat Value(Semantics);
StringRef IDVal = getTok().getString();
if (getLexer().is(AsmToken::Identifier)) {
if (IDVal.equals_insensitive("infinity") || IDVal.equals_insensitive("inf"))
Value = APFloat::getInf(Semantics);
else if (IDVal.equals_insensitive("nan"))
Value = APFloat::getNaN(Semantics, false, ~0);
else if (IDVal.equals_insensitive("?"))
Value = APFloat::getZero(Semantics);
else
return TokError("invalid floating point literal");
} else if (IDVal.consume_back("r") || IDVal.consume_back("R")) {
// MASM hexadecimal floating-point literal; no APFloat conversion needed.
// To match ML64.exe, ignore the initial sign.
unsigned SizeInBits = Value.getSizeInBits(Semantics);
if (SizeInBits != (IDVal.size() << 2))
return TokError("invalid floating point literal");
// Consume the numeric token.
Lex();
Res = APInt(SizeInBits, IDVal, 16);
if (SignLoc.isValid())
return Warning(SignLoc, "MASM-style hex floats ignore explicit sign");
return false;
} else if (errorToBool(
Value.convertFromString(IDVal, APFloat::rmNearestTiesToEven)
.takeError())) {
return TokError("invalid floating point literal");
}
if (IsNeg)
Value.changeSign();
// Consume the numeric token.
Lex();
Res = Value.bitcastToAPInt();
return false;
}
bool MasmParser::parseRealInstList(const fltSemantics &Semantics,
SmallVectorImpl<APInt> &ValuesAsInt,
const AsmToken::TokenKind EndToken) {
while (getTok().isNot(EndToken) ||
(EndToken == AsmToken::Greater &&
getTok().isNot(AsmToken::GreaterGreater))) {
const AsmToken NextTok = peekTok();
if (NextTok.is(AsmToken::Identifier) &&
NextTok.getString().equals_insensitive("dup")) {
const MCExpr *Value;
if (parseExpression(Value) || parseToken(AsmToken::Identifier))
return true;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
if (!MCE)
return Error(Value->getLoc(),
"cannot repeat value a non-constant number of times");
const int64_t Repetitions = MCE->getValue();
if (Repetitions < 0)
return Error(Value->getLoc(),
"cannot repeat value a negative number of times");
SmallVector<APInt, 1> DuplicatedValues;
if (parseToken(AsmToken::LParen,
"parentheses required for 'dup' contents") ||
parseRealInstList(Semantics, DuplicatedValues) || parseRParen())
return true;
for (int i = 0; i < Repetitions; ++i)
ValuesAsInt.append(DuplicatedValues.begin(), DuplicatedValues.end());
} else {
APInt AsInt;
if (parseRealValue(Semantics, AsInt))
return true;
ValuesAsInt.push_back(AsInt);
}
// Continue if we see a comma. (Also, allow line continuation.)
if (!parseOptionalToken(AsmToken::Comma))
break;
parseOptionalToken(AsmToken::EndOfStatement);
}
return false;
}
// Initialize real data values.
bool MasmParser::emitRealValues(const fltSemantics &Semantics,
unsigned *Count) {
if (checkForValidSection())
return true;
SmallVector<APInt, 1> ValuesAsInt;
if (parseRealInstList(Semantics, ValuesAsInt))
return true;
for (const APInt &AsInt : ValuesAsInt) {
getStreamer().emitIntValue(AsInt);
}
if (Count)
*Count = ValuesAsInt.size();
return false;
}
// Add a real field to the current struct.
bool MasmParser::addRealField(StringRef Name, const fltSemantics &Semantics,
size_t Size) {
StructInfo &Struct = StructInProgress.back();
FieldInfo &Field = Struct.addField(Name, FT_REAL, Size);
RealFieldInfo &RealInfo = Field.Contents.RealInfo;
Field.SizeOf = 0;
if (parseRealInstList(Semantics, RealInfo.AsIntValues))
return true;
Field.Type = RealInfo.AsIntValues.back().getBitWidth() / 8;
Field.LengthOf = RealInfo.AsIntValues.size();
Field.SizeOf = Field.Type * Field.LengthOf;
const unsigned FieldEnd = Field.Offset + Field.SizeOf;
if (!Struct.IsUnion) {
Struct.NextOffset = FieldEnd;
}
Struct.Size = std::max(Struct.Size, FieldEnd);
return false;
}
/// parseDirectiveRealValue
/// ::= (real4 | real8 | real10) [ expression (, expression)* ]
bool MasmParser::parseDirectiveRealValue(StringRef IDVal,
const fltSemantics &Semantics,
size_t Size) {
if (StructInProgress.empty()) {
// Initialize data value.
if (emitRealValues(Semantics))
return addErrorSuffix(" in '" + Twine(IDVal) + "' directive");
} else if (addRealField("", Semantics, Size)) {
return addErrorSuffix(" in '" + Twine(IDVal) + "' directive");
}
return false;
}
/// parseDirectiveNamedRealValue
/// ::= name (real4 | real8 | real10) [ expression (, expression)* ]
bool MasmParser::parseDirectiveNamedRealValue(StringRef TypeName,
const fltSemantics &Semantics,
unsigned Size, StringRef Name,
SMLoc NameLoc) {
if (StructInProgress.empty()) {
// Initialize named data value.
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
getStreamer().emitLabel(Sym);
unsigned Count;
if (emitRealValues(Semantics, &Count))
return addErrorSuffix(" in '" + TypeName + "' directive");
AsmTypeInfo Type;
Type.Name = TypeName;
Type.Size = Size * Count;
Type.ElementSize = Size;
Type.Length = Count;
KnownType[Name.lower()] = Type;
} else if (addRealField(Name, Semantics, Size)) {
return addErrorSuffix(" in '" + TypeName + "' directive");
}
return false;
}
bool MasmParser::parseOptionalAngleBracketOpen() {
const AsmToken Tok = getTok();
if (parseOptionalToken(AsmToken::LessLess)) {
AngleBracketDepth++;
Lexer.UnLex(AsmToken(AsmToken::Less, Tok.getString().substr(1)));
return true;
} else if (parseOptionalToken(AsmToken::LessGreater)) {
AngleBracketDepth++;
Lexer.UnLex(AsmToken(AsmToken::Greater, Tok.getString().substr(1)));
return true;
} else if (parseOptionalToken(AsmToken::Less)) {
AngleBracketDepth++;
return true;
}
return false;
}
bool MasmParser::parseAngleBracketClose(const Twine &Msg) {
const AsmToken Tok = getTok();
if (parseOptionalToken(AsmToken::GreaterGreater)) {
Lexer.UnLex(AsmToken(AsmToken::Greater, Tok.getString().substr(1)));
} else if (parseToken(AsmToken::Greater, Msg)) {
return true;
}
AngleBracketDepth--;
return false;
}
bool MasmParser::parseFieldInitializer(const FieldInfo &Field,
const IntFieldInfo &Contents,
FieldInitializer &Initializer) {
SMLoc Loc = getTok().getLoc();
SmallVector<const MCExpr *, 1> Values;
if (parseOptionalToken(AsmToken::LCurly)) {
if (Field.LengthOf == 1 && Field.Type > 1)
return Error(Loc, "Cannot initialize scalar field with array value");
if (parseScalarInstList(Field.Type, Values, AsmToken::RCurly) ||
parseToken(AsmToken::RCurly))
return true;
} else if (parseOptionalAngleBracketOpen()) {
if (Field.LengthOf == 1 && Field.Type > 1)
return Error(Loc, "Cannot initialize scalar field with array value");
if (parseScalarInstList(Field.Type, Values, AsmToken::Greater) ||
parseAngleBracketClose())
return true;
} else if (Field.LengthOf > 1 && Field.Type > 1) {
return Error(Loc, "Cannot initialize array field with scalar value");
} else if (parseScalarInitializer(Field.Type, Values,
/*StringPadLength=*/Field.LengthOf)) {
return true;
}
if (Values.size() > Field.LengthOf) {
return Error(Loc, "Initializer too long for field; expected at most " +
std::to_string(Field.LengthOf) + " elements, got " +
std::to_string(Values.size()));
}
// Default-initialize all remaining values.
Values.append(Contents.Values.begin() + Values.size(), Contents.Values.end());
Initializer = FieldInitializer(std::move(Values));
return false;
}
bool MasmParser::parseFieldInitializer(const FieldInfo &Field,
const RealFieldInfo &Contents,
FieldInitializer &Initializer) {
const fltSemantics *Semantics;
switch (Field.Type) {
case 4:
Semantics = &APFloat::IEEEsingle();
break;
case 8:
Semantics = &APFloat::IEEEdouble();
break;
case 10:
Semantics = &APFloat::x87DoubleExtended();
break;
default:
llvm_unreachable("unknown real field type");
}
SMLoc Loc = getTok().getLoc();
SmallVector<APInt, 1> AsIntValues;
if (parseOptionalToken(AsmToken::LCurly)) {
if (Field.LengthOf == 1)
return Error(Loc, "Cannot initialize scalar field with array value");
if (parseRealInstList(*Semantics, AsIntValues, AsmToken::RCurly) ||
parseToken(AsmToken::RCurly))
return true;
} else if (parseOptionalAngleBracketOpen()) {
if (Field.LengthOf == 1)
return Error(Loc, "Cannot initialize scalar field with array value");
if (parseRealInstList(*Semantics, AsIntValues, AsmToken::Greater) ||
parseAngleBracketClose())
return true;
} else if (Field.LengthOf > 1) {
return Error(Loc, "Cannot initialize array field with scalar value");
} else {
AsIntValues.emplace_back();
if (parseRealValue(*Semantics, AsIntValues.back()))
return true;
}
if (AsIntValues.size() > Field.LengthOf) {
return Error(Loc, "Initializer too long for field; expected at most " +
std::to_string(Field.LengthOf) + " elements, got " +
std::to_string(AsIntValues.size()));
}
// Default-initialize all remaining values.
AsIntValues.append(Contents.AsIntValues.begin() + AsIntValues.size(),
Contents.AsIntValues.end());
Initializer = FieldInitializer(std::move(AsIntValues));
return false;
}
bool MasmParser::parseFieldInitializer(const FieldInfo &Field,
const StructFieldInfo &Contents,
FieldInitializer &Initializer) {
SMLoc Loc = getTok().getLoc();
std::vector<StructInitializer> Initializers;
if (Field.LengthOf > 1) {
if (parseOptionalToken(AsmToken::LCurly)) {
if (parseStructInstList(Contents.Structure, Initializers,
AsmToken::RCurly) ||
parseToken(AsmToken::RCurly))
return true;
} else if (parseOptionalAngleBracketOpen()) {
if (parseStructInstList(Contents.Structure, Initializers,
AsmToken::Greater) ||
parseAngleBracketClose())
return true;
} else {
return Error(Loc, "Cannot initialize array field with scalar value");
}
} else {
Initializers.emplace_back();
if (parseStructInitializer(Contents.Structure, Initializers.back()))
return true;
}
if (Initializers.size() > Field.LengthOf) {
return Error(Loc, "Initializer too long for field; expected at most " +
std::to_string(Field.LengthOf) + " elements, got " +
std::to_string(Initializers.size()));
}
// Default-initialize all remaining values.
Initializers.insert(Initializers.end(),
Contents.Initializers.begin() + Initializers.size(),
Contents.Initializers.end());
Initializer = FieldInitializer(std::move(Initializers), Contents.Structure);
return false;
}
bool MasmParser::parseFieldInitializer(const FieldInfo &Field,
FieldInitializer &Initializer) {
switch (Field.Contents.FT) {
case FT_INTEGRAL:
return parseFieldInitializer(Field, Field.Contents.IntInfo, Initializer);
case FT_REAL:
return parseFieldInitializer(Field, Field.Contents.RealInfo, Initializer);
case FT_STRUCT:
return parseFieldInitializer(Field, Field.Contents.StructInfo, Initializer);
}
llvm_unreachable("Unhandled FieldType enum");
}
bool MasmParser::parseStructInitializer(const StructInfo &Structure,
StructInitializer &Initializer) {
const AsmToken FirstToken = getTok();
std::optional<AsmToken::TokenKind> EndToken;
if (parseOptionalToken(AsmToken::LCurly)) {
EndToken = AsmToken::RCurly;
} else if (parseOptionalAngleBracketOpen()) {
EndToken = AsmToken::Greater;
AngleBracketDepth++;
} else if (FirstToken.is(AsmToken::Identifier) &&
FirstToken.getString() == "?") {
// ? initializer; leave EndToken uninitialized to treat as empty.
if (parseToken(AsmToken::Identifier))
return true;
} else {
return Error(FirstToken.getLoc(), "Expected struct initializer");
}
auto &FieldInitializers = Initializer.FieldInitializers;
size_t FieldIndex = 0;
if (EndToken) {
// Initialize all fields with given initializers.
while (getTok().isNot(*EndToken) && FieldIndex < Structure.Fields.size()) {
const FieldInfo &Field = Structure.Fields[FieldIndex++];
if (parseOptionalToken(AsmToken::Comma)) {
// Empty initializer; use the default and continue. (Also, allow line
// continuation.)
FieldInitializers.push_back(Field.Contents);
parseOptionalToken(AsmToken::EndOfStatement);
continue;
}
FieldInitializers.emplace_back(Field.Contents.FT);
if (parseFieldInitializer(Field, FieldInitializers.back()))
return true;
// Continue if we see a comma. (Also, allow line continuation.)
SMLoc CommaLoc = getTok().getLoc();
if (!parseOptionalToken(AsmToken::Comma))
break;
if (FieldIndex == Structure.Fields.size())
return Error(CommaLoc, "'" + Structure.Name +
"' initializer initializes too many fields");
parseOptionalToken(AsmToken::EndOfStatement);
}
}
// Default-initialize all remaining fields.
for (const FieldInfo &Field : llvm::drop_begin(Structure.Fields, FieldIndex))
FieldInitializers.push_back(Field.Contents);
if (EndToken) {
if (*EndToken == AsmToken::Greater)
return parseAngleBracketClose();
return parseToken(*EndToken);
}
return false;
}
bool MasmParser::parseStructInstList(
const StructInfo &Structure, std::vector<StructInitializer> &Initializers,
const AsmToken::TokenKind EndToken) {
while (getTok().isNot(EndToken) ||
(EndToken == AsmToken::Greater &&
getTok().isNot(AsmToken::GreaterGreater))) {
const AsmToken NextTok = peekTok();
if (NextTok.is(AsmToken::Identifier) &&
NextTok.getString().equals_insensitive("dup")) {
const MCExpr *Value;
if (parseExpression(Value) || parseToken(AsmToken::Identifier))
return true;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
if (!MCE)
return Error(Value->getLoc(),
"cannot repeat value a non-constant number of times");
const int64_t Repetitions = MCE->getValue();
if (Repetitions < 0)
return Error(Value->getLoc(),
"cannot repeat value a negative number of times");
std::vector<StructInitializer> DuplicatedValues;
if (parseToken(AsmToken::LParen,
"parentheses required for 'dup' contents") ||
parseStructInstList(Structure, DuplicatedValues) || parseRParen())
return true;
for (int i = 0; i < Repetitions; ++i)
llvm::append_range(Initializers, DuplicatedValues);
} else {
Initializers.emplace_back();
if (parseStructInitializer(Structure, Initializers.back()))
return true;
}
// Continue if we see a comma. (Also, allow line continuation.)
if (!parseOptionalToken(AsmToken::Comma))
break;
parseOptionalToken(AsmToken::EndOfStatement);
}
return false;
}
bool MasmParser::emitFieldValue(const FieldInfo &Field,
const IntFieldInfo &Contents) {
// Default-initialize all values.
for (const MCExpr *Value : Contents.Values) {
if (emitIntValue(Value, Field.Type))
return true;
}
return false;
}
bool MasmParser::emitFieldValue(const FieldInfo &Field,
const RealFieldInfo &Contents) {
for (const APInt &AsInt : Contents.AsIntValues) {
getStreamer().emitIntValue(AsInt.getLimitedValue(),
AsInt.getBitWidth() / 8);
}
return false;
}
bool MasmParser::emitFieldValue(const FieldInfo &Field,
const StructFieldInfo &Contents) {
for (const auto &Initializer : Contents.Initializers) {
size_t Index = 0, Offset = 0;
for (const auto &SubField : Contents.Structure.Fields) {
getStreamer().emitZeros(SubField.Offset - Offset);
Offset = SubField.Offset + SubField.SizeOf;
emitFieldInitializer(SubField, Initializer.FieldInitializers[Index++]);
}
}
return false;
}
bool MasmParser::emitFieldValue(const FieldInfo &Field) {
switch (Field.Contents.FT) {
case FT_INTEGRAL:
return emitFieldValue(Field, Field.Contents.IntInfo);
case FT_REAL:
return emitFieldValue(Field, Field.Contents.RealInfo);
case FT_STRUCT:
return emitFieldValue(Field, Field.Contents.StructInfo);
}
llvm_unreachable("Unhandled FieldType enum");
}
bool MasmParser::emitFieldInitializer(const FieldInfo &Field,
const IntFieldInfo &Contents,
const IntFieldInfo &Initializer) {
for (const auto &Value : Initializer.Values) {
if (emitIntValue(Value, Field.Type))
return true;
}
// Default-initialize all remaining values.
for (const auto &Value :
llvm::drop_begin(Contents.Values, Initializer.Values.size())) {
if (emitIntValue(Value, Field.Type))
return true;
}
return false;
}
bool MasmParser::emitFieldInitializer(const FieldInfo &Field,
const RealFieldInfo &Contents,
const RealFieldInfo &Initializer) {
for (const auto &AsInt : Initializer.AsIntValues) {
getStreamer().emitIntValue(AsInt.getLimitedValue(),
AsInt.getBitWidth() / 8);
}
// Default-initialize all remaining values.
for (const auto &AsInt :
llvm::drop_begin(Contents.AsIntValues, Initializer.AsIntValues.size())) {
getStreamer().emitIntValue(AsInt.getLimitedValue(),
AsInt.getBitWidth() / 8);
}
return false;
}
bool MasmParser::emitFieldInitializer(const FieldInfo &Field,
const StructFieldInfo &Contents,
const StructFieldInfo &Initializer) {
for (const auto &Init : Initializer.Initializers) {
if (emitStructInitializer(Contents.Structure, Init))
return true;
}
// Default-initialize all remaining values.
for (const auto &Init : llvm::drop_begin(Contents.Initializers,
Initializer.Initializers.size())) {
if (emitStructInitializer(Contents.Structure, Init))
return true;
}
return false;
}
bool MasmParser::emitFieldInitializer(const FieldInfo &Field,
const FieldInitializer &Initializer) {
switch (Field.Contents.FT) {
case FT_INTEGRAL:
return emitFieldInitializer(Field, Field.Contents.IntInfo,
Initializer.IntInfo);
case FT_REAL:
return emitFieldInitializer(Field, Field.Contents.RealInfo,
Initializer.RealInfo);
case FT_STRUCT:
return emitFieldInitializer(Field, Field.Contents.StructInfo,
Initializer.StructInfo);
}
llvm_unreachable("Unhandled FieldType enum");
}
bool MasmParser::emitStructInitializer(const StructInfo &Structure,
const StructInitializer &Initializer) {
if (!Structure.Initializable)
return Error(getLexer().getLoc(),
"cannot initialize a value of type '" + Structure.Name +
"'; 'org' was used in the type's declaration");
size_t Index = 0, Offset = 0;
for (const auto &Init : Initializer.FieldInitializers) {
const auto &Field = Structure.Fields[Index++];
getStreamer().emitZeros(Field.Offset - Offset);
Offset = Field.Offset + Field.SizeOf;
if (emitFieldInitializer(Field, Init))
return true;
}
// Default-initialize all remaining fields.
for (const auto &Field : llvm::drop_begin(
Structure.Fields, Initializer.FieldInitializers.size())) {
getStreamer().emitZeros(Field.Offset - Offset);
Offset = Field.Offset + Field.SizeOf;
if (emitFieldValue(Field))
return true;
}
// Add final padding.
if (Offset != Structure.Size)
getStreamer().emitZeros(Structure.Size - Offset);
return false;
}
// Set data values from initializers.
bool MasmParser::emitStructValues(const StructInfo &Structure,
unsigned *Count) {
std::vector<StructInitializer> Initializers;
if (parseStructInstList(Structure, Initializers))
return true;
for (const auto &Initializer : Initializers) {
if (emitStructInitializer(Structure, Initializer))
return true;
}
if (Count)
*Count = Initializers.size();
return false;
}
// Declare a field in the current struct.
bool MasmParser::addStructField(StringRef Name, const StructInfo &Structure) {
StructInfo &OwningStruct = StructInProgress.back();
FieldInfo &Field =
OwningStruct.addField(Name, FT_STRUCT, Structure.AlignmentSize);
StructFieldInfo &StructInfo = Field.Contents.StructInfo;
StructInfo.Structure = Structure;
Field.Type = Structure.Size;
if (parseStructInstList(Structure, StructInfo.Initializers))
return true;
Field.LengthOf = StructInfo.Initializers.size();
Field.SizeOf = Field.Type * Field.LengthOf;
const unsigned FieldEnd = Field.Offset + Field.SizeOf;
if (!OwningStruct.IsUnion) {
OwningStruct.NextOffset = FieldEnd;
}
OwningStruct.Size = std::max(OwningStruct.Size, FieldEnd);
return false;
}
/// parseDirectiveStructValue
/// ::= struct-id (<struct-initializer> | {struct-initializer})
/// [, (<struct-initializer> | {struct-initializer})]*
bool MasmParser::parseDirectiveStructValue(const StructInfo &Structure,
StringRef Directive, SMLoc DirLoc) {
if (StructInProgress.empty()) {
if (emitStructValues(Structure))
return true;
} else if (addStructField("", Structure)) {
return addErrorSuffix(" in '" + Twine(Directive) + "' directive");
}
return false;
}
/// parseDirectiveNamedValue
/// ::= name (byte | word | ... ) [ expression (, expression)* ]
bool MasmParser::parseDirectiveNamedStructValue(const StructInfo &Structure,
StringRef Directive,
SMLoc DirLoc, StringRef Name) {
if (StructInProgress.empty()) {
// Initialize named data value.
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
getStreamer().emitLabel(Sym);
unsigned Count;
if (emitStructValues(Structure, &Count))
return true;
AsmTypeInfo Type;
Type.Name = Structure.Name;
Type.Size = Structure.Size * Count;
Type.ElementSize = Structure.Size;
Type.Length = Count;
KnownType[Name.lower()] = Type;
} else if (addStructField(Name, Structure)) {
return addErrorSuffix(" in '" + Twine(Directive) + "' directive");
}
return false;
}
/// parseDirectiveStruct
/// ::= <name> (STRUC | STRUCT | UNION) [fieldAlign] [, NONUNIQUE]
/// (dataDir | generalDir | offsetDir | nestedStruct)+
/// <name> ENDS
////// dataDir = data declaration
////// offsetDir = EVEN, ORG, ALIGN
bool MasmParser::parseDirectiveStruct(StringRef Directive,
DirectiveKind DirKind, StringRef Name,
SMLoc NameLoc) {
// We ignore NONUNIQUE; we do not support OPTION M510 or OPTION OLDSTRUCTS
// anyway, so all field accesses must be qualified.
AsmToken NextTok = getTok();
int64_t AlignmentValue = 1;
if (NextTok.isNot(AsmToken::Comma) &&
NextTok.isNot(AsmToken::EndOfStatement) &&
parseAbsoluteExpression(AlignmentValue)) {
return addErrorSuffix(" in alignment value for '" + Twine(Directive) +
"' directive");
}
if (!isPowerOf2_64(AlignmentValue)) {
return Error(NextTok.getLoc(), "alignment must be a power of two; was " +
std::to_string(AlignmentValue));
}
StringRef Qualifier;
SMLoc QualifierLoc;
if (parseOptionalToken(AsmToken::Comma)) {
QualifierLoc = getTok().getLoc();
if (parseIdentifier(Qualifier))
return addErrorSuffix(" in '" + Twine(Directive) + "' directive");
if (!Qualifier.equals_insensitive("nonunique"))
return Error(QualifierLoc, "Unrecognized qualifier for '" +
Twine(Directive) +
"' directive; expected none or NONUNIQUE");
}
if (parseEOL())
return addErrorSuffix(" in '" + Twine(Directive) + "' directive");
StructInProgress.emplace_back(Name, DirKind == DK_UNION, AlignmentValue);
return false;
}
/// parseDirectiveNestedStruct
/// ::= (STRUC | STRUCT | UNION) [name]
/// (dataDir | generalDir | offsetDir | nestedStruct)+
/// ENDS
bool MasmParser::parseDirectiveNestedStruct(StringRef Directive,
DirectiveKind DirKind) {
if (StructInProgress.empty())
return TokError("missing name in top-level '" + Twine(Directive) +
"' directive");
StringRef Name;
if (getTok().is(AsmToken::Identifier)) {
Name = getTok().getIdentifier();
parseToken(AsmToken::Identifier);
}
if (parseEOL())
return addErrorSuffix(" in '" + Twine(Directive) + "' directive");
// Reserve space to ensure Alignment doesn't get invalidated when
// StructInProgress grows.
StructInProgress.reserve(StructInProgress.size() + 1);
StructInProgress.emplace_back(Name, DirKind == DK_UNION,
StructInProgress.back().Alignment);
return false;
}
bool MasmParser::parseDirectiveEnds(StringRef Name, SMLoc NameLoc) {
if (StructInProgress.empty())
return Error(NameLoc, "ENDS directive without matching STRUC/STRUCT/UNION");
if (StructInProgress.size() > 1)
return Error(NameLoc, "unexpected name in nested ENDS directive");
if (StructInProgress.back().Name.compare_insensitive(Name))
return Error(NameLoc, "mismatched name in ENDS directive; expected '" +
StructInProgress.back().Name + "'");
StructInfo Structure = StructInProgress.pop_back_val();
// Pad to make the structure's size divisible by the smaller of its alignment
// and the size of its largest field.
Structure.Size = llvm::alignTo(
Structure.Size, std::min(Structure.Alignment, Structure.AlignmentSize));
Structs[Name.lower()] = Structure;
if (parseEOL())
return addErrorSuffix(" in ENDS directive");
return false;
}
bool MasmParser::parseDirectiveNestedEnds() {
if (StructInProgress.empty())
return TokError("ENDS directive without matching STRUC/STRUCT/UNION");
if (StructInProgress.size() == 1)
return TokError("missing name in top-level ENDS directive");
if (parseEOL())
return addErrorSuffix(" in nested ENDS directive");
StructInfo Structure = StructInProgress.pop_back_val();
// Pad to make the structure's size divisible by its alignment.
Structure.Size = llvm::alignTo(Structure.Size, Structure.Alignment);
StructInfo &ParentStruct = StructInProgress.back();
if (Structure.Name.empty()) {
// Anonymous substructures' fields are addressed as if they belong to the
// parent structure - so we transfer them to the parent here.
const size_t OldFields = ParentStruct.Fields.size();
ParentStruct.Fields.insert(
ParentStruct.Fields.end(),
std::make_move_iterator(Structure.Fields.begin()),
std::make_move_iterator(Structure.Fields.end()));
for (const auto &FieldByName : Structure.FieldsByName) {
ParentStruct.FieldsByName[FieldByName.getKey()] =
FieldByName.getValue() + OldFields;
}
unsigned FirstFieldOffset = 0;
if (!Structure.Fields.empty() && !ParentStruct.IsUnion) {
FirstFieldOffset = llvm::alignTo(
ParentStruct.NextOffset,
std::min(ParentStruct.Alignment, Structure.AlignmentSize));
}
if (ParentStruct.IsUnion) {
ParentStruct.Size = std::max(ParentStruct.Size, Structure.Size);
} else {
for (auto &Field : llvm::drop_begin(ParentStruct.Fields, OldFields))
Field.Offset += FirstFieldOffset;
const unsigned StructureEnd = FirstFieldOffset + Structure.Size;
if (!ParentStruct.IsUnion) {
ParentStruct.NextOffset = StructureEnd;
}
ParentStruct.Size = std::max(ParentStruct.Size, StructureEnd);
}
} else {
FieldInfo &Field = ParentStruct.addField(Structure.Name, FT_STRUCT,
Structure.AlignmentSize);
StructFieldInfo &StructInfo = Field.Contents.StructInfo;
Field.Type = Structure.Size;
Field.LengthOf = 1;
Field.SizeOf = Structure.Size;
const unsigned StructureEnd = Field.Offset + Field.SizeOf;
if (!ParentStruct.IsUnion) {
ParentStruct.NextOffset = StructureEnd;
}
ParentStruct.Size = std::max(ParentStruct.Size, StructureEnd);
StructInfo.Structure = Structure;
StructInfo.Initializers.emplace_back();
auto &FieldInitializers = StructInfo.Initializers.back().FieldInitializers;
for (const auto &SubField : Structure.Fields) {
FieldInitializers.push_back(SubField.Contents);
}
}
return false;
}
/// parseDirectiveOrg
/// ::= org expression
bool MasmParser::parseDirectiveOrg() {
const MCExpr *Offset;
SMLoc OffsetLoc = Lexer.getLoc();
if (checkForValidSection() || parseExpression(Offset))
return true;
if (parseEOL())
return addErrorSuffix(" in 'org' directive");
if (StructInProgress.empty()) {
// Not in a struct; change the offset for the next instruction or data
if (checkForValidSection())
return addErrorSuffix(" in 'org' directive");
getStreamer().emitValueToOffset(Offset, 0, OffsetLoc);
} else {
// Offset the next field of this struct
StructInfo &Structure = StructInProgress.back();
int64_t OffsetRes;
if (!Offset->evaluateAsAbsolute(OffsetRes, getStreamer().getAssemblerPtr()))
return Error(OffsetLoc,
"expected absolute expression in 'org' directive");
if (OffsetRes < 0)
return Error(
OffsetLoc,
"expected non-negative value in struct's 'org' directive; was " +
std::to_string(OffsetRes));
Structure.NextOffset = static_cast<unsigned>(OffsetRes);
// ORG-affected structures cannot be initialized
Structure.Initializable = false;
}
return false;
}
bool MasmParser::emitAlignTo(int64_t Alignment) {
if (StructInProgress.empty()) {
// Not in a struct; align the next instruction or data
if (checkForValidSection())
return true;
// Check whether we should use optimal code alignment for this align
// directive.
const MCSection *Section = getStreamer().getCurrentSectionOnly();
assert(Section && "must have section to emit alignment");
if (Section->useCodeAlign()) {
getStreamer().emitCodeAlignment(Align(Alignment),
&getTargetParser().getSTI(),
/*MaxBytesToEmit=*/0);
} else {
// FIXME: Target specific behavior about how the "extra" bytes are filled.
getStreamer().emitValueToAlignment(Align(Alignment), /*Value=*/0,
/*ValueSize=*/1,
/*MaxBytesToEmit=*/0);
}
} else {
// Align the next field of this struct
StructInfo &Structure = StructInProgress.back();
Structure.NextOffset = llvm::alignTo(Structure.NextOffset, Alignment);
}
return false;
}
/// parseDirectiveAlign
/// ::= align expression
bool MasmParser::parseDirectiveAlign() {
SMLoc AlignmentLoc = getLexer().getLoc();
int64_t Alignment;
// Ignore empty 'align' directives.
if (getTok().is(AsmToken::EndOfStatement)) {
return Warning(AlignmentLoc,
"align directive with no operand is ignored") &&
parseEOL();
}
if (parseAbsoluteExpression(Alignment) || parseEOL())
return addErrorSuffix(" in align directive");
// Always emit an alignment here even if we throw an error.
bool ReturnVal = false;
// Reject alignments that aren't either a power of two or zero, for ML.exe
// compatibility. Alignment of zero is silently rounded up to one.
if (Alignment == 0)
Alignment = 1;
if (!isPowerOf2_64(Alignment))
ReturnVal |= Error(AlignmentLoc, "alignment must be a power of 2; was " +
std::to_string(Alignment));
if (emitAlignTo(Alignment))
ReturnVal |= addErrorSuffix(" in align directive");
return ReturnVal;
}
/// parseDirectiveEven
/// ::= even
bool MasmParser::parseDirectiveEven() {
if (parseEOL() || emitAlignTo(2))
return addErrorSuffix(" in even directive");
return false;
}
/// parseDirectiveMacro
/// ::= name macro [parameters]
/// ["LOCAL" identifiers]
/// parameters ::= parameter [, parameter]*
/// parameter ::= name ":" qualifier
/// qualifier ::= "req" | "vararg" | "=" macro_argument
bool MasmParser::parseDirectiveMacro(StringRef Name, SMLoc NameLoc) {
MCAsmMacroParameters Parameters;
while (getLexer().isNot(AsmToken::EndOfStatement)) {
if (!Parameters.empty() && Parameters.back().Vararg)
return Error(Lexer.getLoc(),
"Vararg parameter '" + Parameters.back().Name +
"' should be last in the list of parameters");
MCAsmMacroParameter Parameter;
if (parseIdentifier(Parameter.Name))
return TokError("expected identifier in 'macro' directive");
// Emit an error if two (or more) named parameters share the same name.
for (const MCAsmMacroParameter& CurrParam : Parameters)
if (CurrParam.Name.equals_insensitive(Parameter.Name))
return TokError("macro '" + Name + "' has multiple parameters"
" named '" + Parameter.Name + "'");
if (Lexer.is(AsmToken::Colon)) {
Lex(); // consume ':'
if (parseOptionalToken(AsmToken::Equal)) {
// Default value
SMLoc ParamLoc;
ParamLoc = Lexer.getLoc();
if (parseMacroArgument(nullptr, Parameter.Value))
return true;
} else {
SMLoc QualLoc;
StringRef Qualifier;
QualLoc = Lexer.getLoc();
if (parseIdentifier(Qualifier))
return Error(QualLoc, "missing parameter qualifier for "
"'" +
Parameter.Name + "' in macro '" + Name +
"'");
if (Qualifier.equals_insensitive("req"))
Parameter.Required = true;
else if (Qualifier.equals_insensitive("vararg"))
Parameter.Vararg = true;
else
return Error(QualLoc,
Qualifier + " is not a valid parameter qualifier for '" +
Parameter.Name + "' in macro '" + Name + "'");
}
}
Parameters.push_back(std::move(Parameter));
if (getLexer().is(AsmToken::Comma))
Lex();
}
// Eat just the end of statement.
Lexer.Lex();
std::vector<std::string> Locals;
if (getTok().is(AsmToken::Identifier) &&
getTok().getIdentifier().equals_insensitive("local")) {
Lex(); // Eat the LOCAL directive.
StringRef ID;
while (true) {
if (parseIdentifier(ID))
return true;
Locals.push_back(ID.lower());
// If we see a comma, continue (and allow line continuation).
if (!parseOptionalToken(AsmToken::Comma))
break;
parseOptionalToken(AsmToken::EndOfStatement);
}
}
// Consuming deferred text, so use Lexer.Lex to ignore Lexing Errors.
AsmToken EndToken, StartToken = getTok();
unsigned MacroDepth = 0;
bool IsMacroFunction = false;
// Lex the macro definition.
while (true) {
// Ignore Lexing errors in macros.
while (Lexer.is(AsmToken::Error)) {
Lexer.Lex();
}
// Check whether we have reached the end of the file.
if (getLexer().is(AsmToken::Eof))
return Error(NameLoc, "no matching 'endm' in definition");
// Otherwise, check whether we have reached the 'endm'... and determine if
// this is a macro function.
if (getLexer().is(AsmToken::Identifier)) {
if (getTok().getIdentifier().equals_insensitive("endm")) {
if (MacroDepth == 0) { // Outermost macro.
EndToken = getTok();
Lexer.Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in '" + EndToken.getIdentifier() +
"' directive");
break;
} else {
// Otherwise we just found the end of an inner macro.
--MacroDepth;
}
} else if (getTok().getIdentifier().equals_insensitive("exitm")) {
if (MacroDepth == 0 && peekTok().isNot(AsmToken::EndOfStatement)) {
IsMacroFunction = true;
}
} else if (isMacroLikeDirective()) {
// We allow nested macros. Those aren't instantiated until the
// outermost macro is expanded so just ignore them for now.
++MacroDepth;
}
}
// Otherwise, scan til the end of the statement.
eatToEndOfStatement();
}
if (getContext().lookupMacro(Name.lower())) {
return Error(NameLoc, "macro '" + Name + "' is already defined");
}
const char *BodyStart = StartToken.getLoc().getPointer();
const char *BodyEnd = EndToken.getLoc().getPointer();
StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
MCAsmMacro Macro(Name, Body, std::move(Parameters), std::move(Locals),
IsMacroFunction);
DEBUG_WITH_TYPE("asm-macros", dbgs() << "Defining new macro:\n";
Macro.dump());
getContext().defineMacro(Name.lower(), std::move(Macro));
return false;
}
/// parseDirectiveExitMacro
/// ::= "exitm" [textitem]
bool MasmParser::parseDirectiveExitMacro(SMLoc DirectiveLoc,
StringRef Directive,
std::string &Value) {
SMLoc EndLoc = getTok().getLoc();
if (getTok().isNot(AsmToken::EndOfStatement) && parseTextItem(Value))
return Error(EndLoc,
"unable to parse text item in '" + Directive + "' directive");
eatToEndOfStatement();
if (!isInsideMacroInstantiation())
return TokError("unexpected '" + Directive + "' in file, "
"no current macro definition");
// Exit all conditionals that are active in the current macro.
while (TheCondStack.size() != ActiveMacros.back()->CondStackDepth) {
TheCondState = TheCondStack.back();
TheCondStack.pop_back();
}
handleMacroExit();
return false;
}
/// parseDirectiveEndMacro
/// ::= endm
bool MasmParser::parseDirectiveEndMacro(StringRef Directive) {
if (getLexer().isNot(AsmToken::EndOfStatement))
return TokError("unexpected token in '" + Directive + "' directive");
// If we are inside a macro instantiation, terminate the current
// instantiation.
if (isInsideMacroInstantiation()) {
handleMacroExit();
return false;
}
// Otherwise, this .endmacro is a stray entry in the file; well formed
// .endmacro directives are handled during the macro definition parsing.
return TokError("unexpected '" + Directive + "' in file, "
"no current macro definition");
}
/// parseDirectivePurgeMacro
/// ::= purge identifier ( , identifier )*
bool MasmParser::parseDirectivePurgeMacro(SMLoc DirectiveLoc) {
StringRef Name;
while (true) {
SMLoc NameLoc;
if (parseTokenLoc(NameLoc) ||
check(parseIdentifier(Name), NameLoc,
"expected identifier in 'purge' directive"))
return true;
DEBUG_WITH_TYPE("asm-macros", dbgs()
<< "Un-defining macro: " << Name << "\n");
if (!getContext().lookupMacro(Name.lower()))
return Error(NameLoc, "macro '" + Name + "' is not defined");
getContext().undefineMacro(Name.lower());
if (!parseOptionalToken(AsmToken::Comma))
break;
parseOptionalToken(AsmToken::EndOfStatement);
}
return false;
}
bool MasmParser::parseDirectiveExtern() {
// .extern is the default - but we still need to take any provided type info.
auto parseOp = [&]() -> bool {
StringRef Name;
SMLoc NameLoc = getTok().getLoc();
if (parseIdentifier(Name))
return Error(NameLoc, "expected name");
if (parseToken(AsmToken::Colon))
return true;
StringRef TypeName;
SMLoc TypeLoc = getTok().getLoc();
if (parseIdentifier(TypeName))
return Error(TypeLoc, "expected type");
if (!TypeName.equals_insensitive("proc")) {
AsmTypeInfo Type;
if (lookUpType(TypeName, Type))
return Error(TypeLoc, "unrecognized type");
KnownType[Name.lower()] = Type;
}
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
Sym->setExternal(true);
getStreamer().emitSymbolAttribute(Sym, MCSA_Extern);
return false;
};
if (parseMany(parseOp))
return addErrorSuffix(" in directive 'extern'");
return false;
}
/// parseDirectiveSymbolAttribute
/// ::= { ".globl", ".weak", ... } [ identifier ( , identifier )* ]
bool MasmParser::parseDirectiveSymbolAttribute(MCSymbolAttr Attr) {
auto parseOp = [&]() -> bool {
StringRef Name;
SMLoc Loc = getTok().getLoc();
if (parseIdentifier(Name))
return Error(Loc, "expected identifier");
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
// Assembler local symbols don't make any sense here. Complain loudly.
if (Sym->isTemporary())
return Error(Loc, "non-local symbol required");
if (!getStreamer().emitSymbolAttribute(Sym, Attr))
return Error(Loc, "unable to emit symbol attribute");
return false;
};
if (parseMany(parseOp))
return addErrorSuffix(" in directive");
return false;
}
/// parseDirectiveComm
/// ::= ( .comm | .lcomm ) identifier , size_expression [ , align_expression ]
bool MasmParser::parseDirectiveComm(bool IsLocal) {
if (checkForValidSection())
return true;
SMLoc IDLoc = getLexer().getLoc();
StringRef Name;
if (parseIdentifier(Name))
return TokError("expected identifier in directive");
// Handle the identifier as the key symbol.
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
if (getLexer().isNot(AsmToken::Comma))
return TokError("unexpected token in directive");
Lex();
int64_t Size;
SMLoc SizeLoc = getLexer().getLoc();
if (parseAbsoluteExpression(Size))
return true;
int64_t Pow2Alignment = 0;
SMLoc Pow2AlignmentLoc;
if (getLexer().is(AsmToken::Comma)) {
Lex();
Pow2AlignmentLoc = getLexer().getLoc();
if (parseAbsoluteExpression(Pow2Alignment))
return true;
LCOMM::LCOMMType LCOMM = Lexer.getMAI().getLCOMMDirectiveAlignmentType();
if (IsLocal && LCOMM == LCOMM::NoAlignment)
return Error(Pow2AlignmentLoc, "alignment not supported on this target");
// If this target takes alignments in bytes (not log) validate and convert.
if ((!IsLocal && Lexer.getMAI().getCOMMDirectiveAlignmentIsInBytes()) ||
(IsLocal && LCOMM == LCOMM::ByteAlignment)) {
if (!isPowerOf2_64(Pow2Alignment))
return Error(Pow2AlignmentLoc, "alignment must be a power of 2");
Pow2Alignment = Log2_64(Pow2Alignment);
}
}
if (parseEOL())
return true;
// NOTE: a size of zero for a .comm should create a undefined symbol
// but a size of .lcomm creates a bss symbol of size zero.
if (Size < 0)
return Error(SizeLoc, "invalid '.comm' or '.lcomm' directive size, can't "
"be less than zero");
// NOTE: The alignment in the directive is a power of 2 value, the assembler
// may internally end up wanting an alignment in bytes.
// FIXME: Diagnose overflow.
if (Pow2Alignment < 0)
return Error(Pow2AlignmentLoc, "invalid '.comm' or '.lcomm' directive "
"alignment, can't be less than zero");
Sym->redefineIfPossible();
if (!Sym->isUndefined())
return Error(IDLoc, "invalid symbol redefinition");
// Create the Symbol as a common or local common with Size and Pow2Alignment.
if (IsLocal) {
getStreamer().emitLocalCommonSymbol(Sym, Size,
Align(1ULL << Pow2Alignment));
return false;
}
getStreamer().emitCommonSymbol(Sym, Size, Align(1ULL << Pow2Alignment));
return false;
}
/// parseDirectiveComment
/// ::= comment delimiter [[text]]
/// [[text]]
/// [[text]] delimiter [[text]]
bool MasmParser::parseDirectiveComment(SMLoc DirectiveLoc) {
std::string FirstLine = parseStringTo(AsmToken::EndOfStatement);
size_t DelimiterEnd = FirstLine.find_first_of("\b\t\v\f\r\x1A ");
assert(DelimiterEnd != std::string::npos);
StringRef Delimiter = StringRef(FirstLine).take_front(DelimiterEnd);
if (Delimiter.empty())
return Error(DirectiveLoc, "no delimiter in 'comment' directive");
do {
if (getTok().is(AsmToken::Eof))
return Error(DirectiveLoc, "unmatched delimiter in 'comment' directive");
Lex(); // eat end of statement
} while (
!StringRef(parseStringTo(AsmToken::EndOfStatement)).contains(Delimiter));
return parseEOL();
}
/// parseDirectiveInclude
/// ::= include <filename>
/// | include filename
bool MasmParser::parseDirectiveInclude() {
// Allow the strings to have escaped octal character sequence.
std::string Filename;
SMLoc IncludeLoc = getTok().getLoc();
if (parseAngleBracketString(Filename))
Filename = parseStringTo(AsmToken::EndOfStatement);
if (check(Filename.empty(), "missing filename in 'include' directive") ||
check(getTok().isNot(AsmToken::EndOfStatement),
"unexpected token in 'include' directive") ||
// Attempt to switch the lexer to the included file before consuming the
// end of statement to avoid losing it when we switch.
check(enterIncludeFile(Filename), IncludeLoc,
"Could not find include file '" + Filename + "'"))
return true;
return false;
}
/// parseDirectiveIf
/// ::= .if{,eq,ge,gt,le,lt,ne} expression
bool MasmParser::parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind) {
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
if (TheCondState.Ignore) {
eatToEndOfStatement();
} else {
int64_t ExprValue;
if (parseAbsoluteExpression(ExprValue) || parseEOL())
return true;
switch (DirKind) {
default:
llvm_unreachable("unsupported directive");
case DK_IF:
break;
case DK_IFE:
ExprValue = ExprValue == 0;
break;
}
TheCondState.CondMet = ExprValue;
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveIfb
/// ::= .ifb textitem
bool MasmParser::parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank) {
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
if (TheCondState.Ignore) {
eatToEndOfStatement();
} else {
std::string Str;
if (parseTextItem(Str))
return TokError("expected text item parameter for 'ifb' directive");
if (parseEOL())
return true;
TheCondState.CondMet = ExpectBlank == Str.empty();
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveIfidn
/// ::= ifidn textitem, textitem
bool MasmParser::parseDirectiveIfidn(SMLoc DirectiveLoc, bool ExpectEqual,
bool CaseInsensitive) {
std::string String1, String2;
if (parseTextItem(String1)) {
if (ExpectEqual)
return TokError("expected text item parameter for 'ifidn' directive");
return TokError("expected text item parameter for 'ifdif' directive");
}
if (Lexer.isNot(AsmToken::Comma)) {
if (ExpectEqual)
return TokError(
"expected comma after first string for 'ifidn' directive");
return TokError("expected comma after first string for 'ifdif' directive");
}
Lex();
if (parseTextItem(String2)) {
if (ExpectEqual)
return TokError("expected text item parameter for 'ifidn' directive");
return TokError("expected text item parameter for 'ifdif' directive");
}
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
if (CaseInsensitive)
TheCondState.CondMet =
ExpectEqual == (StringRef(String1).equals_insensitive(String2));
else
TheCondState.CondMet = ExpectEqual == (String1 == String2);
TheCondState.Ignore = !TheCondState.CondMet;
return false;
}
/// parseDirectiveIfdef
/// ::= ifdef symbol
/// | ifdef variable
bool MasmParser::parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined) {
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
if (TheCondState.Ignore) {
eatToEndOfStatement();
} else {
bool is_defined = false;
MCRegister Reg;
SMLoc StartLoc, EndLoc;
is_defined =
getTargetParser().tryParseRegister(Reg, StartLoc, EndLoc).isSuccess();
if (!is_defined) {
StringRef Name;
if (check(parseIdentifier(Name), "expected identifier after 'ifdef'") ||
parseEOL())
return true;
if (BuiltinSymbolMap.contains(Name.lower())) {
is_defined = true;
} else if (Variables.contains(Name.lower())) {
is_defined = true;
} else {
MCSymbol *Sym = getContext().lookupSymbol(Name.lower());
is_defined = (Sym && !Sym->isUndefined(false));
}
}
TheCondState.CondMet = (is_defined == expect_defined);
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveElseIf
/// ::= elseif expression
bool MasmParser::parseDirectiveElseIf(SMLoc DirectiveLoc,
DirectiveKind DirKind) {
if (TheCondState.TheCond != AsmCond::IfCond &&
TheCondState.TheCond != AsmCond::ElseIfCond)
return Error(DirectiveLoc, "Encountered a .elseif that doesn't follow an"
" .if or an .elseif");
TheCondState.TheCond = AsmCond::ElseIfCond;
bool LastIgnoreState = false;
if (!TheCondStack.empty())
LastIgnoreState = TheCondStack.back().Ignore;
if (LastIgnoreState || TheCondState.CondMet) {
TheCondState.Ignore = true;
eatToEndOfStatement();
} else {
int64_t ExprValue;
if (parseAbsoluteExpression(ExprValue))
return true;
if (parseEOL())
return true;
switch (DirKind) {
default:
llvm_unreachable("unsupported directive");
case DK_ELSEIF:
break;
case DK_ELSEIFE:
ExprValue = ExprValue == 0;
break;
}
TheCondState.CondMet = ExprValue;
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveElseIfb
/// ::= elseifb textitem
bool MasmParser::parseDirectiveElseIfb(SMLoc DirectiveLoc, bool ExpectBlank) {
if (TheCondState.TheCond != AsmCond::IfCond &&
TheCondState.TheCond != AsmCond::ElseIfCond)
return Error(DirectiveLoc, "Encountered an elseif that doesn't follow an"
" if or an elseif");
TheCondState.TheCond = AsmCond::ElseIfCond;
bool LastIgnoreState = false;
if (!TheCondStack.empty())
LastIgnoreState = TheCondStack.back().Ignore;
if (LastIgnoreState || TheCondState.CondMet) {
TheCondState.Ignore = true;
eatToEndOfStatement();
} else {
std::string Str;
if (parseTextItem(Str)) {
if (ExpectBlank)
return TokError("expected text item parameter for 'elseifb' directive");
return TokError("expected text item parameter for 'elseifnb' directive");
}
if (parseEOL())
return true;
TheCondState.CondMet = ExpectBlank == Str.empty();
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveElseIfdef
/// ::= elseifdef symbol
/// | elseifdef variable
bool MasmParser::parseDirectiveElseIfdef(SMLoc DirectiveLoc,
bool expect_defined) {
if (TheCondState.TheCond != AsmCond::IfCond &&
TheCondState.TheCond != AsmCond::ElseIfCond)
return Error(DirectiveLoc, "Encountered an elseif that doesn't follow an"
" if or an elseif");
TheCondState.TheCond = AsmCond::ElseIfCond;
bool LastIgnoreState = false;
if (!TheCondStack.empty())
LastIgnoreState = TheCondStack.back().Ignore;
if (LastIgnoreState || TheCondState.CondMet) {
TheCondState.Ignore = true;
eatToEndOfStatement();
} else {
bool is_defined = false;
MCRegister Reg;
SMLoc StartLoc, EndLoc;
is_defined =
getTargetParser().tryParseRegister(Reg, StartLoc, EndLoc).isSuccess();
if (!is_defined) {
StringRef Name;
if (check(parseIdentifier(Name),
"expected identifier after 'elseifdef'") ||
parseEOL())
return true;
if (BuiltinSymbolMap.contains(Name.lower())) {
is_defined = true;
} else if (Variables.contains(Name.lower())) {
is_defined = true;
} else {
MCSymbol *Sym = getContext().lookupSymbol(Name);
is_defined = (Sym && !Sym->isUndefined(false));
}
}
TheCondState.CondMet = (is_defined == expect_defined);
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveElseIfidn
/// ::= elseifidn textitem, textitem
bool MasmParser::parseDirectiveElseIfidn(SMLoc DirectiveLoc, bool ExpectEqual,
bool CaseInsensitive) {
if (TheCondState.TheCond != AsmCond::IfCond &&
TheCondState.TheCond != AsmCond::ElseIfCond)
return Error(DirectiveLoc, "Encountered an elseif that doesn't follow an"
" if or an elseif");
TheCondState.TheCond = AsmCond::ElseIfCond;
bool LastIgnoreState = false;
if (!TheCondStack.empty())
LastIgnoreState = TheCondStack.back().Ignore;
if (LastIgnoreState || TheCondState.CondMet) {
TheCondState.Ignore = true;
eatToEndOfStatement();
} else {
std::string String1, String2;
if (parseTextItem(String1)) {
if (ExpectEqual)
return TokError(
"expected text item parameter for 'elseifidn' directive");
return TokError("expected text item parameter for 'elseifdif' directive");
}
if (Lexer.isNot(AsmToken::Comma)) {
if (ExpectEqual)
return TokError(
"expected comma after first string for 'elseifidn' directive");
return TokError(
"expected comma after first string for 'elseifdif' directive");
}
Lex();
if (parseTextItem(String2)) {
if (ExpectEqual)
return TokError(
"expected text item parameter for 'elseifidn' directive");
return TokError("expected text item parameter for 'elseifdif' directive");
}
if (CaseInsensitive)
TheCondState.CondMet =
ExpectEqual == (StringRef(String1).equals_insensitive(String2));
else
TheCondState.CondMet = ExpectEqual == (String1 == String2);
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveElse
/// ::= else
bool MasmParser::parseDirectiveElse(SMLoc DirectiveLoc) {
if (parseEOL())
return true;
if (TheCondState.TheCond != AsmCond::IfCond &&
TheCondState.TheCond != AsmCond::ElseIfCond)
return Error(DirectiveLoc, "Encountered an else that doesn't follow an if"
" or an elseif");
TheCondState.TheCond = AsmCond::ElseCond;
bool LastIgnoreState = false;
if (!TheCondStack.empty())
LastIgnoreState = TheCondStack.back().Ignore;
if (LastIgnoreState || TheCondState.CondMet)
TheCondState.Ignore = true;
else
TheCondState.Ignore = false;
return false;
}
/// parseDirectiveEnd
/// ::= end
bool MasmParser::parseDirectiveEnd(SMLoc DirectiveLoc) {
if (parseEOL())
return true;
while (Lexer.isNot(AsmToken::Eof))
Lexer.Lex();
return false;
}
/// parseDirectiveError
/// ::= .err [message]
bool MasmParser::parseDirectiveError(SMLoc DirectiveLoc) {
if (!TheCondStack.empty()) {
if (TheCondStack.back().Ignore) {
eatToEndOfStatement();
return false;
}
}
std::string Message = ".err directive invoked in source file";
if (Lexer.isNot(AsmToken::EndOfStatement))
Message = parseStringTo(AsmToken::EndOfStatement);
Lex();
return Error(DirectiveLoc, Message);
}
/// parseDirectiveErrorIfb
/// ::= .errb textitem[, message]
bool MasmParser::parseDirectiveErrorIfb(SMLoc DirectiveLoc, bool ExpectBlank) {
if (!TheCondStack.empty()) {
if (TheCondStack.back().Ignore) {
eatToEndOfStatement();
return false;
}
}
std::string Text;
if (parseTextItem(Text))
return Error(getTok().getLoc(), "missing text item in '.errb' directive");
std::string Message = ".errb directive invoked in source file";
if (Lexer.isNot(AsmToken::EndOfStatement)) {
if (parseToken(AsmToken::Comma))
return addErrorSuffix(" in '.errb' directive");
Message = parseStringTo(AsmToken::EndOfStatement);
}
Lex();
if (Text.empty() == ExpectBlank)
return Error(DirectiveLoc, Message);
return false;
}
/// parseDirectiveErrorIfdef
/// ::= .errdef name[, message]
bool MasmParser::parseDirectiveErrorIfdef(SMLoc DirectiveLoc,
bool ExpectDefined) {
if (!TheCondStack.empty()) {
if (TheCondStack.back().Ignore) {
eatToEndOfStatement();
return false;
}
}
bool IsDefined = false;
MCRegister Reg;
SMLoc StartLoc, EndLoc;
IsDefined =
getTargetParser().tryParseRegister(Reg, StartLoc, EndLoc).isSuccess();
if (!IsDefined) {
StringRef Name;
if (check(parseIdentifier(Name), "expected identifier after '.errdef'"))
return true;
if (BuiltinSymbolMap.contains(Name.lower())) {
IsDefined = true;
} else if (Variables.contains(Name.lower())) {
IsDefined = true;
} else {
MCSymbol *Sym = getContext().lookupSymbol(Name);
IsDefined = (Sym && !Sym->isUndefined(false));
}
}
std::string Message = ".errdef directive invoked in source file";
if (Lexer.isNot(AsmToken::EndOfStatement)) {
if (parseToken(AsmToken::Comma))
return addErrorSuffix(" in '.errdef' directive");
Message = parseStringTo(AsmToken::EndOfStatement);
}
Lex();
if (IsDefined == ExpectDefined)
return Error(DirectiveLoc, Message);
return false;
}
/// parseDirectiveErrorIfidn
/// ::= .erridn textitem, textitem[, message]
bool MasmParser::parseDirectiveErrorIfidn(SMLoc DirectiveLoc, bool ExpectEqual,
bool CaseInsensitive) {
if (!TheCondStack.empty()) {
if (TheCondStack.back().Ignore) {
eatToEndOfStatement();
return false;
}
}
std::string String1, String2;
if (parseTextItem(String1)) {
if (ExpectEqual)
return TokError("expected string parameter for '.erridn' directive");
return TokError("expected string parameter for '.errdif' directive");
}
if (Lexer.isNot(AsmToken::Comma)) {
if (ExpectEqual)
return TokError(
"expected comma after first string for '.erridn' directive");
return TokError(
"expected comma after first string for '.errdif' directive");
}
Lex();
if (parseTextItem(String2)) {
if (ExpectEqual)
return TokError("expected string parameter for '.erridn' directive");
return TokError("expected string parameter for '.errdif' directive");
}
std::string Message;
if (ExpectEqual)
Message = ".erridn directive invoked in source file";
else
Message = ".errdif directive invoked in source file";
if (Lexer.isNot(AsmToken::EndOfStatement)) {
if (parseToken(AsmToken::Comma))
return addErrorSuffix(" in '.erridn' directive");
Message = parseStringTo(AsmToken::EndOfStatement);
}
Lex();
if (CaseInsensitive)
TheCondState.CondMet =
ExpectEqual == (StringRef(String1).equals_insensitive(String2));
else
TheCondState.CondMet = ExpectEqual == (String1 == String2);
TheCondState.Ignore = !TheCondState.CondMet;
if ((CaseInsensitive &&
ExpectEqual == StringRef(String1).equals_insensitive(String2)) ||
(ExpectEqual == (String1 == String2)))
return Error(DirectiveLoc, Message);
return false;
}
/// parseDirectiveErrorIfe
/// ::= .erre expression[, message]
bool MasmParser::parseDirectiveErrorIfe(SMLoc DirectiveLoc, bool ExpectZero) {
if (!TheCondStack.empty()) {
if (TheCondStack.back().Ignore) {
eatToEndOfStatement();
return false;
}
}
int64_t ExprValue;
if (parseAbsoluteExpression(ExprValue))
return addErrorSuffix(" in '.erre' directive");
std::string Message = ".erre directive invoked in source file";
if (Lexer.isNot(AsmToken::EndOfStatement)) {
if (parseToken(AsmToken::Comma))
return addErrorSuffix(" in '.erre' directive");
Message = parseStringTo(AsmToken::EndOfStatement);
}
Lex();
if ((ExprValue == 0) == ExpectZero)
return Error(DirectiveLoc, Message);
return false;
}
/// parseDirectiveEndIf
/// ::= .endif
bool MasmParser::parseDirectiveEndIf(SMLoc DirectiveLoc) {
if (parseEOL())
return true;
if ((TheCondState.TheCond == AsmCond::NoCond) || TheCondStack.empty())
return Error(DirectiveLoc, "Encountered a .endif that doesn't follow "
"an .if or .else");
if (!TheCondStack.empty()) {
TheCondState = TheCondStack.back();
TheCondStack.pop_back();
}
return false;
}
void MasmParser::initializeDirectiveKindMap() {
DirectiveKindMap["="] = DK_ASSIGN;
DirectiveKindMap["equ"] = DK_EQU;
DirectiveKindMap["textequ"] = DK_TEXTEQU;
// DirectiveKindMap[".ascii"] = DK_ASCII;
// DirectiveKindMap[".asciz"] = DK_ASCIZ;
// DirectiveKindMap[".string"] = DK_STRING;
DirectiveKindMap["byte"] = DK_BYTE;
DirectiveKindMap["sbyte"] = DK_SBYTE;
DirectiveKindMap["word"] = DK_WORD;
DirectiveKindMap["sword"] = DK_SWORD;
DirectiveKindMap["dword"] = DK_DWORD;
DirectiveKindMap["sdword"] = DK_SDWORD;
DirectiveKindMap["fword"] = DK_FWORD;
DirectiveKindMap["qword"] = DK_QWORD;
DirectiveKindMap["sqword"] = DK_SQWORD;
DirectiveKindMap["real4"] = DK_REAL4;
DirectiveKindMap["real8"] = DK_REAL8;
DirectiveKindMap["real10"] = DK_REAL10;
DirectiveKindMap["align"] = DK_ALIGN;
DirectiveKindMap["even"] = DK_EVEN;
DirectiveKindMap["org"] = DK_ORG;
DirectiveKindMap["extern"] = DK_EXTERN;
DirectiveKindMap["extrn"] = DK_EXTERN;
DirectiveKindMap["public"] = DK_PUBLIC;
// DirectiveKindMap[".comm"] = DK_COMM;
DirectiveKindMap["comment"] = DK_COMMENT;
DirectiveKindMap["include"] = DK_INCLUDE;
DirectiveKindMap["repeat"] = DK_REPEAT;
DirectiveKindMap["rept"] = DK_REPEAT;
DirectiveKindMap["while"] = DK_WHILE;
DirectiveKindMap["for"] = DK_FOR;
DirectiveKindMap["irp"] = DK_FOR;
DirectiveKindMap["forc"] = DK_FORC;
DirectiveKindMap["irpc"] = DK_FORC;
DirectiveKindMap["if"] = DK_IF;
DirectiveKindMap["ife"] = DK_IFE;
DirectiveKindMap["ifb"] = DK_IFB;
DirectiveKindMap["ifnb"] = DK_IFNB;
DirectiveKindMap["ifdef"] = DK_IFDEF;
DirectiveKindMap["ifndef"] = DK_IFNDEF;
DirectiveKindMap["ifdif"] = DK_IFDIF;
DirectiveKindMap["ifdifi"] = DK_IFDIFI;
DirectiveKindMap["ifidn"] = DK_IFIDN;
DirectiveKindMap["ifidni"] = DK_IFIDNI;
DirectiveKindMap["elseif"] = DK_ELSEIF;
DirectiveKindMap["elseifdef"] = DK_ELSEIFDEF;
DirectiveKindMap["elseifndef"] = DK_ELSEIFNDEF;
DirectiveKindMap["elseifdif"] = DK_ELSEIFDIF;
DirectiveKindMap["elseifidn"] = DK_ELSEIFIDN;
DirectiveKindMap["else"] = DK_ELSE;
DirectiveKindMap["end"] = DK_END;
DirectiveKindMap["endif"] = DK_ENDIF;
// DirectiveKindMap[".file"] = DK_FILE;
// DirectiveKindMap[".line"] = DK_LINE;
// DirectiveKindMap[".loc"] = DK_LOC;
// DirectiveKindMap[".stabs"] = DK_STABS;
// DirectiveKindMap[".cv_file"] = DK_CV_FILE;
// DirectiveKindMap[".cv_func_id"] = DK_CV_FUNC_ID;
// DirectiveKindMap[".cv_loc"] = DK_CV_LOC;
// DirectiveKindMap[".cv_linetable"] = DK_CV_LINETABLE;
// DirectiveKindMap[".cv_inline_linetable"] = DK_CV_INLINE_LINETABLE;
// DirectiveKindMap[".cv_inline_site_id"] = DK_CV_INLINE_SITE_ID;
// DirectiveKindMap[".cv_def_range"] = DK_CV_DEF_RANGE;
// DirectiveKindMap[".cv_string"] = DK_CV_STRING;
// DirectiveKindMap[".cv_stringtable"] = DK_CV_STRINGTABLE;
// DirectiveKindMap[".cv_filechecksums"] = DK_CV_FILECHECKSUMS;
// DirectiveKindMap[".cv_filechecksumoffset"] = DK_CV_FILECHECKSUM_OFFSET;
// DirectiveKindMap[".cv_fpo_data"] = DK_CV_FPO_DATA;
// DirectiveKindMap[".cfi_sections"] = DK_CFI_SECTIONS;
// DirectiveKindMap[".cfi_startproc"] = DK_CFI_STARTPROC;
// DirectiveKindMap[".cfi_endproc"] = DK_CFI_ENDPROC;
// DirectiveKindMap[".cfi_def_cfa"] = DK_CFI_DEF_CFA;
// DirectiveKindMap[".cfi_def_cfa_offset"] = DK_CFI_DEF_CFA_OFFSET;
// DirectiveKindMap[".cfi_adjust_cfa_offset"] = DK_CFI_ADJUST_CFA_OFFSET;
// DirectiveKindMap[".cfi_def_cfa_register"] = DK_CFI_DEF_CFA_REGISTER;
// DirectiveKindMap[".cfi_offset"] = DK_CFI_OFFSET;
// DirectiveKindMap[".cfi_rel_offset"] = DK_CFI_REL_OFFSET;
// DirectiveKindMap[".cfi_personality"] = DK_CFI_PERSONALITY;
// DirectiveKindMap[".cfi_lsda"] = DK_CFI_LSDA;
// DirectiveKindMap[".cfi_remember_state"] = DK_CFI_REMEMBER_STATE;
// DirectiveKindMap[".cfi_restore_state"] = DK_CFI_RESTORE_STATE;
// DirectiveKindMap[".cfi_same_value"] = DK_CFI_SAME_VALUE;
// DirectiveKindMap[".cfi_restore"] = DK_CFI_RESTORE;
// DirectiveKindMap[".cfi_escape"] = DK_CFI_ESCAPE;
// DirectiveKindMap[".cfi_return_column"] = DK_CFI_RETURN_COLUMN;
// DirectiveKindMap[".cfi_signal_frame"] = DK_CFI_SIGNAL_FRAME;
// DirectiveKindMap[".cfi_undefined"] = DK_CFI_UNDEFINED;
// DirectiveKindMap[".cfi_register"] = DK_CFI_REGISTER;
// DirectiveKindMap[".cfi_window_save"] = DK_CFI_WINDOW_SAVE;
// DirectiveKindMap[".cfi_b_key_frame"] = DK_CFI_B_KEY_FRAME;
// DirectiveKindMap[".cfi_val_offset"] = DK_CFI_VAL_OFFSET;
DirectiveKindMap["macro"] = DK_MACRO;
DirectiveKindMap["exitm"] = DK_EXITM;
DirectiveKindMap["endm"] = DK_ENDM;
DirectiveKindMap["purge"] = DK_PURGE;
DirectiveKindMap[".err"] = DK_ERR;
DirectiveKindMap[".errb"] = DK_ERRB;
DirectiveKindMap[".errnb"] = DK_ERRNB;
DirectiveKindMap[".errdef"] = DK_ERRDEF;
DirectiveKindMap[".errndef"] = DK_ERRNDEF;
DirectiveKindMap[".errdif"] = DK_ERRDIF;
DirectiveKindMap[".errdifi"] = DK_ERRDIFI;
DirectiveKindMap[".erridn"] = DK_ERRIDN;
DirectiveKindMap[".erridni"] = DK_ERRIDNI;
DirectiveKindMap[".erre"] = DK_ERRE;
DirectiveKindMap[".errnz"] = DK_ERRNZ;
DirectiveKindMap[".pushframe"] = DK_PUSHFRAME;
DirectiveKindMap[".pushreg"] = DK_PUSHREG;
DirectiveKindMap[".savereg"] = DK_SAVEREG;
DirectiveKindMap[".savexmm128"] = DK_SAVEXMM128;
DirectiveKindMap[".setframe"] = DK_SETFRAME;
DirectiveKindMap[".radix"] = DK_RADIX;
DirectiveKindMap["db"] = DK_DB;
DirectiveKindMap["dd"] = DK_DD;
DirectiveKindMap["df"] = DK_DF;
DirectiveKindMap["dq"] = DK_DQ;
DirectiveKindMap["dw"] = DK_DW;
DirectiveKindMap["echo"] = DK_ECHO;
DirectiveKindMap["struc"] = DK_STRUCT;
DirectiveKindMap["struct"] = DK_STRUCT;
DirectiveKindMap["union"] = DK_UNION;
DirectiveKindMap["ends"] = DK_ENDS;
}
bool MasmParser::isMacroLikeDirective() {
if (getLexer().is(AsmToken::Identifier)) {
bool IsMacroLike = StringSwitch<bool>(getTok().getIdentifier())
.CasesLower("repeat", "rept", true)
.CaseLower("while", true)
.CasesLower("for", "irp", true)
.CasesLower("forc", "irpc", true)
.Default(false);
if (IsMacroLike)
return true;
}
if (peekTok().is(AsmToken::Identifier) &&
peekTok().getIdentifier().equals_insensitive("macro"))
return true;
return false;
}
MCAsmMacro *MasmParser::parseMacroLikeBody(SMLoc DirectiveLoc) {
AsmToken EndToken, StartToken = getTok();
unsigned NestLevel = 0;
while (true) {
// Check whether we have reached the end of the file.
if (getLexer().is(AsmToken::Eof)) {
printError(DirectiveLoc, "no matching 'endm' in definition");
return nullptr;
}
if (isMacroLikeDirective())
++NestLevel;
// Otherwise, check whether we have reached the endm.
if (Lexer.is(AsmToken::Identifier) &&
getTok().getIdentifier().equals_insensitive("endm")) {
if (NestLevel == 0) {
EndToken = getTok();
Lex();
if (Lexer.isNot(AsmToken::EndOfStatement)) {
printError(getTok().getLoc(), "unexpected token in 'endm' directive");
return nullptr;
}
break;
}
--NestLevel;
}
// Otherwise, scan till the end of the statement.
eatToEndOfStatement();
}
const char *BodyStart = StartToken.getLoc().getPointer();
const char *BodyEnd = EndToken.getLoc().getPointer();
StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
// We Are Anonymous.
MacroLikeBodies.emplace_back(StringRef(), Body, MCAsmMacroParameters());
return &MacroLikeBodies.back();
}
bool MasmParser::expandStatement(SMLoc Loc) {
std::string Body = parseStringTo(AsmToken::EndOfStatement);
SMLoc EndLoc = getTok().getLoc();
MCAsmMacroParameters Parameters;
MCAsmMacroArguments Arguments;
StringMap<std::string> BuiltinValues;
for (const auto &S : BuiltinSymbolMap) {
const BuiltinSymbol &Sym = S.getValue();
if (std::optional<std::string> Text = evaluateBuiltinTextMacro(Sym, Loc)) {
BuiltinValues[S.getKey().lower()] = std::move(*Text);
}
}
for (const auto &B : BuiltinValues) {
MCAsmMacroParameter P;
MCAsmMacroArgument A;
P.Name = B.getKey();
P.Required = true;
A.push_back(AsmToken(AsmToken::String, B.getValue()));
Parameters.push_back(std::move(P));
Arguments.push_back(std::move(A));
}
for (const auto &V : Variables) {
const Variable &Var = V.getValue();
if (Var.IsText) {
MCAsmMacroParameter P;
MCAsmMacroArgument A;
P.Name = Var.Name;
P.Required = true;
A.push_back(AsmToken(AsmToken::String, Var.TextValue));
Parameters.push_back(std::move(P));
Arguments.push_back(std::move(A));
}
}
MacroLikeBodies.emplace_back(StringRef(), Body, Parameters);
MCAsmMacro M = MacroLikeBodies.back();
// Expand the statement in a new buffer.
SmallString<80> Buf;
raw_svector_ostream OS(Buf);
if (expandMacro(OS, M.Body, M.Parameters, Arguments, M.Locals, EndLoc))
return true;
std::unique_ptr<MemoryBuffer> Expansion =
MemoryBuffer::getMemBufferCopy(OS.str(), "<expansion>");
// Jump to the expanded statement and prime the lexer.
CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Expansion), EndLoc);
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
EndStatementAtEOFStack.push_back(false);
Lex();
return false;
}
void MasmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
raw_svector_ostream &OS) {
instantiateMacroLikeBody(M, DirectiveLoc, /*ExitLoc=*/getTok().getLoc(), OS);
}
void MasmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
SMLoc ExitLoc,
raw_svector_ostream &OS) {
OS << "endm\n";
std::unique_ptr<MemoryBuffer> Instantiation =
MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
// Create the macro instantiation object and add to the current macro
// instantiation stack.
MacroInstantiation *MI = new MacroInstantiation{DirectiveLoc, CurBuffer,
ExitLoc, TheCondStack.size()};
ActiveMacros.push_back(MI);
// Jump to the macro instantiation and prime the lexer.
CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
EndStatementAtEOFStack.push_back(true);
Lex();
}
/// parseDirectiveRepeat
/// ::= ("repeat" | "rept") count
/// body
/// endm
bool MasmParser::parseDirectiveRepeat(SMLoc DirectiveLoc, StringRef Dir) {
const MCExpr *CountExpr;
SMLoc CountLoc = getTok().getLoc();
if (parseExpression(CountExpr))
return true;
int64_t Count;
if (!CountExpr->evaluateAsAbsolute(Count, getStreamer().getAssemblerPtr())) {
return Error(CountLoc, "unexpected token in '" + Dir + "' directive");
}
if (check(Count < 0, CountLoc, "Count is negative") || parseEOL())
return true;
// Lex the repeat definition.
MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
if (!M)
return true;
// Macro instantiation is lexical, unfortunately. We construct a new buffer
// to hold the macro body with substitutions.
SmallString<256> Buf;
raw_svector_ostream OS(Buf);
while (Count--) {
if (expandMacro(OS, M->Body, {}, {}, M->Locals, getTok().getLoc()))
return true;
}
instantiateMacroLikeBody(M, DirectiveLoc, OS);
return false;
}
/// parseDirectiveWhile
/// ::= "while" expression
/// body
/// endm
bool MasmParser::parseDirectiveWhile(SMLoc DirectiveLoc) {
const MCExpr *CondExpr;
SMLoc CondLoc = getTok().getLoc();
if (parseExpression(CondExpr))
return true;
// Lex the repeat definition.
MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
if (!M)
return true;
// Macro instantiation is lexical, unfortunately. We construct a new buffer
// to hold the macro body with substitutions.
SmallString<256> Buf;
raw_svector_ostream OS(Buf);
int64_t Condition;
if (!CondExpr->evaluateAsAbsolute(Condition, getStreamer().getAssemblerPtr()))
return Error(CondLoc, "expected absolute expression in 'while' directive");
if (Condition) {
// Instantiate the macro, then resume at this directive to recheck the
// condition.
if (expandMacro(OS, M->Body, {}, {}, M->Locals, getTok().getLoc()))
return true;
instantiateMacroLikeBody(M, DirectiveLoc, /*ExitLoc=*/DirectiveLoc, OS);
}
return false;
}
/// parseDirectiveFor
/// ::= ("for" | "irp") symbol [":" qualifier], <values>
/// body
/// endm
bool MasmParser::parseDirectiveFor(SMLoc DirectiveLoc, StringRef Dir) {
MCAsmMacroParameter Parameter;
MCAsmMacroArguments A;
if (check(parseIdentifier(Parameter.Name),
"expected identifier in '" + Dir + "' directive"))
return true;
// Parse optional qualifier (default value, or "req")
if (parseOptionalToken(AsmToken::Colon)) {
if (parseOptionalToken(AsmToken::Equal)) {
// Default value
SMLoc ParamLoc;
ParamLoc = Lexer.getLoc();
if (parseMacroArgument(nullptr, Parameter.Value))
return true;
} else {
SMLoc QualLoc;
StringRef Qualifier;
QualLoc = Lexer.getLoc();
if (parseIdentifier(Qualifier))
return Error(QualLoc, "missing parameter qualifier for "
"'" +
Parameter.Name + "' in '" + Dir +
"' directive");
if (Qualifier.equals_insensitive("req"))
Parameter.Required = true;
else
return Error(QualLoc,
Qualifier + " is not a valid parameter qualifier for '" +
Parameter.Name + "' in '" + Dir + "' directive");
}
}
if (parseToken(AsmToken::Comma,
"expected comma in '" + Dir + "' directive") ||
parseToken(AsmToken::Less,
"values in '" + Dir +
"' directive must be enclosed in angle brackets"))
return true;
while (true) {
A.emplace_back();
if (parseMacroArgument(&Parameter, A.back(), /*EndTok=*/AsmToken::Greater))
return addErrorSuffix(" in arguments for '" + Dir + "' directive");
// If we see a comma, continue, and allow line continuation.
if (!parseOptionalToken(AsmToken::Comma))
break;
parseOptionalToken(AsmToken::EndOfStatement);
}
if (parseToken(AsmToken::Greater,
"values in '" + Dir +
"' directive must be enclosed in angle brackets") ||
parseEOL())
return true;
// Lex the for definition.
MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
if (!M)
return true;
// Macro instantiation is lexical, unfortunately. We construct a new buffer
// to hold the macro body with substitutions.
SmallString<256> Buf;
raw_svector_ostream OS(Buf);
for (const MCAsmMacroArgument &Arg : A) {
if (expandMacro(OS, M->Body, Parameter, Arg, M->Locals, getTok().getLoc()))
return true;
}
instantiateMacroLikeBody(M, DirectiveLoc, OS);
return false;
}
/// parseDirectiveForc
/// ::= ("forc" | "irpc") symbol, <string>
/// body
/// endm
bool MasmParser::parseDirectiveForc(SMLoc DirectiveLoc, StringRef Directive) {
MCAsmMacroParameter Parameter;
std::string Argument;
if (check(parseIdentifier(Parameter.Name),
"expected identifier in '" + Directive + "' directive") ||
parseToken(AsmToken::Comma,
"expected comma in '" + Directive + "' directive"))
return true;
if (parseAngleBracketString(Argument)) {
// Match ml64.exe; treat all characters to end of statement as a string,
// ignoring comment markers, then discard anything following a space (using
// the C locale).
Argument = parseStringTo(AsmToken::EndOfStatement);
if (getTok().is(AsmToken::EndOfStatement))
Argument += getTok().getString();
size_t End = 0;
for (; End < Argument.size(); ++End) {
if (isSpace(Argument[End]))
break;
}
Argument.resize(End);
}
if (parseEOL())
return true;
// Lex the irpc definition.
MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
if (!M)
return true;
// Macro instantiation is lexical, unfortunately. We construct a new buffer
// to hold the macro body with substitutions.
SmallString<256> Buf;
raw_svector_ostream OS(Buf);
StringRef Values(Argument);
for (std::size_t I = 0, End = Values.size(); I != End; ++I) {
MCAsmMacroArgument Arg;
Arg.emplace_back(AsmToken::Identifier, Values.substr(I, 1));
if (expandMacro(OS, M->Body, Parameter, Arg, M->Locals, getTok().getLoc()))
return true;
}
instantiateMacroLikeBody(M, DirectiveLoc, OS);
return false;
}
bool MasmParser::parseDirectiveMSEmit(SMLoc IDLoc, ParseStatementInfo &Info,
size_t Len) {
const MCExpr *Value;
SMLoc ExprLoc = getLexer().getLoc();
if (parseExpression(Value))
return true;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
if (!MCE)
return Error(ExprLoc, "unexpected expression in _emit");
uint64_t IntValue = MCE->getValue();
if (!isUInt<8>(IntValue) && !isInt<8>(IntValue))
return Error(ExprLoc, "literal value out of range for directive");
Info.AsmRewrites->emplace_back(AOK_Emit, IDLoc, Len);
return false;
}
bool MasmParser::parseDirectiveMSAlign(SMLoc IDLoc, ParseStatementInfo &Info) {
const MCExpr *Value;
SMLoc ExprLoc = getLexer().getLoc();
if (parseExpression(Value))
return true;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
if (!MCE)
return Error(ExprLoc, "unexpected expression in align");
uint64_t IntValue = MCE->getValue();
if (!isPowerOf2_64(IntValue))
return Error(ExprLoc, "literal value not a power of two greater then zero");
Info.AsmRewrites->emplace_back(AOK_Align, IDLoc, 5, Log2_64(IntValue));
return false;
}
bool MasmParser::parseDirectiveRadix(SMLoc DirectiveLoc) {
const SMLoc Loc = getLexer().getLoc();
std::string RadixStringRaw = parseStringTo(AsmToken::EndOfStatement);
StringRef RadixString = StringRef(RadixStringRaw).trim();
unsigned Radix;
if (RadixString.getAsInteger(10, Radix)) {
return Error(Loc,
"radix must be a decimal number in the range 2 to 16; was " +
RadixString);
}
if (Radix < 2 || Radix > 16)
return Error(Loc, "radix must be in the range 2 to 16; was " +
std::to_string(Radix));
getLexer().setMasmDefaultRadix(Radix);
return false;
}
/// parseDirectiveEcho
/// ::= "echo" message
bool MasmParser::parseDirectiveEcho(SMLoc DirectiveLoc) {
std::string Message = parseStringTo(AsmToken::EndOfStatement);
llvm::outs() << Message;
if (!StringRef(Message).ends_with("\n"))
llvm::outs() << '\n';
return false;
}
// We are comparing pointers, but the pointers are relative to a single string.
// Thus, this should always be deterministic.
static int rewritesSort(const AsmRewrite *AsmRewriteA,
const AsmRewrite *AsmRewriteB) {
if (AsmRewriteA->Loc.getPointer() < AsmRewriteB->Loc.getPointer())
return -1;
if (AsmRewriteB->Loc.getPointer() < AsmRewriteA->Loc.getPointer())
return 1;
// It's possible to have a SizeDirective, Imm/ImmPrefix and an Input/Output
// rewrite to the same location. Make sure the SizeDirective rewrite is
// performed first, then the Imm/ImmPrefix and finally the Input/Output. This
// ensures the sort algorithm is stable.
if (AsmRewritePrecedence[AsmRewriteA->Kind] >
AsmRewritePrecedence[AsmRewriteB->Kind])
return -1;
if (AsmRewritePrecedence[AsmRewriteA->Kind] <
AsmRewritePrecedence[AsmRewriteB->Kind])
return 1;
llvm_unreachable("Unstable rewrite sort.");
}
bool MasmParser::defineMacro(StringRef Name, StringRef Value) {
Variable &Var = Variables[Name.lower()];
if (Var.Name.empty()) {
Var.Name = Name;
} else if (Var.Redefinable == Variable::NOT_REDEFINABLE) {
return Error(SMLoc(), "invalid variable redefinition");
} else if (Var.Redefinable == Variable::WARN_ON_REDEFINITION &&
Warning(SMLoc(), "redefining '" + Name +
"', already defined on the command line")) {
return true;
}
Var.Redefinable = Variable::WARN_ON_REDEFINITION;
Var.IsText = true;
Var.TextValue = Value.str();
return false;
}
bool MasmParser::lookUpField(StringRef Name, AsmFieldInfo &Info) const {
const std::pair<StringRef, StringRef> BaseMember = Name.split('.');
const StringRef Base = BaseMember.first, Member = BaseMember.second;
return lookUpField(Base, Member, Info);
}
bool MasmParser::lookUpField(StringRef Base, StringRef Member,
AsmFieldInfo &Info) const {
if (Base.empty())
return true;
AsmFieldInfo BaseInfo;
if (Base.contains('.') && !lookUpField(Base, BaseInfo))
Base = BaseInfo.Type.Name;
auto StructIt = Structs.find(Base.lower());
auto TypeIt = KnownType.find(Base.lower());
if (TypeIt != KnownType.end()) {
StructIt = Structs.find(TypeIt->second.Name.lower());
}
if (StructIt != Structs.end())
return lookUpField(StructIt->second, Member, Info);
return true;
}
bool MasmParser::lookUpField(const StructInfo &Structure, StringRef Member,
AsmFieldInfo &Info) const {
if (Member.empty()) {
Info.Type.Name = Structure.Name;
Info.Type.Size = Structure.Size;
Info.Type.ElementSize = Structure.Size;
Info.Type.Length = 1;
return false;
}
std::pair<StringRef, StringRef> Split = Member.split('.');
const StringRef FieldName = Split.first, FieldMember = Split.second;
auto StructIt = Structs.find(FieldName.lower());
if (StructIt != Structs.end())
return lookUpField(StructIt->second, FieldMember, Info);
auto FieldIt = Structure.FieldsByName.find(FieldName.lower());
if (FieldIt == Structure.FieldsByName.end())
return true;
const FieldInfo &Field = Structure.Fields[FieldIt->second];
if (FieldMember.empty()) {
Info.Offset += Field.Offset;
Info.Type.Size = Field.SizeOf;
Info.Type.ElementSize = Field.Type;
Info.Type.Length = Field.LengthOf;
if (Field.Contents.FT == FT_STRUCT)
Info.Type.Name = Field.Contents.StructInfo.Structure.Name;
else
Info.Type.Name = "";
return false;
}
if (Field.Contents.FT != FT_STRUCT)
return true;
const StructFieldInfo &StructInfo = Field.Contents.StructInfo;
if (lookUpField(StructInfo.Structure, FieldMember, Info))
return true;
Info.Offset += Field.Offset;
return false;
}
bool MasmParser::lookUpType(StringRef Name, AsmTypeInfo &Info) const {
unsigned Size = StringSwitch<unsigned>(Name)
.CasesLower("byte", "db", "sbyte", 1)
.CasesLower("word", "dw", "sword", 2)
.CasesLower("dword", "dd", "sdword", 4)
.CasesLower("fword", "df", 6)
.CasesLower("qword", "dq", "sqword", 8)
.CaseLower("real4", 4)
.CaseLower("real8", 8)
.CaseLower("real10", 10)
.Default(0);
if (Size) {
Info.Name = Name;
Info.ElementSize = Size;
Info.Length = 1;
Info.Size = Size;
return false;
}
auto StructIt = Structs.find(Name.lower());
if (StructIt != Structs.end()) {
const StructInfo &Structure = StructIt->second;
Info.Name = Name;
Info.ElementSize = Structure.Size;
Info.Length = 1;
Info.Size = Structure.Size;
return false;
}
return true;
}
bool MasmParser::parseMSInlineAsm(
std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs,
SmallVectorImpl<std::pair<void *, bool>> &OpDecls,
SmallVectorImpl<std::string> &Constraints,
SmallVectorImpl<std::string> &Clobbers, const MCInstrInfo *MII,
MCInstPrinter *IP, MCAsmParserSemaCallback &SI) {
SmallVector<void *, 4> InputDecls;
SmallVector<void *, 4> OutputDecls;
SmallVector<bool, 4> InputDeclsAddressOf;
SmallVector<bool, 4> OutputDeclsAddressOf;
SmallVector<std::string, 4> InputConstraints;
SmallVector<std::string, 4> OutputConstraints;
SmallVector<MCRegister, 4> ClobberRegs;
SmallVector<AsmRewrite, 4> AsmStrRewrites;
// Prime the lexer.
Lex();
// While we have input, parse each statement.
unsigned InputIdx = 0;
unsigned OutputIdx = 0;
while (getLexer().isNot(AsmToken::Eof)) {
// Parse curly braces marking block start/end.
if (parseCurlyBlockScope(AsmStrRewrites))
continue;
ParseStatementInfo Info(&AsmStrRewrites);
bool StatementErr = parseStatement(Info, &SI);
if (StatementErr || Info.ParseError) {
// Emit pending errors if any exist.
printPendingErrors();
return true;
}
// No pending error should exist here.
assert(!hasPendingError() && "unexpected error from parseStatement");
if (Info.Opcode == ~0U)
continue;
const MCInstrDesc &Desc = MII->get(Info.Opcode);
// Build the list of clobbers, outputs and inputs.
for (unsigned i = 1, e = Info.ParsedOperands.size(); i != e; ++i) {
MCParsedAsmOperand &Operand = *Info.ParsedOperands[i];
// Register operand.
if (Operand.isReg() && !Operand.needAddressOf() &&
!getTargetParser().omitRegisterFromClobberLists(Operand.getReg())) {
unsigned NumDefs = Desc.getNumDefs();
// Clobber.
if (NumDefs && Operand.getMCOperandNum() < NumDefs)
ClobberRegs.push_back(Operand.getReg());
continue;
}
// Expr/Input or Output.
StringRef SymName = Operand.getSymName();
if (SymName.empty())
continue;
void *OpDecl = Operand.getOpDecl();
if (!OpDecl)
continue;
StringRef Constraint = Operand.getConstraint();
if (Operand.isImm()) {
// Offset as immediate.
if (Operand.isOffsetOfLocal())
Constraint = "r";
else
Constraint = "i";
}
bool isOutput = (i == 1) && Desc.mayStore();
SMLoc Start = SMLoc::getFromPointer(SymName.data());
if (isOutput) {
++InputIdx;
OutputDecls.push_back(OpDecl);
OutputDeclsAddressOf.push_back(Operand.needAddressOf());
OutputConstraints.push_back(("=" + Constraint).str());
AsmStrRewrites.emplace_back(AOK_Output, Start, SymName.size());
} else {
InputDecls.push_back(OpDecl);
InputDeclsAddressOf.push_back(Operand.needAddressOf());
InputConstraints.push_back(Constraint.str());
if (Desc.operands()[i - 1].isBranchTarget())
AsmStrRewrites.emplace_back(AOK_CallInput, Start, SymName.size());
else
AsmStrRewrites.emplace_back(AOK_Input, Start, SymName.size());
}
}
// Consider implicit defs to be clobbers. Think of cpuid and push.
llvm::append_range(ClobberRegs, Desc.implicit_defs());
}
// Set the number of Outputs and Inputs.
NumOutputs = OutputDecls.size();
NumInputs = InputDecls.size();
// Set the unique clobbers.
array_pod_sort(ClobberRegs.begin(), ClobberRegs.end());
ClobberRegs.erase(llvm::unique(ClobberRegs), ClobberRegs.end());
Clobbers.assign(ClobberRegs.size(), std::string());
for (unsigned I = 0, E = ClobberRegs.size(); I != E; ++I) {
raw_string_ostream OS(Clobbers[I]);
IP->printRegName(OS, ClobberRegs[I]);
}
// Merge the various outputs and inputs. Output are expected first.
if (NumOutputs || NumInputs) {
unsigned NumExprs = NumOutputs + NumInputs;
OpDecls.resize(NumExprs);
Constraints.resize(NumExprs);
for (unsigned i = 0; i < NumOutputs; ++i) {
OpDecls[i] = std::make_pair(OutputDecls[i], OutputDeclsAddressOf[i]);
Constraints[i] = OutputConstraints[i];
}
for (unsigned i = 0, j = NumOutputs; i < NumInputs; ++i, ++j) {
OpDecls[j] = std::make_pair(InputDecls[i], InputDeclsAddressOf[i]);
Constraints[j] = InputConstraints[i];
}
}
// Build the IR assembly string.
std::string AsmStringIR;
raw_string_ostream OS(AsmStringIR);
StringRef ASMString =
SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID())->getBuffer();
const char *AsmStart = ASMString.begin();
const char *AsmEnd = ASMString.end();
array_pod_sort(AsmStrRewrites.begin(), AsmStrRewrites.end(), rewritesSort);
for (auto I = AsmStrRewrites.begin(), E = AsmStrRewrites.end(); I != E; ++I) {
const AsmRewrite &AR = *I;
// Check if this has already been covered by another rewrite...
if (AR.Done)
continue;
AsmRewriteKind Kind = AR.Kind;
const char *Loc = AR.Loc.getPointer();
assert(Loc >= AsmStart && "Expected Loc to be at or after Start!");
// Emit everything up to the immediate/expression.
if (unsigned Len = Loc - AsmStart)
OS << StringRef(AsmStart, Len);
// Skip the original expression.
if (Kind == AOK_Skip) {
AsmStart = Loc + AR.Len;
continue;
}
unsigned AdditionalSkip = 0;
// Rewrite expressions in $N notation.
switch (Kind) {
default:
break;
case AOK_IntelExpr:
assert(AR.IntelExp.isValid() && "cannot write invalid intel expression");
if (AR.IntelExp.NeedBracs)
OS << "[";
if (AR.IntelExp.hasBaseReg())
OS << AR.IntelExp.BaseReg;
if (AR.IntelExp.hasIndexReg())
OS << (AR.IntelExp.hasBaseReg() ? " + " : "")
<< AR.IntelExp.IndexReg;
if (AR.IntelExp.Scale > 1)
OS << " * $$" << AR.IntelExp.Scale;
if (AR.IntelExp.hasOffset()) {
if (AR.IntelExp.hasRegs())
OS << " + ";
// Fuse this rewrite with a rewrite of the offset name, if present.
StringRef OffsetName = AR.IntelExp.OffsetName;
SMLoc OffsetLoc = SMLoc::getFromPointer(AR.IntelExp.OffsetName.data());
size_t OffsetLen = OffsetName.size();
auto rewrite_it = std::find_if(
I, AsmStrRewrites.end(), [&](const AsmRewrite &FusingAR) {
return FusingAR.Loc == OffsetLoc && FusingAR.Len == OffsetLen &&
(FusingAR.Kind == AOK_Input ||
FusingAR.Kind == AOK_CallInput);
});
if (rewrite_it == AsmStrRewrites.end()) {
OS << "offset " << OffsetName;
} else if (rewrite_it->Kind == AOK_CallInput) {
OS << "${" << InputIdx++ << ":P}";
rewrite_it->Done = true;
} else {
OS << '$' << InputIdx++;
rewrite_it->Done = true;
}
}
if (AR.IntelExp.Imm || AR.IntelExp.emitImm())
OS << (AR.IntelExp.emitImm() ? "$$" : " + $$") << AR.IntelExp.Imm;
if (AR.IntelExp.NeedBracs)
OS << "]";
break;
case AOK_Label:
OS << Ctx.getAsmInfo()->getPrivateLabelPrefix() << AR.Label;
break;
case AOK_Input:
OS << '$' << InputIdx++;
break;
case AOK_CallInput:
OS << "${" << InputIdx++ << ":P}";
break;
case AOK_Output:
OS << '$' << OutputIdx++;
break;
case AOK_SizeDirective:
switch (AR.Val) {
default: break;
case 8: OS << "byte ptr "; break;
case 16: OS << "word ptr "; break;
case 32: OS << "dword ptr "; break;
case 64: OS << "qword ptr "; break;
case 80: OS << "xword ptr "; break;
case 128: OS << "xmmword ptr "; break;
case 256: OS << "ymmword ptr "; break;
}
break;
case AOK_Emit:
OS << ".byte";
break;
case AOK_Align: {
// MS alignment directives are measured in bytes. If the native assembler
// measures alignment in bytes, we can pass it straight through.
OS << ".align";
if (getContext().getAsmInfo()->getAlignmentIsInBytes())
break;
// Alignment is in log2 form, so print that instead and skip the original
// immediate.
unsigned Val = AR.Val;
OS << ' ' << Val;
assert(Val < 10 && "Expected alignment less then 2^10.");
AdditionalSkip = (Val < 4) ? 2 : Val < 7 ? 3 : 4;
break;
}
case AOK_EVEN:
OS << ".even";
break;
case AOK_EndOfStatement:
OS << "\n\t";
break;
}
// Skip the original expression.
AsmStart = Loc + AR.Len + AdditionalSkip;
}
// Emit the remainder of the asm string.
if (AsmStart != AsmEnd)
OS << StringRef(AsmStart, AsmEnd - AsmStart);
AsmString = OS.str();
return false;
}
void MasmParser::initializeBuiltinSymbolMap() {
// Numeric built-ins (supported in all versions)
BuiltinSymbolMap["@version"] = BI_VERSION;
BuiltinSymbolMap["@line"] = BI_LINE;
// Text built-ins (supported in all versions)
BuiltinSymbolMap["@date"] = BI_DATE;
BuiltinSymbolMap["@time"] = BI_TIME;
BuiltinSymbolMap["@filecur"] = BI_FILECUR;
BuiltinSymbolMap["@filename"] = BI_FILENAME;
BuiltinSymbolMap["@curseg"] = BI_CURSEG;
// Some built-ins exist only for MASM32 (32-bit x86)
if (getContext().getSubtargetInfo()->getTargetTriple().getArch() ==
Triple::x86) {
// Numeric built-ins
// BuiltinSymbolMap["@cpu"] = BI_CPU;
// BuiltinSymbolMap["@interface"] = BI_INTERFACE;
// BuiltinSymbolMap["@wordsize"] = BI_WORDSIZE;
// BuiltinSymbolMap["@codesize"] = BI_CODESIZE;
// BuiltinSymbolMap["@datasize"] = BI_DATASIZE;
// BuiltinSymbolMap["@model"] = BI_MODEL;
// Text built-ins
// BuiltinSymbolMap["@code"] = BI_CODE;
// BuiltinSymbolMap["@data"] = BI_DATA;
// BuiltinSymbolMap["@fardata?"] = BI_FARDATA;
// BuiltinSymbolMap["@stack"] = BI_STACK;
}
}
const MCExpr *MasmParser::evaluateBuiltinValue(BuiltinSymbol Symbol,
SMLoc StartLoc) {
switch (Symbol) {
default:
return nullptr;
case BI_VERSION:
// Match a recent version of ML.EXE.
return MCConstantExpr::create(1427, getContext());
case BI_LINE: {
int64_t Line;
if (ActiveMacros.empty())
Line = SrcMgr.FindLineNumber(StartLoc, CurBuffer);
else
Line = SrcMgr.FindLineNumber(ActiveMacros.front()->InstantiationLoc,
ActiveMacros.front()->ExitBuffer);
return MCConstantExpr::create(Line, getContext());
}
}
llvm_unreachable("unhandled built-in symbol");
}
std::optional<std::string>
MasmParser::evaluateBuiltinTextMacro(BuiltinSymbol Symbol, SMLoc StartLoc) {
switch (Symbol) {
default:
return {};
case BI_DATE: {
// Current local date, formatted MM/DD/YY
char TmpBuffer[sizeof("mm/dd/yy")];
const size_t Len = strftime(TmpBuffer, sizeof(TmpBuffer), "%D", &TM);
return std::string(TmpBuffer, Len);
}
case BI_TIME: {
// Current local time, formatted HH:MM:SS (24-hour clock)
char TmpBuffer[sizeof("hh:mm:ss")];
const size_t Len = strftime(TmpBuffer, sizeof(TmpBuffer), "%T", &TM);
return std::string(TmpBuffer, Len);
}
case BI_FILECUR:
return SrcMgr
.getMemoryBuffer(
ActiveMacros.empty() ? CurBuffer : ActiveMacros.front()->ExitBuffer)
->getBufferIdentifier()
.str();
case BI_FILENAME:
return sys::path::stem(SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID())
->getBufferIdentifier())
.upper();
case BI_CURSEG:
return getStreamer().getCurrentSectionOnly()->getName().str();
}
llvm_unreachable("unhandled built-in symbol");
}
/// Create an MCAsmParser instance.
MCAsmParser *llvm::createMCMasmParser(SourceMgr &SM, MCContext &C,
MCStreamer &Out, const MCAsmInfo &MAI,
struct tm TM, unsigned CB) {
return new MasmParser(SM, C, Out, MAI, TM, CB);
}