
This commit moves the shuffle and shuffle2 builtins to the CLC library. In so doing it makes the headers simpler and re-usable for other builtin layers to hook into the CLC functions, if they wish. An additional gentype utility has been made available, which provides a consistent vector-size-or-1 macro for use. The existing __CLC_VECSIZE is defined but empty which is useful in certain applications, such as in concatenation with a type to make a correctly sized scalar or vector type. However, this isn't usable in the same preprocessor lines when wanting to check for specific vector sizes, as e.g., '__CLC_VECSIZE == 2' resolves to '== 2' which is invalid. In local testing this is also useful for the geometric builtins which are only available for scalar types and vector types of 2, 3, or 4 elements. No codegen changes are observed, except the internal shuffle/shuffle2 utility functions are no longer made publicly available.
libclc
libclc is an open source implementation of the library requirements of the OpenCL C programming language, as specified by the OpenCL 1.1 Specification. The following sections of the specification impose library requirements:
- 6.1: Supported Data Types
- 6.2.3: Explicit Conversions
- 6.2.4.2: Reinterpreting Types Using as_type() and as_typen()
- 6.9: Preprocessor Directives and Macros
- 6.11: Built-in Functions
- 9.3: Double Precision Floating-Point
- 9.4: 64-bit Atomics
- 9.5: Writing to 3D image memory objects
- 9.6: Half Precision Floating-Point
libclc is intended to be used with the Clang compiler's OpenCL frontend.
libclc is designed to be portable and extensible. To this end, it provides generic implementations of most library requirements, allowing the target to override the generic implementation at the granularity of individual functions.
libclc currently supports PTX, AMDGPU, SPIRV and CLSPV targets, but support for more targets is welcome.
Compiling and installing
(in the following instructions you can use make
or ninja
)
For an in-tree build, Clang must also be built at the same time:
$ cmake <path-to>/llvm-project/llvm/CMakeLists.txt -DLLVM_ENABLE_PROJECTS="libclc;clang" \
-DCMAKE_BUILD_TYPE=Release -G Ninja
$ ninja
Then install:
$ ninja install
Note you can use the DESTDIR
Makefile variable to do staged installs.
$ DESTDIR=/path/for/staged/install ninja install
To build out of tree, or in other words, against an existing LLVM build or install:
$ cmake <path-to>/llvm-project/libclc/CMakeLists.txt -DCMAKE_BUILD_TYPE=Release \
-G Ninja -DLLVM_DIR=$(<path-to>/llvm-config --cmakedir)
$ ninja
Then install as before.
In both cases this will include all supported targets. You can choose which
targets are enabled by passing -DLIBCLC_TARGETS_TO_BUILD
to CMake. The default
is all
.
In both cases, the LLVM used must include the targets you want libclc support for
(AMDGPU
and NVPTX
are enabled in LLVM by default). Apart from SPIRV
where you do
not need an LLVM target but you do need the
llvm-spirv tool available.
Either build this in-tree, or place it in the directory pointed to by
LLVM_TOOLS_BINARY_DIR
.