llvm-project/llvm/lib/ProfileData/InstrProfWriter.cpp
Fangrui Song 4c2980c1a3 [llvm-profdata] Stabilize iteration order for InstrProfWriter
If two functions are inserted to the same bucket, their order in the
serialized profile is dependent on StringMap iteration order, which is
not guaranteed to be deterministic.
(https://llvm.org/docs/ProgrammersManual.html#llvm-adt-stringmap-h).
Use a sort like we do in writeText.
2023-07-20 18:31:41 -07:00

798 lines
29 KiB
C++

//===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing profiling data for clang's
// instrumentation based PGO and coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/InstrProfWriter.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/MemProf.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/OnDiskHashTable.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdint>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
// A struct to define how the data stream should be patched. For Indexed
// profiling, only uint64_t data type is needed.
struct PatchItem {
uint64_t Pos; // Where to patch.
uint64_t *D; // Pointer to an array of source data.
int N; // Number of elements in \c D array.
};
namespace llvm {
// A wrapper class to abstract writer stream with support of bytes
// back patching.
class ProfOStream {
public:
ProfOStream(raw_fd_ostream &FD)
: IsFDOStream(true), OS(FD), LE(FD, support::little) {}
ProfOStream(raw_string_ostream &STR)
: IsFDOStream(false), OS(STR), LE(STR, support::little) {}
uint64_t tell() { return OS.tell(); }
void write(uint64_t V) { LE.write<uint64_t>(V); }
void writeByte(uint8_t V) { LE.write<uint8_t>(V); }
// \c patch can only be called when all data is written and flushed.
// For raw_string_ostream, the patch is done on the target string
// directly and it won't be reflected in the stream's internal buffer.
void patch(PatchItem *P, int NItems) {
using namespace support;
if (IsFDOStream) {
raw_fd_ostream &FDOStream = static_cast<raw_fd_ostream &>(OS);
const uint64_t LastPos = FDOStream.tell();
for (int K = 0; K < NItems; K++) {
FDOStream.seek(P[K].Pos);
for (int I = 0; I < P[K].N; I++)
write(P[K].D[I]);
}
// Reset the stream to the last position after patching so that users
// don't accidentally overwrite data. This makes it consistent with
// the string stream below which replaces the data directly.
FDOStream.seek(LastPos);
} else {
raw_string_ostream &SOStream = static_cast<raw_string_ostream &>(OS);
std::string &Data = SOStream.str(); // with flush
for (int K = 0; K < NItems; K++) {
for (int I = 0; I < P[K].N; I++) {
uint64_t Bytes = endian::byte_swap<uint64_t, little>(P[K].D[I]);
Data.replace(P[K].Pos + I * sizeof(uint64_t), sizeof(uint64_t),
(const char *)&Bytes, sizeof(uint64_t));
}
}
}
}
// If \c OS is an instance of \c raw_fd_ostream, this field will be
// true. Otherwise, \c OS will be an raw_string_ostream.
bool IsFDOStream;
raw_ostream &OS;
support::endian::Writer LE;
};
class InstrProfRecordWriterTrait {
public:
using key_type = StringRef;
using key_type_ref = StringRef;
using data_type = const InstrProfWriter::ProfilingData *const;
using data_type_ref = const InstrProfWriter::ProfilingData *const;
using hash_value_type = uint64_t;
using offset_type = uint64_t;
support::endianness ValueProfDataEndianness = support::little;
InstrProfSummaryBuilder *SummaryBuilder;
InstrProfSummaryBuilder *CSSummaryBuilder;
InstrProfRecordWriterTrait() = default;
static hash_value_type ComputeHash(key_type_ref K) {
return IndexedInstrProf::ComputeHash(K);
}
static std::pair<offset_type, offset_type>
EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) {
using namespace support;
endian::Writer LE(Out, little);
offset_type N = K.size();
LE.write<offset_type>(N);
offset_type M = 0;
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
M += sizeof(uint64_t); // The function hash
M += sizeof(uint64_t); // The size of the Counts vector
M += ProfRecord.Counts.size() * sizeof(uint64_t);
// Value data
M += ValueProfData::getSize(ProfileData.second);
}
LE.write<offset_type>(M);
return std::make_pair(N, M);
}
void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) {
Out.write(K.data(), N);
}
void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) {
using namespace support;
endian::Writer LE(Out, little);
for (const auto &ProfileData : *V) {
const InstrProfRecord &ProfRecord = ProfileData.second;
if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first))
CSSummaryBuilder->addRecord(ProfRecord);
else
SummaryBuilder->addRecord(ProfRecord);
LE.write<uint64_t>(ProfileData.first); // Function hash
LE.write<uint64_t>(ProfRecord.Counts.size());
for (uint64_t I : ProfRecord.Counts)
LE.write<uint64_t>(I);
// Write value data
std::unique_ptr<ValueProfData> VDataPtr =
ValueProfData::serializeFrom(ProfileData.second);
uint32_t S = VDataPtr->getSize();
VDataPtr->swapBytesFromHost(ValueProfDataEndianness);
Out.write((const char *)VDataPtr.get(), S);
}
}
};
} // end namespace llvm
InstrProfWriter::InstrProfWriter(bool Sparse,
uint64_t TemporalProfTraceReservoirSize,
uint64_t MaxTemporalProfTraceLength)
: Sparse(Sparse), MaxTemporalProfTraceLength(MaxTemporalProfTraceLength),
TemporalProfTraceReservoirSize(TemporalProfTraceReservoirSize),
InfoObj(new InstrProfRecordWriterTrait()) {}
InstrProfWriter::~InstrProfWriter() { delete InfoObj; }
// Internal interface for testing purpose only.
void InstrProfWriter::setValueProfDataEndianness(
support::endianness Endianness) {
InfoObj->ValueProfDataEndianness = Endianness;
}
void InstrProfWriter::setOutputSparse(bool Sparse) {
this->Sparse = Sparse;
}
void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight,
function_ref<void(Error)> Warn) {
auto Name = I.Name;
auto Hash = I.Hash;
addRecord(Name, Hash, std::move(I), Weight, Warn);
}
void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other,
OverlapStats &Overlap,
OverlapStats &FuncLevelOverlap,
const OverlapFuncFilters &FuncFilter) {
auto Name = Other.Name;
auto Hash = Other.Hash;
Other.accumulateCounts(FuncLevelOverlap.Test);
if (!FunctionData.contains(Name)) {
Overlap.addOneUnique(FuncLevelOverlap.Test);
return;
}
if (FuncLevelOverlap.Test.CountSum < 1.0f) {
Overlap.Overlap.NumEntries += 1;
return;
}
auto &ProfileDataMap = FunctionData[Name];
bool NewFunc;
ProfilingData::iterator Where;
std::tie(Where, NewFunc) =
ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
if (NewFunc) {
Overlap.addOneMismatch(FuncLevelOverlap.Test);
return;
}
InstrProfRecord &Dest = Where->second;
uint64_t ValueCutoff = FuncFilter.ValueCutoff;
if (!FuncFilter.NameFilter.empty() && Name.contains(FuncFilter.NameFilter))
ValueCutoff = 0;
Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff);
}
void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash,
InstrProfRecord &&I, uint64_t Weight,
function_ref<void(Error)> Warn) {
auto &ProfileDataMap = FunctionData[Name];
bool NewFunc;
ProfilingData::iterator Where;
std::tie(Where, NewFunc) =
ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
InstrProfRecord &Dest = Where->second;
auto MapWarn = [&](instrprof_error E) {
Warn(make_error<InstrProfError>(E));
};
if (NewFunc) {
// We've never seen a function with this name and hash, add it.
Dest = std::move(I);
if (Weight > 1)
Dest.scale(Weight, 1, MapWarn);
} else {
// We're updating a function we've seen before.
Dest.merge(I, Weight, MapWarn);
}
Dest.sortValueData();
}
void InstrProfWriter::addMemProfRecord(
const Function::GUID Id, const memprof::IndexedMemProfRecord &Record) {
auto Result = MemProfRecordData.insert({Id, Record});
// If we inserted a new record then we are done.
if (Result.second) {
return;
}
memprof::IndexedMemProfRecord &Existing = Result.first->second;
Existing.merge(Record);
}
bool InstrProfWriter::addMemProfFrame(const memprof::FrameId Id,
const memprof::Frame &Frame,
function_ref<void(Error)> Warn) {
auto Result = MemProfFrameData.insert({Id, Frame});
// If a mapping already exists for the current frame id and it does not
// match the new mapping provided then reset the existing contents and bail
// out. We don't support the merging of memprof data whose Frame -> Id
// mapping across profiles is inconsistent.
if (!Result.second && Result.first->second != Frame) {
Warn(make_error<InstrProfError>(instrprof_error::malformed,
"frame to id mapping mismatch"));
return false;
}
return true;
}
void InstrProfWriter::addBinaryIds(ArrayRef<llvm::object::BuildID> BIs) {
llvm::append_range(BinaryIds, BIs);
}
void InstrProfWriter::addTemporalProfileTrace(TemporalProfTraceTy Trace) {
if (Trace.FunctionNameRefs.size() > MaxTemporalProfTraceLength)
Trace.FunctionNameRefs.resize(MaxTemporalProfTraceLength);
if (Trace.FunctionNameRefs.empty())
return;
if (TemporalProfTraceStreamSize < TemporalProfTraceReservoirSize) {
// Simply append the trace if we have not yet hit our reservoir size limit.
TemporalProfTraces.push_back(std::move(Trace));
} else {
// Otherwise, replace a random trace in the stream.
std::uniform_int_distribution<uint64_t> Distribution(
0, TemporalProfTraceStreamSize);
uint64_t RandomIndex = Distribution(RNG);
if (RandomIndex < TemporalProfTraces.size())
TemporalProfTraces[RandomIndex] = std::move(Trace);
}
++TemporalProfTraceStreamSize;
}
void InstrProfWriter::addTemporalProfileTraces(
SmallVectorImpl<TemporalProfTraceTy> &SrcTraces, uint64_t SrcStreamSize) {
// Assume that the source has the same reservoir size as the destination to
// avoid needing to record it in the indexed profile format.
bool IsDestSampled =
(TemporalProfTraceStreamSize > TemporalProfTraceReservoirSize);
bool IsSrcSampled = (SrcStreamSize > TemporalProfTraceReservoirSize);
if (!IsDestSampled && IsSrcSampled) {
// If one of the traces are sampled, ensure that it belongs to Dest.
std::swap(TemporalProfTraces, SrcTraces);
std::swap(TemporalProfTraceStreamSize, SrcStreamSize);
std::swap(IsDestSampled, IsSrcSampled);
}
if (!IsSrcSampled) {
// If the source stream is not sampled, we add each source trace normally.
for (auto &Trace : SrcTraces)
addTemporalProfileTrace(std::move(Trace));
return;
}
// Otherwise, we find the traces that would have been removed if we added
// the whole source stream.
SmallSetVector<uint64_t, 8> IndicesToReplace;
for (uint64_t I = 0; I < SrcStreamSize; I++) {
std::uniform_int_distribution<uint64_t> Distribution(
0, TemporalProfTraceStreamSize);
uint64_t RandomIndex = Distribution(RNG);
if (RandomIndex < TemporalProfTraces.size())
IndicesToReplace.insert(RandomIndex);
++TemporalProfTraceStreamSize;
}
// Then we insert a random sample of the source traces.
llvm::shuffle(SrcTraces.begin(), SrcTraces.end(), RNG);
for (const auto &[Index, Trace] : llvm::zip(IndicesToReplace, SrcTraces))
TemporalProfTraces[Index] = std::move(Trace);
}
void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW,
function_ref<void(Error)> Warn) {
for (auto &I : IPW.FunctionData)
for (auto &Func : I.getValue())
addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn);
BinaryIds.reserve(BinaryIds.size() + IPW.BinaryIds.size());
for (auto &I : IPW.BinaryIds)
addBinaryIds(I);
addTemporalProfileTraces(IPW.TemporalProfTraces,
IPW.TemporalProfTraceStreamSize);
MemProfFrameData.reserve(IPW.MemProfFrameData.size());
for (auto &I : IPW.MemProfFrameData) {
// If we weren't able to add the frame mappings then it doesn't make sense
// to try to merge the records from this profile.
if (!addMemProfFrame(I.first, I.second, Warn))
return;
}
MemProfRecordData.reserve(IPW.MemProfRecordData.size());
for (auto &I : IPW.MemProfRecordData) {
addMemProfRecord(I.first, I.second);
}
}
bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) {
if (!Sparse)
return true;
for (const auto &Func : PD) {
const InstrProfRecord &IPR = Func.second;
if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; }))
return true;
}
return false;
}
static void setSummary(IndexedInstrProf::Summary *TheSummary,
ProfileSummary &PS) {
using namespace IndexedInstrProf;
const std::vector<ProfileSummaryEntry> &Res = PS.getDetailedSummary();
TheSummary->NumSummaryFields = Summary::NumKinds;
TheSummary->NumCutoffEntries = Res.size();
TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount());
TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount());
TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount());
TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount());
TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts());
TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions());
for (unsigned I = 0; I < Res.size(); I++)
TheSummary->setEntry(I, Res[I]);
}
Error InstrProfWriter::writeImpl(ProfOStream &OS) {
using namespace IndexedInstrProf;
using namespace support;
OnDiskChainedHashTableGenerator<InstrProfRecordWriterTrait> Generator;
InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs);
InfoObj->SummaryBuilder = &ISB;
InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs);
InfoObj->CSSummaryBuilder = &CSISB;
// Populate the hash table generator.
SmallVector<std::pair<StringRef, const ProfilingData *>, 0> OrderedData;
for (const auto &I : FunctionData)
if (shouldEncodeData(I.getValue()))
OrderedData.emplace_back((I.getKey()), &I.getValue());
llvm::sort(OrderedData, less_first());
for (const auto &I : OrderedData)
Generator.insert(I.first, I.second);
// Write the header.
IndexedInstrProf::Header Header;
Header.Magic = IndexedInstrProf::Magic;
Header.Version = IndexedInstrProf::ProfVersion::CurrentVersion;
if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
Header.Version |= VARIANT_MASK_IR_PROF;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
Header.Version |= VARIANT_MASK_CSIR_PROF;
if (static_cast<bool>(ProfileKind &
InstrProfKind::FunctionEntryInstrumentation))
Header.Version |= VARIANT_MASK_INSTR_ENTRY;
if (static_cast<bool>(ProfileKind & InstrProfKind::SingleByteCoverage))
Header.Version |= VARIANT_MASK_BYTE_COVERAGE;
if (static_cast<bool>(ProfileKind & InstrProfKind::FunctionEntryOnly))
Header.Version |= VARIANT_MASK_FUNCTION_ENTRY_ONLY;
if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf))
Header.Version |= VARIANT_MASK_MEMPROF;
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile))
Header.Version |= VARIANT_MASK_TEMPORAL_PROF;
Header.Unused = 0;
Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType);
Header.HashOffset = 0;
Header.MemProfOffset = 0;
Header.BinaryIdOffset = 0;
Header.TemporalProfTracesOffset = 0;
int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t);
// Only write out all the fields except 'HashOffset', 'MemProfOffset',
// 'BinaryIdOffset' and `TemporalProfTracesOffset`. We need to remember the
// offset of these fields to allow back patching later.
for (int I = 0; I < N - 4; I++)
OS.write(reinterpret_cast<uint64_t *>(&Header)[I]);
// Save the location of Header.HashOffset field in \c OS.
uint64_t HashTableStartFieldOffset = OS.tell();
// Reserve the space for HashOffset field.
OS.write(0);
// Save the location of MemProf profile data. This is stored in two parts as
// the schema and as a separate on-disk chained hashtable.
uint64_t MemProfSectionOffset = OS.tell();
// Reserve space for the MemProf table field to be patched later if this
// profile contains memory profile information.
OS.write(0);
// Save the location of binary ids section.
uint64_t BinaryIdSectionOffset = OS.tell();
// Reserve space for the BinaryIdOffset field to be patched later if this
// profile contains binary ids.
OS.write(0);
uint64_t TemporalProfTracesOffset = OS.tell();
OS.write(0);
// Reserve space to write profile summary data.
uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size();
uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries);
// Remember the summary offset.
uint64_t SummaryOffset = OS.tell();
for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
OS.write(0);
uint64_t CSSummaryOffset = 0;
uint64_t CSSummarySize = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
CSSummaryOffset = OS.tell();
CSSummarySize = SummarySize / sizeof(uint64_t);
for (unsigned I = 0; I < CSSummarySize; I++)
OS.write(0);
}
// Write the hash table.
uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj);
// Write the MemProf profile data if we have it. This includes a simple schema
// with the format described below followed by the hashtable:
// uint64_t RecordTableOffset = RecordTableGenerator.Emit
// uint64_t FramePayloadOffset = Stream offset before emitting the frame table
// uint64_t FrameTableOffset = FrameTableGenerator.Emit
// uint64_t Num schema entries
// uint64_t Schema entry 0
// uint64_t Schema entry 1
// ....
// uint64_t Schema entry N - 1
// OnDiskChainedHashTable MemProfRecordData
// OnDiskChainedHashTable MemProfFrameData
uint64_t MemProfSectionStart = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::MemProf)) {
MemProfSectionStart = OS.tell();
OS.write(0ULL); // Reserve space for the memprof record table offset.
OS.write(0ULL); // Reserve space for the memprof frame payload offset.
OS.write(0ULL); // Reserve space for the memprof frame table offset.
auto Schema = memprof::PortableMemInfoBlock::getSchema();
OS.write(static_cast<uint64_t>(Schema.size()));
for (const auto Id : Schema) {
OS.write(static_cast<uint64_t>(Id));
}
auto RecordWriter = std::make_unique<memprof::RecordWriterTrait>();
RecordWriter->Schema = &Schema;
OnDiskChainedHashTableGenerator<memprof::RecordWriterTrait>
RecordTableGenerator;
for (auto &I : MemProfRecordData) {
// Insert the key (func hash) and value (memprof record).
RecordTableGenerator.insert(I.first, I.second);
}
uint64_t RecordTableOffset =
RecordTableGenerator.Emit(OS.OS, *RecordWriter);
uint64_t FramePayloadOffset = OS.tell();
auto FrameWriter = std::make_unique<memprof::FrameWriterTrait>();
OnDiskChainedHashTableGenerator<memprof::FrameWriterTrait>
FrameTableGenerator;
for (auto &I : MemProfFrameData) {
// Insert the key (frame id) and value (frame contents).
FrameTableGenerator.insert(I.first, I.second);
}
uint64_t FrameTableOffset = FrameTableGenerator.Emit(OS.OS, *FrameWriter);
PatchItem PatchItems[] = {
{MemProfSectionStart, &RecordTableOffset, 1},
{MemProfSectionStart + sizeof(uint64_t), &FramePayloadOffset, 1},
{MemProfSectionStart + 2 * sizeof(uint64_t), &FrameTableOffset, 1},
};
OS.patch(PatchItems, 3);
}
// BinaryIdSection has two parts:
// 1. uint64_t BinaryIdsSectionSize
// 2. list of binary ids that consist of:
// a. uint64_t BinaryIdLength
// b. uint8_t BinaryIdData
// c. uint8_t Padding (if necessary)
uint64_t BinaryIdSectionStart = OS.tell();
// Calculate size of binary section.
uint64_t BinaryIdsSectionSize = 0;
// Remove duplicate binary ids.
llvm::sort(BinaryIds);
BinaryIds.erase(std::unique(BinaryIds.begin(), BinaryIds.end()),
BinaryIds.end());
for (auto BI : BinaryIds) {
// Increment by binary id length data type size.
BinaryIdsSectionSize += sizeof(uint64_t);
// Increment by binary id data length, aligned to 8 bytes.
BinaryIdsSectionSize += alignToPowerOf2(BI.size(), sizeof(uint64_t));
}
// Write binary ids section size.
OS.write(BinaryIdsSectionSize);
for (auto BI : BinaryIds) {
uint64_t BILen = BI.size();
// Write binary id length.
OS.write(BILen);
// Write binary id data.
for (unsigned K = 0; K < BILen; K++)
OS.writeByte(BI[K]);
// Write padding if necessary.
uint64_t PaddingSize = alignToPowerOf2(BILen, sizeof(uint64_t)) - BILen;
for (unsigned K = 0; K < PaddingSize; K++)
OS.writeByte(0);
}
uint64_t TemporalProfTracesSectionStart = 0;
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile)) {
TemporalProfTracesSectionStart = OS.tell();
OS.write(TemporalProfTraces.size());
OS.write(TemporalProfTraceStreamSize);
for (auto &Trace : TemporalProfTraces) {
OS.write(Trace.Weight);
OS.write(Trace.FunctionNameRefs.size());
for (auto &NameRef : Trace.FunctionNameRefs)
OS.write(NameRef);
}
}
// Allocate space for data to be serialized out.
std::unique_ptr<IndexedInstrProf::Summary> TheSummary =
IndexedInstrProf::allocSummary(SummarySize);
// Compute the Summary and copy the data to the data
// structure to be serialized out (to disk or buffer).
std::unique_ptr<ProfileSummary> PS = ISB.getSummary();
setSummary(TheSummary.get(), *PS);
InfoObj->SummaryBuilder = nullptr;
// For Context Sensitive summary.
std::unique_ptr<IndexedInstrProf::Summary> TheCSSummary = nullptr;
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive)) {
TheCSSummary = IndexedInstrProf::allocSummary(SummarySize);
std::unique_ptr<ProfileSummary> CSPS = CSISB.getSummary();
setSummary(TheCSSummary.get(), *CSPS);
}
InfoObj->CSSummaryBuilder = nullptr;
// Now do the final patch:
PatchItem PatchItems[] = {
// Patch the Header.HashOffset field.
{HashTableStartFieldOffset, &HashTableStart, 1},
// Patch the Header.MemProfOffset (=0 for profiles without MemProf
// data).
{MemProfSectionOffset, &MemProfSectionStart, 1},
// Patch the Header.BinaryIdSectionOffset.
{BinaryIdSectionOffset, &BinaryIdSectionStart, 1},
// Patch the Header.TemporalProfTracesOffset (=0 for profiles without
// traces).
{TemporalProfTracesOffset, &TemporalProfTracesSectionStart, 1},
// Patch the summary data.
{SummaryOffset, reinterpret_cast<uint64_t *>(TheSummary.get()),
(int)(SummarySize / sizeof(uint64_t))},
{CSSummaryOffset, reinterpret_cast<uint64_t *>(TheCSSummary.get()),
(int)CSSummarySize}};
OS.patch(PatchItems, std::size(PatchItems));
for (const auto &I : FunctionData)
for (const auto &F : I.getValue())
if (Error E = validateRecord(F.second))
return E;
return Error::success();
}
Error InstrProfWriter::write(raw_fd_ostream &OS) {
// Write the hash table.
ProfOStream POS(OS);
return writeImpl(POS);
}
Error InstrProfWriter::write(raw_string_ostream &OS) {
ProfOStream POS(OS);
return writeImpl(POS);
}
std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() {
std::string Data;
raw_string_ostream OS(Data);
// Write the hash table.
if (Error E = write(OS))
return nullptr;
// Return this in an aligned memory buffer.
return MemoryBuffer::getMemBufferCopy(Data);
}
static const char *ValueProfKindStr[] = {
#define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator,
#include "llvm/ProfileData/InstrProfData.inc"
};
Error InstrProfWriter::validateRecord(const InstrProfRecord &Func) {
for (uint32_t VK = 0; VK <= IPVK_Last; VK++) {
uint32_t NS = Func.getNumValueSites(VK);
if (!NS)
continue;
for (uint32_t S = 0; S < NS; S++) {
uint32_t ND = Func.getNumValueDataForSite(VK, S);
std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S);
DenseSet<uint64_t> SeenValues;
for (uint32_t I = 0; I < ND; I++)
if ((VK != IPVK_IndirectCallTarget) && !SeenValues.insert(VD[I].Value).second)
return make_error<InstrProfError>(instrprof_error::invalid_prof);
}
}
return Error::success();
}
void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash,
const InstrProfRecord &Func,
InstrProfSymtab &Symtab,
raw_fd_ostream &OS) {
OS << Name << "\n";
OS << "# Func Hash:\n" << Hash << "\n";
OS << "# Num Counters:\n" << Func.Counts.size() << "\n";
OS << "# Counter Values:\n";
for (uint64_t Count : Func.Counts)
OS << Count << "\n";
uint32_t NumValueKinds = Func.getNumValueKinds();
if (!NumValueKinds) {
OS << "\n";
return;
}
OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n";
for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) {
uint32_t NS = Func.getNumValueSites(VK);
if (!NS)
continue;
OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n";
OS << "# NumValueSites:\n" << NS << "\n";
for (uint32_t S = 0; S < NS; S++) {
uint32_t ND = Func.getNumValueDataForSite(VK, S);
OS << ND << "\n";
std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S);
for (uint32_t I = 0; I < ND; I++) {
if (VK == IPVK_IndirectCallTarget)
OS << Symtab.getFuncNameOrExternalSymbol(VD[I].Value) << ":"
<< VD[I].Count << "\n";
else
OS << VD[I].Value << ":" << VD[I].Count << "\n";
}
}
}
OS << "\n";
}
Error InstrProfWriter::writeText(raw_fd_ostream &OS) {
// Check CS first since it implies an IR level profile.
if (static_cast<bool>(ProfileKind & InstrProfKind::ContextSensitive))
OS << "# CSIR level Instrumentation Flag\n:csir\n";
else if (static_cast<bool>(ProfileKind & InstrProfKind::IRInstrumentation))
OS << "# IR level Instrumentation Flag\n:ir\n";
if (static_cast<bool>(ProfileKind &
InstrProfKind::FunctionEntryInstrumentation))
OS << "# Always instrument the function entry block\n:entry_first\n";
InstrProfSymtab Symtab;
using FuncPair = detail::DenseMapPair<uint64_t, InstrProfRecord>;
using RecordType = std::pair<StringRef, FuncPair>;
SmallVector<RecordType, 4> OrderedFuncData;
for (const auto &I : FunctionData) {
if (shouldEncodeData(I.getValue())) {
if (Error E = Symtab.addFuncName(I.getKey()))
return E;
for (const auto &Func : I.getValue())
OrderedFuncData.push_back(std::make_pair(I.getKey(), Func));
}
}
if (static_cast<bool>(ProfileKind & InstrProfKind::TemporalProfile))
writeTextTemporalProfTraceData(OS, Symtab);
llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) {
return std::tie(A.first, A.second.first) <
std::tie(B.first, B.second.first);
});
for (const auto &record : OrderedFuncData) {
const StringRef &Name = record.first;
const FuncPair &Func = record.second;
writeRecordInText(Name, Func.first, Func.second, Symtab, OS);
}
for (const auto &record : OrderedFuncData) {
const FuncPair &Func = record.second;
if (Error E = validateRecord(Func.second))
return E;
}
return Error::success();
}
void InstrProfWriter::writeTextTemporalProfTraceData(raw_fd_ostream &OS,
InstrProfSymtab &Symtab) {
OS << ":temporal_prof_traces\n";
OS << "# Num Temporal Profile Traces:\n" << TemporalProfTraces.size() << "\n";
OS << "# Temporal Profile Trace Stream Size:\n"
<< TemporalProfTraceStreamSize << "\n";
for (auto &Trace : TemporalProfTraces) {
OS << "# Weight:\n" << Trace.Weight << "\n";
for (auto &NameRef : Trace.FunctionNameRefs)
OS << Symtab.getFuncName(NameRef) << ",";
OS << "\n";
}
OS << "\n";
}