mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-18 16:07:09 +00:00

In the LLVM middle-end we want to fold `gep inbounds null, idx -> null`: https://alive2.llvm.org/ce/z/5ZkPx- This pattern is common in real-world programs (https://github.com/dtcxzyw/llvm-opt-benchmark/pull/55#issuecomment-1870963906). Generally, it exists in some (actually) unreachable blocks, which is introduced by JumpThreading. However, some old-style offsetof macros are still widely used in real-world C/C++ code (e.g., hwloc/slurm/luajit). To avoid breaking existing code and inconvenience to downstream users, this patch removes the inbounds flag from the struct gep if the base pointer is null.
6534 lines
256 KiB
C++
6534 lines
256 KiB
C++
//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Expr nodes as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ABIInfoImpl.h"
|
|
#include "CGCUDARuntime.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CGCall.h"
|
|
#include "CGCleanup.h"
|
|
#include "CGDebugInfo.h"
|
|
#include "CGObjCRuntime.h"
|
|
#include "CGOpenMPRuntime.h"
|
|
#include "CGRecordLayout.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "ConstantEmitter.h"
|
|
#include "TargetInfo.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTLambda.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/NSAPI.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/CodeGenOptions.h"
|
|
#include "clang/Basic/Module.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/MatrixBuilder.h"
|
|
#include "llvm/Support/ConvertUTF.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/xxhash.h"
|
|
#include "llvm/Transforms/Utils/SanitizerStats.h"
|
|
|
|
#include <numeric>
|
|
#include <optional>
|
|
#include <string>
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace clang {
|
|
// TODO: Introduce frontend options to enabled per sanitizers, similar to
|
|
// `fsanitize-trap`.
|
|
llvm::cl::opt<bool> ClSanitizeGuardChecks(
|
|
"ubsan-guard-checks", llvm::cl::Optional,
|
|
llvm::cl::desc("Guard UBSAN checks with `llvm.allow.ubsan.check()`."));
|
|
|
|
} // namespace clang
|
|
|
|
static llvm::cl::opt<bool> ClArrayBoundsPseudoFn(
|
|
"array-bounds-pseudofn", llvm::cl::Hidden, llvm::cl::Optional,
|
|
llvm::cl::desc("Emit debug info that places array-bounds instrumentation "
|
|
"in an inline function called __ubsan_check_array_bounds."));
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Defines for metadata
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Those values are crucial to be the SAME as in ubsan runtime library.
|
|
enum VariableTypeDescriptorKind : uint16_t {
|
|
/// An integer type.
|
|
TK_Integer = 0x0000,
|
|
/// A floating-point type.
|
|
TK_Float = 0x0001,
|
|
/// An _BitInt(N) type.
|
|
TK_BitInt = 0x0002,
|
|
/// Any other type. The value representation is unspecified.
|
|
TK_Unknown = 0xffff
|
|
};
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Miscellaneous Helper Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
|
|
/// block.
|
|
RawAddress
|
|
CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits Align,
|
|
const Twine &Name,
|
|
llvm::Value *ArraySize) {
|
|
auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
|
|
Alloca->setAlignment(Align.getAsAlign());
|
|
return RawAddress(Alloca, Ty, Align, KnownNonNull);
|
|
}
|
|
|
|
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
|
|
/// block. The alloca is casted to default address space if necessary.
|
|
RawAddress CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
|
|
const Twine &Name,
|
|
llvm::Value *ArraySize,
|
|
RawAddress *AllocaAddr) {
|
|
auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
|
|
if (AllocaAddr)
|
|
*AllocaAddr = Alloca;
|
|
llvm::Value *V = Alloca.getPointer();
|
|
// Alloca always returns a pointer in alloca address space, which may
|
|
// be different from the type defined by the language. For example,
|
|
// in C++ the auto variables are in the default address space. Therefore
|
|
// cast alloca to the default address space when necessary.
|
|
if (getASTAllocaAddressSpace() != LangAS::Default) {
|
|
auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
|
|
llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
|
|
// When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
|
|
// otherwise alloca is inserted at the current insertion point of the
|
|
// builder.
|
|
if (!ArraySize)
|
|
Builder.SetInsertPoint(getPostAllocaInsertPoint());
|
|
V = getTargetHooks().performAddrSpaceCast(
|
|
*this, V, getASTAllocaAddressSpace(), LangAS::Default,
|
|
Builder.getPtrTy(DestAddrSpace), /*non-null*/ true);
|
|
}
|
|
|
|
return RawAddress(V, Ty, Align, KnownNonNull);
|
|
}
|
|
|
|
/// CreateTempAlloca - This creates an alloca and inserts it into the entry
|
|
/// block if \p ArraySize is nullptr, otherwise inserts it at the current
|
|
/// insertion point of the builder.
|
|
llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
|
|
const Twine &Name,
|
|
llvm::Value *ArraySize) {
|
|
llvm::AllocaInst *Alloca;
|
|
if (ArraySize)
|
|
Alloca = Builder.CreateAlloca(Ty, ArraySize, Name);
|
|
else
|
|
Alloca =
|
|
new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
|
|
ArraySize, Name, AllocaInsertPt->getIterator());
|
|
if (SanOpts.Mask & SanitizerKind::Address) {
|
|
Alloca->addAnnotationMetadata({"alloca_name_altered", Name.str()});
|
|
}
|
|
if (Allocas) {
|
|
Allocas->Add(Alloca);
|
|
}
|
|
return Alloca;
|
|
}
|
|
|
|
/// CreateDefaultAlignTempAlloca - This creates an alloca with the
|
|
/// default alignment of the corresponding LLVM type, which is *not*
|
|
/// guaranteed to be related in any way to the expected alignment of
|
|
/// an AST type that might have been lowered to Ty.
|
|
RawAddress CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
|
|
const Twine &Name) {
|
|
CharUnits Align =
|
|
CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlign(Ty));
|
|
return CreateTempAlloca(Ty, Align, Name);
|
|
}
|
|
|
|
RawAddress CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
|
|
CharUnits Align = getContext().getTypeAlignInChars(Ty);
|
|
return CreateTempAlloca(ConvertType(Ty), Align, Name);
|
|
}
|
|
|
|
RawAddress CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
|
|
RawAddress *Alloca) {
|
|
// FIXME: Should we prefer the preferred type alignment here?
|
|
return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
|
|
}
|
|
|
|
RawAddress CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
|
|
const Twine &Name,
|
|
RawAddress *Alloca) {
|
|
RawAddress Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
|
|
/*ArraySize=*/nullptr, Alloca);
|
|
|
|
if (Ty->isConstantMatrixType()) {
|
|
auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType());
|
|
auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
|
|
ArrayTy->getNumElements());
|
|
|
|
Result = Address(Result.getPointer(), VectorTy, Result.getAlignment(),
|
|
KnownNonNull);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
RawAddress CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
|
|
CharUnits Align,
|
|
const Twine &Name) {
|
|
return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
|
|
}
|
|
|
|
RawAddress CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
|
|
const Twine &Name) {
|
|
return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
|
|
Name);
|
|
}
|
|
|
|
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
|
|
/// expression and compare the result against zero, returning an Int1Ty value.
|
|
llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
|
|
PGO.setCurrentStmt(E);
|
|
if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
|
|
llvm::Value *MemPtr = EmitScalarExpr(E);
|
|
return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
|
|
}
|
|
|
|
QualType BoolTy = getContext().BoolTy;
|
|
SourceLocation Loc = E->getExprLoc();
|
|
CGFPOptionsRAII FPOptsRAII(*this, E);
|
|
if (!E->getType()->isAnyComplexType())
|
|
return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
|
|
|
|
return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
|
|
Loc);
|
|
}
|
|
|
|
/// EmitIgnoredExpr - Emit code to compute the specified expression,
|
|
/// ignoring the result.
|
|
void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
|
|
if (E->isPRValue())
|
|
return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true);
|
|
|
|
// if this is a bitfield-resulting conditional operator, we can special case
|
|
// emit this. The normal 'EmitLValue' version of this is particularly
|
|
// difficult to codegen for, since creating a single "LValue" for two
|
|
// different sized arguments here is not particularly doable.
|
|
if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>(
|
|
E->IgnoreParenNoopCasts(getContext()))) {
|
|
if (CondOp->getObjectKind() == OK_BitField)
|
|
return EmitIgnoredConditionalOperator(CondOp);
|
|
}
|
|
|
|
// Just emit it as an l-value and drop the result.
|
|
EmitLValue(E);
|
|
}
|
|
|
|
/// EmitAnyExpr - Emit code to compute the specified expression which
|
|
/// can have any type. The result is returned as an RValue struct.
|
|
/// If this is an aggregate expression, AggSlot indicates where the
|
|
/// result should be returned.
|
|
RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
|
|
AggValueSlot aggSlot,
|
|
bool ignoreResult) {
|
|
switch (getEvaluationKind(E->getType())) {
|
|
case TEK_Scalar:
|
|
return RValue::get(EmitScalarExpr(E, ignoreResult));
|
|
case TEK_Complex:
|
|
return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
|
|
case TEK_Aggregate:
|
|
if (!ignoreResult && aggSlot.isIgnored())
|
|
aggSlot = CreateAggTemp(E->getType(), "agg-temp");
|
|
EmitAggExpr(E, aggSlot);
|
|
return aggSlot.asRValue();
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
/// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
|
|
/// always be accessible even if no aggregate location is provided.
|
|
RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
|
|
AggValueSlot AggSlot = AggValueSlot::ignored();
|
|
|
|
if (hasAggregateEvaluationKind(E->getType()))
|
|
AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
|
|
return EmitAnyExpr(E, AggSlot);
|
|
}
|
|
|
|
/// EmitAnyExprToMem - Evaluate an expression into a given memory
|
|
/// location.
|
|
void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
|
|
Address Location,
|
|
Qualifiers Quals,
|
|
bool IsInit) {
|
|
// FIXME: This function should take an LValue as an argument.
|
|
switch (getEvaluationKind(E->getType())) {
|
|
case TEK_Complex:
|
|
EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
|
|
/*isInit*/ false);
|
|
return;
|
|
|
|
case TEK_Aggregate: {
|
|
EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
|
|
AggValueSlot::IsDestructed_t(IsInit),
|
|
AggValueSlot::DoesNotNeedGCBarriers,
|
|
AggValueSlot::IsAliased_t(!IsInit),
|
|
AggValueSlot::MayOverlap));
|
|
return;
|
|
}
|
|
|
|
case TEK_Scalar: {
|
|
RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
|
|
LValue LV = MakeAddrLValue(Location, E->getType());
|
|
EmitStoreThroughLValue(RV, LV);
|
|
return;
|
|
}
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
void CodeGenFunction::EmitInitializationToLValue(
|
|
const Expr *E, LValue LV, AggValueSlot::IsZeroed_t IsZeroed) {
|
|
QualType Type = LV.getType();
|
|
switch (getEvaluationKind(Type)) {
|
|
case TEK_Complex:
|
|
EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
|
|
return;
|
|
case TEK_Aggregate:
|
|
EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
|
|
AggValueSlot::DoesNotNeedGCBarriers,
|
|
AggValueSlot::IsNotAliased,
|
|
AggValueSlot::MayOverlap, IsZeroed));
|
|
return;
|
|
case TEK_Scalar:
|
|
if (LV.isSimple())
|
|
EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
|
|
else
|
|
EmitStoreThroughLValue(RValue::get(EmitScalarExpr(E)), LV);
|
|
return;
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
static void
|
|
pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
|
|
const Expr *E, Address ReferenceTemporary) {
|
|
// Objective-C++ ARC:
|
|
// If we are binding a reference to a temporary that has ownership, we
|
|
// need to perform retain/release operations on the temporary.
|
|
//
|
|
// FIXME: This should be looking at E, not M.
|
|
if (auto Lifetime = M->getType().getObjCLifetime()) {
|
|
switch (Lifetime) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
// Carry on to normal cleanup handling.
|
|
break;
|
|
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
// Nothing to do; cleaned up by an autorelease pool.
|
|
return;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
case Qualifiers::OCL_Weak:
|
|
switch (StorageDuration Duration = M->getStorageDuration()) {
|
|
case SD_Static:
|
|
// Note: we intentionally do not register a cleanup to release
|
|
// the object on program termination.
|
|
return;
|
|
|
|
case SD_Thread:
|
|
// FIXME: We should probably register a cleanup in this case.
|
|
return;
|
|
|
|
case SD_Automatic:
|
|
case SD_FullExpression:
|
|
CodeGenFunction::Destroyer *Destroy;
|
|
CleanupKind CleanupKind;
|
|
if (Lifetime == Qualifiers::OCL_Strong) {
|
|
const ValueDecl *VD = M->getExtendingDecl();
|
|
bool Precise = isa_and_nonnull<VarDecl>(VD) &&
|
|
VD->hasAttr<ObjCPreciseLifetimeAttr>();
|
|
CleanupKind = CGF.getARCCleanupKind();
|
|
Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
|
|
: &CodeGenFunction::destroyARCStrongImprecise;
|
|
} else {
|
|
// __weak objects always get EH cleanups; otherwise, exceptions
|
|
// could cause really nasty crashes instead of mere leaks.
|
|
CleanupKind = NormalAndEHCleanup;
|
|
Destroy = &CodeGenFunction::destroyARCWeak;
|
|
}
|
|
if (Duration == SD_FullExpression)
|
|
CGF.pushDestroy(CleanupKind, ReferenceTemporary,
|
|
M->getType(), *Destroy,
|
|
CleanupKind & EHCleanup);
|
|
else
|
|
CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
|
|
M->getType(),
|
|
*Destroy, CleanupKind & EHCleanup);
|
|
return;
|
|
|
|
case SD_Dynamic:
|
|
llvm_unreachable("temporary cannot have dynamic storage duration");
|
|
}
|
|
llvm_unreachable("unknown storage duration");
|
|
}
|
|
}
|
|
|
|
QualType::DestructionKind DK = E->getType().isDestructedType();
|
|
if (DK != QualType::DK_none) {
|
|
switch (M->getStorageDuration()) {
|
|
case SD_Static:
|
|
case SD_Thread: {
|
|
CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
|
|
if (const RecordType *RT =
|
|
E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
|
|
// Get the destructor for the reference temporary.
|
|
if (auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl());
|
|
ClassDecl && !ClassDecl->hasTrivialDestructor())
|
|
ReferenceTemporaryDtor = ClassDecl->getDestructor();
|
|
}
|
|
|
|
if (!ReferenceTemporaryDtor)
|
|
return;
|
|
|
|
llvm::FunctionCallee CleanupFn;
|
|
llvm::Constant *CleanupArg;
|
|
if (E->getType()->isArrayType()) {
|
|
CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
|
|
ReferenceTemporary, E->getType(), CodeGenFunction::destroyCXXObject,
|
|
CGF.getLangOpts().Exceptions,
|
|
dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
|
|
CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
|
|
} else {
|
|
CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
|
|
GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
|
|
CleanupArg =
|
|
cast<llvm::Constant>(ReferenceTemporary.emitRawPointer(CGF));
|
|
}
|
|
CGF.CGM.getCXXABI().registerGlobalDtor(
|
|
CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
|
|
} break;
|
|
case SD_FullExpression:
|
|
CGF.pushDestroy(DK, ReferenceTemporary, E->getType());
|
|
break;
|
|
case SD_Automatic:
|
|
CGF.pushLifetimeExtendedDestroy(DK, ReferenceTemporary, E->getType());
|
|
break;
|
|
case SD_Dynamic:
|
|
llvm_unreachable("temporary cannot have dynamic storage duration");
|
|
}
|
|
}
|
|
}
|
|
|
|
static RawAddress createReferenceTemporary(CodeGenFunction &CGF,
|
|
const MaterializeTemporaryExpr *M,
|
|
const Expr *Inner,
|
|
RawAddress *Alloca = nullptr) {
|
|
auto &TCG = CGF.getTargetHooks();
|
|
switch (M->getStorageDuration()) {
|
|
case SD_FullExpression:
|
|
case SD_Automatic: {
|
|
// If we have a constant temporary array or record try to promote it into a
|
|
// constant global under the same rules a normal constant would've been
|
|
// promoted. This is easier on the optimizer and generally emits fewer
|
|
// instructions.
|
|
QualType Ty = Inner->getType();
|
|
if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
|
|
(Ty->isArrayType() || Ty->isRecordType()) &&
|
|
Ty.isConstantStorage(CGF.getContext(), true, false))
|
|
if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
|
|
auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
|
|
auto *GV = new llvm::GlobalVariable(
|
|
CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
|
|
llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
|
|
llvm::GlobalValue::NotThreadLocal,
|
|
CGF.getContext().getTargetAddressSpace(AS));
|
|
CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
|
|
GV->setAlignment(alignment.getAsAlign());
|
|
llvm::Constant *C = GV;
|
|
if (AS != LangAS::Default)
|
|
C = TCG.performAddrSpaceCast(
|
|
CGF.CGM, GV, AS, LangAS::Default,
|
|
llvm::PointerType::get(
|
|
CGF.getLLVMContext(),
|
|
CGF.getContext().getTargetAddressSpace(LangAS::Default)));
|
|
// FIXME: Should we put the new global into a COMDAT?
|
|
return RawAddress(C, GV->getValueType(), alignment);
|
|
}
|
|
return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
|
|
}
|
|
case SD_Thread:
|
|
case SD_Static:
|
|
return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
|
|
|
|
case SD_Dynamic:
|
|
llvm_unreachable("temporary can't have dynamic storage duration");
|
|
}
|
|
llvm_unreachable("unknown storage duration");
|
|
}
|
|
|
|
/// Helper method to check if the underlying ABI is AAPCS
|
|
static bool isAAPCS(const TargetInfo &TargetInfo) {
|
|
return TargetInfo.getABI().starts_with("aapcs");
|
|
}
|
|
|
|
LValue CodeGenFunction::
|
|
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
|
|
const Expr *E = M->getSubExpr();
|
|
|
|
assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
|
|
!cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
|
|
"Reference should never be pseudo-strong!");
|
|
|
|
// FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
|
|
// as that will cause the lifetime adjustment to be lost for ARC
|
|
auto ownership = M->getType().getObjCLifetime();
|
|
if (ownership != Qualifiers::OCL_None &&
|
|
ownership != Qualifiers::OCL_ExplicitNone) {
|
|
RawAddress Object = createReferenceTemporary(*this, M, E);
|
|
if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
|
|
llvm::Type *Ty = ConvertTypeForMem(E->getType());
|
|
Object = Object.withElementType(Ty);
|
|
|
|
// createReferenceTemporary will promote the temporary to a global with a
|
|
// constant initializer if it can. It can only do this to a value of
|
|
// ARC-manageable type if the value is global and therefore "immune" to
|
|
// ref-counting operations. Therefore we have no need to emit either a
|
|
// dynamic initialization or a cleanup and we can just return the address
|
|
// of the temporary.
|
|
if (Var->hasInitializer())
|
|
return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
|
|
|
|
Var->setInitializer(CGM.EmitNullConstant(E->getType()));
|
|
}
|
|
LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
|
|
AlignmentSource::Decl);
|
|
|
|
switch (getEvaluationKind(E->getType())) {
|
|
default: llvm_unreachable("expected scalar or aggregate expression");
|
|
case TEK_Scalar:
|
|
EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
|
|
break;
|
|
case TEK_Aggregate: {
|
|
EmitAggExpr(E, AggValueSlot::forAddr(Object,
|
|
E->getType().getQualifiers(),
|
|
AggValueSlot::IsDestructed,
|
|
AggValueSlot::DoesNotNeedGCBarriers,
|
|
AggValueSlot::IsNotAliased,
|
|
AggValueSlot::DoesNotOverlap));
|
|
break;
|
|
}
|
|
}
|
|
|
|
pushTemporaryCleanup(*this, M, E, Object);
|
|
return RefTempDst;
|
|
}
|
|
|
|
SmallVector<const Expr *, 2> CommaLHSs;
|
|
SmallVector<SubobjectAdjustment, 2> Adjustments;
|
|
E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
|
|
|
|
for (const auto &Ignored : CommaLHSs)
|
|
EmitIgnoredExpr(Ignored);
|
|
|
|
if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
|
|
if (opaque->getType()->isRecordType()) {
|
|
assert(Adjustments.empty());
|
|
return EmitOpaqueValueLValue(opaque);
|
|
}
|
|
}
|
|
|
|
// Create and initialize the reference temporary.
|
|
RawAddress Alloca = Address::invalid();
|
|
RawAddress Object = createReferenceTemporary(*this, M, E, &Alloca);
|
|
if (auto *Var = dyn_cast<llvm::GlobalVariable>(
|
|
Object.getPointer()->stripPointerCasts())) {
|
|
llvm::Type *TemporaryType = ConvertTypeForMem(E->getType());
|
|
Object = Object.withElementType(TemporaryType);
|
|
// If the temporary is a global and has a constant initializer or is a
|
|
// constant temporary that we promoted to a global, we may have already
|
|
// initialized it.
|
|
if (!Var->hasInitializer()) {
|
|
Var->setInitializer(CGM.EmitNullConstant(E->getType()));
|
|
EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
|
|
}
|
|
} else {
|
|
switch (M->getStorageDuration()) {
|
|
case SD_Automatic:
|
|
if (auto *Size = EmitLifetimeStart(
|
|
CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
|
|
Alloca.getPointer())) {
|
|
pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
|
|
Alloca, Size);
|
|
}
|
|
break;
|
|
|
|
case SD_FullExpression: {
|
|
if (!ShouldEmitLifetimeMarkers)
|
|
break;
|
|
|
|
// Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
|
|
// marker. Instead, start the lifetime of a conditional temporary earlier
|
|
// so that it's unconditional. Don't do this with sanitizers which need
|
|
// more precise lifetime marks. However when inside an "await.suspend"
|
|
// block, we should always avoid conditional cleanup because it creates
|
|
// boolean marker that lives across await_suspend, which can destroy coro
|
|
// frame.
|
|
ConditionalEvaluation *OldConditional = nullptr;
|
|
CGBuilderTy::InsertPoint OldIP;
|
|
if (isInConditionalBranch() && !E->getType().isDestructedType() &&
|
|
((!SanOpts.has(SanitizerKind::HWAddress) &&
|
|
!SanOpts.has(SanitizerKind::Memory) &&
|
|
!CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) ||
|
|
inSuspendBlock())) {
|
|
OldConditional = OutermostConditional;
|
|
OutermostConditional = nullptr;
|
|
|
|
OldIP = Builder.saveIP();
|
|
llvm::BasicBlock *Block = OldConditional->getStartingBlock();
|
|
Builder.restoreIP(CGBuilderTy::InsertPoint(
|
|
Block, llvm::BasicBlock::iterator(Block->back())));
|
|
}
|
|
|
|
if (auto *Size = EmitLifetimeStart(
|
|
CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
|
|
Alloca.getPointer())) {
|
|
pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
|
|
Size);
|
|
}
|
|
|
|
if (OldConditional) {
|
|
OutermostConditional = OldConditional;
|
|
Builder.restoreIP(OldIP);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
|
|
}
|
|
pushTemporaryCleanup(*this, M, E, Object);
|
|
|
|
// Perform derived-to-base casts and/or field accesses, to get from the
|
|
// temporary object we created (and, potentially, for which we extended
|
|
// the lifetime) to the subobject we're binding the reference to.
|
|
for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
|
|
switch (Adjustment.Kind) {
|
|
case SubobjectAdjustment::DerivedToBaseAdjustment:
|
|
Object =
|
|
GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
|
|
Adjustment.DerivedToBase.BasePath->path_begin(),
|
|
Adjustment.DerivedToBase.BasePath->path_end(),
|
|
/*NullCheckValue=*/ false, E->getExprLoc());
|
|
break;
|
|
|
|
case SubobjectAdjustment::FieldAdjustment: {
|
|
LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
|
|
LV = EmitLValueForField(LV, Adjustment.Field);
|
|
assert(LV.isSimple() &&
|
|
"materialized temporary field is not a simple lvalue");
|
|
Object = LV.getAddress();
|
|
break;
|
|
}
|
|
|
|
case SubobjectAdjustment::MemberPointerAdjustment: {
|
|
llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
|
|
Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
|
|
Adjustment.Ptr.MPT);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
|
|
}
|
|
|
|
RValue
|
|
CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
|
|
// Emit the expression as an lvalue.
|
|
LValue LV = EmitLValue(E);
|
|
assert(LV.isSimple());
|
|
llvm::Value *Value = LV.getPointer(*this);
|
|
|
|
if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
|
|
// C++11 [dcl.ref]p5 (as amended by core issue 453):
|
|
// If a glvalue to which a reference is directly bound designates neither
|
|
// an existing object or function of an appropriate type nor a region of
|
|
// storage of suitable size and alignment to contain an object of the
|
|
// reference's type, the behavior is undefined.
|
|
QualType Ty = E->getType();
|
|
EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
|
|
}
|
|
|
|
return RValue::get(Value);
|
|
}
|
|
|
|
|
|
/// getAccessedFieldNo - Given an encoded value and a result number, return the
|
|
/// input field number being accessed.
|
|
unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
|
|
const llvm::Constant *Elts) {
|
|
return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
|
|
->getZExtValue();
|
|
}
|
|
|
|
static llvm::Value *emitHashMix(CGBuilderTy &Builder, llvm::Value *Acc,
|
|
llvm::Value *Ptr) {
|
|
llvm::Value *A0 =
|
|
Builder.CreateMul(Ptr, Builder.getInt64(0xbf58476d1ce4e5b9u));
|
|
llvm::Value *A1 =
|
|
Builder.CreateXor(A0, Builder.CreateLShr(A0, Builder.getInt64(31)));
|
|
return Builder.CreateXor(Acc, A1);
|
|
}
|
|
|
|
bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
|
|
return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
|
|
TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
|
|
}
|
|
|
|
bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
|
|
CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
|
|
return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
|
|
(TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
|
|
TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
|
|
TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
|
|
}
|
|
|
|
bool CodeGenFunction::sanitizePerformTypeCheck() const {
|
|
return SanOpts.has(SanitizerKind::Null) ||
|
|
SanOpts.has(SanitizerKind::Alignment) ||
|
|
SanOpts.has(SanitizerKind::ObjectSize) ||
|
|
SanOpts.has(SanitizerKind::Vptr);
|
|
}
|
|
|
|
void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
|
|
llvm::Value *Ptr, QualType Ty,
|
|
CharUnits Alignment,
|
|
SanitizerSet SkippedChecks,
|
|
llvm::Value *ArraySize) {
|
|
if (!sanitizePerformTypeCheck())
|
|
return;
|
|
|
|
// Don't check pointers outside the default address space. The null check
|
|
// isn't correct, the object-size check isn't supported by LLVM, and we can't
|
|
// communicate the addresses to the runtime handler for the vptr check.
|
|
if (Ptr->getType()->getPointerAddressSpace())
|
|
return;
|
|
|
|
// Don't check pointers to volatile data. The behavior here is implementation-
|
|
// defined.
|
|
if (Ty.isVolatileQualified())
|
|
return;
|
|
|
|
SanitizerScope SanScope(this);
|
|
|
|
SmallVector<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>, 3>
|
|
Checks;
|
|
llvm::BasicBlock *Done = nullptr;
|
|
|
|
// Quickly determine whether we have a pointer to an alloca. It's possible
|
|
// to skip null checks, and some alignment checks, for these pointers. This
|
|
// can reduce compile-time significantly.
|
|
auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
|
|
|
|
llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
|
|
llvm::Value *IsNonNull = nullptr;
|
|
bool IsGuaranteedNonNull =
|
|
SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
|
|
bool AllowNullPointers = isNullPointerAllowed(TCK);
|
|
if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
|
|
!IsGuaranteedNonNull) {
|
|
// The glvalue must not be an empty glvalue.
|
|
IsNonNull = Builder.CreateIsNotNull(Ptr);
|
|
|
|
// The IR builder can constant-fold the null check if the pointer points to
|
|
// a constant.
|
|
IsGuaranteedNonNull = IsNonNull == True;
|
|
|
|
// Skip the null check if the pointer is known to be non-null.
|
|
if (!IsGuaranteedNonNull) {
|
|
if (AllowNullPointers) {
|
|
// When performing pointer casts, it's OK if the value is null.
|
|
// Skip the remaining checks in that case.
|
|
Done = createBasicBlock("null");
|
|
llvm::BasicBlock *Rest = createBasicBlock("not.null");
|
|
Builder.CreateCondBr(IsNonNull, Rest, Done);
|
|
EmitBlock(Rest);
|
|
} else {
|
|
Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::SO_Null));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SanOpts.has(SanitizerKind::ObjectSize) &&
|
|
!SkippedChecks.has(SanitizerKind::ObjectSize) &&
|
|
!Ty->isIncompleteType()) {
|
|
uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
|
|
llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
|
|
if (ArraySize)
|
|
Size = Builder.CreateMul(Size, ArraySize);
|
|
|
|
// Degenerate case: new X[0] does not need an objectsize check.
|
|
llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
|
|
if (!ConstantSize || !ConstantSize->isNullValue()) {
|
|
// The glvalue must refer to a large enough storage region.
|
|
// FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
|
|
// to check this.
|
|
// FIXME: Get object address space
|
|
llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
|
|
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
|
|
llvm::Value *Min = Builder.getFalse();
|
|
llvm::Value *NullIsUnknown = Builder.getFalse();
|
|
llvm::Value *Dynamic = Builder.getFalse();
|
|
llvm::Value *LargeEnough = Builder.CreateICmpUGE(
|
|
Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}), Size);
|
|
Checks.push_back(
|
|
std::make_pair(LargeEnough, SanitizerKind::SO_ObjectSize));
|
|
}
|
|
}
|
|
|
|
llvm::MaybeAlign AlignVal;
|
|
llvm::Value *PtrAsInt = nullptr;
|
|
|
|
if (SanOpts.has(SanitizerKind::Alignment) &&
|
|
!SkippedChecks.has(SanitizerKind::Alignment)) {
|
|
AlignVal = Alignment.getAsMaybeAlign();
|
|
if (!Ty->isIncompleteType() && !AlignVal)
|
|
AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
|
|
/*ForPointeeType=*/true)
|
|
.getAsMaybeAlign();
|
|
|
|
// The glvalue must be suitably aligned.
|
|
if (AlignVal && *AlignVal > llvm::Align(1) &&
|
|
(!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) {
|
|
PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
|
|
llvm::Value *Align = Builder.CreateAnd(
|
|
PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1));
|
|
llvm::Value *Aligned =
|
|
Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
|
|
if (Aligned != True)
|
|
Checks.push_back(std::make_pair(Aligned, SanitizerKind::SO_Alignment));
|
|
}
|
|
}
|
|
|
|
if (Checks.size() > 0) {
|
|
llvm::Constant *StaticData[] = {
|
|
EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
|
|
llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1),
|
|
llvm::ConstantInt::get(Int8Ty, TCK)};
|
|
EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
|
|
PtrAsInt ? PtrAsInt : Ptr);
|
|
}
|
|
|
|
// If possible, check that the vptr indicates that there is a subobject of
|
|
// type Ty at offset zero within this object.
|
|
//
|
|
// C++11 [basic.life]p5,6:
|
|
// [For storage which does not refer to an object within its lifetime]
|
|
// The program has undefined behavior if:
|
|
// -- the [pointer or glvalue] is used to access a non-static data member
|
|
// or call a non-static member function
|
|
if (SanOpts.has(SanitizerKind::Vptr) &&
|
|
!SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
|
|
// Ensure that the pointer is non-null before loading it. If there is no
|
|
// compile-time guarantee, reuse the run-time null check or emit a new one.
|
|
if (!IsGuaranteedNonNull) {
|
|
if (!IsNonNull)
|
|
IsNonNull = Builder.CreateIsNotNull(Ptr);
|
|
if (!Done)
|
|
Done = createBasicBlock("vptr.null");
|
|
llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
|
|
Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
|
|
EmitBlock(VptrNotNull);
|
|
}
|
|
|
|
// Compute a deterministic hash of the mangled name of the type.
|
|
SmallString<64> MangledName;
|
|
llvm::raw_svector_ostream Out(MangledName);
|
|
CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
|
|
Out);
|
|
|
|
// Contained in NoSanitizeList based on the mangled type.
|
|
if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
|
|
Out.str())) {
|
|
// Load the vptr, and mix it with TypeHash.
|
|
llvm::Value *TypeHash =
|
|
llvm::ConstantInt::get(Int64Ty, xxh3_64bits(Out.str()));
|
|
|
|
llvm::Type *VPtrTy = llvm::PointerType::get(getLLVMContext(), 0);
|
|
Address VPtrAddr(Ptr, IntPtrTy, getPointerAlign());
|
|
llvm::Value *VPtrVal = GetVTablePtr(VPtrAddr, VPtrTy,
|
|
Ty->getAsCXXRecordDecl(),
|
|
VTableAuthMode::UnsafeUbsanStrip);
|
|
VPtrVal = Builder.CreateBitOrPointerCast(VPtrVal, IntPtrTy);
|
|
|
|
llvm::Value *Hash =
|
|
emitHashMix(Builder, TypeHash, Builder.CreateZExt(VPtrVal, Int64Ty));
|
|
Hash = Builder.CreateTrunc(Hash, IntPtrTy);
|
|
|
|
// Look the hash up in our cache.
|
|
const int CacheSize = 128;
|
|
llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
|
|
llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
|
|
"__ubsan_vptr_type_cache");
|
|
llvm::Value *Slot = Builder.CreateAnd(Hash,
|
|
llvm::ConstantInt::get(IntPtrTy,
|
|
CacheSize-1));
|
|
llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
|
|
llvm::Value *CacheVal = Builder.CreateAlignedLoad(
|
|
IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
|
|
getPointerAlign());
|
|
|
|
// If the hash isn't in the cache, call a runtime handler to perform the
|
|
// hard work of checking whether the vptr is for an object of the right
|
|
// type. This will either fill in the cache and return, or produce a
|
|
// diagnostic.
|
|
llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
|
|
llvm::Constant *StaticData[] = {
|
|
EmitCheckSourceLocation(Loc),
|
|
EmitCheckTypeDescriptor(Ty),
|
|
CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
|
|
llvm::ConstantInt::get(Int8Ty, TCK)
|
|
};
|
|
llvm::Value *DynamicData[] = { Ptr, Hash };
|
|
EmitCheck(std::make_pair(EqualHash, SanitizerKind::SO_Vptr),
|
|
SanitizerHandler::DynamicTypeCacheMiss, StaticData,
|
|
DynamicData);
|
|
}
|
|
}
|
|
|
|
if (Done) {
|
|
Builder.CreateBr(Done);
|
|
EmitBlock(Done);
|
|
}
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
|
|
QualType EltTy) {
|
|
ASTContext &C = getContext();
|
|
uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
|
|
if (!EltSize)
|
|
return nullptr;
|
|
|
|
auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
|
|
if (!ArrayDeclRef)
|
|
return nullptr;
|
|
|
|
auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
|
|
if (!ParamDecl)
|
|
return nullptr;
|
|
|
|
auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
|
|
if (!POSAttr)
|
|
return nullptr;
|
|
|
|
// Don't load the size if it's a lower bound.
|
|
int POSType = POSAttr->getType();
|
|
if (POSType != 0 && POSType != 1)
|
|
return nullptr;
|
|
|
|
// Find the implicit size parameter.
|
|
auto PassedSizeIt = SizeArguments.find(ParamDecl);
|
|
if (PassedSizeIt == SizeArguments.end())
|
|
return nullptr;
|
|
|
|
const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
|
|
assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
|
|
Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
|
|
llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
|
|
C.getSizeType(), E->getExprLoc());
|
|
llvm::Value *SizeOfElement =
|
|
llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
|
|
return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
|
|
}
|
|
|
|
/// If Base is known to point to the start of an array, return the length of
|
|
/// that array. Return 0 if the length cannot be determined.
|
|
static llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF,
|
|
const Expr *Base,
|
|
QualType &IndexedType,
|
|
LangOptions::StrictFlexArraysLevelKind
|
|
StrictFlexArraysLevel) {
|
|
// For the vector indexing extension, the bound is the number of elements.
|
|
if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
|
|
IndexedType = Base->getType();
|
|
return CGF.Builder.getInt32(VT->getNumElements());
|
|
}
|
|
|
|
Base = Base->IgnoreParens();
|
|
|
|
if (const auto *CE = dyn_cast<CastExpr>(Base)) {
|
|
if (CE->getCastKind() == CK_ArrayToPointerDecay &&
|
|
!CE->getSubExpr()->isFlexibleArrayMemberLike(CGF.getContext(),
|
|
StrictFlexArraysLevel)) {
|
|
CodeGenFunction::SanitizerScope SanScope(&CGF);
|
|
|
|
IndexedType = CE->getSubExpr()->getType();
|
|
const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
|
|
if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
|
|
return CGF.Builder.getInt(CAT->getSize());
|
|
|
|
if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
|
|
return CGF.getVLASize(VAT).NumElts;
|
|
// Ignore pass_object_size here. It's not applicable on decayed pointers.
|
|
}
|
|
}
|
|
|
|
CodeGenFunction::SanitizerScope SanScope(&CGF);
|
|
|
|
QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
|
|
if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
|
|
IndexedType = Base->getType();
|
|
return POS;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// \p StructAccessBase returns the base \p Expr of a field access. It returns
|
|
/// either a \p DeclRefExpr, representing the base pointer to the struct, i.e.:
|
|
///
|
|
/// p in p-> a.b.c
|
|
///
|
|
/// or a \p MemberExpr, if the \p MemberExpr has the \p RecordDecl we're
|
|
/// looking for:
|
|
///
|
|
/// struct s {
|
|
/// struct s *ptr;
|
|
/// int count;
|
|
/// char array[] __attribute__((counted_by(count)));
|
|
/// };
|
|
///
|
|
/// If we have an expression like \p p->ptr->array[index], we want the
|
|
/// \p MemberExpr for \p p->ptr instead of \p p.
|
|
class StructAccessBase
|
|
: public ConstStmtVisitor<StructAccessBase, const Expr *> {
|
|
const RecordDecl *ExpectedRD;
|
|
|
|
bool IsExpectedRecordDecl(const Expr *E) const {
|
|
QualType Ty = E->getType();
|
|
if (Ty->isPointerType())
|
|
Ty = Ty->getPointeeType();
|
|
return ExpectedRD == Ty->getAsRecordDecl();
|
|
}
|
|
|
|
public:
|
|
StructAccessBase(const RecordDecl *ExpectedRD) : ExpectedRD(ExpectedRD) {}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// NOTE: If we build C++ support for counted_by, then we'll have to handle
|
|
// horrors like this:
|
|
//
|
|
// struct S {
|
|
// int x, y;
|
|
// int blah[] __attribute__((counted_by(x)));
|
|
// } s;
|
|
//
|
|
// int foo(int index, int val) {
|
|
// int (S::*IHatePMDs)[] = &S::blah;
|
|
// (s.*IHatePMDs)[index] = val;
|
|
// }
|
|
|
|
const Expr *Visit(const Expr *E) {
|
|
return ConstStmtVisitor<StructAccessBase, const Expr *>::Visit(E);
|
|
}
|
|
|
|
const Expr *VisitStmt(const Stmt *S) { return nullptr; }
|
|
|
|
// These are the types we expect to return (in order of most to least
|
|
// likely):
|
|
//
|
|
// 1. DeclRefExpr - This is the expression for the base of the structure.
|
|
// It's exactly what we want to build an access to the \p counted_by
|
|
// field.
|
|
// 2. MemberExpr - This is the expression that has the same \p RecordDecl
|
|
// as the flexble array member's lexical enclosing \p RecordDecl. This
|
|
// allows us to catch things like: "p->p->array"
|
|
// 3. CompoundLiteralExpr - This is for people who create something
|
|
// heretical like (struct foo has a flexible array member):
|
|
//
|
|
// (struct foo){ 1, 2 }.blah[idx];
|
|
const Expr *VisitDeclRefExpr(const DeclRefExpr *E) {
|
|
return IsExpectedRecordDecl(E) ? E : nullptr;
|
|
}
|
|
const Expr *VisitMemberExpr(const MemberExpr *E) {
|
|
if (IsExpectedRecordDecl(E) && E->isArrow())
|
|
return E;
|
|
const Expr *Res = Visit(E->getBase());
|
|
return !Res && IsExpectedRecordDecl(E) ? E : Res;
|
|
}
|
|
const Expr *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
|
|
return IsExpectedRecordDecl(E) ? E : nullptr;
|
|
}
|
|
const Expr *VisitCallExpr(const CallExpr *E) {
|
|
return IsExpectedRecordDecl(E) ? E : nullptr;
|
|
}
|
|
|
|
const Expr *VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
|
|
if (IsExpectedRecordDecl(E))
|
|
return E;
|
|
return Visit(E->getBase());
|
|
}
|
|
const Expr *VisitCastExpr(const CastExpr *E) {
|
|
if (E->getCastKind() == CK_LValueToRValue)
|
|
return IsExpectedRecordDecl(E) ? E : nullptr;
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
const Expr *VisitParenExpr(const ParenExpr *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
const Expr *VisitUnaryAddrOf(const UnaryOperator *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
const Expr *VisitUnaryDeref(const UnaryOperator *E) {
|
|
return Visit(E->getSubExpr());
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
using RecIndicesTy = SmallVector<llvm::Value *, 8>;
|
|
|
|
static bool getGEPIndicesToField(CodeGenFunction &CGF, const RecordDecl *RD,
|
|
const FieldDecl *Field,
|
|
RecIndicesTy &Indices) {
|
|
const CGRecordLayout &Layout = CGF.CGM.getTypes().getCGRecordLayout(RD);
|
|
int64_t FieldNo = -1;
|
|
for (const FieldDecl *FD : RD->fields()) {
|
|
if (!Layout.containsFieldDecl(FD))
|
|
// This could happen if the field has a struct type that's empty. I don't
|
|
// know why either.
|
|
continue;
|
|
|
|
FieldNo = Layout.getLLVMFieldNo(FD);
|
|
if (FD == Field) {
|
|
Indices.emplace_back(CGF.Builder.getInt32(FieldNo));
|
|
return true;
|
|
}
|
|
|
|
QualType Ty = FD->getType();
|
|
if (Ty->isRecordType()) {
|
|
if (getGEPIndicesToField(CGF, Ty->getAsRecordDecl(), Field, Indices)) {
|
|
if (RD->isUnion())
|
|
FieldNo = 0;
|
|
Indices.emplace_back(CGF.Builder.getInt32(FieldNo));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::GetCountedByFieldExprGEP(
|
|
const Expr *Base, const FieldDecl *FAMDecl, const FieldDecl *CountDecl) {
|
|
const RecordDecl *RD = CountDecl->getParent()->getOuterLexicalRecordContext();
|
|
|
|
// Find the base struct expr (i.e. p in p->a.b.c.d).
|
|
const Expr *StructBase = StructAccessBase(RD).Visit(Base);
|
|
if (!StructBase || StructBase->HasSideEffects(getContext()))
|
|
return nullptr;
|
|
|
|
llvm::Value *Res = nullptr;
|
|
if (StructBase->getType()->isPointerType()) {
|
|
LValueBaseInfo BaseInfo;
|
|
TBAAAccessInfo TBAAInfo;
|
|
Address Addr = EmitPointerWithAlignment(StructBase, &BaseInfo, &TBAAInfo);
|
|
Res = Addr.emitRawPointer(*this);
|
|
} else if (StructBase->isLValue()) {
|
|
LValue LV = EmitLValue(StructBase);
|
|
Address Addr = LV.getAddress();
|
|
Res = Addr.emitRawPointer(*this);
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
RecIndicesTy Indices;
|
|
getGEPIndicesToField(*this, RD, CountDecl, Indices);
|
|
if (Indices.empty())
|
|
return nullptr;
|
|
|
|
Indices.push_back(Builder.getInt32(0));
|
|
return Builder.CreateInBoundsGEP(
|
|
ConvertType(QualType(RD->getTypeForDecl(), 0)), Res,
|
|
RecIndicesTy(llvm::reverse(Indices)), "counted_by.gep");
|
|
}
|
|
|
|
/// This method is typically called in contexts where we can't generate
|
|
/// side-effects, like in __builtin_dynamic_object_size. When finding
|
|
/// expressions, only choose those that have either already been emitted or can
|
|
/// be loaded without side-effects.
|
|
///
|
|
/// - \p FAMDecl: the \p Decl for the flexible array member. It may not be
|
|
/// within the top-level struct.
|
|
/// - \p CountDecl: must be within the same non-anonymous struct as \p FAMDecl.
|
|
llvm::Value *CodeGenFunction::EmitLoadOfCountedByField(
|
|
const Expr *Base, const FieldDecl *FAMDecl, const FieldDecl *CountDecl) {
|
|
if (llvm::Value *GEP = GetCountedByFieldExprGEP(Base, FAMDecl, CountDecl))
|
|
return Builder.CreateAlignedLoad(ConvertType(CountDecl->getType()), GEP,
|
|
getIntAlign(), "counted_by.load");
|
|
return nullptr;
|
|
}
|
|
|
|
void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
|
|
llvm::Value *Index, QualType IndexType,
|
|
bool Accessed) {
|
|
assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
|
|
"should not be called unless adding bounds checks");
|
|
const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
|
|
getLangOpts().getStrictFlexArraysLevel();
|
|
QualType IndexedType;
|
|
llvm::Value *Bound =
|
|
getArrayIndexingBound(*this, Base, IndexedType, StrictFlexArraysLevel);
|
|
|
|
EmitBoundsCheckImpl(E, Bound, Index, IndexType, IndexedType, Accessed);
|
|
}
|
|
|
|
void CodeGenFunction::EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound,
|
|
llvm::Value *Index,
|
|
QualType IndexType,
|
|
QualType IndexedType, bool Accessed) {
|
|
if (!Bound)
|
|
return;
|
|
|
|
SanitizerScope SanScope(this);
|
|
|
|
llvm::DILocation *CheckDI = Builder.getCurrentDebugLocation();
|
|
if (ClArrayBoundsPseudoFn && CheckDI) {
|
|
CheckDI = getDebugInfo()->CreateSyntheticInlineAt(
|
|
Builder.getCurrentDebugLocation(), "__ubsan_check_array_bounds");
|
|
}
|
|
ApplyDebugLocation ApplyTrapDI(*this, CheckDI);
|
|
|
|
bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
|
|
llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
|
|
llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
|
|
|
|
llvm::Constant *StaticData[] = {
|
|
EmitCheckSourceLocation(E->getExprLoc()),
|
|
EmitCheckTypeDescriptor(IndexedType),
|
|
EmitCheckTypeDescriptor(IndexType)
|
|
};
|
|
llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
|
|
: Builder.CreateICmpULE(IndexVal, BoundVal);
|
|
EmitCheck(std::make_pair(Check, SanitizerKind::SO_ArrayBounds),
|
|
SanitizerHandler::OutOfBounds, StaticData, Index);
|
|
}
|
|
|
|
CodeGenFunction::ComplexPairTy CodeGenFunction::
|
|
EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
|
|
bool isInc, bool isPre) {
|
|
ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
|
|
|
|
llvm::Value *NextVal;
|
|
if (isa<llvm::IntegerType>(InVal.first->getType())) {
|
|
uint64_t AmountVal = isInc ? 1 : -1;
|
|
NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
|
|
|
|
// Add the inc/dec to the real part.
|
|
NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
|
|
} else {
|
|
QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
|
|
llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
|
|
if (!isInc)
|
|
FVal.changeSign();
|
|
NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
|
|
|
|
// Add the inc/dec to the real part.
|
|
NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
|
|
}
|
|
|
|
ComplexPairTy IncVal(NextVal, InVal.second);
|
|
|
|
// Store the updated result through the lvalue.
|
|
EmitStoreOfComplex(IncVal, LV, /*init*/ false);
|
|
if (getLangOpts().OpenMP)
|
|
CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
|
|
E->getSubExpr());
|
|
|
|
// If this is a postinc, return the value read from memory, otherwise use the
|
|
// updated value.
|
|
return isPre ? IncVal : InVal;
|
|
}
|
|
|
|
void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
|
|
CodeGenFunction *CGF) {
|
|
// Bind VLAs in the cast type.
|
|
if (CGF && E->getType()->isVariablyModifiedType())
|
|
CGF->EmitVariablyModifiedType(E->getType());
|
|
|
|
if (CGDebugInfo *DI = getModuleDebugInfo())
|
|
DI->EmitExplicitCastType(E->getType());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LValue Expression Emission
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static Address EmitPointerWithAlignment(const Expr *E, LValueBaseInfo *BaseInfo,
|
|
TBAAAccessInfo *TBAAInfo,
|
|
KnownNonNull_t IsKnownNonNull,
|
|
CodeGenFunction &CGF) {
|
|
// We allow this with ObjC object pointers because of fragile ABIs.
|
|
assert(E->getType()->isPointerType() ||
|
|
E->getType()->isObjCObjectPointerType());
|
|
E = E->IgnoreParens();
|
|
|
|
// Casts:
|
|
if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
|
|
if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
|
|
CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
|
|
|
|
switch (CE->getCastKind()) {
|
|
// Non-converting casts (but not C's implicit conversion from void*).
|
|
case CK_BitCast:
|
|
case CK_NoOp:
|
|
case CK_AddressSpaceConversion:
|
|
if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
|
|
if (PtrTy->getPointeeType()->isVoidType())
|
|
break;
|
|
|
|
LValueBaseInfo InnerBaseInfo;
|
|
TBAAAccessInfo InnerTBAAInfo;
|
|
Address Addr = CGF.EmitPointerWithAlignment(
|
|
CE->getSubExpr(), &InnerBaseInfo, &InnerTBAAInfo, IsKnownNonNull);
|
|
if (BaseInfo) *BaseInfo = InnerBaseInfo;
|
|
if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
|
|
|
|
if (isa<ExplicitCastExpr>(CE)) {
|
|
LValueBaseInfo TargetTypeBaseInfo;
|
|
TBAAAccessInfo TargetTypeTBAAInfo;
|
|
CharUnits Align = CGF.CGM.getNaturalPointeeTypeAlignment(
|
|
E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
|
|
if (TBAAInfo)
|
|
*TBAAInfo =
|
|
CGF.CGM.mergeTBAAInfoForCast(*TBAAInfo, TargetTypeTBAAInfo);
|
|
// If the source l-value is opaque, honor the alignment of the
|
|
// casted-to type.
|
|
if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
|
|
if (BaseInfo)
|
|
BaseInfo->mergeForCast(TargetTypeBaseInfo);
|
|
Addr.setAlignment(Align);
|
|
}
|
|
}
|
|
|
|
if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
|
|
CE->getCastKind() == CK_BitCast) {
|
|
if (auto PT = E->getType()->getAs<PointerType>())
|
|
CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr,
|
|
/*MayBeNull=*/true,
|
|
CodeGenFunction::CFITCK_UnrelatedCast,
|
|
CE->getBeginLoc());
|
|
}
|
|
|
|
llvm::Type *ElemTy =
|
|
CGF.ConvertTypeForMem(E->getType()->getPointeeType());
|
|
Addr = Addr.withElementType(ElemTy);
|
|
if (CE->getCastKind() == CK_AddressSpaceConversion)
|
|
Addr = CGF.Builder.CreateAddrSpaceCast(
|
|
Addr, CGF.ConvertType(E->getType()), ElemTy);
|
|
return CGF.authPointerToPointerCast(Addr, CE->getSubExpr()->getType(),
|
|
CE->getType());
|
|
}
|
|
break;
|
|
|
|
// Array-to-pointer decay.
|
|
case CK_ArrayToPointerDecay:
|
|
return CGF.EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
|
|
|
|
// Derived-to-base conversions.
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_DerivedToBase: {
|
|
// TODO: Support accesses to members of base classes in TBAA. For now, we
|
|
// conservatively pretend that the complete object is of the base class
|
|
// type.
|
|
if (TBAAInfo)
|
|
*TBAAInfo = CGF.CGM.getTBAAAccessInfo(E->getType());
|
|
Address Addr = CGF.EmitPointerWithAlignment(
|
|
CE->getSubExpr(), BaseInfo, nullptr,
|
|
(KnownNonNull_t)(IsKnownNonNull ||
|
|
CE->getCastKind() == CK_UncheckedDerivedToBase));
|
|
auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
|
|
return CGF.GetAddressOfBaseClass(
|
|
Addr, Derived, CE->path_begin(), CE->path_end(),
|
|
CGF.ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
|
|
}
|
|
|
|
// TODO: Is there any reason to treat base-to-derived conversions
|
|
// specially?
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Unary &.
|
|
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
|
|
if (UO->getOpcode() == UO_AddrOf) {
|
|
LValue LV = CGF.EmitLValue(UO->getSubExpr(), IsKnownNonNull);
|
|
if (BaseInfo) *BaseInfo = LV.getBaseInfo();
|
|
if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
|
|
return LV.getAddress();
|
|
}
|
|
}
|
|
|
|
// std::addressof and variants.
|
|
if (auto *Call = dyn_cast<CallExpr>(E)) {
|
|
switch (Call->getBuiltinCallee()) {
|
|
default:
|
|
break;
|
|
case Builtin::BIaddressof:
|
|
case Builtin::BI__addressof:
|
|
case Builtin::BI__builtin_addressof: {
|
|
LValue LV = CGF.EmitLValue(Call->getArg(0), IsKnownNonNull);
|
|
if (BaseInfo) *BaseInfo = LV.getBaseInfo();
|
|
if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
|
|
return LV.getAddress();
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: conditional operators, comma.
|
|
|
|
// Otherwise, use the alignment of the type.
|
|
return CGF.makeNaturalAddressForPointer(
|
|
CGF.EmitScalarExpr(E), E->getType()->getPointeeType(), CharUnits(),
|
|
/*ForPointeeType=*/true, BaseInfo, TBAAInfo, IsKnownNonNull);
|
|
}
|
|
|
|
/// EmitPointerWithAlignment - Given an expression of pointer type, try to
|
|
/// derive a more accurate bound on the alignment of the pointer.
|
|
Address CodeGenFunction::EmitPointerWithAlignment(
|
|
const Expr *E, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo,
|
|
KnownNonNull_t IsKnownNonNull) {
|
|
Address Addr =
|
|
::EmitPointerWithAlignment(E, BaseInfo, TBAAInfo, IsKnownNonNull, *this);
|
|
if (IsKnownNonNull && !Addr.isKnownNonNull())
|
|
Addr.setKnownNonNull();
|
|
return Addr;
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
|
|
llvm::Value *V = RV.getScalarVal();
|
|
if (auto MPT = T->getAs<MemberPointerType>())
|
|
return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
|
|
return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
|
|
}
|
|
|
|
RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
|
|
if (Ty->isVoidType())
|
|
return RValue::get(nullptr);
|
|
|
|
switch (getEvaluationKind(Ty)) {
|
|
case TEK_Complex: {
|
|
llvm::Type *EltTy =
|
|
ConvertType(Ty->castAs<ComplexType>()->getElementType());
|
|
llvm::Value *U = llvm::UndefValue::get(EltTy);
|
|
return RValue::getComplex(std::make_pair(U, U));
|
|
}
|
|
|
|
// If this is a use of an undefined aggregate type, the aggregate must have an
|
|
// identifiable address. Just because the contents of the value are undefined
|
|
// doesn't mean that the address can't be taken and compared.
|
|
case TEK_Aggregate: {
|
|
Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
|
|
return RValue::getAggregate(DestPtr);
|
|
}
|
|
|
|
case TEK_Scalar:
|
|
return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
|
|
const char *Name) {
|
|
ErrorUnsupported(E, Name);
|
|
return GetUndefRValue(E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
|
|
const char *Name) {
|
|
ErrorUnsupported(E, Name);
|
|
llvm::Type *ElTy = ConvertType(E->getType());
|
|
llvm::Type *Ty = UnqualPtrTy;
|
|
return MakeAddrLValue(
|
|
Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType());
|
|
}
|
|
|
|
bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
|
|
const Expr *Base = Obj;
|
|
while (!isa<CXXThisExpr>(Base)) {
|
|
// The result of a dynamic_cast can be null.
|
|
if (isa<CXXDynamicCastExpr>(Base))
|
|
return false;
|
|
|
|
if (const auto *CE = dyn_cast<CastExpr>(Base)) {
|
|
Base = CE->getSubExpr();
|
|
} else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
|
|
Base = PE->getSubExpr();
|
|
} else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
|
|
if (UO->getOpcode() == UO_Extension)
|
|
Base = UO->getSubExpr();
|
|
else
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
|
|
LValue LV;
|
|
if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
|
|
LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
|
|
else
|
|
LV = EmitLValue(E);
|
|
if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
|
|
SanitizerSet SkippedChecks;
|
|
if (const auto *ME = dyn_cast<MemberExpr>(E)) {
|
|
bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
|
|
if (IsBaseCXXThis)
|
|
SkippedChecks.set(SanitizerKind::Alignment, true);
|
|
if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
|
|
SkippedChecks.set(SanitizerKind::Null, true);
|
|
}
|
|
EmitTypeCheck(TCK, E->getExprLoc(), LV, E->getType(), SkippedChecks);
|
|
}
|
|
return LV;
|
|
}
|
|
|
|
/// EmitLValue - Emit code to compute a designator that specifies the location
|
|
/// of the expression.
|
|
///
|
|
/// This can return one of two things: a simple address or a bitfield reference.
|
|
/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
|
|
/// an LLVM pointer type.
|
|
///
|
|
/// If this returns a bitfield reference, nothing about the pointee type of the
|
|
/// LLVM value is known: For example, it may not be a pointer to an integer.
|
|
///
|
|
/// If this returns a normal address, and if the lvalue's C type is fixed size,
|
|
/// this method guarantees that the returned pointer type will point to an LLVM
|
|
/// type of the same size of the lvalue's type. If the lvalue has a variable
|
|
/// length type, this is not possible.
|
|
///
|
|
LValue CodeGenFunction::EmitLValue(const Expr *E,
|
|
KnownNonNull_t IsKnownNonNull) {
|
|
// Running with sufficient stack space to avoid deeply nested expressions
|
|
// cause a stack overflow.
|
|
LValue LV;
|
|
CGM.runWithSufficientStackSpace(
|
|
E->getExprLoc(), [&] { LV = EmitLValueHelper(E, IsKnownNonNull); });
|
|
|
|
if (IsKnownNonNull && !LV.isKnownNonNull())
|
|
LV.setKnownNonNull();
|
|
return LV;
|
|
}
|
|
|
|
static QualType getConstantExprReferredType(const FullExpr *E,
|
|
const ASTContext &Ctx) {
|
|
const Expr *SE = E->getSubExpr()->IgnoreImplicit();
|
|
if (isa<OpaqueValueExpr>(SE))
|
|
return SE->getType();
|
|
return cast<CallExpr>(SE)->getCallReturnType(Ctx)->getPointeeType();
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitLValueHelper(const Expr *E,
|
|
KnownNonNull_t IsKnownNonNull) {
|
|
ApplyDebugLocation DL(*this, E);
|
|
switch (E->getStmtClass()) {
|
|
default: return EmitUnsupportedLValue(E, "l-value expression");
|
|
|
|
case Expr::ObjCPropertyRefExprClass:
|
|
llvm_unreachable("cannot emit a property reference directly");
|
|
|
|
case Expr::ObjCSelectorExprClass:
|
|
return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
|
|
case Expr::ObjCIsaExprClass:
|
|
return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
|
|
case Expr::BinaryOperatorClass:
|
|
return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
|
|
case Expr::CompoundAssignOperatorClass: {
|
|
QualType Ty = E->getType();
|
|
if (const AtomicType *AT = Ty->getAs<AtomicType>())
|
|
Ty = AT->getValueType();
|
|
if (!Ty->isAnyComplexType())
|
|
return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
|
|
return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
|
|
}
|
|
case Expr::CallExprClass:
|
|
case Expr::CXXMemberCallExprClass:
|
|
case Expr::CXXOperatorCallExprClass:
|
|
case Expr::UserDefinedLiteralClass:
|
|
return EmitCallExprLValue(cast<CallExpr>(E));
|
|
case Expr::CXXRewrittenBinaryOperatorClass:
|
|
return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
|
|
IsKnownNonNull);
|
|
case Expr::VAArgExprClass:
|
|
return EmitVAArgExprLValue(cast<VAArgExpr>(E));
|
|
case Expr::DeclRefExprClass:
|
|
return EmitDeclRefLValue(cast<DeclRefExpr>(E));
|
|
case Expr::ConstantExprClass: {
|
|
const ConstantExpr *CE = cast<ConstantExpr>(E);
|
|
if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
|
|
QualType RetType = getConstantExprReferredType(CE, getContext());
|
|
return MakeNaturalAlignAddrLValue(Result, RetType);
|
|
}
|
|
return EmitLValue(cast<ConstantExpr>(E)->getSubExpr(), IsKnownNonNull);
|
|
}
|
|
case Expr::ParenExprClass:
|
|
return EmitLValue(cast<ParenExpr>(E)->getSubExpr(), IsKnownNonNull);
|
|
case Expr::GenericSelectionExprClass:
|
|
return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr(),
|
|
IsKnownNonNull);
|
|
case Expr::PredefinedExprClass:
|
|
return EmitPredefinedLValue(cast<PredefinedExpr>(E));
|
|
case Expr::StringLiteralClass:
|
|
return EmitStringLiteralLValue(cast<StringLiteral>(E));
|
|
case Expr::ObjCEncodeExprClass:
|
|
return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
|
|
case Expr::PseudoObjectExprClass:
|
|
return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
|
|
case Expr::InitListExprClass:
|
|
return EmitInitListLValue(cast<InitListExpr>(E));
|
|
case Expr::CXXTemporaryObjectExprClass:
|
|
case Expr::CXXConstructExprClass:
|
|
return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
|
|
case Expr::CXXBindTemporaryExprClass:
|
|
return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
|
|
case Expr::CXXUuidofExprClass:
|
|
return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
|
|
case Expr::LambdaExprClass:
|
|
return EmitAggExprToLValue(E);
|
|
|
|
case Expr::ExprWithCleanupsClass: {
|
|
const auto *cleanups = cast<ExprWithCleanups>(E);
|
|
RunCleanupsScope Scope(*this);
|
|
LValue LV = EmitLValue(cleanups->getSubExpr(), IsKnownNonNull);
|
|
if (LV.isSimple()) {
|
|
// Defend against branches out of gnu statement expressions surrounded by
|
|
// cleanups.
|
|
Address Addr = LV.getAddress();
|
|
llvm::Value *V = Addr.getBasePointer();
|
|
Scope.ForceCleanup({&V});
|
|
Addr.replaceBasePointer(V);
|
|
return LValue::MakeAddr(Addr, LV.getType(), getContext(),
|
|
LV.getBaseInfo(), LV.getTBAAInfo());
|
|
}
|
|
// FIXME: Is it possible to create an ExprWithCleanups that produces a
|
|
// bitfield lvalue or some other non-simple lvalue?
|
|
return LV;
|
|
}
|
|
|
|
case Expr::CXXDefaultArgExprClass: {
|
|
auto *DAE = cast<CXXDefaultArgExpr>(E);
|
|
CXXDefaultArgExprScope Scope(*this, DAE);
|
|
return EmitLValue(DAE->getExpr(), IsKnownNonNull);
|
|
}
|
|
case Expr::CXXDefaultInitExprClass: {
|
|
auto *DIE = cast<CXXDefaultInitExpr>(E);
|
|
CXXDefaultInitExprScope Scope(*this, DIE);
|
|
return EmitLValue(DIE->getExpr(), IsKnownNonNull);
|
|
}
|
|
case Expr::CXXTypeidExprClass:
|
|
return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
|
|
|
|
case Expr::ObjCMessageExprClass:
|
|
return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
|
|
case Expr::ObjCIvarRefExprClass:
|
|
return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
|
|
case Expr::StmtExprClass:
|
|
return EmitStmtExprLValue(cast<StmtExpr>(E));
|
|
case Expr::UnaryOperatorClass:
|
|
return EmitUnaryOpLValue(cast<UnaryOperator>(E));
|
|
case Expr::ArraySubscriptExprClass:
|
|
return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
|
|
case Expr::MatrixSubscriptExprClass:
|
|
return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
|
|
case Expr::ArraySectionExprClass:
|
|
return EmitArraySectionExpr(cast<ArraySectionExpr>(E));
|
|
case Expr::ExtVectorElementExprClass:
|
|
return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
|
|
case Expr::CXXThisExprClass:
|
|
return MakeAddrLValue(LoadCXXThisAddress(), E->getType());
|
|
case Expr::MemberExprClass:
|
|
return EmitMemberExpr(cast<MemberExpr>(E));
|
|
case Expr::CompoundLiteralExprClass:
|
|
return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
|
|
case Expr::ConditionalOperatorClass:
|
|
return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
|
|
case Expr::BinaryConditionalOperatorClass:
|
|
return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
|
|
case Expr::ChooseExprClass:
|
|
return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(), IsKnownNonNull);
|
|
case Expr::OpaqueValueExprClass:
|
|
return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
|
|
case Expr::SubstNonTypeTemplateParmExprClass:
|
|
return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
|
|
IsKnownNonNull);
|
|
case Expr::ImplicitCastExprClass:
|
|
case Expr::CStyleCastExprClass:
|
|
case Expr::CXXFunctionalCastExprClass:
|
|
case Expr::CXXStaticCastExprClass:
|
|
case Expr::CXXDynamicCastExprClass:
|
|
case Expr::CXXReinterpretCastExprClass:
|
|
case Expr::CXXConstCastExprClass:
|
|
case Expr::CXXAddrspaceCastExprClass:
|
|
case Expr::ObjCBridgedCastExprClass:
|
|
return EmitCastLValue(cast<CastExpr>(E));
|
|
|
|
case Expr::MaterializeTemporaryExprClass:
|
|
return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
|
|
|
|
case Expr::CoawaitExprClass:
|
|
return EmitCoawaitLValue(cast<CoawaitExpr>(E));
|
|
case Expr::CoyieldExprClass:
|
|
return EmitCoyieldLValue(cast<CoyieldExpr>(E));
|
|
case Expr::PackIndexingExprClass:
|
|
return EmitLValue(cast<PackIndexingExpr>(E)->getSelectedExpr());
|
|
case Expr::HLSLOutArgExprClass:
|
|
llvm_unreachable("cannot emit a HLSL out argument directly");
|
|
}
|
|
}
|
|
|
|
/// Given an object of the given canonical type, can we safely copy a
|
|
/// value out of it based on its initializer?
|
|
static bool isConstantEmittableObjectType(QualType type) {
|
|
assert(type.isCanonical());
|
|
assert(!type->isReferenceType());
|
|
|
|
// Must be const-qualified but non-volatile.
|
|
Qualifiers qs = type.getLocalQualifiers();
|
|
if (!qs.hasConst() || qs.hasVolatile()) return false;
|
|
|
|
// Otherwise, all object types satisfy this except C++ classes with
|
|
// mutable subobjects or non-trivial copy/destroy behavior.
|
|
if (const auto *RT = dyn_cast<RecordType>(type))
|
|
if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
|
|
if (RD->hasMutableFields() || !RD->isTrivial())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Can we constant-emit a load of a reference to a variable of the
|
|
/// given type? This is different from predicates like
|
|
/// Decl::mightBeUsableInConstantExpressions because we do want it to apply
|
|
/// in situations that don't necessarily satisfy the language's rules
|
|
/// for this (e.g. C++'s ODR-use rules). For example, we want to able
|
|
/// to do this with const float variables even if those variables
|
|
/// aren't marked 'constexpr'.
|
|
enum ConstantEmissionKind {
|
|
CEK_None,
|
|
CEK_AsReferenceOnly,
|
|
CEK_AsValueOrReference,
|
|
CEK_AsValueOnly
|
|
};
|
|
static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
|
|
type = type.getCanonicalType();
|
|
if (const auto *ref = dyn_cast<ReferenceType>(type)) {
|
|
if (isConstantEmittableObjectType(ref->getPointeeType()))
|
|
return CEK_AsValueOrReference;
|
|
return CEK_AsReferenceOnly;
|
|
}
|
|
if (isConstantEmittableObjectType(type))
|
|
return CEK_AsValueOnly;
|
|
return CEK_None;
|
|
}
|
|
|
|
/// Try to emit a reference to the given value without producing it as
|
|
/// an l-value. This is just an optimization, but it avoids us needing
|
|
/// to emit global copies of variables if they're named without triggering
|
|
/// a formal use in a context where we can't emit a direct reference to them,
|
|
/// for instance if a block or lambda or a member of a local class uses a
|
|
/// const int variable or constexpr variable from an enclosing function.
|
|
CodeGenFunction::ConstantEmission
|
|
CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
|
|
ValueDecl *value = refExpr->getDecl();
|
|
|
|
// The value needs to be an enum constant or a constant variable.
|
|
ConstantEmissionKind CEK;
|
|
if (isa<ParmVarDecl>(value)) {
|
|
CEK = CEK_None;
|
|
} else if (auto *var = dyn_cast<VarDecl>(value)) {
|
|
CEK = checkVarTypeForConstantEmission(var->getType());
|
|
} else if (isa<EnumConstantDecl>(value)) {
|
|
CEK = CEK_AsValueOnly;
|
|
} else {
|
|
CEK = CEK_None;
|
|
}
|
|
if (CEK == CEK_None) return ConstantEmission();
|
|
|
|
Expr::EvalResult result;
|
|
bool resultIsReference;
|
|
QualType resultType;
|
|
|
|
// It's best to evaluate all the way as an r-value if that's permitted.
|
|
if (CEK != CEK_AsReferenceOnly &&
|
|
refExpr->EvaluateAsRValue(result, getContext())) {
|
|
resultIsReference = false;
|
|
resultType = refExpr->getType();
|
|
|
|
// Otherwise, try to evaluate as an l-value.
|
|
} else if (CEK != CEK_AsValueOnly &&
|
|
refExpr->EvaluateAsLValue(result, getContext())) {
|
|
resultIsReference = true;
|
|
resultType = value->getType();
|
|
|
|
// Failure.
|
|
} else {
|
|
return ConstantEmission();
|
|
}
|
|
|
|
// In any case, if the initializer has side-effects, abandon ship.
|
|
if (result.HasSideEffects)
|
|
return ConstantEmission();
|
|
|
|
// In CUDA/HIP device compilation, a lambda may capture a reference variable
|
|
// referencing a global host variable by copy. In this case the lambda should
|
|
// make a copy of the value of the global host variable. The DRE of the
|
|
// captured reference variable cannot be emitted as load from the host
|
|
// global variable as compile time constant, since the host variable is not
|
|
// accessible on device. The DRE of the captured reference variable has to be
|
|
// loaded from captures.
|
|
if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
|
|
refExpr->refersToEnclosingVariableOrCapture()) {
|
|
auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
|
|
if (isLambdaMethod(MD) && MD->getOverloadedOperator() == OO_Call) {
|
|
const APValue::LValueBase &base = result.Val.getLValueBase();
|
|
if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
|
|
if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
|
|
if (!VD->hasAttr<CUDADeviceAttr>()) {
|
|
return ConstantEmission();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit as a constant.
|
|
auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
|
|
result.Val, resultType);
|
|
|
|
// Make sure we emit a debug reference to the global variable.
|
|
// This should probably fire even for
|
|
if (isa<VarDecl>(value)) {
|
|
if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
|
|
EmitDeclRefExprDbgValue(refExpr, result.Val);
|
|
} else {
|
|
assert(isa<EnumConstantDecl>(value));
|
|
EmitDeclRefExprDbgValue(refExpr, result.Val);
|
|
}
|
|
|
|
// If we emitted a reference constant, we need to dereference that.
|
|
if (resultIsReference)
|
|
return ConstantEmission::forReference(C);
|
|
|
|
return ConstantEmission::forValue(C);
|
|
}
|
|
|
|
static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
|
|
const MemberExpr *ME) {
|
|
if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
|
|
// Try to emit static variable member expressions as DREs.
|
|
return DeclRefExpr::Create(
|
|
CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
|
|
/*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
|
|
ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
CodeGenFunction::ConstantEmission
|
|
CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
|
|
if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
|
|
return tryEmitAsConstant(DRE);
|
|
return ConstantEmission();
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::emitScalarConstant(
|
|
const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
|
|
assert(Constant && "not a constant");
|
|
if (Constant.isReference())
|
|
return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
|
|
E->getExprLoc())
|
|
.getScalarVal();
|
|
return Constant.getValue();
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
|
|
SourceLocation Loc) {
|
|
return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
|
|
lvalue.getType(), Loc, lvalue.getBaseInfo(),
|
|
lvalue.getTBAAInfo(), lvalue.isNontemporal());
|
|
}
|
|
|
|
static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
|
|
llvm::APInt &Min, llvm::APInt &End,
|
|
bool StrictEnums, bool IsBool) {
|
|
const EnumType *ET = Ty->getAs<EnumType>();
|
|
bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
|
|
ET && !ET->getDecl()->isFixed();
|
|
if (!IsBool && !IsRegularCPlusPlusEnum)
|
|
return false;
|
|
|
|
if (IsBool) {
|
|
Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
|
|
End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
|
|
} else {
|
|
const EnumDecl *ED = ET->getDecl();
|
|
ED->getValueRange(End, Min);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
|
|
llvm::APInt Min, End;
|
|
if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
|
|
Ty->hasBooleanRepresentation()))
|
|
return nullptr;
|
|
|
|
llvm::MDBuilder MDHelper(getLLVMContext());
|
|
return MDHelper.createRange(Min, End);
|
|
}
|
|
|
|
bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
|
|
SourceLocation Loc) {
|
|
bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
|
|
bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
|
|
if (!HasBoolCheck && !HasEnumCheck)
|
|
return false;
|
|
|
|
bool IsBool = Ty->hasBooleanRepresentation() ||
|
|
NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
|
|
bool NeedsBoolCheck = HasBoolCheck && IsBool;
|
|
bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
|
|
if (!NeedsBoolCheck && !NeedsEnumCheck)
|
|
return false;
|
|
|
|
// Single-bit booleans don't need to be checked. Special-case this to avoid
|
|
// a bit width mismatch when handling bitfield values. This is handled by
|
|
// EmitFromMemory for the non-bitfield case.
|
|
if (IsBool &&
|
|
cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
|
|
return false;
|
|
|
|
if (NeedsEnumCheck &&
|
|
getContext().isTypeIgnoredBySanitizer(SanitizerKind::Enum, Ty))
|
|
return false;
|
|
|
|
llvm::APInt Min, End;
|
|
if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
|
|
return true;
|
|
|
|
auto &Ctx = getLLVMContext();
|
|
SanitizerScope SanScope(this);
|
|
llvm::Value *Check;
|
|
--End;
|
|
if (!Min) {
|
|
Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
|
|
} else {
|
|
llvm::Value *Upper =
|
|
Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
|
|
llvm::Value *Lower =
|
|
Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
|
|
Check = Builder.CreateAnd(Upper, Lower);
|
|
}
|
|
llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
|
|
EmitCheckTypeDescriptor(Ty)};
|
|
SanitizerKind::SanitizerOrdinal Kind =
|
|
NeedsEnumCheck ? SanitizerKind::SO_Enum : SanitizerKind::SO_Bool;
|
|
EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
|
|
StaticArgs, EmitCheckValue(Value));
|
|
return true;
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
|
|
QualType Ty,
|
|
SourceLocation Loc,
|
|
LValueBaseInfo BaseInfo,
|
|
TBAAAccessInfo TBAAInfo,
|
|
bool isNontemporal) {
|
|
if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getBasePointer()))
|
|
if (GV->isThreadLocal())
|
|
Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV),
|
|
NotKnownNonNull);
|
|
|
|
if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
|
|
// Boolean vectors use `iN` as storage type.
|
|
if (ClangVecTy->isPackedVectorBoolType(getContext())) {
|
|
llvm::Type *ValTy = ConvertType(Ty);
|
|
unsigned ValNumElems =
|
|
cast<llvm::FixedVectorType>(ValTy)->getNumElements();
|
|
// Load the `iP` storage object (P is the padded vector size).
|
|
auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits");
|
|
const auto *RawIntTy = RawIntV->getType();
|
|
assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors");
|
|
// Bitcast iP --> <P x i1>.
|
|
auto *PaddedVecTy = llvm::FixedVectorType::get(
|
|
Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
|
|
llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy);
|
|
// Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
|
|
V = emitBoolVecConversion(V, ValNumElems, "extractvec");
|
|
|
|
return EmitFromMemory(V, Ty);
|
|
}
|
|
|
|
// Handles vectors of sizes that are likely to be expanded to a larger size
|
|
// to optimize performance.
|
|
auto *VTy = cast<llvm::FixedVectorType>(Addr.getElementType());
|
|
auto *NewVecTy =
|
|
CGM.getABIInfo().getOptimalVectorMemoryType(VTy, getLangOpts());
|
|
|
|
if (VTy != NewVecTy) {
|
|
Address Cast = Addr.withElementType(NewVecTy);
|
|
llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVecN");
|
|
unsigned OldNumElements = VTy->getNumElements();
|
|
SmallVector<int, 16> Mask(OldNumElements);
|
|
std::iota(Mask.begin(), Mask.end(), 0);
|
|
V = Builder.CreateShuffleVector(V, Mask, "extractVec");
|
|
return EmitFromMemory(V, Ty);
|
|
}
|
|
}
|
|
|
|
// Atomic operations have to be done on integral types.
|
|
LValue AtomicLValue =
|
|
LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
|
|
if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
|
|
return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
|
|
}
|
|
|
|
Addr =
|
|
Addr.withElementType(convertTypeForLoadStore(Ty, Addr.getElementType()));
|
|
|
|
llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
|
|
if (isNontemporal) {
|
|
llvm::MDNode *Node = llvm::MDNode::get(
|
|
Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
|
|
Load->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
|
|
}
|
|
|
|
CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
|
|
|
|
if (EmitScalarRangeCheck(Load, Ty, Loc)) {
|
|
// In order to prevent the optimizer from throwing away the check, don't
|
|
// attach range metadata to the load.
|
|
} else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
|
|
if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) {
|
|
Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
|
|
Load->setMetadata(llvm::LLVMContext::MD_noundef,
|
|
llvm::MDNode::get(getLLVMContext(), {}));
|
|
}
|
|
|
|
return EmitFromMemory(Load, Ty);
|
|
}
|
|
|
|
/// Converts a scalar value from its primary IR type (as returned
|
|
/// by ConvertType) to its load/store type (as returned by
|
|
/// convertTypeForLoadStore).
|
|
llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
|
|
if (Ty->hasBooleanRepresentation() || Ty->isBitIntType()) {
|
|
llvm::Type *StoreTy = convertTypeForLoadStore(Ty, Value->getType());
|
|
bool Signed = Ty->isSignedIntegerOrEnumerationType();
|
|
return Builder.CreateIntCast(Value, StoreTy, Signed, "storedv");
|
|
}
|
|
|
|
if (Ty->isExtVectorBoolType()) {
|
|
llvm::Type *StoreTy = convertTypeForLoadStore(Ty, Value->getType());
|
|
if (StoreTy->isVectorTy() && StoreTy->getScalarSizeInBits() >
|
|
Value->getType()->getScalarSizeInBits())
|
|
return Builder.CreateZExt(Value, StoreTy);
|
|
|
|
// Expand to the memory bit width.
|
|
unsigned MemNumElems = StoreTy->getPrimitiveSizeInBits();
|
|
// <N x i1> --> <P x i1>.
|
|
Value = emitBoolVecConversion(Value, MemNumElems, "insertvec");
|
|
// <P x i1> --> iP.
|
|
Value = Builder.CreateBitCast(Value, StoreTy);
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
|
|
/// Converts a scalar value from its load/store type (as returned
|
|
/// by convertTypeForLoadStore) to its primary IR type (as returned
|
|
/// by ConvertType).
|
|
llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
|
|
if (Ty->isPackedVectorBoolType(getContext())) {
|
|
const auto *RawIntTy = Value->getType();
|
|
|
|
// Bitcast iP --> <P x i1>.
|
|
auto *PaddedVecTy = llvm::FixedVectorType::get(
|
|
Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
|
|
auto *V = Builder.CreateBitCast(Value, PaddedVecTy);
|
|
// Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
|
|
llvm::Type *ValTy = ConvertType(Ty);
|
|
unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements();
|
|
return emitBoolVecConversion(V, ValNumElems, "extractvec");
|
|
}
|
|
|
|
llvm::Type *ResTy = ConvertType(Ty);
|
|
if (Ty->hasBooleanRepresentation() || Ty->isBitIntType() ||
|
|
Ty->isExtVectorBoolType())
|
|
return Builder.CreateTrunc(Value, ResTy, "loadedv");
|
|
|
|
return Value;
|
|
}
|
|
|
|
// Convert the pointer of \p Addr to a pointer to a vector (the value type of
|
|
// MatrixType), if it points to a array (the memory type of MatrixType).
|
|
static RawAddress MaybeConvertMatrixAddress(RawAddress Addr,
|
|
CodeGenFunction &CGF,
|
|
bool IsVector = true) {
|
|
auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType());
|
|
if (ArrayTy && IsVector) {
|
|
auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
|
|
ArrayTy->getNumElements());
|
|
|
|
return Addr.withElementType(VectorTy);
|
|
}
|
|
auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType());
|
|
if (VectorTy && !IsVector) {
|
|
auto *ArrayTy = llvm::ArrayType::get(
|
|
VectorTy->getElementType(),
|
|
cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
|
|
|
|
return Addr.withElementType(ArrayTy);
|
|
}
|
|
|
|
return Addr;
|
|
}
|
|
|
|
// Emit a store of a matrix LValue. This may require casting the original
|
|
// pointer to memory address (ArrayType) to a pointer to the value type
|
|
// (VectorType).
|
|
static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
|
|
bool isInit, CodeGenFunction &CGF) {
|
|
Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(), CGF,
|
|
value->getType()->isVectorTy());
|
|
CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
|
|
lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
|
|
lvalue.isNontemporal());
|
|
}
|
|
|
|
void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
|
|
bool Volatile, QualType Ty,
|
|
LValueBaseInfo BaseInfo,
|
|
TBAAAccessInfo TBAAInfo,
|
|
bool isInit, bool isNontemporal) {
|
|
if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getBasePointer()))
|
|
if (GV->isThreadLocal())
|
|
Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV),
|
|
NotKnownNonNull);
|
|
|
|
// Handles vectors of sizes that are likely to be expanded to a larger size
|
|
// to optimize performance.
|
|
llvm::Type *SrcTy = Value->getType();
|
|
if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
|
|
if (auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
|
|
auto *NewVecTy =
|
|
CGM.getABIInfo().getOptimalVectorMemoryType(VecTy, getLangOpts());
|
|
if (!ClangVecTy->isPackedVectorBoolType(getContext()) &&
|
|
VecTy != NewVecTy) {
|
|
SmallVector<int, 16> Mask(NewVecTy->getNumElements(), -1);
|
|
std::iota(Mask.begin(), Mask.begin() + VecTy->getNumElements(), 0);
|
|
Value = Builder.CreateShuffleVector(Value, Mask, "extractVec");
|
|
SrcTy = NewVecTy;
|
|
}
|
|
if (Addr.getElementType() != SrcTy)
|
|
Addr = Addr.withElementType(SrcTy);
|
|
}
|
|
}
|
|
|
|
Value = EmitToMemory(Value, Ty);
|
|
|
|
LValue AtomicLValue =
|
|
LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
|
|
if (Ty->isAtomicType() ||
|
|
(!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
|
|
EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
|
|
return;
|
|
}
|
|
|
|
llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
|
|
if (isNontemporal) {
|
|
llvm::MDNode *Node =
|
|
llvm::MDNode::get(Store->getContext(),
|
|
llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
|
|
Store->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
|
|
}
|
|
|
|
CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
|
|
}
|
|
|
|
void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
|
|
bool isInit) {
|
|
if (lvalue.getType()->isConstantMatrixType()) {
|
|
EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
|
|
return;
|
|
}
|
|
|
|
EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
|
|
lvalue.getType(), lvalue.getBaseInfo(),
|
|
lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
|
|
}
|
|
|
|
// Emit a load of a LValue of matrix type. This may require casting the pointer
|
|
// to memory address (ArrayType) to a pointer to the value type (VectorType).
|
|
static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
|
|
CodeGenFunction &CGF) {
|
|
assert(LV.getType()->isConstantMatrixType());
|
|
Address Addr = MaybeConvertMatrixAddress(LV.getAddress(), CGF);
|
|
LV.setAddress(Addr);
|
|
return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitLoadOfAnyValue(LValue LV, AggValueSlot Slot,
|
|
SourceLocation Loc) {
|
|
QualType Ty = LV.getType();
|
|
switch (getEvaluationKind(Ty)) {
|
|
case TEK_Scalar:
|
|
return EmitLoadOfLValue(LV, Loc);
|
|
case TEK_Complex:
|
|
return RValue::getComplex(EmitLoadOfComplex(LV, Loc));
|
|
case TEK_Aggregate:
|
|
EmitAggFinalDestCopy(Ty, Slot, LV, EVK_NonRValue);
|
|
return Slot.asRValue();
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
|
|
/// method emits the address of the lvalue, then loads the result as an rvalue,
|
|
/// returning the rvalue.
|
|
RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
|
|
if (LV.isObjCWeak()) {
|
|
// load of a __weak object.
|
|
Address AddrWeakObj = LV.getAddress();
|
|
return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
|
|
AddrWeakObj));
|
|
}
|
|
if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
|
|
// In MRC mode, we do a load+autorelease.
|
|
if (!getLangOpts().ObjCAutoRefCount) {
|
|
return RValue::get(EmitARCLoadWeak(LV.getAddress()));
|
|
}
|
|
|
|
// In ARC mode, we load retained and then consume the value.
|
|
llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
|
|
Object = EmitObjCConsumeObject(LV.getType(), Object);
|
|
return RValue::get(Object);
|
|
}
|
|
|
|
if (LV.isSimple()) {
|
|
assert(!LV.getType()->isFunctionType());
|
|
|
|
if (LV.getType()->isConstantMatrixType())
|
|
return EmitLoadOfMatrixLValue(LV, Loc, *this);
|
|
|
|
// Everything needs a load.
|
|
return RValue::get(EmitLoadOfScalar(LV, Loc));
|
|
}
|
|
|
|
if (LV.isVectorElt()) {
|
|
llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
|
|
LV.isVolatileQualified());
|
|
return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
|
|
"vecext"));
|
|
}
|
|
|
|
// If this is a reference to a subset of the elements of a vector, either
|
|
// shuffle the input or extract/insert them as appropriate.
|
|
if (LV.isExtVectorElt()) {
|
|
return EmitLoadOfExtVectorElementLValue(LV);
|
|
}
|
|
|
|
// Global Register variables always invoke intrinsics
|
|
if (LV.isGlobalReg())
|
|
return EmitLoadOfGlobalRegLValue(LV);
|
|
|
|
if (LV.isMatrixElt()) {
|
|
llvm::Value *Idx = LV.getMatrixIdx();
|
|
if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
|
|
const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>();
|
|
llvm::MatrixBuilder MB(Builder);
|
|
MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
|
|
}
|
|
llvm::LoadInst *Load =
|
|
Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
|
|
return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
|
|
}
|
|
|
|
assert(LV.isBitField() && "Unknown LValue type!");
|
|
return EmitLoadOfBitfieldLValue(LV, Loc);
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
|
|
SourceLocation Loc) {
|
|
const CGBitFieldInfo &Info = LV.getBitFieldInfo();
|
|
|
|
// Get the output type.
|
|
llvm::Type *ResLTy = ConvertType(LV.getType());
|
|
|
|
Address Ptr = LV.getBitFieldAddress();
|
|
llvm::Value *Val =
|
|
Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
|
|
|
|
bool UseVolatile = LV.isVolatileQualified() &&
|
|
Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
|
|
const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
|
|
const unsigned StorageSize =
|
|
UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
|
|
if (Info.IsSigned) {
|
|
assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
|
|
unsigned HighBits = StorageSize - Offset - Info.Size;
|
|
if (HighBits)
|
|
Val = Builder.CreateShl(Val, HighBits, "bf.shl");
|
|
if (Offset + HighBits)
|
|
Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
|
|
} else {
|
|
if (Offset)
|
|
Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
|
|
if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
|
|
Val = Builder.CreateAnd(
|
|
Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
|
|
}
|
|
Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
|
|
EmitScalarRangeCheck(Val, LV.getType(), Loc);
|
|
return RValue::get(Val);
|
|
}
|
|
|
|
// If this is a reference to a subset of the elements of a vector, create an
|
|
// appropriate shufflevector.
|
|
RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
|
|
llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
|
|
LV.isVolatileQualified());
|
|
|
|
// HLSL allows treating scalars as one-element vectors. Converting the scalar
|
|
// IR value to a vector here allows the rest of codegen to behave as normal.
|
|
if (getLangOpts().HLSL && !Vec->getType()->isVectorTy()) {
|
|
llvm::Type *DstTy = llvm::FixedVectorType::get(Vec->getType(), 1);
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
|
|
Vec = Builder.CreateInsertElement(DstTy, Vec, Zero, "cast.splat");
|
|
}
|
|
|
|
const llvm::Constant *Elts = LV.getExtVectorElts();
|
|
|
|
// If the result of the expression is a non-vector type, we must be extracting
|
|
// a single element. Just codegen as an extractelement.
|
|
const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
|
|
if (!ExprVT) {
|
|
unsigned InIdx = getAccessedFieldNo(0, Elts);
|
|
llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
|
|
|
|
llvm::Value *Element = Builder.CreateExtractElement(Vec, Elt);
|
|
|
|
llvm::Type *LVTy = ConvertType(LV.getType());
|
|
if (Element->getType()->getPrimitiveSizeInBits() >
|
|
LVTy->getPrimitiveSizeInBits())
|
|
Element = Builder.CreateTrunc(Element, LVTy);
|
|
|
|
return RValue::get(Element);
|
|
}
|
|
|
|
// Always use shuffle vector to try to retain the original program structure
|
|
unsigned NumResultElts = ExprVT->getNumElements();
|
|
|
|
SmallVector<int, 4> Mask;
|
|
for (unsigned i = 0; i != NumResultElts; ++i)
|
|
Mask.push_back(getAccessedFieldNo(i, Elts));
|
|
|
|
Vec = Builder.CreateShuffleVector(Vec, Mask);
|
|
|
|
if (LV.getType()->isExtVectorBoolType())
|
|
Vec = Builder.CreateTrunc(Vec, ConvertType(LV.getType()), "truncv");
|
|
|
|
return RValue::get(Vec);
|
|
}
|
|
|
|
/// Generates lvalue for partial ext_vector access.
|
|
Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
|
|
Address VectorAddress = LV.getExtVectorAddress();
|
|
QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
|
|
llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
|
|
|
|
Address CastToPointerElement = VectorAddress.withElementType(VectorElementTy);
|
|
|
|
const llvm::Constant *Elts = LV.getExtVectorElts();
|
|
unsigned ix = getAccessedFieldNo(0, Elts);
|
|
|
|
Address VectorBasePtrPlusIx =
|
|
Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
|
|
"vector.elt");
|
|
|
|
return VectorBasePtrPlusIx;
|
|
}
|
|
|
|
/// Load of global named registers are always calls to intrinsics.
|
|
RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
|
|
assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
|
|
"Bad type for register variable");
|
|
llvm::MDNode *RegName = cast<llvm::MDNode>(
|
|
cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
|
|
|
|
// We accept integer and pointer types only
|
|
llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
|
|
llvm::Type *Ty = OrigTy;
|
|
if (OrigTy->isPointerTy())
|
|
Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
|
|
llvm::Type *Types[] = { Ty };
|
|
|
|
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
|
|
llvm::Value *Call = Builder.CreateCall(
|
|
F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
|
|
if (OrigTy->isPointerTy())
|
|
Call = Builder.CreateIntToPtr(Call, OrigTy);
|
|
return RValue::get(Call);
|
|
}
|
|
|
|
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
|
|
/// lvalue, where both are guaranteed to the have the same type, and that type
|
|
/// is 'Ty'.
|
|
void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
|
|
bool isInit) {
|
|
if (!Dst.isSimple()) {
|
|
if (Dst.isVectorElt()) {
|
|
// Read/modify/write the vector, inserting the new element.
|
|
llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
|
|
Dst.isVolatileQualified());
|
|
llvm::Type *VecTy = Vec->getType();
|
|
llvm::Value *SrcVal = Src.getScalarVal();
|
|
|
|
if (SrcVal->getType()->getPrimitiveSizeInBits() <
|
|
VecTy->getScalarSizeInBits())
|
|
SrcVal = Builder.CreateZExt(SrcVal, VecTy->getScalarType());
|
|
|
|
auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType());
|
|
if (IRStoreTy) {
|
|
auto *IRVecTy = llvm::FixedVectorType::get(
|
|
Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits());
|
|
Vec = Builder.CreateBitCast(Vec, IRVecTy);
|
|
// iN --> <N x i1>.
|
|
}
|
|
|
|
// Allow inserting `<1 x T>` into an `<N x T>`. It can happen with scalar
|
|
// types which are mapped to vector LLVM IR types (e.g. for implementing
|
|
// an ABI).
|
|
if (auto *EltTy = dyn_cast<llvm::FixedVectorType>(SrcVal->getType());
|
|
EltTy && EltTy->getNumElements() == 1)
|
|
SrcVal = Builder.CreateBitCast(SrcVal, EltTy->getElementType());
|
|
|
|
Vec = Builder.CreateInsertElement(Vec, SrcVal, Dst.getVectorIdx(),
|
|
"vecins");
|
|
if (IRStoreTy) {
|
|
// <N x i1> --> <iN>.
|
|
Vec = Builder.CreateBitCast(Vec, IRStoreTy);
|
|
}
|
|
|
|
Builder.CreateStore(Vec, Dst.getVectorAddress(),
|
|
Dst.isVolatileQualified());
|
|
return;
|
|
}
|
|
|
|
// If this is an update of extended vector elements, insert them as
|
|
// appropriate.
|
|
if (Dst.isExtVectorElt())
|
|
return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
|
|
|
|
if (Dst.isGlobalReg())
|
|
return EmitStoreThroughGlobalRegLValue(Src, Dst);
|
|
|
|
if (Dst.isMatrixElt()) {
|
|
llvm::Value *Idx = Dst.getMatrixIdx();
|
|
if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
|
|
const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>();
|
|
llvm::MatrixBuilder MB(Builder);
|
|
MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
|
|
}
|
|
llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
|
|
llvm::Value *Vec =
|
|
Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
|
|
Builder.CreateStore(Vec, Dst.getMatrixAddress(),
|
|
Dst.isVolatileQualified());
|
|
return;
|
|
}
|
|
|
|
assert(Dst.isBitField() && "Unknown LValue type");
|
|
return EmitStoreThroughBitfieldLValue(Src, Dst);
|
|
}
|
|
|
|
// There's special magic for assigning into an ARC-qualified l-value.
|
|
if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
|
|
switch (Lifetime) {
|
|
case Qualifiers::OCL_None:
|
|
llvm_unreachable("present but none");
|
|
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
// nothing special
|
|
break;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
if (isInit) {
|
|
Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
|
|
break;
|
|
}
|
|
EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
|
|
return;
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
if (isInit)
|
|
// Initialize and then skip the primitive store.
|
|
EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
|
|
else
|
|
EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(),
|
|
/*ignore*/ true);
|
|
return;
|
|
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
|
|
Src.getScalarVal()));
|
|
// fall into the normal path
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Dst.isObjCWeak() && !Dst.isNonGC()) {
|
|
// load of a __weak object.
|
|
Address LvalueDst = Dst.getAddress();
|
|
llvm::Value *src = Src.getScalarVal();
|
|
CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
|
|
return;
|
|
}
|
|
|
|
if (Dst.isObjCStrong() && !Dst.isNonGC()) {
|
|
// load of a __strong object.
|
|
Address LvalueDst = Dst.getAddress();
|
|
llvm::Value *src = Src.getScalarVal();
|
|
if (Dst.isObjCIvar()) {
|
|
assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
|
|
llvm::Type *ResultType = IntPtrTy;
|
|
Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
|
|
llvm::Value *RHS = dst.emitRawPointer(*this);
|
|
RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
|
|
llvm::Value *LHS = Builder.CreatePtrToInt(LvalueDst.emitRawPointer(*this),
|
|
ResultType, "sub.ptr.lhs.cast");
|
|
llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
|
|
CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, BytesBetween);
|
|
} else if (Dst.isGlobalObjCRef()) {
|
|
CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
|
|
Dst.isThreadLocalRef());
|
|
}
|
|
else
|
|
CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
|
|
return;
|
|
}
|
|
|
|
assert(Src.isScalar() && "Can't emit an agg store with this method");
|
|
EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
|
|
}
|
|
|
|
void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
|
|
llvm::Value **Result) {
|
|
const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
|
|
llvm::Type *ResLTy = convertTypeForLoadStore(Dst.getType());
|
|
Address Ptr = Dst.getBitFieldAddress();
|
|
|
|
// Get the source value, truncated to the width of the bit-field.
|
|
llvm::Value *SrcVal = Src.getScalarVal();
|
|
|
|
// Cast the source to the storage type and shift it into place.
|
|
SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
|
|
/*isSigned=*/false);
|
|
llvm::Value *MaskedVal = SrcVal;
|
|
|
|
const bool UseVolatile =
|
|
CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
|
|
Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
|
|
const unsigned StorageSize =
|
|
UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
|
|
const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
|
|
// See if there are other bits in the bitfield's storage we'll need to load
|
|
// and mask together with source before storing.
|
|
if (StorageSize != Info.Size) {
|
|
assert(StorageSize > Info.Size && "Invalid bitfield size.");
|
|
llvm::Value *Val =
|
|
Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
|
|
|
|
// Mask the source value as needed.
|
|
if (!Dst.getType()->hasBooleanRepresentation())
|
|
SrcVal = Builder.CreateAnd(
|
|
SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
|
|
"bf.value");
|
|
MaskedVal = SrcVal;
|
|
if (Offset)
|
|
SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
|
|
|
|
// Mask out the original value.
|
|
Val = Builder.CreateAnd(
|
|
Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
|
|
"bf.clear");
|
|
|
|
// Or together the unchanged values and the source value.
|
|
SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
|
|
} else {
|
|
assert(Offset == 0);
|
|
// According to the AACPS:
|
|
// When a volatile bit-field is written, and its container does not overlap
|
|
// with any non-bit-field member, its container must be read exactly once
|
|
// and written exactly once using the access width appropriate to the type
|
|
// of the container. The two accesses are not atomic.
|
|
if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
|
|
CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
|
|
Builder.CreateLoad(Ptr, true, "bf.load");
|
|
}
|
|
|
|
// Write the new value back out.
|
|
Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
|
|
|
|
// Return the new value of the bit-field, if requested.
|
|
if (Result) {
|
|
llvm::Value *ResultVal = MaskedVal;
|
|
|
|
// Sign extend the value if needed.
|
|
if (Info.IsSigned) {
|
|
assert(Info.Size <= StorageSize);
|
|
unsigned HighBits = StorageSize - Info.Size;
|
|
if (HighBits) {
|
|
ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
|
|
ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
|
|
}
|
|
}
|
|
|
|
ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
|
|
"bf.result.cast");
|
|
*Result = EmitFromMemory(ResultVal, Dst.getType());
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
|
|
LValue Dst) {
|
|
// HLSL allows storing to scalar values through ExtVector component LValues.
|
|
// To support this we need to handle the case where the destination address is
|
|
// a scalar.
|
|
Address DstAddr = Dst.getExtVectorAddress();
|
|
if (!DstAddr.getElementType()->isVectorTy()) {
|
|
assert(!Dst.getType()->isVectorType() &&
|
|
"this should only occur for non-vector l-values");
|
|
Builder.CreateStore(Src.getScalarVal(), DstAddr, Dst.isVolatileQualified());
|
|
return;
|
|
}
|
|
|
|
// This access turns into a read/modify/write of the vector. Load the input
|
|
// value now.
|
|
llvm::Value *Vec = Builder.CreateLoad(DstAddr, Dst.isVolatileQualified());
|
|
llvm::Type *VecTy = Vec->getType();
|
|
const llvm::Constant *Elts = Dst.getExtVectorElts();
|
|
|
|
if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
|
|
unsigned NumSrcElts = VTy->getNumElements();
|
|
unsigned NumDstElts = cast<llvm::FixedVectorType>(VecTy)->getNumElements();
|
|
if (NumDstElts == NumSrcElts) {
|
|
// Use shuffle vector is the src and destination are the same number of
|
|
// elements and restore the vector mask since it is on the side it will be
|
|
// stored.
|
|
SmallVector<int, 4> Mask(NumDstElts);
|
|
for (unsigned i = 0; i != NumSrcElts; ++i)
|
|
Mask[getAccessedFieldNo(i, Elts)] = i;
|
|
|
|
llvm::Value *SrcVal = Src.getScalarVal();
|
|
if (VecTy->getScalarSizeInBits() >
|
|
SrcVal->getType()->getScalarSizeInBits())
|
|
SrcVal = Builder.CreateZExt(SrcVal, VecTy);
|
|
|
|
Vec = Builder.CreateShuffleVector(SrcVal, Mask);
|
|
} else if (NumDstElts > NumSrcElts) {
|
|
// Extended the source vector to the same length and then shuffle it
|
|
// into the destination.
|
|
// FIXME: since we're shuffling with undef, can we just use the indices
|
|
// into that? This could be simpler.
|
|
SmallVector<int, 4> ExtMask;
|
|
for (unsigned i = 0; i != NumSrcElts; ++i)
|
|
ExtMask.push_back(i);
|
|
ExtMask.resize(NumDstElts, -1);
|
|
llvm::Value *ExtSrcVal =
|
|
Builder.CreateShuffleVector(Src.getScalarVal(), ExtMask);
|
|
// build identity
|
|
SmallVector<int, 4> Mask;
|
|
for (unsigned i = 0; i != NumDstElts; ++i)
|
|
Mask.push_back(i);
|
|
|
|
// When the vector size is odd and .odd or .hi is used, the last element
|
|
// of the Elts constant array will be one past the size of the vector.
|
|
// Ignore the last element here, if it is greater than the mask size.
|
|
if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
|
|
NumSrcElts--;
|
|
|
|
// modify when what gets shuffled in
|
|
for (unsigned i = 0; i != NumSrcElts; ++i)
|
|
Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
|
|
Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
|
|
} else {
|
|
// We should never shorten the vector
|
|
llvm_unreachable("unexpected shorten vector length");
|
|
}
|
|
} else {
|
|
// If the Src is a scalar (not a vector), and the target is a vector it must
|
|
// be updating one element.
|
|
unsigned InIdx = getAccessedFieldNo(0, Elts);
|
|
llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
|
|
|
|
llvm::Value *SrcVal = Src.getScalarVal();
|
|
if (VecTy->getScalarSizeInBits() > SrcVal->getType()->getScalarSizeInBits())
|
|
SrcVal = Builder.CreateZExt(SrcVal, VecTy->getScalarType());
|
|
|
|
Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
|
|
}
|
|
|
|
Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
|
|
Dst.isVolatileQualified());
|
|
}
|
|
|
|
/// Store of global named registers are always calls to intrinsics.
|
|
void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
|
|
assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
|
|
"Bad type for register variable");
|
|
llvm::MDNode *RegName = cast<llvm::MDNode>(
|
|
cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
|
|
assert(RegName && "Register LValue is not metadata");
|
|
|
|
// We accept integer and pointer types only
|
|
llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
|
|
llvm::Type *Ty = OrigTy;
|
|
if (OrigTy->isPointerTy())
|
|
Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
|
|
llvm::Type *Types[] = { Ty };
|
|
|
|
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
|
|
llvm::Value *Value = Src.getScalarVal();
|
|
if (OrigTy->isPointerTy())
|
|
Value = Builder.CreatePtrToInt(Value, Ty);
|
|
Builder.CreateCall(
|
|
F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
|
|
}
|
|
|
|
// setObjCGCLValueClass - sets class of the lvalue for the purpose of
|
|
// generating write-barries API. It is currently a global, ivar,
|
|
// or neither.
|
|
static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
|
|
LValue &LV,
|
|
bool IsMemberAccess=false) {
|
|
if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
|
|
return;
|
|
|
|
if (isa<ObjCIvarRefExpr>(E)) {
|
|
QualType ExpTy = E->getType();
|
|
if (IsMemberAccess && ExpTy->isPointerType()) {
|
|
// If ivar is a structure pointer, assigning to field of
|
|
// this struct follows gcc's behavior and makes it a non-ivar
|
|
// writer-barrier conservatively.
|
|
ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
|
|
if (ExpTy->isRecordType()) {
|
|
LV.setObjCIvar(false);
|
|
return;
|
|
}
|
|
}
|
|
LV.setObjCIvar(true);
|
|
auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
|
|
LV.setBaseIvarExp(Exp->getBase());
|
|
LV.setObjCArray(E->getType()->isArrayType());
|
|
return;
|
|
}
|
|
|
|
if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
|
|
if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
|
|
if (VD->hasGlobalStorage()) {
|
|
LV.setGlobalObjCRef(true);
|
|
LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
|
|
}
|
|
}
|
|
LV.setObjCArray(E->getType()->isArrayType());
|
|
return;
|
|
}
|
|
|
|
if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
|
|
return;
|
|
}
|
|
|
|
if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
|
|
if (LV.isObjCIvar()) {
|
|
// If cast is to a structure pointer, follow gcc's behavior and make it
|
|
// a non-ivar write-barrier.
|
|
QualType ExpTy = E->getType();
|
|
if (ExpTy->isPointerType())
|
|
ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
|
|
if (ExpTy->isRecordType())
|
|
LV.setObjCIvar(false);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
|
|
return;
|
|
}
|
|
|
|
if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
|
|
return;
|
|
}
|
|
|
|
if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
|
|
return;
|
|
}
|
|
|
|
if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
|
|
return;
|
|
}
|
|
|
|
if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
|
|
if (LV.isObjCIvar() && !LV.isObjCArray())
|
|
// Using array syntax to assigning to what an ivar points to is not
|
|
// same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
|
|
LV.setObjCIvar(false);
|
|
else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
|
|
// Using array syntax to assigning to what global points to is not
|
|
// same as assigning to the global itself. {id *G;} G[i] = 0;
|
|
LV.setGlobalObjCRef(false);
|
|
return;
|
|
}
|
|
|
|
if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
|
|
setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
|
|
// We don't know if member is an 'ivar', but this flag is looked at
|
|
// only in the context of LV.isObjCIvar().
|
|
LV.setObjCArray(E->getType()->isArrayType());
|
|
return;
|
|
}
|
|
}
|
|
|
|
static LValue EmitThreadPrivateVarDeclLValue(
|
|
CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
|
|
llvm::Type *RealVarTy, SourceLocation Loc) {
|
|
if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
|
|
Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
|
|
CGF, VD, Addr, Loc);
|
|
else
|
|
Addr =
|
|
CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
|
|
|
|
Addr = Addr.withElementType(RealVarTy);
|
|
return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
|
|
}
|
|
|
|
static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
|
|
const VarDecl *VD, QualType T) {
|
|
std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
|
|
// Return an invalid address if variable is MT_To (or MT_Enter starting with
|
|
// OpenMP 5.2) and unified memory is not enabled. For all other cases: MT_Link
|
|
// and MT_To (or MT_Enter) with unified memory, return a valid address.
|
|
if (!Res || ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
|
|
*Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
|
|
!CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
|
|
return Address::invalid();
|
|
assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
|
|
((*Res == OMPDeclareTargetDeclAttr::MT_To ||
|
|
*Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
|
|
CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
|
|
"Expected link clause OR to clause with unified memory enabled.");
|
|
QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
|
|
Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
|
|
return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
|
|
}
|
|
|
|
Address
|
|
CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
|
|
LValueBaseInfo *PointeeBaseInfo,
|
|
TBAAAccessInfo *PointeeTBAAInfo) {
|
|
llvm::LoadInst *Load =
|
|
Builder.CreateLoad(RefLVal.getAddress(), RefLVal.isVolatile());
|
|
CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
|
|
return makeNaturalAddressForPointer(Load, RefLVal.getType()->getPointeeType(),
|
|
CharUnits(), /*ForPointeeType=*/true,
|
|
PointeeBaseInfo, PointeeTBAAInfo);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
|
|
LValueBaseInfo PointeeBaseInfo;
|
|
TBAAAccessInfo PointeeTBAAInfo;
|
|
Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
|
|
&PointeeTBAAInfo);
|
|
return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
|
|
PointeeBaseInfo, PointeeTBAAInfo);
|
|
}
|
|
|
|
Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
|
|
const PointerType *PtrTy,
|
|
LValueBaseInfo *BaseInfo,
|
|
TBAAAccessInfo *TBAAInfo) {
|
|
llvm::Value *Addr = Builder.CreateLoad(Ptr);
|
|
return makeNaturalAddressForPointer(Addr, PtrTy->getPointeeType(),
|
|
CharUnits(), /*ForPointeeType=*/true,
|
|
BaseInfo, TBAAInfo);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
|
|
const PointerType *PtrTy) {
|
|
LValueBaseInfo BaseInfo;
|
|
TBAAAccessInfo TBAAInfo;
|
|
Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
|
|
return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
|
|
}
|
|
|
|
static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
|
|
const Expr *E, const VarDecl *VD) {
|
|
QualType T = E->getType();
|
|
|
|
// If it's thread_local, emit a call to its wrapper function instead.
|
|
if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
|
|
CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
|
|
return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
|
|
// Check if the variable is marked as declare target with link clause in
|
|
// device codegen.
|
|
if (CGF.getLangOpts().OpenMPIsTargetDevice) {
|
|
Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
|
|
if (Addr.isValid())
|
|
return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
|
|
}
|
|
|
|
llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
|
|
|
|
if (VD->getTLSKind() != VarDecl::TLS_None)
|
|
V = CGF.Builder.CreateThreadLocalAddress(V);
|
|
|
|
llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
|
|
CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
|
|
Address Addr(V, RealVarTy, Alignment);
|
|
// Emit reference to the private copy of the variable if it is an OpenMP
|
|
// threadprivate variable.
|
|
if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
|
|
VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
|
|
return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
|
|
E->getExprLoc());
|
|
}
|
|
LValue LV = VD->getType()->isReferenceType() ?
|
|
CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
|
|
AlignmentSource::Decl) :
|
|
CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
|
|
setObjCGCLValueClass(CGF.getContext(), E, LV);
|
|
return LV;
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::getRawFunctionPointer(GlobalDecl GD,
|
|
llvm::Type *Ty) {
|
|
const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
|
|
if (FD->hasAttr<WeakRefAttr>()) {
|
|
ConstantAddress aliasee = GetWeakRefReference(FD);
|
|
return aliasee.getPointer();
|
|
}
|
|
|
|
llvm::Constant *V = GetAddrOfFunction(GD, Ty);
|
|
return V;
|
|
}
|
|
|
|
static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
|
|
GlobalDecl GD) {
|
|
const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
|
|
llvm::Constant *V = CGF.CGM.getFunctionPointer(GD);
|
|
CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
|
|
return CGF.MakeAddrLValue(V, E->getType(), Alignment,
|
|
AlignmentSource::Decl);
|
|
}
|
|
|
|
static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
|
|
llvm::Value *ThisValue) {
|
|
|
|
return CGF.EmitLValueForLambdaField(FD, ThisValue);
|
|
}
|
|
|
|
/// Named Registers are named metadata pointing to the register name
|
|
/// which will be read from/written to as an argument to the intrinsic
|
|
/// @llvm.read/write_register.
|
|
/// So far, only the name is being passed down, but other options such as
|
|
/// register type, allocation type or even optimization options could be
|
|
/// passed down via the metadata node.
|
|
static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
|
|
SmallString<64> Name("llvm.named.register.");
|
|
AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
|
|
assert(Asm->getLabel().size() < 64-Name.size() &&
|
|
"Register name too big");
|
|
Name.append(Asm->getLabel());
|
|
llvm::NamedMDNode *M =
|
|
CGM.getModule().getOrInsertNamedMetadata(Name);
|
|
if (M->getNumOperands() == 0) {
|
|
llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
|
|
Asm->getLabel());
|
|
llvm::Metadata *Ops[] = {Str};
|
|
M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
|
|
}
|
|
|
|
CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
|
|
|
|
llvm::Value *Ptr =
|
|
llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
|
|
return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType());
|
|
}
|
|
|
|
/// Determine whether we can emit a reference to \p VD from the current
|
|
/// context, despite not necessarily having seen an odr-use of the variable in
|
|
/// this context.
|
|
static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
|
|
const DeclRefExpr *E,
|
|
const VarDecl *VD) {
|
|
// For a variable declared in an enclosing scope, do not emit a spurious
|
|
// reference even if we have a capture, as that will emit an unwarranted
|
|
// reference to our capture state, and will likely generate worse code than
|
|
// emitting a local copy.
|
|
if (E->refersToEnclosingVariableOrCapture())
|
|
return false;
|
|
|
|
// For a local declaration declared in this function, we can always reference
|
|
// it even if we don't have an odr-use.
|
|
if (VD->hasLocalStorage()) {
|
|
return VD->getDeclContext() ==
|
|
dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
|
|
}
|
|
|
|
// For a global declaration, we can emit a reference to it if we know
|
|
// for sure that we are able to emit a definition of it.
|
|
VD = VD->getDefinition(CGF.getContext());
|
|
if (!VD)
|
|
return false;
|
|
|
|
// Don't emit a spurious reference if it might be to a variable that only
|
|
// exists on a different device / target.
|
|
// FIXME: This is unnecessarily broad. Check whether this would actually be a
|
|
// cross-target reference.
|
|
if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
|
|
CGF.getLangOpts().OpenCL) {
|
|
return false;
|
|
}
|
|
|
|
// We can emit a spurious reference only if the linkage implies that we'll
|
|
// be emitting a non-interposable symbol that will be retained until link
|
|
// time.
|
|
switch (CGF.CGM.getLLVMLinkageVarDefinition(VD)) {
|
|
case llvm::GlobalValue::ExternalLinkage:
|
|
case llvm::GlobalValue::LinkOnceODRLinkage:
|
|
case llvm::GlobalValue::WeakODRLinkage:
|
|
case llvm::GlobalValue::InternalLinkage:
|
|
case llvm::GlobalValue::PrivateLinkage:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
|
|
const NamedDecl *ND = E->getDecl();
|
|
QualType T = E->getType();
|
|
|
|
assert(E->isNonOdrUse() != NOUR_Unevaluated &&
|
|
"should not emit an unevaluated operand");
|
|
|
|
if (const auto *VD = dyn_cast<VarDecl>(ND)) {
|
|
// Global Named registers access via intrinsics only
|
|
if (VD->getStorageClass() == SC_Register &&
|
|
VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
|
|
return EmitGlobalNamedRegister(VD, CGM);
|
|
|
|
// If this DeclRefExpr does not constitute an odr-use of the variable,
|
|
// we're not permitted to emit a reference to it in general, and it might
|
|
// not be captured if capture would be necessary for a use. Emit the
|
|
// constant value directly instead.
|
|
if (E->isNonOdrUse() == NOUR_Constant &&
|
|
(VD->getType()->isReferenceType() ||
|
|
!canEmitSpuriousReferenceToVariable(*this, E, VD))) {
|
|
VD->getAnyInitializer(VD);
|
|
llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
|
|
E->getLocation(), *VD->evaluateValue(), VD->getType());
|
|
assert(Val && "failed to emit constant expression");
|
|
|
|
Address Addr = Address::invalid();
|
|
if (!VD->getType()->isReferenceType()) {
|
|
// Spill the constant value to a global.
|
|
Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
|
|
getContext().getDeclAlign(VD));
|
|
llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
|
|
auto *PTy = llvm::PointerType::get(
|
|
getLLVMContext(), getTypes().getTargetAddressSpace(VD->getType()));
|
|
Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy);
|
|
} else {
|
|
// Should we be using the alignment of the constant pointer we emitted?
|
|
CharUnits Alignment =
|
|
CGM.getNaturalTypeAlignment(E->getType(),
|
|
/* BaseInfo= */ nullptr,
|
|
/* TBAAInfo= */ nullptr,
|
|
/* forPointeeType= */ true);
|
|
Addr = makeNaturalAddressForPointer(Val, T, Alignment);
|
|
}
|
|
return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
|
|
}
|
|
|
|
// FIXME: Handle other kinds of non-odr-use DeclRefExprs.
|
|
|
|
// Check for captured variables.
|
|
if (E->refersToEnclosingVariableOrCapture()) {
|
|
VD = VD->getCanonicalDecl();
|
|
if (auto *FD = LambdaCaptureFields.lookup(VD))
|
|
return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
|
|
if (CapturedStmtInfo) {
|
|
auto I = LocalDeclMap.find(VD);
|
|
if (I != LocalDeclMap.end()) {
|
|
LValue CapLVal;
|
|
if (VD->getType()->isReferenceType())
|
|
CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
|
|
AlignmentSource::Decl);
|
|
else
|
|
CapLVal = MakeAddrLValue(I->second, T);
|
|
// Mark lvalue as nontemporal if the variable is marked as nontemporal
|
|
// in simd context.
|
|
if (getLangOpts().OpenMP &&
|
|
CGM.getOpenMPRuntime().isNontemporalDecl(VD))
|
|
CapLVal.setNontemporal(/*Value=*/true);
|
|
return CapLVal;
|
|
}
|
|
LValue CapLVal =
|
|
EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
|
|
CapturedStmtInfo->getContextValue());
|
|
Address LValueAddress = CapLVal.getAddress();
|
|
CapLVal = MakeAddrLValue(Address(LValueAddress.emitRawPointer(*this),
|
|
LValueAddress.getElementType(),
|
|
getContext().getDeclAlign(VD)),
|
|
CapLVal.getType(),
|
|
LValueBaseInfo(AlignmentSource::Decl),
|
|
CapLVal.getTBAAInfo());
|
|
// Mark lvalue as nontemporal if the variable is marked as nontemporal
|
|
// in simd context.
|
|
if (getLangOpts().OpenMP &&
|
|
CGM.getOpenMPRuntime().isNontemporalDecl(VD))
|
|
CapLVal.setNontemporal(/*Value=*/true);
|
|
return CapLVal;
|
|
}
|
|
|
|
assert(isa<BlockDecl>(CurCodeDecl));
|
|
Address addr = GetAddrOfBlockDecl(VD);
|
|
return MakeAddrLValue(addr, T, AlignmentSource::Decl);
|
|
}
|
|
}
|
|
|
|
// FIXME: We should be able to assert this for FunctionDecls as well!
|
|
// FIXME: We should be able to assert this for all DeclRefExprs, not just
|
|
// those with a valid source location.
|
|
assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
|
|
!E->getLocation().isValid()) &&
|
|
"Should not use decl without marking it used!");
|
|
|
|
if (ND->hasAttr<WeakRefAttr>()) {
|
|
const auto *VD = cast<ValueDecl>(ND);
|
|
ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
|
|
return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
|
|
}
|
|
|
|
if (const auto *VD = dyn_cast<VarDecl>(ND)) {
|
|
// Check if this is a global variable.
|
|
if (VD->hasLinkage() || VD->isStaticDataMember())
|
|
return EmitGlobalVarDeclLValue(*this, E, VD);
|
|
|
|
Address addr = Address::invalid();
|
|
|
|
// The variable should generally be present in the local decl map.
|
|
auto iter = LocalDeclMap.find(VD);
|
|
if (iter != LocalDeclMap.end()) {
|
|
addr = iter->second;
|
|
|
|
// Otherwise, it might be static local we haven't emitted yet for
|
|
// some reason; most likely, because it's in an outer function.
|
|
} else if (VD->isStaticLocal()) {
|
|
llvm::Constant *var = CGM.getOrCreateStaticVarDecl(
|
|
*VD, CGM.getLLVMLinkageVarDefinition(VD));
|
|
addr = Address(
|
|
var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD));
|
|
|
|
// No other cases for now.
|
|
} else {
|
|
llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
|
|
}
|
|
|
|
// Handle threadlocal function locals.
|
|
if (VD->getTLSKind() != VarDecl::TLS_None)
|
|
addr = addr.withPointer(
|
|
Builder.CreateThreadLocalAddress(addr.getBasePointer()),
|
|
NotKnownNonNull);
|
|
|
|
// Check for OpenMP threadprivate variables.
|
|
if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
|
|
VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
|
|
return EmitThreadPrivateVarDeclLValue(
|
|
*this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
|
|
E->getExprLoc());
|
|
}
|
|
|
|
// Drill into block byref variables.
|
|
bool isBlockByref = VD->isEscapingByref();
|
|
if (isBlockByref) {
|
|
addr = emitBlockByrefAddress(addr, VD);
|
|
}
|
|
|
|
// Drill into reference types.
|
|
LValue LV = VD->getType()->isReferenceType() ?
|
|
EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
|
|
MakeAddrLValue(addr, T, AlignmentSource::Decl);
|
|
|
|
bool isLocalStorage = VD->hasLocalStorage();
|
|
|
|
bool NonGCable = isLocalStorage &&
|
|
!VD->getType()->isReferenceType() &&
|
|
!isBlockByref;
|
|
if (NonGCable) {
|
|
LV.getQuals().removeObjCGCAttr();
|
|
LV.setNonGC(true);
|
|
}
|
|
|
|
bool isImpreciseLifetime =
|
|
(isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
|
|
if (isImpreciseLifetime)
|
|
LV.setARCPreciseLifetime(ARCImpreciseLifetime);
|
|
setObjCGCLValueClass(getContext(), E, LV);
|
|
return LV;
|
|
}
|
|
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(ND))
|
|
return EmitFunctionDeclLValue(*this, E, FD);
|
|
|
|
// FIXME: While we're emitting a binding from an enclosing scope, all other
|
|
// DeclRefExprs we see should be implicitly treated as if they also refer to
|
|
// an enclosing scope.
|
|
if (const auto *BD = dyn_cast<BindingDecl>(ND)) {
|
|
if (E->refersToEnclosingVariableOrCapture()) {
|
|
auto *FD = LambdaCaptureFields.lookup(BD);
|
|
return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
|
|
}
|
|
return EmitLValue(BD->getBinding());
|
|
}
|
|
|
|
// We can form DeclRefExprs naming GUID declarations when reconstituting
|
|
// non-type template parameters into expressions.
|
|
if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
|
|
return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
|
|
AlignmentSource::Decl);
|
|
|
|
if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
|
|
auto ATPO = CGM.GetAddrOfTemplateParamObject(TPO);
|
|
auto AS = getLangASFromTargetAS(ATPO.getAddressSpace());
|
|
|
|
if (AS != T.getAddressSpace()) {
|
|
auto TargetAS = getContext().getTargetAddressSpace(T.getAddressSpace());
|
|
auto PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), TargetAS);
|
|
auto ASC = getTargetHooks().performAddrSpaceCast(
|
|
CGM, ATPO.getPointer(), AS, T.getAddressSpace(), PtrTy);
|
|
ATPO = ConstantAddress(ASC, ATPO.getElementType(), ATPO.getAlignment());
|
|
}
|
|
|
|
return MakeAddrLValue(ATPO, T, AlignmentSource::Decl);
|
|
}
|
|
|
|
llvm_unreachable("Unhandled DeclRefExpr");
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
|
|
// __extension__ doesn't affect lvalue-ness.
|
|
if (E->getOpcode() == UO_Extension)
|
|
return EmitLValue(E->getSubExpr());
|
|
|
|
QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
|
|
switch (E->getOpcode()) {
|
|
default: llvm_unreachable("Unknown unary operator lvalue!");
|
|
case UO_Deref: {
|
|
QualType T = E->getSubExpr()->getType()->getPointeeType();
|
|
assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
|
|
|
|
LValueBaseInfo BaseInfo;
|
|
TBAAAccessInfo TBAAInfo;
|
|
Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
|
|
&TBAAInfo);
|
|
LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
|
|
LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
|
|
|
|
// We should not generate __weak write barrier on indirect reference
|
|
// of a pointer to object; as in void foo (__weak id *param); *param = 0;
|
|
// But, we continue to generate __strong write barrier on indirect write
|
|
// into a pointer to object.
|
|
if (getLangOpts().ObjC &&
|
|
getLangOpts().getGC() != LangOptions::NonGC &&
|
|
LV.isObjCWeak())
|
|
LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
|
|
return LV;
|
|
}
|
|
case UO_Real:
|
|
case UO_Imag: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
assert(LV.isSimple() && "real/imag on non-ordinary l-value");
|
|
|
|
// __real is valid on scalars. This is a faster way of testing that.
|
|
// __imag can only produce an rvalue on scalars.
|
|
if (E->getOpcode() == UO_Real &&
|
|
!LV.getAddress().getElementType()->isStructTy()) {
|
|
assert(E->getSubExpr()->getType()->isArithmeticType());
|
|
return LV;
|
|
}
|
|
|
|
QualType T = ExprTy->castAs<ComplexType>()->getElementType();
|
|
|
|
Address Component =
|
|
(E->getOpcode() == UO_Real
|
|
? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
|
|
: emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
|
|
LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
|
|
CGM.getTBAAInfoForSubobject(LV, T));
|
|
ElemLV.getQuals().addQualifiers(LV.getQuals());
|
|
return ElemLV;
|
|
}
|
|
case UO_PreInc:
|
|
case UO_PreDec: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
bool isInc = E->getOpcode() == UO_PreInc;
|
|
|
|
if (E->getType()->isAnyComplexType())
|
|
EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
|
|
else
|
|
EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
|
|
return LV;
|
|
}
|
|
}
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
|
|
return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
|
|
E->getType(), AlignmentSource::Decl);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
|
|
return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
|
|
E->getType(), AlignmentSource::Decl);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
|
|
auto SL = E->getFunctionName();
|
|
assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
|
|
StringRef FnName = CurFn->getName();
|
|
if (FnName.starts_with("\01"))
|
|
FnName = FnName.substr(1);
|
|
StringRef NameItems[] = {
|
|
PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
|
|
std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
|
|
if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
|
|
std::string Name = std::string(SL->getString());
|
|
if (!Name.empty()) {
|
|
unsigned Discriminator =
|
|
CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
|
|
if (Discriminator)
|
|
Name += "_" + Twine(Discriminator + 1).str();
|
|
auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
|
|
return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
|
|
} else {
|
|
auto C =
|
|
CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
|
|
return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
|
|
}
|
|
}
|
|
auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
|
|
return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
|
|
}
|
|
|
|
/// Emit a type description suitable for use by a runtime sanitizer library. The
|
|
/// format of a type descriptor is
|
|
///
|
|
/// \code
|
|
/// { i16 TypeKind, i16 TypeInfo }
|
|
/// \endcode
|
|
///
|
|
/// followed by an array of i8 containing the type name with extra information
|
|
/// for BitInt. TypeKind is TK_Integer(0) for an integer, TK_Float(1) for a
|
|
/// floating point value, TK_BitInt(2) for BitInt and TK_Unknown(0xFFFF) for
|
|
/// anything else.
|
|
llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
|
|
// Only emit each type's descriptor once.
|
|
if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
|
|
return C;
|
|
|
|
uint16_t TypeKind = TK_Unknown;
|
|
uint16_t TypeInfo = 0;
|
|
bool IsBitInt = false;
|
|
|
|
if (T->isIntegerType()) {
|
|
TypeKind = TK_Integer;
|
|
TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
|
|
(T->isSignedIntegerType() ? 1 : 0);
|
|
// Follow suggestion from discussion of issue 64100.
|
|
// So we can write the exact amount of bits in TypeName after '\0'
|
|
// making it <diagnostic-like type name>.'\0'.<32-bit width>.
|
|
if (T->isSignedIntegerType() && T->getAs<BitIntType>()) {
|
|
// Do a sanity checks as we are using 32-bit type to store bit length.
|
|
assert(getContext().getTypeSize(T) > 0 &&
|
|
" non positive amount of bits in __BitInt type");
|
|
assert(getContext().getTypeSize(T) <= 0xFFFFFFFF &&
|
|
" too many bits in __BitInt type");
|
|
|
|
// Redefine TypeKind with the actual __BitInt type if we have signed
|
|
// BitInt.
|
|
TypeKind = TK_BitInt;
|
|
IsBitInt = true;
|
|
}
|
|
} else if (T->isFloatingType()) {
|
|
TypeKind = TK_Float;
|
|
TypeInfo = getContext().getTypeSize(T);
|
|
}
|
|
|
|
// Format the type name as if for a diagnostic, including quotes and
|
|
// optionally an 'aka'.
|
|
SmallString<32> Buffer;
|
|
CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
|
|
(intptr_t)T.getAsOpaquePtr(), StringRef(),
|
|
StringRef(), {}, Buffer, {});
|
|
|
|
if (IsBitInt) {
|
|
// The Structure is: 0 to end the string, 32 bit unsigned integer in target
|
|
// endianness, zero.
|
|
char S[6] = {'\0', '\0', '\0', '\0', '\0', '\0'};
|
|
const auto *EIT = T->castAs<BitIntType>();
|
|
uint32_t Bits = EIT->getNumBits();
|
|
llvm::support::endian::write32(S + 1, Bits,
|
|
getTarget().isBigEndian()
|
|
? llvm::endianness::big
|
|
: llvm::endianness::little);
|
|
StringRef Str = StringRef(S, sizeof(S) / sizeof(decltype(S[0])));
|
|
Buffer.append(Str);
|
|
}
|
|
|
|
llvm::Constant *Components[] = {
|
|
Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
|
|
llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
|
|
};
|
|
llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
|
|
|
|
auto *GV = new llvm::GlobalVariable(
|
|
CGM.getModule(), Descriptor->getType(),
|
|
/*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
|
|
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
|
|
|
|
// Remember the descriptor for this type.
|
|
CGM.setTypeDescriptorInMap(T, GV);
|
|
|
|
return GV;
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
|
|
llvm::Type *TargetTy = IntPtrTy;
|
|
|
|
if (V->getType() == TargetTy)
|
|
return V;
|
|
|
|
// Floating-point types which fit into intptr_t are bitcast to integers
|
|
// and then passed directly (after zero-extension, if necessary).
|
|
if (V->getType()->isFloatingPointTy()) {
|
|
unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedValue();
|
|
if (Bits <= TargetTy->getIntegerBitWidth())
|
|
V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
|
|
Bits));
|
|
}
|
|
|
|
// Integers which fit in intptr_t are zero-extended and passed directly.
|
|
if (V->getType()->isIntegerTy() &&
|
|
V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
|
|
return Builder.CreateZExt(V, TargetTy);
|
|
|
|
// Pointers are passed directly, everything else is passed by address.
|
|
if (!V->getType()->isPointerTy()) {
|
|
RawAddress Ptr = CreateDefaultAlignTempAlloca(V->getType());
|
|
Builder.CreateStore(V, Ptr);
|
|
V = Ptr.getPointer();
|
|
}
|
|
return Builder.CreatePtrToInt(V, TargetTy);
|
|
}
|
|
|
|
/// Emit a representation of a SourceLocation for passing to a handler
|
|
/// in a sanitizer runtime library. The format for this data is:
|
|
/// \code
|
|
/// struct SourceLocation {
|
|
/// const char *Filename;
|
|
/// int32_t Line, Column;
|
|
/// };
|
|
/// \endcode
|
|
/// For an invalid SourceLocation, the Filename pointer is null.
|
|
llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
|
|
llvm::Constant *Filename;
|
|
int Line, Column;
|
|
|
|
PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
|
|
if (PLoc.isValid()) {
|
|
StringRef FilenameString = PLoc.getFilename();
|
|
|
|
int PathComponentsToStrip =
|
|
CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
|
|
if (PathComponentsToStrip < 0) {
|
|
assert(PathComponentsToStrip != INT_MIN);
|
|
int PathComponentsToKeep = -PathComponentsToStrip;
|
|
auto I = llvm::sys::path::rbegin(FilenameString);
|
|
auto E = llvm::sys::path::rend(FilenameString);
|
|
while (I != E && --PathComponentsToKeep)
|
|
++I;
|
|
|
|
FilenameString = FilenameString.substr(I - E);
|
|
} else if (PathComponentsToStrip > 0) {
|
|
auto I = llvm::sys::path::begin(FilenameString);
|
|
auto E = llvm::sys::path::end(FilenameString);
|
|
while (I != E && PathComponentsToStrip--)
|
|
++I;
|
|
|
|
if (I != E)
|
|
FilenameString =
|
|
FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
|
|
else
|
|
FilenameString = llvm::sys::path::filename(FilenameString);
|
|
}
|
|
|
|
auto FilenameGV =
|
|
CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
|
|
CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
|
|
cast<llvm::GlobalVariable>(
|
|
FilenameGV.getPointer()->stripPointerCasts()));
|
|
Filename = FilenameGV.getPointer();
|
|
Line = PLoc.getLine();
|
|
Column = PLoc.getColumn();
|
|
} else {
|
|
Filename = llvm::Constant::getNullValue(Int8PtrTy);
|
|
Line = Column = 0;
|
|
}
|
|
|
|
llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
|
|
Builder.getInt32(Column)};
|
|
|
|
return llvm::ConstantStruct::getAnon(Data);
|
|
}
|
|
|
|
namespace {
|
|
/// Specify under what conditions this check can be recovered
|
|
enum class CheckRecoverableKind {
|
|
/// Always terminate program execution if this check fails.
|
|
Unrecoverable,
|
|
/// Check supports recovering, runtime has both fatal (noreturn) and
|
|
/// non-fatal handlers for this check.
|
|
Recoverable,
|
|
/// Runtime conditionally aborts, always need to support recovery.
|
|
AlwaysRecoverable
|
|
};
|
|
}
|
|
|
|
static CheckRecoverableKind
|
|
getRecoverableKind(SanitizerKind::SanitizerOrdinal Ordinal) {
|
|
if (Ordinal == SanitizerKind::SO_Vptr)
|
|
return CheckRecoverableKind::AlwaysRecoverable;
|
|
else if (Ordinal == SanitizerKind::SO_Return ||
|
|
Ordinal == SanitizerKind::SO_Unreachable)
|
|
return CheckRecoverableKind::Unrecoverable;
|
|
else
|
|
return CheckRecoverableKind::Recoverable;
|
|
}
|
|
|
|
namespace {
|
|
struct SanitizerHandlerInfo {
|
|
char const *const Name;
|
|
unsigned Version;
|
|
};
|
|
}
|
|
|
|
const SanitizerHandlerInfo SanitizerHandlers[] = {
|
|
#define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
|
|
LIST_SANITIZER_CHECKS
|
|
#undef SANITIZER_CHECK
|
|
};
|
|
|
|
static void emitCheckHandlerCall(CodeGenFunction &CGF,
|
|
llvm::FunctionType *FnType,
|
|
ArrayRef<llvm::Value *> FnArgs,
|
|
SanitizerHandler CheckHandler,
|
|
CheckRecoverableKind RecoverKind, bool IsFatal,
|
|
llvm::BasicBlock *ContBB, bool NoMerge) {
|
|
assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
|
|
std::optional<ApplyDebugLocation> DL;
|
|
if (!CGF.Builder.getCurrentDebugLocation()) {
|
|
// Ensure that the call has at least an artificial debug location.
|
|
DL.emplace(CGF, SourceLocation());
|
|
}
|
|
bool NeedsAbortSuffix =
|
|
IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
|
|
bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
|
|
const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
|
|
const StringRef CheckName = CheckInfo.Name;
|
|
std::string FnName = "__ubsan_handle_" + CheckName.str();
|
|
if (CheckInfo.Version && !MinimalRuntime)
|
|
FnName += "_v" + llvm::utostr(CheckInfo.Version);
|
|
if (MinimalRuntime)
|
|
FnName += "_minimal";
|
|
if (NeedsAbortSuffix)
|
|
FnName += "_abort";
|
|
bool MayReturn =
|
|
!IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
|
|
|
|
llvm::AttrBuilder B(CGF.getLLVMContext());
|
|
if (!MayReturn) {
|
|
B.addAttribute(llvm::Attribute::NoReturn)
|
|
.addAttribute(llvm::Attribute::NoUnwind);
|
|
}
|
|
B.addUWTableAttr(llvm::UWTableKind::Default);
|
|
|
|
llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
|
|
FnType, FnName,
|
|
llvm::AttributeList::get(CGF.getLLVMContext(),
|
|
llvm::AttributeList::FunctionIndex, B),
|
|
/*Local=*/true);
|
|
llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
|
|
NoMerge = NoMerge || !CGF.CGM.getCodeGenOpts().OptimizationLevel ||
|
|
(CGF.CurCodeDecl && CGF.CurCodeDecl->hasAttr<OptimizeNoneAttr>());
|
|
if (NoMerge)
|
|
HandlerCall->addFnAttr(llvm::Attribute::NoMerge);
|
|
if (!MayReturn) {
|
|
HandlerCall->setDoesNotReturn();
|
|
CGF.Builder.CreateUnreachable();
|
|
} else {
|
|
CGF.Builder.CreateBr(ContBB);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitCheck(
|
|
ArrayRef<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>> Checked,
|
|
SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
|
|
ArrayRef<llvm::Value *> DynamicArgs) {
|
|
assert(IsSanitizerScope);
|
|
assert(Checked.size() > 0);
|
|
assert(CheckHandler >= 0 &&
|
|
size_t(CheckHandler) < std::size(SanitizerHandlers));
|
|
const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
|
|
|
|
llvm::Value *FatalCond = nullptr;
|
|
llvm::Value *RecoverableCond = nullptr;
|
|
llvm::Value *TrapCond = nullptr;
|
|
bool NoMerge = false;
|
|
// Expand checks into:
|
|
// (Check1 || !allow_ubsan_check) && (Check2 || !allow_ubsan_check) ...
|
|
// We need separate allow_ubsan_check intrinsics because they have separately
|
|
// specified cutoffs.
|
|
// This expression looks expensive but will be simplified after
|
|
// LowerAllowCheckPass.
|
|
for (auto &[Check, Ord] : Checked) {
|
|
llvm::Value *GuardedCheck = Check;
|
|
if (ClSanitizeGuardChecks ||
|
|
(CGM.getCodeGenOpts().SanitizeSkipHotCutoffs[Ord] > 0)) {
|
|
llvm::Value *Allow = Builder.CreateCall(
|
|
CGM.getIntrinsic(llvm::Intrinsic::allow_ubsan_check),
|
|
llvm::ConstantInt::get(CGM.Int8Ty, Ord));
|
|
GuardedCheck = Builder.CreateOr(Check, Builder.CreateNot(Allow));
|
|
}
|
|
|
|
// -fsanitize-trap= overrides -fsanitize-recover=.
|
|
llvm::Value *&Cond = CGM.getCodeGenOpts().SanitizeTrap.has(Ord) ? TrapCond
|
|
: CGM.getCodeGenOpts().SanitizeRecover.has(Ord)
|
|
? RecoverableCond
|
|
: FatalCond;
|
|
Cond = Cond ? Builder.CreateAnd(Cond, GuardedCheck) : GuardedCheck;
|
|
|
|
if (!CGM.getCodeGenOpts().SanitizeMergeHandlers.has(Ord))
|
|
NoMerge = true;
|
|
}
|
|
|
|
if (TrapCond)
|
|
EmitTrapCheck(TrapCond, CheckHandler, NoMerge);
|
|
if (!FatalCond && !RecoverableCond)
|
|
return;
|
|
|
|
llvm::Value *JointCond;
|
|
if (FatalCond && RecoverableCond)
|
|
JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
|
|
else
|
|
JointCond = FatalCond ? FatalCond : RecoverableCond;
|
|
assert(JointCond);
|
|
|
|
CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
|
|
assert(SanOpts.has(Checked[0].second));
|
|
#ifndef NDEBUG
|
|
for (int i = 1, n = Checked.size(); i < n; ++i) {
|
|
assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
|
|
"All recoverable kinds in a single check must be same!");
|
|
assert(SanOpts.has(Checked[i].second));
|
|
}
|
|
#endif
|
|
|
|
llvm::BasicBlock *Cont = createBasicBlock("cont");
|
|
llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
|
|
llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
|
|
// Give hint that we very much don't expect to execute the handler
|
|
llvm::MDBuilder MDHelper(getLLVMContext());
|
|
llvm::MDNode *Node = MDHelper.createLikelyBranchWeights();
|
|
Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
|
|
EmitBlock(Handlers);
|
|
|
|
// Handler functions take an i8* pointing to the (handler-specific) static
|
|
// information block, followed by a sequence of intptr_t arguments
|
|
// representing operand values.
|
|
SmallVector<llvm::Value *, 4> Args;
|
|
SmallVector<llvm::Type *, 4> ArgTypes;
|
|
if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
|
|
Args.reserve(DynamicArgs.size() + 1);
|
|
ArgTypes.reserve(DynamicArgs.size() + 1);
|
|
|
|
// Emit handler arguments and create handler function type.
|
|
if (!StaticArgs.empty()) {
|
|
llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
|
|
auto *InfoPtr = new llvm::GlobalVariable(
|
|
CGM.getModule(), Info->getType(), false,
|
|
llvm::GlobalVariable::PrivateLinkage, Info, "", nullptr,
|
|
llvm::GlobalVariable::NotThreadLocal,
|
|
CGM.getDataLayout().getDefaultGlobalsAddressSpace());
|
|
InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
|
|
Args.push_back(InfoPtr);
|
|
ArgTypes.push_back(Args.back()->getType());
|
|
}
|
|
|
|
for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
|
|
Args.push_back(EmitCheckValue(DynamicArgs[i]));
|
|
ArgTypes.push_back(IntPtrTy);
|
|
}
|
|
}
|
|
|
|
llvm::FunctionType *FnType =
|
|
llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
|
|
|
|
if (!FatalCond || !RecoverableCond) {
|
|
// Simple case: we need to generate a single handler call, either
|
|
// fatal, or non-fatal.
|
|
emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
|
|
(FatalCond != nullptr), Cont, NoMerge);
|
|
} else {
|
|
// Emit two handler calls: first one for set of unrecoverable checks,
|
|
// another one for recoverable.
|
|
llvm::BasicBlock *NonFatalHandlerBB =
|
|
createBasicBlock("non_fatal." + CheckName);
|
|
llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
|
|
Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
|
|
EmitBlock(FatalHandlerBB);
|
|
emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
|
|
NonFatalHandlerBB, NoMerge);
|
|
EmitBlock(NonFatalHandlerBB);
|
|
emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
|
|
Cont, NoMerge);
|
|
}
|
|
|
|
EmitBlock(Cont);
|
|
}
|
|
|
|
void CodeGenFunction::EmitCfiSlowPathCheck(
|
|
SanitizerKind::SanitizerOrdinal Ordinal, llvm::Value *Cond,
|
|
llvm::ConstantInt *TypeId, llvm::Value *Ptr,
|
|
ArrayRef<llvm::Constant *> StaticArgs) {
|
|
llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
|
|
|
|
llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
|
|
llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
|
|
|
|
llvm::MDBuilder MDHelper(getLLVMContext());
|
|
llvm::MDNode *Node = MDHelper.createLikelyBranchWeights();
|
|
BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
|
|
|
|
EmitBlock(CheckBB);
|
|
|
|
bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Ordinal);
|
|
|
|
llvm::CallInst *CheckCall;
|
|
llvm::FunctionCallee SlowPathFn;
|
|
if (WithDiag) {
|
|
llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
|
|
auto *InfoPtr =
|
|
new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
|
|
llvm::GlobalVariable::PrivateLinkage, Info);
|
|
InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
|
|
CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
|
|
|
|
SlowPathFn = CGM.getModule().getOrInsertFunction(
|
|
"__cfi_slowpath_diag",
|
|
llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
|
|
false));
|
|
CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr, InfoPtr});
|
|
} else {
|
|
SlowPathFn = CGM.getModule().getOrInsertFunction(
|
|
"__cfi_slowpath",
|
|
llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
|
|
CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
|
|
}
|
|
|
|
CGM.setDSOLocal(
|
|
cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
|
|
CheckCall->setDoesNotThrow();
|
|
|
|
EmitBlock(Cont);
|
|
}
|
|
|
|
// Emit a stub for __cfi_check function so that the linker knows about this
|
|
// symbol in LTO mode.
|
|
void CodeGenFunction::EmitCfiCheckStub() {
|
|
llvm::Module *M = &CGM.getModule();
|
|
ASTContext &C = getContext();
|
|
QualType QInt64Ty = C.getIntTypeForBitwidth(64, false);
|
|
|
|
FunctionArgList FnArgs;
|
|
ImplicitParamDecl ArgCallsiteTypeId(C, QInt64Ty, ImplicitParamKind::Other);
|
|
ImplicitParamDecl ArgAddr(C, C.VoidPtrTy, ImplicitParamKind::Other);
|
|
ImplicitParamDecl ArgCFICheckFailData(C, C.VoidPtrTy,
|
|
ImplicitParamKind::Other);
|
|
FnArgs.push_back(&ArgCallsiteTypeId);
|
|
FnArgs.push_back(&ArgAddr);
|
|
FnArgs.push_back(&ArgCFICheckFailData);
|
|
const CGFunctionInfo &FI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, FnArgs);
|
|
|
|
llvm::Function *F = llvm::Function::Create(
|
|
llvm::FunctionType::get(VoidTy, {Int64Ty, VoidPtrTy, VoidPtrTy}, false),
|
|
llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
|
|
CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
|
|
CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
|
|
F->setAlignment(llvm::Align(4096));
|
|
CGM.setDSOLocal(F);
|
|
|
|
llvm::LLVMContext &Ctx = M->getContext();
|
|
llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
|
|
// CrossDSOCFI pass is not executed if there is no executable code.
|
|
SmallVector<llvm::Value*> Args{F->getArg(2), F->getArg(1)};
|
|
llvm::CallInst::Create(M->getFunction("__cfi_check_fail"), Args, "", BB);
|
|
llvm::ReturnInst::Create(Ctx, nullptr, BB);
|
|
}
|
|
|
|
// This function is basically a switch over the CFI failure kind, which is
|
|
// extracted from CFICheckFailData (1st function argument). Each case is either
|
|
// llvm.trap or a call to one of the two runtime handlers, based on
|
|
// -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
|
|
// failure kind) traps, but this should really never happen. CFICheckFailData
|
|
// can be nullptr if the calling module has -fsanitize-trap behavior for this
|
|
// check kind; in this case __cfi_check_fail traps as well.
|
|
void CodeGenFunction::EmitCfiCheckFail() {
|
|
SanitizerScope SanScope(this);
|
|
FunctionArgList Args;
|
|
ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
|
|
ImplicitParamKind::Other);
|
|
ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
|
|
ImplicitParamKind::Other);
|
|
Args.push_back(&ArgData);
|
|
Args.push_back(&ArgAddr);
|
|
|
|
const CGFunctionInfo &FI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
|
|
|
|
llvm::Function *F = llvm::Function::Create(
|
|
llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
|
|
llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
|
|
|
|
CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
|
|
CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
|
|
F->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
|
|
StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
|
|
SourceLocation());
|
|
|
|
// This function is not affected by NoSanitizeList. This function does
|
|
// not have a source location, but "src:*" would still apply. Revert any
|
|
// changes to SanOpts made in StartFunction.
|
|
SanOpts = CGM.getLangOpts().Sanitize;
|
|
|
|
llvm::Value *Data =
|
|
EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
|
|
CGM.getContext().VoidPtrTy, ArgData.getLocation());
|
|
llvm::Value *Addr =
|
|
EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
|
|
CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
|
|
|
|
// Data == nullptr means the calling module has trap behaviour for this check.
|
|
llvm::Value *DataIsNotNullPtr =
|
|
Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
|
|
EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
|
|
|
|
llvm::StructType *SourceLocationTy =
|
|
llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
|
|
llvm::StructType *CfiCheckFailDataTy =
|
|
llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
|
|
|
|
llvm::Value *V = Builder.CreateConstGEP2_32(
|
|
CfiCheckFailDataTy, Builder.CreatePointerCast(Data, UnqualPtrTy), 0, 0);
|
|
|
|
Address CheckKindAddr(V, Int8Ty, getIntAlign());
|
|
llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
|
|
|
|
llvm::Value *AllVtables = llvm::MetadataAsValue::get(
|
|
CGM.getLLVMContext(),
|
|
llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
|
|
llvm::Value *ValidVtable = Builder.CreateZExt(
|
|
Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
|
|
{Addr, AllVtables}),
|
|
IntPtrTy);
|
|
|
|
const std::pair<int, SanitizerKind::SanitizerOrdinal> CheckKinds[] = {
|
|
{CFITCK_VCall, SanitizerKind::SO_CFIVCall},
|
|
{CFITCK_NVCall, SanitizerKind::SO_CFINVCall},
|
|
{CFITCK_DerivedCast, SanitizerKind::SO_CFIDerivedCast},
|
|
{CFITCK_UnrelatedCast, SanitizerKind::SO_CFIUnrelatedCast},
|
|
{CFITCK_ICall, SanitizerKind::SO_CFIICall}};
|
|
|
|
SmallVector<std::pair<llvm::Value *, SanitizerKind::SanitizerOrdinal>, 5>
|
|
Checks;
|
|
for (auto CheckKindOrdinalPair : CheckKinds) {
|
|
int Kind = CheckKindOrdinalPair.first;
|
|
SanitizerKind::SanitizerOrdinal Ordinal = CheckKindOrdinalPair.second;
|
|
llvm::Value *Cond =
|
|
Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
|
|
if (CGM.getLangOpts().Sanitize.has(Ordinal))
|
|
EmitCheck(std::make_pair(Cond, Ordinal), SanitizerHandler::CFICheckFail,
|
|
{}, {Data, Addr, ValidVtable});
|
|
else
|
|
EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
|
|
}
|
|
|
|
FinishFunction();
|
|
// The only reference to this function will be created during LTO link.
|
|
// Make sure it survives until then.
|
|
CGM.addUsedGlobal(F);
|
|
}
|
|
|
|
void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
|
|
if (SanOpts.has(SanitizerKind::Unreachable)) {
|
|
SanitizerScope SanScope(this);
|
|
EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
|
|
SanitizerKind::SO_Unreachable),
|
|
SanitizerHandler::BuiltinUnreachable,
|
|
EmitCheckSourceLocation(Loc), {});
|
|
}
|
|
Builder.CreateUnreachable();
|
|
}
|
|
|
|
void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
|
|
SanitizerHandler CheckHandlerID,
|
|
bool NoMerge) {
|
|
llvm::BasicBlock *Cont = createBasicBlock("cont");
|
|
|
|
// If we're optimizing, collapse all calls to trap down to just one per
|
|
// check-type per function to save on code size.
|
|
if ((int)TrapBBs.size() <= CheckHandlerID)
|
|
TrapBBs.resize(CheckHandlerID + 1);
|
|
|
|
llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
|
|
|
|
NoMerge = NoMerge || !CGM.getCodeGenOpts().OptimizationLevel ||
|
|
(CurCodeDecl && CurCodeDecl->hasAttr<OptimizeNoneAttr>());
|
|
|
|
llvm::MDBuilder MDHelper(getLLVMContext());
|
|
if (TrapBB && !NoMerge) {
|
|
auto Call = TrapBB->begin();
|
|
assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
|
|
|
|
Call->applyMergedLocation(Call->getDebugLoc(),
|
|
Builder.getCurrentDebugLocation());
|
|
Builder.CreateCondBr(Checked, Cont, TrapBB,
|
|
MDHelper.createLikelyBranchWeights());
|
|
} else {
|
|
TrapBB = createBasicBlock("trap");
|
|
Builder.CreateCondBr(Checked, Cont, TrapBB,
|
|
MDHelper.createLikelyBranchWeights());
|
|
EmitBlock(TrapBB);
|
|
|
|
llvm::CallInst *TrapCall =
|
|
Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
|
|
llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
|
|
|
|
if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
|
|
auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
|
|
CGM.getCodeGenOpts().TrapFuncName);
|
|
TrapCall->addFnAttr(A);
|
|
}
|
|
if (NoMerge)
|
|
TrapCall->addFnAttr(llvm::Attribute::NoMerge);
|
|
TrapCall->setDoesNotReturn();
|
|
TrapCall->setDoesNotThrow();
|
|
Builder.CreateUnreachable();
|
|
}
|
|
|
|
EmitBlock(Cont);
|
|
}
|
|
|
|
llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
|
|
llvm::CallInst *TrapCall =
|
|
Builder.CreateCall(CGM.getIntrinsic(IntrID));
|
|
|
|
if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
|
|
auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
|
|
CGM.getCodeGenOpts().TrapFuncName);
|
|
TrapCall->addFnAttr(A);
|
|
}
|
|
|
|
if (InNoMergeAttributedStmt)
|
|
TrapCall->addFnAttr(llvm::Attribute::NoMerge);
|
|
return TrapCall;
|
|
}
|
|
|
|
Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
|
|
LValueBaseInfo *BaseInfo,
|
|
TBAAAccessInfo *TBAAInfo) {
|
|
assert(E->getType()->isArrayType() &&
|
|
"Array to pointer decay must have array source type!");
|
|
|
|
// Expressions of array type can't be bitfields or vector elements.
|
|
LValue LV = EmitLValue(E);
|
|
Address Addr = LV.getAddress();
|
|
|
|
// If the array type was an incomplete type, we need to make sure
|
|
// the decay ends up being the right type.
|
|
llvm::Type *NewTy = ConvertType(E->getType());
|
|
Addr = Addr.withElementType(NewTy);
|
|
|
|
// Note that VLA pointers are always decayed, so we don't need to do
|
|
// anything here.
|
|
if (!E->getType()->isVariableArrayType()) {
|
|
assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
|
|
"Expected pointer to array");
|
|
Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
|
|
}
|
|
|
|
// The result of this decay conversion points to an array element within the
|
|
// base lvalue. However, since TBAA currently does not support representing
|
|
// accesses to elements of member arrays, we conservatively represent accesses
|
|
// to the pointee object as if it had no any base lvalue specified.
|
|
// TODO: Support TBAA for member arrays.
|
|
QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
|
|
if (BaseInfo) *BaseInfo = LV.getBaseInfo();
|
|
if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
|
|
|
|
return Addr.withElementType(ConvertTypeForMem(EltType));
|
|
}
|
|
|
|
/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
|
|
/// array to pointer, return the array subexpression.
|
|
static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
|
|
// If this isn't just an array->pointer decay, bail out.
|
|
const auto *CE = dyn_cast<CastExpr>(E);
|
|
if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
|
|
return nullptr;
|
|
|
|
// If this is a decay from variable width array, bail out.
|
|
const Expr *SubExpr = CE->getSubExpr();
|
|
if (SubExpr->getType()->isVariableArrayType())
|
|
return nullptr;
|
|
|
|
return SubExpr;
|
|
}
|
|
|
|
static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
|
|
llvm::Type *elemType,
|
|
llvm::Value *ptr,
|
|
ArrayRef<llvm::Value*> indices,
|
|
bool inbounds,
|
|
bool signedIndices,
|
|
SourceLocation loc,
|
|
const llvm::Twine &name = "arrayidx") {
|
|
if (inbounds) {
|
|
return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices,
|
|
CodeGenFunction::NotSubtraction, loc,
|
|
name);
|
|
} else {
|
|
return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
|
|
}
|
|
}
|
|
|
|
static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
|
|
ArrayRef<llvm::Value *> indices,
|
|
llvm::Type *elementType, bool inbounds,
|
|
bool signedIndices, SourceLocation loc,
|
|
CharUnits align,
|
|
const llvm::Twine &name = "arrayidx") {
|
|
if (inbounds) {
|
|
return CGF.EmitCheckedInBoundsGEP(addr, indices, elementType, signedIndices,
|
|
CodeGenFunction::NotSubtraction, loc,
|
|
align, name);
|
|
} else {
|
|
return CGF.Builder.CreateGEP(addr, indices, elementType, align, name);
|
|
}
|
|
}
|
|
|
|
static CharUnits getArrayElementAlign(CharUnits arrayAlign,
|
|
llvm::Value *idx,
|
|
CharUnits eltSize) {
|
|
// If we have a constant index, we can use the exact offset of the
|
|
// element we're accessing.
|
|
if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
|
|
CharUnits offset = constantIdx->getZExtValue() * eltSize;
|
|
return arrayAlign.alignmentAtOffset(offset);
|
|
|
|
// Otherwise, use the worst-case alignment for any element.
|
|
} else {
|
|
return arrayAlign.alignmentOfArrayElement(eltSize);
|
|
}
|
|
}
|
|
|
|
static QualType getFixedSizeElementType(const ASTContext &ctx,
|
|
const VariableArrayType *vla) {
|
|
QualType eltType;
|
|
do {
|
|
eltType = vla->getElementType();
|
|
} while ((vla = ctx.getAsVariableArrayType(eltType)));
|
|
return eltType;
|
|
}
|
|
|
|
static bool hasBPFPreserveStaticOffset(const RecordDecl *D) {
|
|
return D && D->hasAttr<BPFPreserveStaticOffsetAttr>();
|
|
}
|
|
|
|
static bool hasBPFPreserveStaticOffset(const Expr *E) {
|
|
if (!E)
|
|
return false;
|
|
QualType PointeeType = E->getType()->getPointeeType();
|
|
if (PointeeType.isNull())
|
|
return false;
|
|
if (const auto *BaseDecl = PointeeType->getAsRecordDecl())
|
|
return hasBPFPreserveStaticOffset(BaseDecl);
|
|
return false;
|
|
}
|
|
|
|
// Wraps Addr with a call to llvm.preserve.static.offset intrinsic.
|
|
static Address wrapWithBPFPreserveStaticOffset(CodeGenFunction &CGF,
|
|
Address &Addr) {
|
|
if (!CGF.getTarget().getTriple().isBPF())
|
|
return Addr;
|
|
|
|
llvm::Function *Fn =
|
|
CGF.CGM.getIntrinsic(llvm::Intrinsic::preserve_static_offset);
|
|
llvm::CallInst *Call = CGF.Builder.CreateCall(Fn, {Addr.emitRawPointer(CGF)});
|
|
return Address(Call, Addr.getElementType(), Addr.getAlignment());
|
|
}
|
|
|
|
/// Given an array base, check whether its member access belongs to a record
|
|
/// with preserve_access_index attribute or not.
|
|
static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
|
|
if (!ArrayBase || !CGF.getDebugInfo())
|
|
return false;
|
|
|
|
// Only support base as either a MemberExpr or DeclRefExpr.
|
|
// DeclRefExpr to cover cases like:
|
|
// struct s { int a; int b[10]; };
|
|
// struct s *p;
|
|
// p[1].a
|
|
// p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
|
|
// p->b[5] is a MemberExpr example.
|
|
const Expr *E = ArrayBase->IgnoreImpCasts();
|
|
if (const auto *ME = dyn_cast<MemberExpr>(E))
|
|
return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
|
|
|
|
if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
|
|
if (!VarDef)
|
|
return false;
|
|
|
|
const auto *PtrT = VarDef->getType()->getAs<PointerType>();
|
|
if (!PtrT)
|
|
return false;
|
|
|
|
const auto *PointeeT = PtrT->getPointeeType()
|
|
->getUnqualifiedDesugaredType();
|
|
if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
|
|
return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
|
|
ArrayRef<llvm::Value *> indices,
|
|
QualType eltType, bool inbounds,
|
|
bool signedIndices, SourceLocation loc,
|
|
QualType *arrayType = nullptr,
|
|
const Expr *Base = nullptr,
|
|
const llvm::Twine &name = "arrayidx") {
|
|
// All the indices except that last must be zero.
|
|
#ifndef NDEBUG
|
|
for (auto *idx : indices.drop_back())
|
|
assert(isa<llvm::ConstantInt>(idx) &&
|
|
cast<llvm::ConstantInt>(idx)->isZero());
|
|
#endif
|
|
|
|
// Determine the element size of the statically-sized base. This is
|
|
// the thing that the indices are expressed in terms of.
|
|
if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
|
|
eltType = getFixedSizeElementType(CGF.getContext(), vla);
|
|
}
|
|
|
|
// We can use that to compute the best alignment of the element.
|
|
CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
|
|
CharUnits eltAlign =
|
|
getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
|
|
|
|
if (hasBPFPreserveStaticOffset(Base))
|
|
addr = wrapWithBPFPreserveStaticOffset(CGF, addr);
|
|
|
|
llvm::Value *eltPtr;
|
|
auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
|
|
if (!LastIndex ||
|
|
(!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
|
|
addr = emitArraySubscriptGEP(CGF, addr, indices,
|
|
CGF.ConvertTypeForMem(eltType), inbounds,
|
|
signedIndices, loc, eltAlign, name);
|
|
return addr;
|
|
} else {
|
|
// Remember the original array subscript for bpf target
|
|
unsigned idx = LastIndex->getZExtValue();
|
|
llvm::DIType *DbgInfo = nullptr;
|
|
if (arrayType)
|
|
DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
|
|
eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(
|
|
addr.getElementType(), addr.emitRawPointer(CGF), indices.size() - 1,
|
|
idx, DbgInfo);
|
|
}
|
|
|
|
return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign);
|
|
}
|
|
|
|
/// The offset of a field from the beginning of the record.
|
|
static bool getFieldOffsetInBits(CodeGenFunction &CGF, const RecordDecl *RD,
|
|
const FieldDecl *Field, int64_t &Offset) {
|
|
ASTContext &Ctx = CGF.getContext();
|
|
const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
|
|
unsigned FieldNo = 0;
|
|
|
|
for (const FieldDecl *FD : RD->fields()) {
|
|
if (FD == Field) {
|
|
Offset += Layout.getFieldOffset(FieldNo);
|
|
return true;
|
|
}
|
|
|
|
QualType Ty = FD->getType();
|
|
if (Ty->isRecordType())
|
|
if (getFieldOffsetInBits(CGF, Ty->getAsRecordDecl(), Field, Offset)) {
|
|
Offset += Layout.getFieldOffset(FieldNo);
|
|
return true;
|
|
}
|
|
|
|
if (!RD->isUnion())
|
|
++FieldNo;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Returns the relative offset difference between \p FD1 and \p FD2.
|
|
/// \code
|
|
/// offsetof(struct foo, FD1) - offsetof(struct foo, FD2)
|
|
/// \endcode
|
|
/// Both fields must be within the same struct.
|
|
static std::optional<int64_t> getOffsetDifferenceInBits(CodeGenFunction &CGF,
|
|
const FieldDecl *FD1,
|
|
const FieldDecl *FD2) {
|
|
const RecordDecl *FD1OuterRec =
|
|
FD1->getParent()->getOuterLexicalRecordContext();
|
|
const RecordDecl *FD2OuterRec =
|
|
FD2->getParent()->getOuterLexicalRecordContext();
|
|
|
|
if (FD1OuterRec != FD2OuterRec)
|
|
// Fields must be within the same RecordDecl.
|
|
return std::optional<int64_t>();
|
|
|
|
int64_t FD1Offset = 0;
|
|
if (!getFieldOffsetInBits(CGF, FD1OuterRec, FD1, FD1Offset))
|
|
return std::optional<int64_t>();
|
|
|
|
int64_t FD2Offset = 0;
|
|
if (!getFieldOffsetInBits(CGF, FD2OuterRec, FD2, FD2Offset))
|
|
return std::optional<int64_t>();
|
|
|
|
return std::make_optional<int64_t>(FD1Offset - FD2Offset);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
|
|
bool Accessed) {
|
|
// The index must always be an integer, which is not an aggregate. Emit it
|
|
// in lexical order (this complexity is, sadly, required by C++17).
|
|
llvm::Value *IdxPre =
|
|
(E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
|
|
bool SignedIndices = false;
|
|
auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
|
|
auto *Idx = IdxPre;
|
|
if (E->getLHS() != E->getIdx()) {
|
|
assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
|
|
Idx = EmitScalarExpr(E->getIdx());
|
|
}
|
|
|
|
QualType IdxTy = E->getIdx()->getType();
|
|
bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
|
|
SignedIndices |= IdxSigned;
|
|
|
|
if (SanOpts.has(SanitizerKind::ArrayBounds))
|
|
EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
|
|
|
|
// Extend or truncate the index type to 32 or 64-bits.
|
|
if (Promote && Idx->getType() != IntPtrTy)
|
|
Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
|
|
|
|
return Idx;
|
|
};
|
|
IdxPre = nullptr;
|
|
|
|
// If the base is a vector type, then we are forming a vector element lvalue
|
|
// with this subscript.
|
|
if (E->getBase()->getType()->isSubscriptableVectorType() &&
|
|
!isa<ExtVectorElementExpr>(E->getBase())) {
|
|
// Emit the vector as an lvalue to get its address.
|
|
LValue LHS = EmitLValue(E->getBase());
|
|
auto *Idx = EmitIdxAfterBase(/*Promote*/false);
|
|
assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
|
|
return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
|
|
LHS.getBaseInfo(), TBAAAccessInfo());
|
|
}
|
|
|
|
// All the other cases basically behave like simple offsetting.
|
|
|
|
// Handle the extvector case we ignored above.
|
|
if (isa<ExtVectorElementExpr>(E->getBase())) {
|
|
LValue LV = EmitLValue(E->getBase());
|
|
auto *Idx = EmitIdxAfterBase(/*Promote*/true);
|
|
Address Addr = EmitExtVectorElementLValue(LV);
|
|
|
|
QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
|
|
Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
|
|
SignedIndices, E->getExprLoc());
|
|
return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
|
|
CGM.getTBAAInfoForSubobject(LV, EltType));
|
|
}
|
|
|
|
LValueBaseInfo EltBaseInfo;
|
|
TBAAAccessInfo EltTBAAInfo;
|
|
Address Addr = Address::invalid();
|
|
if (const VariableArrayType *vla =
|
|
getContext().getAsVariableArrayType(E->getType())) {
|
|
// The base must be a pointer, which is not an aggregate. Emit
|
|
// it. It needs to be emitted first in case it's what captures
|
|
// the VLA bounds.
|
|
Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
|
|
auto *Idx = EmitIdxAfterBase(/*Promote*/true);
|
|
|
|
// The element count here is the total number of non-VLA elements.
|
|
llvm::Value *numElements = getVLASize(vla).NumElts;
|
|
|
|
// Effectively, the multiply by the VLA size is part of the GEP.
|
|
// GEP indexes are signed, and scaling an index isn't permitted to
|
|
// signed-overflow, so we use the same semantics for our explicit
|
|
// multiply. We suppress this if overflow is not undefined behavior.
|
|
if (getLangOpts().PointerOverflowDefined) {
|
|
Idx = Builder.CreateMul(Idx, numElements);
|
|
} else {
|
|
Idx = Builder.CreateNSWMul(Idx, numElements);
|
|
}
|
|
|
|
Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
|
|
!getLangOpts().PointerOverflowDefined,
|
|
SignedIndices, E->getExprLoc());
|
|
|
|
} else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
|
|
// Indexing over an interface, as in "NSString *P; P[4];"
|
|
|
|
// Emit the base pointer.
|
|
Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
|
|
auto *Idx = EmitIdxAfterBase(/*Promote*/true);
|
|
|
|
CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
|
|
llvm::Value *InterfaceSizeVal =
|
|
llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
|
|
|
|
llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
|
|
|
|
// We don't necessarily build correct LLVM struct types for ObjC
|
|
// interfaces, so we can't rely on GEP to do this scaling
|
|
// correctly, so we need to cast to i8*. FIXME: is this actually
|
|
// true? A lot of other things in the fragile ABI would break...
|
|
llvm::Type *OrigBaseElemTy = Addr.getElementType();
|
|
|
|
// Do the GEP.
|
|
CharUnits EltAlign =
|
|
getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
|
|
llvm::Value *EltPtr =
|
|
emitArraySubscriptGEP(*this, Int8Ty, Addr.emitRawPointer(*this),
|
|
ScaledIdx, false, SignedIndices, E->getExprLoc());
|
|
Addr = Address(EltPtr, OrigBaseElemTy, EltAlign);
|
|
} else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
|
|
// If this is A[i] where A is an array, the frontend will have decayed the
|
|
// base to be a ArrayToPointerDecay implicit cast. While correct, it is
|
|
// inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
|
|
// "gep x, i" here. Emit one "gep A, 0, i".
|
|
assert(Array->getType()->isArrayType() &&
|
|
"Array to pointer decay must have array source type!");
|
|
LValue ArrayLV;
|
|
// For simple multidimensional array indexing, set the 'accessed' flag for
|
|
// better bounds-checking of the base expression.
|
|
if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
|
|
ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
|
|
else
|
|
ArrayLV = EmitLValue(Array);
|
|
auto *Idx = EmitIdxAfterBase(/*Promote*/true);
|
|
|
|
if (SanOpts.has(SanitizerKind::ArrayBounds)) {
|
|
// If the array being accessed has a "counted_by" attribute, generate
|
|
// bounds checking code. The "count" field is at the top level of the
|
|
// struct or in an anonymous struct, that's also at the top level. Future
|
|
// expansions may allow the "count" to reside at any place in the struct,
|
|
// but the value of "counted_by" will be a "simple" path to the count,
|
|
// i.e. "a.b.count", so we shouldn't need the full force of EmitLValue or
|
|
// similar to emit the correct GEP.
|
|
const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
|
|
getLangOpts().getStrictFlexArraysLevel();
|
|
|
|
if (const auto *ME = dyn_cast<MemberExpr>(Array);
|
|
ME &&
|
|
ME->isFlexibleArrayMemberLike(getContext(), StrictFlexArraysLevel) &&
|
|
ME->getMemberDecl()->getType()->isCountAttributedType()) {
|
|
const FieldDecl *FAMDecl = cast<FieldDecl>(ME->getMemberDecl());
|
|
if (const FieldDecl *CountFD = FAMDecl->findCountedByField()) {
|
|
if (std::optional<int64_t> Diff =
|
|
getOffsetDifferenceInBits(*this, CountFD, FAMDecl)) {
|
|
CharUnits OffsetDiff = CGM.getContext().toCharUnitsFromBits(*Diff);
|
|
|
|
// Create a GEP with a byte offset between the FAM and count and
|
|
// use that to load the count value.
|
|
Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
ArrayLV.getAddress(), Int8PtrTy, Int8Ty);
|
|
|
|
llvm::Type *CountTy = ConvertType(CountFD->getType());
|
|
llvm::Value *Res = Builder.CreateInBoundsGEP(
|
|
Int8Ty, Addr.emitRawPointer(*this),
|
|
Builder.getInt32(OffsetDiff.getQuantity()), ".counted_by.gep");
|
|
Res = Builder.CreateAlignedLoad(CountTy, Res, getIntAlign(),
|
|
".counted_by.load");
|
|
|
|
// Now emit the bounds checking.
|
|
EmitBoundsCheckImpl(E, Res, Idx, E->getIdx()->getType(),
|
|
Array->getType(), Accessed);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Propagate the alignment from the array itself to the result.
|
|
QualType arrayType = Array->getType();
|
|
Addr = emitArraySubscriptGEP(
|
|
*this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
|
|
E->getType(), !getLangOpts().PointerOverflowDefined, SignedIndices,
|
|
E->getExprLoc(), &arrayType, E->getBase());
|
|
EltBaseInfo = ArrayLV.getBaseInfo();
|
|
EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
|
|
} else {
|
|
// The base must be a pointer; emit it with an estimate of its alignment.
|
|
Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
|
|
auto *Idx = EmitIdxAfterBase(/*Promote*/true);
|
|
QualType ptrType = E->getBase()->getType();
|
|
Addr = emitArraySubscriptGEP(
|
|
*this, Addr, Idx, E->getType(), !getLangOpts().PointerOverflowDefined,
|
|
SignedIndices, E->getExprLoc(), &ptrType, E->getBase());
|
|
}
|
|
|
|
LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
|
|
|
|
if (getLangOpts().ObjC &&
|
|
getLangOpts().getGC() != LangOptions::NonGC) {
|
|
LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
|
|
setObjCGCLValueClass(getContext(), E, LV);
|
|
}
|
|
return LV;
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitMatrixIndexExpr(const Expr *E) {
|
|
llvm::Value *Idx = EmitScalarExpr(E);
|
|
if (Idx->getType() == IntPtrTy)
|
|
return Idx;
|
|
bool IsSigned = E->getType()->isSignedIntegerOrEnumerationType();
|
|
return Builder.CreateIntCast(Idx, IntPtrTy, IsSigned);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
|
|
assert(
|
|
!E->isIncomplete() &&
|
|
"incomplete matrix subscript expressions should be rejected during Sema");
|
|
LValue Base = EmitLValue(E->getBase());
|
|
|
|
// Extend or truncate the index type to 32 or 64-bits if needed.
|
|
llvm::Value *RowIdx = EmitMatrixIndexExpr(E->getRowIdx());
|
|
llvm::Value *ColIdx = EmitMatrixIndexExpr(E->getColumnIdx());
|
|
|
|
llvm::Value *NumRows = Builder.getIntN(
|
|
RowIdx->getType()->getScalarSizeInBits(),
|
|
E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
|
|
llvm::Value *FinalIdx =
|
|
Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
|
|
return LValue::MakeMatrixElt(
|
|
MaybeConvertMatrixAddress(Base.getAddress(), *this), FinalIdx,
|
|
E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
|
|
}
|
|
|
|
static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
|
|
LValueBaseInfo &BaseInfo,
|
|
TBAAAccessInfo &TBAAInfo,
|
|
QualType BaseTy, QualType ElTy,
|
|
bool IsLowerBound) {
|
|
LValue BaseLVal;
|
|
if (auto *ASE = dyn_cast<ArraySectionExpr>(Base->IgnoreParenImpCasts())) {
|
|
BaseLVal = CGF.EmitArraySectionExpr(ASE, IsLowerBound);
|
|
if (BaseTy->isArrayType()) {
|
|
Address Addr = BaseLVal.getAddress();
|
|
BaseInfo = BaseLVal.getBaseInfo();
|
|
|
|
// If the array type was an incomplete type, we need to make sure
|
|
// the decay ends up being the right type.
|
|
llvm::Type *NewTy = CGF.ConvertType(BaseTy);
|
|
Addr = Addr.withElementType(NewTy);
|
|
|
|
// Note that VLA pointers are always decayed, so we don't need to do
|
|
// anything here.
|
|
if (!BaseTy->isVariableArrayType()) {
|
|
assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
|
|
"Expected pointer to array");
|
|
Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
|
|
}
|
|
|
|
return Addr.withElementType(CGF.ConvertTypeForMem(ElTy));
|
|
}
|
|
LValueBaseInfo TypeBaseInfo;
|
|
TBAAAccessInfo TypeTBAAInfo;
|
|
CharUnits Align =
|
|
CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
|
|
BaseInfo.mergeForCast(TypeBaseInfo);
|
|
TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
|
|
return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()),
|
|
CGF.ConvertTypeForMem(ElTy), Align);
|
|
}
|
|
return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitArraySectionExpr(const ArraySectionExpr *E,
|
|
bool IsLowerBound) {
|
|
|
|
assert(!E->isOpenACCArraySection() &&
|
|
"OpenACC Array section codegen not implemented");
|
|
|
|
QualType BaseTy = ArraySectionExpr::getBaseOriginalType(E->getBase());
|
|
QualType ResultExprTy;
|
|
if (auto *AT = getContext().getAsArrayType(BaseTy))
|
|
ResultExprTy = AT->getElementType();
|
|
else
|
|
ResultExprTy = BaseTy->getPointeeType();
|
|
llvm::Value *Idx = nullptr;
|
|
if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
|
|
// Requesting lower bound or upper bound, but without provided length and
|
|
// without ':' symbol for the default length -> length = 1.
|
|
// Idx = LowerBound ?: 0;
|
|
if (auto *LowerBound = E->getLowerBound()) {
|
|
Idx = Builder.CreateIntCast(
|
|
EmitScalarExpr(LowerBound), IntPtrTy,
|
|
LowerBound->getType()->hasSignedIntegerRepresentation());
|
|
} else
|
|
Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
|
|
} else {
|
|
// Try to emit length or lower bound as constant. If this is possible, 1
|
|
// is subtracted from constant length or lower bound. Otherwise, emit LLVM
|
|
// IR (LB + Len) - 1.
|
|
auto &C = CGM.getContext();
|
|
auto *Length = E->getLength();
|
|
llvm::APSInt ConstLength;
|
|
if (Length) {
|
|
// Idx = LowerBound + Length - 1;
|
|
if (std::optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
|
|
ConstLength = CL->zextOrTrunc(PointerWidthInBits);
|
|
Length = nullptr;
|
|
}
|
|
auto *LowerBound = E->getLowerBound();
|
|
llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
|
|
if (LowerBound) {
|
|
if (std::optional<llvm::APSInt> LB =
|
|
LowerBound->getIntegerConstantExpr(C)) {
|
|
ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
|
|
LowerBound = nullptr;
|
|
}
|
|
}
|
|
if (!Length)
|
|
--ConstLength;
|
|
else if (!LowerBound)
|
|
--ConstLowerBound;
|
|
|
|
if (Length || LowerBound) {
|
|
auto *LowerBoundVal =
|
|
LowerBound
|
|
? Builder.CreateIntCast(
|
|
EmitScalarExpr(LowerBound), IntPtrTy,
|
|
LowerBound->getType()->hasSignedIntegerRepresentation())
|
|
: llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
|
|
auto *LengthVal =
|
|
Length
|
|
? Builder.CreateIntCast(
|
|
EmitScalarExpr(Length), IntPtrTy,
|
|
Length->getType()->hasSignedIntegerRepresentation())
|
|
: llvm::ConstantInt::get(IntPtrTy, ConstLength);
|
|
Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
|
|
/*HasNUW=*/false,
|
|
!getLangOpts().PointerOverflowDefined);
|
|
if (Length && LowerBound) {
|
|
Idx = Builder.CreateSub(
|
|
Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
|
|
/*HasNUW=*/false, !getLangOpts().PointerOverflowDefined);
|
|
}
|
|
} else
|
|
Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
|
|
} else {
|
|
// Idx = ArraySize - 1;
|
|
QualType ArrayTy = BaseTy->isPointerType()
|
|
? E->getBase()->IgnoreParenImpCasts()->getType()
|
|
: BaseTy;
|
|
if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
|
|
Length = VAT->getSizeExpr();
|
|
if (std::optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
|
|
ConstLength = *L;
|
|
Length = nullptr;
|
|
}
|
|
} else {
|
|
auto *CAT = C.getAsConstantArrayType(ArrayTy);
|
|
assert(CAT && "unexpected type for array initializer");
|
|
ConstLength = CAT->getSize();
|
|
}
|
|
if (Length) {
|
|
auto *LengthVal = Builder.CreateIntCast(
|
|
EmitScalarExpr(Length), IntPtrTy,
|
|
Length->getType()->hasSignedIntegerRepresentation());
|
|
Idx = Builder.CreateSub(
|
|
LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
|
|
/*HasNUW=*/false, !getLangOpts().PointerOverflowDefined);
|
|
} else {
|
|
ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
|
|
--ConstLength;
|
|
Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
|
|
}
|
|
}
|
|
}
|
|
assert(Idx);
|
|
|
|
Address EltPtr = Address::invalid();
|
|
LValueBaseInfo BaseInfo;
|
|
TBAAAccessInfo TBAAInfo;
|
|
if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
|
|
// The base must be a pointer, which is not an aggregate. Emit
|
|
// it. It needs to be emitted first in case it's what captures
|
|
// the VLA bounds.
|
|
Address Base =
|
|
emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
|
|
BaseTy, VLA->getElementType(), IsLowerBound);
|
|
// The element count here is the total number of non-VLA elements.
|
|
llvm::Value *NumElements = getVLASize(VLA).NumElts;
|
|
|
|
// Effectively, the multiply by the VLA size is part of the GEP.
|
|
// GEP indexes are signed, and scaling an index isn't permitted to
|
|
// signed-overflow, so we use the same semantics for our explicit
|
|
// multiply. We suppress this if overflow is not undefined behavior.
|
|
if (getLangOpts().PointerOverflowDefined)
|
|
Idx = Builder.CreateMul(Idx, NumElements);
|
|
else
|
|
Idx = Builder.CreateNSWMul(Idx, NumElements);
|
|
EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
|
|
!getLangOpts().PointerOverflowDefined,
|
|
/*signedIndices=*/false, E->getExprLoc());
|
|
} else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
|
|
// If this is A[i] where A is an array, the frontend will have decayed the
|
|
// base to be a ArrayToPointerDecay implicit cast. While correct, it is
|
|
// inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
|
|
// "gep x, i" here. Emit one "gep A, 0, i".
|
|
assert(Array->getType()->isArrayType() &&
|
|
"Array to pointer decay must have array source type!");
|
|
LValue ArrayLV;
|
|
// For simple multidimensional array indexing, set the 'accessed' flag for
|
|
// better bounds-checking of the base expression.
|
|
if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
|
|
ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
|
|
else
|
|
ArrayLV = EmitLValue(Array);
|
|
|
|
// Propagate the alignment from the array itself to the result.
|
|
EltPtr = emitArraySubscriptGEP(
|
|
*this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
|
|
ResultExprTy, !getLangOpts().PointerOverflowDefined,
|
|
/*signedIndices=*/false, E->getExprLoc());
|
|
BaseInfo = ArrayLV.getBaseInfo();
|
|
TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
|
|
} else {
|
|
Address Base =
|
|
emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, BaseTy,
|
|
ResultExprTy, IsLowerBound);
|
|
EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
|
|
!getLangOpts().PointerOverflowDefined,
|
|
/*signedIndices=*/false, E->getExprLoc());
|
|
}
|
|
|
|
return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
|
|
}
|
|
|
|
LValue CodeGenFunction::
|
|
EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
|
|
// Emit the base vector as an l-value.
|
|
LValue Base;
|
|
|
|
// ExtVectorElementExpr's base can either be a vector or pointer to vector.
|
|
if (E->isArrow()) {
|
|
// If it is a pointer to a vector, emit the address and form an lvalue with
|
|
// it.
|
|
LValueBaseInfo BaseInfo;
|
|
TBAAAccessInfo TBAAInfo;
|
|
Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
|
|
const auto *PT = E->getBase()->getType()->castAs<PointerType>();
|
|
Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
|
|
Base.getQuals().removeObjCGCAttr();
|
|
} else if (E->getBase()->isGLValue()) {
|
|
// Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
|
|
// emit the base as an lvalue.
|
|
assert(E->getBase()->getType()->isVectorType());
|
|
Base = EmitLValue(E->getBase());
|
|
} else {
|
|
// Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
|
|
assert(E->getBase()->getType()->isVectorType() &&
|
|
"Result must be a vector");
|
|
llvm::Value *Vec = EmitScalarExpr(E->getBase());
|
|
|
|
// Store the vector to memory (because LValue wants an address).
|
|
Address VecMem = CreateMemTemp(E->getBase()->getType());
|
|
// need to zero extend an hlsl boolean vector to store it back to memory
|
|
QualType Ty = E->getBase()->getType();
|
|
llvm::Type *LTy = convertTypeForLoadStore(Ty, Vec->getType());
|
|
if (LTy->getScalarSizeInBits() > Vec->getType()->getScalarSizeInBits())
|
|
Vec = Builder.CreateZExt(Vec, LTy);
|
|
Builder.CreateStore(Vec, VecMem);
|
|
Base = MakeAddrLValue(VecMem, Ty, AlignmentSource::Decl);
|
|
}
|
|
|
|
QualType type =
|
|
E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
|
|
|
|
// Encode the element access list into a vector of unsigned indices.
|
|
SmallVector<uint32_t, 4> Indices;
|
|
E->getEncodedElementAccess(Indices);
|
|
|
|
if (Base.isSimple()) {
|
|
llvm::Constant *CV =
|
|
llvm::ConstantDataVector::get(getLLVMContext(), Indices);
|
|
return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
|
|
Base.getBaseInfo(), TBAAAccessInfo());
|
|
}
|
|
assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
|
|
|
|
llvm::Constant *BaseElts = Base.getExtVectorElts();
|
|
SmallVector<llvm::Constant *, 4> CElts;
|
|
|
|
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
|
|
CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
|
|
llvm::Constant *CV = llvm::ConstantVector::get(CElts);
|
|
return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
|
|
Base.getBaseInfo(), TBAAAccessInfo());
|
|
}
|
|
|
|
bool CodeGenFunction::isUnderlyingBasePointerConstantNull(const Expr *E) {
|
|
const Expr *UnderlyingBaseExpr = E->IgnoreParens();
|
|
while (auto *BaseMemberExpr = dyn_cast<MemberExpr>(UnderlyingBaseExpr))
|
|
UnderlyingBaseExpr = BaseMemberExpr->getBase()->IgnoreParens();
|
|
return getContext().isSentinelNullExpr(UnderlyingBaseExpr);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
|
|
if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
|
|
EmitIgnoredExpr(E->getBase());
|
|
return EmitDeclRefLValue(DRE);
|
|
}
|
|
|
|
Expr *BaseExpr = E->getBase();
|
|
// Check whether the underlying base pointer is a constant null.
|
|
// If so, we do not set inbounds flag for GEP to avoid breaking some
|
|
// old-style offsetof idioms.
|
|
bool IsInBounds = !getLangOpts().PointerOverflowDefined &&
|
|
!isUnderlyingBasePointerConstantNull(BaseExpr);
|
|
// If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
|
|
LValue BaseLV;
|
|
if (E->isArrow()) {
|
|
LValueBaseInfo BaseInfo;
|
|
TBAAAccessInfo TBAAInfo;
|
|
Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
|
|
QualType PtrTy = BaseExpr->getType()->getPointeeType();
|
|
SanitizerSet SkippedChecks;
|
|
bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
|
|
if (IsBaseCXXThis)
|
|
SkippedChecks.set(SanitizerKind::Alignment, true);
|
|
if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
|
|
SkippedChecks.set(SanitizerKind::Null, true);
|
|
EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr, PtrTy,
|
|
/*Alignment=*/CharUnits::Zero(), SkippedChecks);
|
|
BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
|
|
} else
|
|
BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
|
|
|
|
NamedDecl *ND = E->getMemberDecl();
|
|
if (auto *Field = dyn_cast<FieldDecl>(ND)) {
|
|
LValue LV = EmitLValueForField(BaseLV, Field, IsInBounds);
|
|
setObjCGCLValueClass(getContext(), E, LV);
|
|
if (getLangOpts().OpenMP) {
|
|
// If the member was explicitly marked as nontemporal, mark it as
|
|
// nontemporal. If the base lvalue is marked as nontemporal, mark access
|
|
// to children as nontemporal too.
|
|
if ((IsWrappedCXXThis(BaseExpr) &&
|
|
CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
|
|
BaseLV.isNontemporal())
|
|
LV.setNontemporal(/*Value=*/true);
|
|
}
|
|
return LV;
|
|
}
|
|
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(ND))
|
|
return EmitFunctionDeclLValue(*this, E, FD);
|
|
|
|
llvm_unreachable("Unhandled member declaration!");
|
|
}
|
|
|
|
/// Given that we are currently emitting a lambda, emit an l-value for
|
|
/// one of its members.
|
|
///
|
|
LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field,
|
|
llvm::Value *ThisValue) {
|
|
bool HasExplicitObjectParameter = false;
|
|
const auto *MD = dyn_cast_if_present<CXXMethodDecl>(CurCodeDecl);
|
|
if (MD) {
|
|
HasExplicitObjectParameter = MD->isExplicitObjectMemberFunction();
|
|
assert(MD->getParent()->isLambda());
|
|
assert(MD->getParent() == Field->getParent());
|
|
}
|
|
LValue LambdaLV;
|
|
if (HasExplicitObjectParameter) {
|
|
const VarDecl *D = cast<CXXMethodDecl>(CurCodeDecl)->getParamDecl(0);
|
|
auto It = LocalDeclMap.find(D);
|
|
assert(It != LocalDeclMap.end() && "explicit parameter not loaded?");
|
|
Address AddrOfExplicitObject = It->getSecond();
|
|
if (D->getType()->isReferenceType())
|
|
LambdaLV = EmitLoadOfReferenceLValue(AddrOfExplicitObject, D->getType(),
|
|
AlignmentSource::Decl);
|
|
else
|
|
LambdaLV = MakeAddrLValue(AddrOfExplicitObject,
|
|
D->getType().getNonReferenceType());
|
|
|
|
// Make sure we have an lvalue to the lambda itself and not a derived class.
|
|
auto *ThisTy = D->getType().getNonReferenceType()->getAsCXXRecordDecl();
|
|
auto *LambdaTy = cast<CXXRecordDecl>(Field->getParent());
|
|
if (ThisTy != LambdaTy) {
|
|
const CXXCastPath &BasePathArray = getContext().LambdaCastPaths.at(MD);
|
|
Address Base = GetAddressOfBaseClass(
|
|
LambdaLV.getAddress(), ThisTy, BasePathArray.begin(),
|
|
BasePathArray.end(), /*NullCheckValue=*/false, SourceLocation());
|
|
LambdaLV = MakeAddrLValue(Base, QualType{LambdaTy->getTypeForDecl(), 0});
|
|
}
|
|
} else {
|
|
QualType LambdaTagType = getContext().getTagDeclType(Field->getParent());
|
|
LambdaLV = MakeNaturalAlignAddrLValue(ThisValue, LambdaTagType);
|
|
}
|
|
return EmitLValueForField(LambdaLV, Field);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
|
|
return EmitLValueForLambdaField(Field, CXXABIThisValue);
|
|
}
|
|
|
|
/// Get the field index in the debug info. The debug info structure/union
|
|
/// will ignore the unnamed bitfields.
|
|
unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
|
|
unsigned FieldIndex) {
|
|
unsigned I = 0, Skipped = 0;
|
|
|
|
for (auto *F : Rec->getDefinition()->fields()) {
|
|
if (I == FieldIndex)
|
|
break;
|
|
if (F->isUnnamedBitField())
|
|
Skipped++;
|
|
I++;
|
|
}
|
|
|
|
return FieldIndex - Skipped;
|
|
}
|
|
|
|
/// Get the address of a zero-sized field within a record. The resulting
|
|
/// address doesn't necessarily have the right type.
|
|
static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
|
|
const FieldDecl *Field,
|
|
bool IsInBounds) {
|
|
CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
|
|
CGF.getContext().getFieldOffset(Field));
|
|
if (Offset.isZero())
|
|
return Base;
|
|
Base = Base.withElementType(CGF.Int8Ty);
|
|
if (!IsInBounds)
|
|
return CGF.Builder.CreateConstByteGEP(Base, Offset);
|
|
return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
|
|
}
|
|
|
|
/// Drill down to the storage of a field without walking into
|
|
/// reference types.
|
|
///
|
|
/// The resulting address doesn't necessarily have the right type.
|
|
static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
|
|
const FieldDecl *field, bool IsInBounds) {
|
|
if (isEmptyFieldForLayout(CGF.getContext(), field))
|
|
return emitAddrOfZeroSizeField(CGF, base, field, IsInBounds);
|
|
|
|
const RecordDecl *rec = field->getParent();
|
|
|
|
unsigned idx =
|
|
CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
|
|
|
|
if (!IsInBounds)
|
|
return CGF.Builder.CreateConstGEP2_32(base, 0, idx, field->getName());
|
|
|
|
return CGF.Builder.CreateStructGEP(base, idx, field->getName());
|
|
}
|
|
|
|
static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
|
|
Address addr, const FieldDecl *field) {
|
|
const RecordDecl *rec = field->getParent();
|
|
llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
|
|
base.getType(), rec->getLocation());
|
|
|
|
unsigned idx =
|
|
CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
|
|
|
|
return CGF.Builder.CreatePreserveStructAccessIndex(
|
|
addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
|
|
}
|
|
|
|
static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
|
|
const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
|
|
if (!RD)
|
|
return false;
|
|
|
|
if (RD->isDynamicClass())
|
|
return true;
|
|
|
|
for (const auto &Base : RD->bases())
|
|
if (hasAnyVptr(Base.getType(), Context))
|
|
return true;
|
|
|
|
for (const FieldDecl *Field : RD->fields())
|
|
if (hasAnyVptr(Field->getType(), Context))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitLValueForField(LValue base, const FieldDecl *field,
|
|
bool IsInBounds) {
|
|
LValueBaseInfo BaseInfo = base.getBaseInfo();
|
|
|
|
if (field->isBitField()) {
|
|
const CGRecordLayout &RL =
|
|
CGM.getTypes().getCGRecordLayout(field->getParent());
|
|
const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
|
|
const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
|
|
CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
|
|
Info.VolatileStorageSize != 0 &&
|
|
field->getType()
|
|
.withCVRQualifiers(base.getVRQualifiers())
|
|
.isVolatileQualified();
|
|
Address Addr = base.getAddress();
|
|
unsigned Idx = RL.getLLVMFieldNo(field);
|
|
const RecordDecl *rec = field->getParent();
|
|
if (hasBPFPreserveStaticOffset(rec))
|
|
Addr = wrapWithBPFPreserveStaticOffset(*this, Addr);
|
|
if (!UseVolatile) {
|
|
if (!IsInPreservedAIRegion &&
|
|
(!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
|
|
if (Idx != 0) {
|
|
// For structs, we GEP to the field that the record layout suggests.
|
|
if (!IsInBounds)
|
|
Addr = Builder.CreateConstGEP2_32(Addr, 0, Idx, field->getName());
|
|
else
|
|
Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
|
|
}
|
|
} else {
|
|
llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
|
|
getContext().getRecordType(rec), rec->getLocation());
|
|
Addr = Builder.CreatePreserveStructAccessIndex(
|
|
Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
|
|
DbgInfo);
|
|
}
|
|
}
|
|
const unsigned SS =
|
|
UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
|
|
// Get the access type.
|
|
llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
|
|
Addr = Addr.withElementType(FieldIntTy);
|
|
if (UseVolatile) {
|
|
const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
|
|
if (VolatileOffset)
|
|
Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
|
|
}
|
|
|
|
QualType fieldType =
|
|
field->getType().withCVRQualifiers(base.getVRQualifiers());
|
|
// TODO: Support TBAA for bit fields.
|
|
LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
|
|
return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
|
|
TBAAAccessInfo());
|
|
}
|
|
|
|
// Fields of may-alias structures are may-alias themselves.
|
|
// FIXME: this should get propagated down through anonymous structs
|
|
// and unions.
|
|
QualType FieldType = field->getType();
|
|
const RecordDecl *rec = field->getParent();
|
|
AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
|
|
LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
|
|
TBAAAccessInfo FieldTBAAInfo;
|
|
if (base.getTBAAInfo().isMayAlias() ||
|
|
rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
|
|
FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
|
|
} else if (rec->isUnion()) {
|
|
// TODO: Support TBAA for unions.
|
|
FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
|
|
} else {
|
|
// If no base type been assigned for the base access, then try to generate
|
|
// one for this base lvalue.
|
|
FieldTBAAInfo = base.getTBAAInfo();
|
|
if (!FieldTBAAInfo.BaseType) {
|
|
FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
|
|
assert(!FieldTBAAInfo.Offset &&
|
|
"Nonzero offset for an access with no base type!");
|
|
}
|
|
|
|
// Adjust offset to be relative to the base type.
|
|
const ASTRecordLayout &Layout =
|
|
getContext().getASTRecordLayout(field->getParent());
|
|
unsigned CharWidth = getContext().getCharWidth();
|
|
if (FieldTBAAInfo.BaseType)
|
|
FieldTBAAInfo.Offset +=
|
|
Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
|
|
|
|
// Update the final access type and size.
|
|
FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
|
|
FieldTBAAInfo.Size =
|
|
getContext().getTypeSizeInChars(FieldType).getQuantity();
|
|
}
|
|
|
|
Address addr = base.getAddress();
|
|
if (hasBPFPreserveStaticOffset(rec))
|
|
addr = wrapWithBPFPreserveStaticOffset(*this, addr);
|
|
if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
|
|
if (CGM.getCodeGenOpts().StrictVTablePointers &&
|
|
ClassDef->isDynamicClass()) {
|
|
// Getting to any field of dynamic object requires stripping dynamic
|
|
// information provided by invariant.group. This is because accessing
|
|
// fields may leak the real address of dynamic object, which could result
|
|
// in miscompilation when leaked pointer would be compared.
|
|
auto *stripped =
|
|
Builder.CreateStripInvariantGroup(addr.emitRawPointer(*this));
|
|
addr = Address(stripped, addr.getElementType(), addr.getAlignment());
|
|
}
|
|
}
|
|
|
|
unsigned RecordCVR = base.getVRQualifiers();
|
|
if (rec->isUnion()) {
|
|
// For unions, there is no pointer adjustment.
|
|
if (CGM.getCodeGenOpts().StrictVTablePointers &&
|
|
hasAnyVptr(FieldType, getContext()))
|
|
// Because unions can easily skip invariant.barriers, we need to add
|
|
// a barrier every time CXXRecord field with vptr is referenced.
|
|
addr = Builder.CreateLaunderInvariantGroup(addr);
|
|
|
|
if (IsInPreservedAIRegion ||
|
|
(getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
|
|
// Remember the original union field index
|
|
llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
|
|
rec->getLocation());
|
|
addr =
|
|
Address(Builder.CreatePreserveUnionAccessIndex(
|
|
addr.emitRawPointer(*this),
|
|
getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
|
|
addr.getElementType(), addr.getAlignment());
|
|
}
|
|
|
|
if (FieldType->isReferenceType())
|
|
addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType));
|
|
} else {
|
|
if (!IsInPreservedAIRegion &&
|
|
(!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
|
|
// For structs, we GEP to the field that the record layout suggests.
|
|
addr = emitAddrOfFieldStorage(*this, addr, field, IsInBounds);
|
|
else
|
|
// Remember the original struct field index
|
|
addr = emitPreserveStructAccess(*this, base, addr, field);
|
|
}
|
|
|
|
// If this is a reference field, load the reference right now.
|
|
if (FieldType->isReferenceType()) {
|
|
LValue RefLVal =
|
|
MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
|
|
if (RecordCVR & Qualifiers::Volatile)
|
|
RefLVal.getQuals().addVolatile();
|
|
addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
|
|
|
|
// Qualifiers on the struct don't apply to the referencee.
|
|
RecordCVR = 0;
|
|
FieldType = FieldType->getPointeeType();
|
|
}
|
|
|
|
// Make sure that the address is pointing to the right type. This is critical
|
|
// for both unions and structs.
|
|
addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType));
|
|
|
|
if (field->hasAttr<AnnotateAttr>())
|
|
addr = EmitFieldAnnotations(field, addr);
|
|
|
|
LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
|
|
LV.getQuals().addCVRQualifiers(RecordCVR);
|
|
|
|
// __weak attribute on a field is ignored.
|
|
if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
|
|
LV.getQuals().removeObjCGCAttr();
|
|
|
|
return LV;
|
|
}
|
|
|
|
LValue
|
|
CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
|
|
const FieldDecl *Field) {
|
|
QualType FieldType = Field->getType();
|
|
|
|
if (!FieldType->isReferenceType())
|
|
return EmitLValueForField(Base, Field);
|
|
|
|
Address V = emitAddrOfFieldStorage(
|
|
*this, Base.getAddress(), Field,
|
|
/*IsInBounds=*/!getLangOpts().PointerOverflowDefined);
|
|
|
|
// Make sure that the address is pointing to the right type.
|
|
llvm::Type *llvmType = ConvertTypeForMem(FieldType);
|
|
V = V.withElementType(llvmType);
|
|
|
|
// TODO: Generate TBAA information that describes this access as a structure
|
|
// member access and not just an access to an object of the field's type. This
|
|
// should be similar to what we do in EmitLValueForField().
|
|
LValueBaseInfo BaseInfo = Base.getBaseInfo();
|
|
AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
|
|
LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
|
|
return MakeAddrLValue(V, FieldType, FieldBaseInfo,
|
|
CGM.getTBAAInfoForSubobject(Base, FieldType));
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
|
|
if (E->isFileScope()) {
|
|
ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
|
|
return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
|
|
}
|
|
if (E->getType()->isVariablyModifiedType())
|
|
// make sure to emit the VLA size.
|
|
EmitVariablyModifiedType(E->getType());
|
|
|
|
Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
|
|
const Expr *InitExpr = E->getInitializer();
|
|
LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
|
|
|
|
EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
|
|
/*Init*/ true);
|
|
|
|
// Block-scope compound literals are destroyed at the end of the enclosing
|
|
// scope in C.
|
|
if (!getLangOpts().CPlusPlus)
|
|
if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
|
|
pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
|
|
E->getType(), getDestroyer(DtorKind),
|
|
DtorKind & EHCleanup);
|
|
|
|
return Result;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
|
|
if (!E->isGLValue())
|
|
// Initializing an aggregate temporary in C++11: T{...}.
|
|
return EmitAggExprToLValue(E);
|
|
|
|
// An lvalue initializer list must be initializing a reference.
|
|
assert(E->isTransparent() && "non-transparent glvalue init list");
|
|
return EmitLValue(E->getInit(0));
|
|
}
|
|
|
|
/// Emit the operand of a glvalue conditional operator. This is either a glvalue
|
|
/// or a (possibly-parenthesized) throw-expression. If this is a throw, no
|
|
/// LValue is returned and the current block has been terminated.
|
|
static std::optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
|
|
const Expr *Operand) {
|
|
if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
|
|
CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
|
|
return std::nullopt;
|
|
}
|
|
|
|
return CGF.EmitLValue(Operand);
|
|
}
|
|
|
|
namespace {
|
|
// Handle the case where the condition is a constant evaluatable simple integer,
|
|
// which means we don't have to separately handle the true/false blocks.
|
|
std::optional<LValue> HandleConditionalOperatorLValueSimpleCase(
|
|
CodeGenFunction &CGF, const AbstractConditionalOperator *E) {
|
|
const Expr *condExpr = E->getCond();
|
|
bool CondExprBool;
|
|
if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
|
|
const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr();
|
|
if (!CondExprBool)
|
|
std::swap(Live, Dead);
|
|
|
|
if (!CGF.ContainsLabel(Dead)) {
|
|
// If the true case is live, we need to track its region.
|
|
if (CondExprBool)
|
|
CGF.incrementProfileCounter(E);
|
|
CGF.markStmtMaybeUsed(Dead);
|
|
// If a throw expression we emit it and return an undefined lvalue
|
|
// because it can't be used.
|
|
if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) {
|
|
CGF.EmitCXXThrowExpr(ThrowExpr);
|
|
llvm::Type *ElemTy = CGF.ConvertType(Dead->getType());
|
|
llvm::Type *Ty = CGF.UnqualPtrTy;
|
|
return CGF.MakeAddrLValue(
|
|
Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()),
|
|
Dead->getType());
|
|
}
|
|
return CGF.EmitLValue(Live);
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
struct ConditionalInfo {
|
|
llvm::BasicBlock *lhsBlock, *rhsBlock;
|
|
std::optional<LValue> LHS, RHS;
|
|
};
|
|
|
|
// Create and generate the 3 blocks for a conditional operator.
|
|
// Leaves the 'current block' in the continuation basic block.
|
|
template<typename FuncTy>
|
|
ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF,
|
|
const AbstractConditionalOperator *E,
|
|
const FuncTy &BranchGenFunc) {
|
|
ConditionalInfo Info{CGF.createBasicBlock("cond.true"),
|
|
CGF.createBasicBlock("cond.false"), std::nullopt,
|
|
std::nullopt};
|
|
llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end");
|
|
|
|
CodeGenFunction::ConditionalEvaluation eval(CGF);
|
|
CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock,
|
|
CGF.getProfileCount(E));
|
|
|
|
// Any temporaries created here are conditional.
|
|
CGF.EmitBlock(Info.lhsBlock);
|
|
CGF.incrementProfileCounter(E);
|
|
eval.begin(CGF);
|
|
Info.LHS = BranchGenFunc(CGF, E->getTrueExpr());
|
|
eval.end(CGF);
|
|
Info.lhsBlock = CGF.Builder.GetInsertBlock();
|
|
|
|
if (Info.LHS)
|
|
CGF.Builder.CreateBr(endBlock);
|
|
|
|
// Any temporaries created here are conditional.
|
|
CGF.EmitBlock(Info.rhsBlock);
|
|
eval.begin(CGF);
|
|
Info.RHS = BranchGenFunc(CGF, E->getFalseExpr());
|
|
eval.end(CGF);
|
|
Info.rhsBlock = CGF.Builder.GetInsertBlock();
|
|
CGF.EmitBlock(endBlock);
|
|
|
|
return Info;
|
|
}
|
|
} // namespace
|
|
|
|
void CodeGenFunction::EmitIgnoredConditionalOperator(
|
|
const AbstractConditionalOperator *E) {
|
|
if (!E->isGLValue()) {
|
|
// ?: here should be an aggregate.
|
|
assert(hasAggregateEvaluationKind(E->getType()) &&
|
|
"Unexpected conditional operator!");
|
|
return (void)EmitAggExprToLValue(E);
|
|
}
|
|
|
|
OpaqueValueMapping binding(*this, E);
|
|
if (HandleConditionalOperatorLValueSimpleCase(*this, E))
|
|
return;
|
|
|
|
EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) {
|
|
CGF.EmitIgnoredExpr(E);
|
|
return LValue{};
|
|
});
|
|
}
|
|
LValue CodeGenFunction::EmitConditionalOperatorLValue(
|
|
const AbstractConditionalOperator *expr) {
|
|
if (!expr->isGLValue()) {
|
|
// ?: here should be an aggregate.
|
|
assert(hasAggregateEvaluationKind(expr->getType()) &&
|
|
"Unexpected conditional operator!");
|
|
return EmitAggExprToLValue(expr);
|
|
}
|
|
|
|
OpaqueValueMapping binding(*this, expr);
|
|
if (std::optional<LValue> Res =
|
|
HandleConditionalOperatorLValueSimpleCase(*this, expr))
|
|
return *Res;
|
|
|
|
ConditionalInfo Info = EmitConditionalBlocks(
|
|
*this, expr, [](CodeGenFunction &CGF, const Expr *E) {
|
|
return EmitLValueOrThrowExpression(CGF, E);
|
|
});
|
|
|
|
if ((Info.LHS && !Info.LHS->isSimple()) ||
|
|
(Info.RHS && !Info.RHS->isSimple()))
|
|
return EmitUnsupportedLValue(expr, "conditional operator");
|
|
|
|
if (Info.LHS && Info.RHS) {
|
|
Address lhsAddr = Info.LHS->getAddress();
|
|
Address rhsAddr = Info.RHS->getAddress();
|
|
Address result = mergeAddressesInConditionalExpr(
|
|
lhsAddr, rhsAddr, Info.lhsBlock, Info.rhsBlock,
|
|
Builder.GetInsertBlock(), expr->getType());
|
|
AlignmentSource alignSource =
|
|
std::max(Info.LHS->getBaseInfo().getAlignmentSource(),
|
|
Info.RHS->getBaseInfo().getAlignmentSource());
|
|
TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
|
|
Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo());
|
|
return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
|
|
TBAAInfo);
|
|
} else {
|
|
assert((Info.LHS || Info.RHS) &&
|
|
"both operands of glvalue conditional are throw-expressions?");
|
|
return Info.LHS ? *Info.LHS : *Info.RHS;
|
|
}
|
|
}
|
|
|
|
/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
|
|
/// type. If the cast is to a reference, we can have the usual lvalue result,
|
|
/// otherwise if a cast is needed by the code generator in an lvalue context,
|
|
/// then it must mean that we need the address of an aggregate in order to
|
|
/// access one of its members. This can happen for all the reasons that casts
|
|
/// are permitted with aggregate result, including noop aggregate casts, and
|
|
/// cast from scalar to union.
|
|
LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
|
|
switch (E->getCastKind()) {
|
|
case CK_ToVoid:
|
|
case CK_BitCast:
|
|
case CK_LValueToRValueBitCast:
|
|
case CK_ArrayToPointerDecay:
|
|
case CK_FunctionToPointerDecay:
|
|
case CK_NullToMemberPointer:
|
|
case CK_NullToPointer:
|
|
case CK_IntegralToPointer:
|
|
case CK_PointerToIntegral:
|
|
case CK_PointerToBoolean:
|
|
case CK_IntegralCast:
|
|
case CK_BooleanToSignedIntegral:
|
|
case CK_IntegralToBoolean:
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingToIntegral:
|
|
case CK_FloatingToBoolean:
|
|
case CK_FloatingCast:
|
|
case CK_FloatingRealToComplex:
|
|
case CK_FloatingComplexToReal:
|
|
case CK_FloatingComplexToBoolean:
|
|
case CK_FloatingComplexCast:
|
|
case CK_FloatingComplexToIntegralComplex:
|
|
case CK_IntegralRealToComplex:
|
|
case CK_IntegralComplexToReal:
|
|
case CK_IntegralComplexToBoolean:
|
|
case CK_IntegralComplexCast:
|
|
case CK_IntegralComplexToFloatingComplex:
|
|
case CK_DerivedToBaseMemberPointer:
|
|
case CK_BaseToDerivedMemberPointer:
|
|
case CK_MemberPointerToBoolean:
|
|
case CK_ReinterpretMemberPointer:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
case CK_ARCProduceObject:
|
|
case CK_ARCConsumeObject:
|
|
case CK_ARCReclaimReturnedObject:
|
|
case CK_ARCExtendBlockObject:
|
|
case CK_CopyAndAutoreleaseBlockObject:
|
|
case CK_IntToOCLSampler:
|
|
case CK_FloatingToFixedPoint:
|
|
case CK_FixedPointToFloating:
|
|
case CK_FixedPointCast:
|
|
case CK_FixedPointToBoolean:
|
|
case CK_FixedPointToIntegral:
|
|
case CK_IntegralToFixedPoint:
|
|
case CK_MatrixCast:
|
|
case CK_HLSLVectorTruncation:
|
|
case CK_HLSLArrayRValue:
|
|
case CK_HLSLElementwiseCast:
|
|
case CK_HLSLAggregateSplatCast:
|
|
return EmitUnsupportedLValue(E, "unexpected cast lvalue");
|
|
|
|
case CK_Dependent:
|
|
llvm_unreachable("dependent cast kind in IR gen!");
|
|
|
|
case CK_BuiltinFnToFnPtr:
|
|
llvm_unreachable("builtin functions are handled elsewhere");
|
|
|
|
// These are never l-values; just use the aggregate emission code.
|
|
case CK_NonAtomicToAtomic:
|
|
case CK_AtomicToNonAtomic:
|
|
return EmitAggExprToLValue(E);
|
|
|
|
case CK_Dynamic: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
Address V = LV.getAddress();
|
|
const auto *DCE = cast<CXXDynamicCastExpr>(E);
|
|
return MakeNaturalAlignRawAddrLValue(EmitDynamicCast(V, DCE), E->getType());
|
|
}
|
|
|
|
case CK_ConstructorConversion:
|
|
case CK_UserDefinedConversion:
|
|
case CK_CPointerToObjCPointerCast:
|
|
case CK_BlockPointerToObjCPointerCast:
|
|
case CK_LValueToRValue:
|
|
return EmitLValue(E->getSubExpr());
|
|
|
|
case CK_NoOp: {
|
|
// CK_NoOp can model a qualification conversion, which can remove an array
|
|
// bound and change the IR type.
|
|
// FIXME: Once pointee types are removed from IR, remove this.
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
// Propagate the volatile qualifer to LValue, if exist in E.
|
|
if (E->changesVolatileQualification())
|
|
LV.getQuals() = E->getType().getQualifiers();
|
|
if (LV.isSimple()) {
|
|
Address V = LV.getAddress();
|
|
if (V.isValid()) {
|
|
llvm::Type *T = ConvertTypeForMem(E->getType());
|
|
if (V.getElementType() != T)
|
|
LV.setAddress(V.withElementType(T));
|
|
}
|
|
}
|
|
return LV;
|
|
}
|
|
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_DerivedToBase: {
|
|
const auto *DerivedClassTy =
|
|
E->getSubExpr()->getType()->castAs<RecordType>();
|
|
auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
|
|
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
Address This = LV.getAddress();
|
|
|
|
// Perform the derived-to-base conversion
|
|
Address Base = GetAddressOfBaseClass(
|
|
This, DerivedClassDecl, E->path_begin(), E->path_end(),
|
|
/*NullCheckValue=*/false, E->getExprLoc());
|
|
|
|
// TODO: Support accesses to members of base classes in TBAA. For now, we
|
|
// conservatively pretend that the complete object is of the base class
|
|
// type.
|
|
return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
|
|
CGM.getTBAAInfoForSubobject(LV, E->getType()));
|
|
}
|
|
case CK_ToUnion:
|
|
return EmitAggExprToLValue(E);
|
|
case CK_BaseToDerived: {
|
|
const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
|
|
auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
|
|
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
|
|
// Perform the base-to-derived conversion
|
|
Address Derived = GetAddressOfDerivedClass(
|
|
LV.getAddress(), DerivedClassDecl, E->path_begin(), E->path_end(),
|
|
/*NullCheckValue=*/false);
|
|
|
|
// C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
|
|
// performed and the object is not of the derived type.
|
|
if (sanitizePerformTypeCheck())
|
|
EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), Derived,
|
|
E->getType());
|
|
|
|
if (SanOpts.has(SanitizerKind::CFIDerivedCast))
|
|
EmitVTablePtrCheckForCast(E->getType(), Derived,
|
|
/*MayBeNull=*/false, CFITCK_DerivedCast,
|
|
E->getBeginLoc());
|
|
|
|
return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
|
|
CGM.getTBAAInfoForSubobject(LV, E->getType()));
|
|
}
|
|
case CK_LValueBitCast: {
|
|
// This must be a reinterpret_cast (or c-style equivalent).
|
|
const auto *CE = cast<ExplicitCastExpr>(E);
|
|
|
|
CGM.EmitExplicitCastExprType(CE, this);
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
Address V = LV.getAddress().withElementType(
|
|
ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType()));
|
|
|
|
if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
|
|
EmitVTablePtrCheckForCast(E->getType(), V,
|
|
/*MayBeNull=*/false, CFITCK_UnrelatedCast,
|
|
E->getBeginLoc());
|
|
|
|
return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
|
|
CGM.getTBAAInfoForSubobject(LV, E->getType()));
|
|
}
|
|
case CK_AddressSpaceConversion: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
QualType DestTy = getContext().getPointerType(E->getType());
|
|
llvm::Value *V = getTargetHooks().performAddrSpaceCast(
|
|
*this, LV.getPointer(*this),
|
|
E->getSubExpr()->getType().getAddressSpace(),
|
|
E->getType().getAddressSpace(), ConvertType(DestTy));
|
|
return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()),
|
|
LV.getAddress().getAlignment()),
|
|
E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
|
|
}
|
|
case CK_ObjCObjectLValueCast: {
|
|
LValue LV = EmitLValue(E->getSubExpr());
|
|
Address V = LV.getAddress().withElementType(ConvertType(E->getType()));
|
|
return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
|
|
CGM.getTBAAInfoForSubobject(LV, E->getType()));
|
|
}
|
|
case CK_ZeroToOCLOpaqueType:
|
|
llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
|
|
|
|
case CK_VectorSplat: {
|
|
// LValue results of vector splats are only supported in HLSL.
|
|
if (!getLangOpts().HLSL)
|
|
return EmitUnsupportedLValue(E, "unexpected cast lvalue");
|
|
return EmitLValue(E->getSubExpr());
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Unhandled lvalue cast kind?");
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
|
|
assert(OpaqueValueMappingData::shouldBindAsLValue(e));
|
|
return getOrCreateOpaqueLValueMapping(e);
|
|
}
|
|
|
|
std::pair<LValue, LValue>
|
|
CodeGenFunction::EmitHLSLOutArgLValues(const HLSLOutArgExpr *E, QualType Ty) {
|
|
// Emitting the casted temporary through an opaque value.
|
|
LValue BaseLV = EmitLValue(E->getArgLValue());
|
|
OpaqueValueMappingData::bind(*this, E->getOpaqueArgLValue(), BaseLV);
|
|
|
|
QualType ExprTy = E->getType();
|
|
Address OutTemp = CreateIRTemp(ExprTy);
|
|
LValue TempLV = MakeAddrLValue(OutTemp, ExprTy);
|
|
|
|
if (E->isInOut())
|
|
EmitInitializationToLValue(E->getCastedTemporary()->getSourceExpr(),
|
|
TempLV);
|
|
|
|
OpaqueValueMappingData::bind(*this, E->getCastedTemporary(), TempLV);
|
|
return std::make_pair(BaseLV, TempLV);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitHLSLOutArgExpr(const HLSLOutArgExpr *E,
|
|
CallArgList &Args, QualType Ty) {
|
|
|
|
auto [BaseLV, TempLV] = EmitHLSLOutArgLValues(E, Ty);
|
|
|
|
llvm::Value *Addr = TempLV.getAddress().getBasePointer();
|
|
llvm::Type *ElTy = ConvertTypeForMem(TempLV.getType());
|
|
|
|
llvm::TypeSize Sz = CGM.getDataLayout().getTypeAllocSize(ElTy);
|
|
|
|
llvm::Value *LifetimeSize = EmitLifetimeStart(Sz, Addr);
|
|
|
|
Address TmpAddr(Addr, ElTy, TempLV.getAlignment());
|
|
Args.addWriteback(BaseLV, TmpAddr, nullptr, E->getWritebackCast(),
|
|
LifetimeSize);
|
|
Args.add(RValue::get(TmpAddr, *this), Ty);
|
|
return TempLV;
|
|
}
|
|
|
|
LValue
|
|
CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
|
|
assert(OpaqueValueMapping::shouldBindAsLValue(e));
|
|
|
|
llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
|
|
it = OpaqueLValues.find(e);
|
|
|
|
if (it != OpaqueLValues.end())
|
|
return it->second;
|
|
|
|
assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
|
|
return EmitLValue(e->getSourceExpr());
|
|
}
|
|
|
|
RValue
|
|
CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
|
|
assert(!OpaqueValueMapping::shouldBindAsLValue(e));
|
|
|
|
llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
|
|
it = OpaqueRValues.find(e);
|
|
|
|
if (it != OpaqueRValues.end())
|
|
return it->second;
|
|
|
|
assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
|
|
return EmitAnyExpr(e->getSourceExpr());
|
|
}
|
|
|
|
bool CodeGenFunction::isOpaqueValueEmitted(const OpaqueValueExpr *E) {
|
|
if (OpaqueValueMapping::shouldBindAsLValue(E))
|
|
return OpaqueLValues.contains(E);
|
|
return OpaqueRValues.contains(E);
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitRValueForField(LValue LV,
|
|
const FieldDecl *FD,
|
|
SourceLocation Loc) {
|
|
QualType FT = FD->getType();
|
|
LValue FieldLV = EmitLValueForField(LV, FD);
|
|
switch (getEvaluationKind(FT)) {
|
|
case TEK_Complex:
|
|
return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
|
|
case TEK_Aggregate:
|
|
return FieldLV.asAggregateRValue();
|
|
case TEK_Scalar:
|
|
// This routine is used to load fields one-by-one to perform a copy, so
|
|
// don't load reference fields.
|
|
if (FD->getType()->isReferenceType())
|
|
return RValue::get(FieldLV.getPointer(*this));
|
|
// Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
|
|
// primitive load.
|
|
if (FieldLV.isBitField())
|
|
return EmitLoadOfLValue(FieldLV, Loc);
|
|
return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Expression Emission
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
|
|
ReturnValueSlot ReturnValue,
|
|
llvm::CallBase **CallOrInvoke) {
|
|
llvm::CallBase *CallOrInvokeStorage;
|
|
if (!CallOrInvoke) {
|
|
CallOrInvoke = &CallOrInvokeStorage;
|
|
}
|
|
|
|
auto AddCoroElideSafeOnExit = llvm::make_scope_exit([&] {
|
|
if (E->isCoroElideSafe()) {
|
|
auto *I = *CallOrInvoke;
|
|
if (I)
|
|
I->addFnAttr(llvm::Attribute::CoroElideSafe);
|
|
}
|
|
});
|
|
|
|
// Builtins never have block type.
|
|
if (E->getCallee()->getType()->isBlockPointerType())
|
|
return EmitBlockCallExpr(E, ReturnValue, CallOrInvoke);
|
|
|
|
if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
|
|
return EmitCXXMemberCallExpr(CE, ReturnValue, CallOrInvoke);
|
|
|
|
if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
|
|
return EmitCUDAKernelCallExpr(CE, ReturnValue, CallOrInvoke);
|
|
|
|
// A CXXOperatorCallExpr is created even for explicit object methods, but
|
|
// these should be treated like static function call.
|
|
if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
|
|
if (const auto *MD =
|
|
dyn_cast_if_present<CXXMethodDecl>(CE->getCalleeDecl());
|
|
MD && MD->isImplicitObjectMemberFunction())
|
|
return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue, CallOrInvoke);
|
|
|
|
CGCallee callee = EmitCallee(E->getCallee());
|
|
|
|
if (callee.isBuiltin()) {
|
|
return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
|
|
E, ReturnValue);
|
|
}
|
|
|
|
if (callee.isPseudoDestructor()) {
|
|
return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
|
|
}
|
|
|
|
return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue,
|
|
/*Chain=*/nullptr, CallOrInvoke);
|
|
}
|
|
|
|
/// Emit a CallExpr without considering whether it might be a subclass.
|
|
RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
|
|
ReturnValueSlot ReturnValue,
|
|
llvm::CallBase **CallOrInvoke) {
|
|
CGCallee Callee = EmitCallee(E->getCallee());
|
|
return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
|
|
/*Chain=*/nullptr, CallOrInvoke);
|
|
}
|
|
|
|
// Detect the unusual situation where an inline version is shadowed by a
|
|
// non-inline version. In that case we should pick the external one
|
|
// everywhere. That's GCC behavior too.
|
|
static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) {
|
|
for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl())
|
|
if (!PD->isInlineBuiltinDeclaration())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
|
|
const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
|
|
|
|
if (auto builtinID = FD->getBuiltinID()) {
|
|
std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str();
|
|
std::string NoBuiltins = "no-builtins";
|
|
|
|
StringRef Ident = CGF.CGM.getMangledName(GD);
|
|
std::string FDInlineName = (Ident + ".inline").str();
|
|
|
|
bool IsPredefinedLibFunction =
|
|
CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID);
|
|
bool HasAttributeNoBuiltin =
|
|
CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) ||
|
|
CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins);
|
|
|
|
// When directing calling an inline builtin, call it through it's mangled
|
|
// name to make it clear it's not the actual builtin.
|
|
if (CGF.CurFn->getName() != FDInlineName &&
|
|
OnlyHasInlineBuiltinDeclaration(FD)) {
|
|
llvm::Constant *CalleePtr = CGF.CGM.getRawFunctionPointer(GD);
|
|
llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
|
|
llvm::Module *M = Fn->getParent();
|
|
llvm::Function *Clone = M->getFunction(FDInlineName);
|
|
if (!Clone) {
|
|
Clone = llvm::Function::Create(Fn->getFunctionType(),
|
|
llvm::GlobalValue::InternalLinkage,
|
|
Fn->getAddressSpace(), FDInlineName, M);
|
|
Clone->addFnAttr(llvm::Attribute::AlwaysInline);
|
|
}
|
|
return CGCallee::forDirect(Clone, GD);
|
|
}
|
|
|
|
// Replaceable builtins provide their own implementation of a builtin. If we
|
|
// are in an inline builtin implementation, avoid trivial infinite
|
|
// recursion. Honor __attribute__((no_builtin("foo"))) or
|
|
// __attribute__((no_builtin)) on the current function unless foo is
|
|
// not a predefined library function which means we must generate the
|
|
// builtin no matter what.
|
|
else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin)
|
|
return CGCallee::forBuiltin(builtinID, FD);
|
|
}
|
|
|
|
llvm::Constant *CalleePtr = CGF.CGM.getRawFunctionPointer(GD);
|
|
if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
|
|
FD->hasAttr<CUDAGlobalAttr>())
|
|
CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
|
|
cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
|
|
|
|
return CGCallee::forDirect(CalleePtr, GD);
|
|
}
|
|
|
|
static GlobalDecl getGlobalDeclForDirectCall(const FunctionDecl *FD) {
|
|
if (FD->hasAttr<OpenCLKernelAttr>())
|
|
return GlobalDecl(FD, KernelReferenceKind::Stub);
|
|
return GlobalDecl(FD);
|
|
}
|
|
|
|
CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
|
|
E = E->IgnoreParens();
|
|
|
|
// Look through function-to-pointer decay.
|
|
if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
|
|
ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
|
|
return EmitCallee(ICE->getSubExpr());
|
|
}
|
|
|
|
// Resolve direct calls.
|
|
} else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
|
|
return EmitDirectCallee(*this, getGlobalDeclForDirectCall(FD));
|
|
}
|
|
} else if (auto ME = dyn_cast<MemberExpr>(E)) {
|
|
if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
|
|
EmitIgnoredExpr(ME->getBase());
|
|
return EmitDirectCallee(*this, FD);
|
|
}
|
|
|
|
// Look through template substitutions.
|
|
} else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
|
|
return EmitCallee(NTTP->getReplacement());
|
|
|
|
// Treat pseudo-destructor calls differently.
|
|
} else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
|
|
return CGCallee::forPseudoDestructor(PDE);
|
|
}
|
|
|
|
// Otherwise, we have an indirect reference.
|
|
llvm::Value *calleePtr;
|
|
QualType functionType;
|
|
if (auto ptrType = E->getType()->getAs<PointerType>()) {
|
|
calleePtr = EmitScalarExpr(E);
|
|
functionType = ptrType->getPointeeType();
|
|
} else {
|
|
functionType = E->getType();
|
|
calleePtr = EmitLValue(E, KnownNonNull).getPointer(*this);
|
|
}
|
|
assert(functionType->isFunctionType());
|
|
|
|
GlobalDecl GD;
|
|
if (const auto *VD =
|
|
dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
|
|
GD = GlobalDecl(VD);
|
|
|
|
CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
|
|
CGPointerAuthInfo pointerAuth = CGM.getFunctionPointerAuthInfo(functionType);
|
|
CGCallee callee(calleeInfo, calleePtr, pointerAuth);
|
|
return callee;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
|
|
// Comma expressions just emit their LHS then their RHS as an l-value.
|
|
if (E->getOpcode() == BO_Comma) {
|
|
EmitIgnoredExpr(E->getLHS());
|
|
EnsureInsertPoint();
|
|
return EmitLValue(E->getRHS());
|
|
}
|
|
|
|
if (E->getOpcode() == BO_PtrMemD ||
|
|
E->getOpcode() == BO_PtrMemI)
|
|
return EmitPointerToDataMemberBinaryExpr(E);
|
|
|
|
assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
|
|
|
|
// Note that in all of these cases, __block variables need the RHS
|
|
// evaluated first just in case the variable gets moved by the RHS.
|
|
|
|
switch (getEvaluationKind(E->getType())) {
|
|
case TEK_Scalar: {
|
|
switch (E->getLHS()->getType().getObjCLifetime()) {
|
|
case Qualifiers::OCL_Strong:
|
|
return EmitARCStoreStrong(E, /*ignored*/ false).first;
|
|
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
return EmitARCStoreAutoreleasing(E).first;
|
|
|
|
// No reason to do any of these differently.
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
case Qualifiers::OCL_Weak:
|
|
break;
|
|
}
|
|
|
|
// TODO: Can we de-duplicate this code with the corresponding code in
|
|
// CGExprScalar, similar to the way EmitCompoundAssignmentLValue works?
|
|
RValue RV;
|
|
llvm::Value *Previous = nullptr;
|
|
QualType SrcType = E->getRHS()->getType();
|
|
// Check if LHS is a bitfield, if RHS contains an implicit cast expression
|
|
// we want to extract that value and potentially (if the bitfield sanitizer
|
|
// is enabled) use it to check for an implicit conversion.
|
|
if (E->getLHS()->refersToBitField()) {
|
|
llvm::Value *RHS =
|
|
EmitWithOriginalRHSBitfieldAssignment(E, &Previous, &SrcType);
|
|
RV = RValue::get(RHS);
|
|
} else
|
|
RV = EmitAnyExpr(E->getRHS());
|
|
|
|
LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
|
|
|
|
if (RV.isScalar())
|
|
EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
|
|
|
|
if (LV.isBitField()) {
|
|
llvm::Value *Result = nullptr;
|
|
// If bitfield sanitizers are enabled we want to use the result
|
|
// to check whether a truncation or sign change has occurred.
|
|
if (SanOpts.has(SanitizerKind::ImplicitBitfieldConversion))
|
|
EmitStoreThroughBitfieldLValue(RV, LV, &Result);
|
|
else
|
|
EmitStoreThroughBitfieldLValue(RV, LV);
|
|
|
|
// If the expression contained an implicit conversion, make sure
|
|
// to use the value before the scalar conversion.
|
|
llvm::Value *Src = Previous ? Previous : RV.getScalarVal();
|
|
QualType DstType = E->getLHS()->getType();
|
|
EmitBitfieldConversionCheck(Src, SrcType, Result, DstType,
|
|
LV.getBitFieldInfo(), E->getExprLoc());
|
|
} else
|
|
EmitStoreThroughLValue(RV, LV);
|
|
|
|
if (getLangOpts().OpenMP)
|
|
CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
|
|
E->getLHS());
|
|
return LV;
|
|
}
|
|
|
|
case TEK_Complex:
|
|
return EmitComplexAssignmentLValue(E);
|
|
|
|
case TEK_Aggregate:
|
|
// If the lang opt is HLSL and the LHS is a constant array
|
|
// then we are performing a copy assignment and call a special
|
|
// function because EmitAggExprToLValue emits to a temporary LValue
|
|
if (getLangOpts().HLSL && E->getLHS()->getType()->isConstantArrayType())
|
|
return EmitHLSLArrayAssignLValue(E);
|
|
|
|
return EmitAggExprToLValue(E);
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
// This function implements trivial copy assignment for HLSL's
|
|
// assignable constant arrays.
|
|
LValue CodeGenFunction::EmitHLSLArrayAssignLValue(const BinaryOperator *E) {
|
|
// Don't emit an LValue for the RHS because it might not be an LValue
|
|
LValue LHS = EmitLValue(E->getLHS());
|
|
// In C the RHS of an assignment operator is an RValue.
|
|
// EmitAggregateAssign takes anan LValue for the RHS. Instead we can call
|
|
// EmitInitializationToLValue to emit an RValue into an LValue.
|
|
EmitInitializationToLValue(E->getRHS(), LHS);
|
|
return LHS;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E,
|
|
llvm::CallBase **CallOrInvoke) {
|
|
RValue RV = EmitCallExpr(E, ReturnValueSlot(), CallOrInvoke);
|
|
|
|
if (!RV.isScalar())
|
|
return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
|
|
AlignmentSource::Decl);
|
|
|
|
assert(E->getCallReturnType(getContext())->isReferenceType() &&
|
|
"Can't have a scalar return unless the return type is a "
|
|
"reference type!");
|
|
|
|
return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
|
|
// FIXME: This shouldn't require another copy.
|
|
return EmitAggExprToLValue(E);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
|
|
assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
|
|
&& "binding l-value to type which needs a temporary");
|
|
AggValueSlot Slot = CreateAggTemp(E->getType());
|
|
EmitCXXConstructExpr(E, Slot);
|
|
return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
|
|
}
|
|
|
|
LValue
|
|
CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
|
|
return MakeNaturalAlignRawAddrLValue(EmitCXXTypeidExpr(E), E->getType());
|
|
}
|
|
|
|
Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
|
|
return CGM.GetAddrOfMSGuidDecl(E->getGuidDecl())
|
|
.withElementType(ConvertType(E->getType()));
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
|
|
return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
|
|
AlignmentSource::Decl);
|
|
}
|
|
|
|
LValue
|
|
CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
|
|
AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
|
|
Slot.setExternallyDestructed();
|
|
EmitAggExpr(E->getSubExpr(), Slot);
|
|
EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
|
|
return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
|
|
RValue RV = EmitObjCMessageExpr(E);
|
|
|
|
if (!RV.isScalar())
|
|
return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
|
|
AlignmentSource::Decl);
|
|
|
|
assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
|
|
"Can't have a scalar return unless the return type is a "
|
|
"reference type!");
|
|
|
|
return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
|
|
Address V =
|
|
CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
|
|
return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
|
|
const ObjCIvarDecl *Ivar) {
|
|
return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
|
|
}
|
|
|
|
llvm::Value *
|
|
CodeGenFunction::EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
|
|
const ObjCIvarDecl *Ivar) {
|
|
llvm::Value *OffsetValue = EmitIvarOffset(Interface, Ivar);
|
|
QualType PointerDiffType = getContext().getPointerDiffType();
|
|
return Builder.CreateZExtOrTrunc(OffsetValue,
|
|
getTypes().ConvertType(PointerDiffType));
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
|
|
llvm::Value *BaseValue,
|
|
const ObjCIvarDecl *Ivar,
|
|
unsigned CVRQualifiers) {
|
|
return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
|
|
Ivar, CVRQualifiers);
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
|
|
// FIXME: A lot of the code below could be shared with EmitMemberExpr.
|
|
llvm::Value *BaseValue = nullptr;
|
|
const Expr *BaseExpr = E->getBase();
|
|
Qualifiers BaseQuals;
|
|
QualType ObjectTy;
|
|
if (E->isArrow()) {
|
|
BaseValue = EmitScalarExpr(BaseExpr);
|
|
ObjectTy = BaseExpr->getType()->getPointeeType();
|
|
BaseQuals = ObjectTy.getQualifiers();
|
|
} else {
|
|
LValue BaseLV = EmitLValue(BaseExpr);
|
|
BaseValue = BaseLV.getPointer(*this);
|
|
ObjectTy = BaseExpr->getType();
|
|
BaseQuals = ObjectTy.getQualifiers();
|
|
}
|
|
|
|
LValue LV =
|
|
EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
|
|
BaseQuals.getCVRQualifiers());
|
|
setObjCGCLValueClass(getContext(), E, LV);
|
|
return LV;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
|
|
// Can only get l-value for message expression returning aggregate type
|
|
RValue RV = EmitAnyExprToTemp(E);
|
|
return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
|
|
AlignmentSource::Decl);
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitCall(QualType CalleeType,
|
|
const CGCallee &OrigCallee, const CallExpr *E,
|
|
ReturnValueSlot ReturnValue,
|
|
llvm::Value *Chain,
|
|
llvm::CallBase **CallOrInvoke,
|
|
CGFunctionInfo const **ResolvedFnInfo) {
|
|
// Get the actual function type. The callee type will always be a pointer to
|
|
// function type or a block pointer type.
|
|
assert(CalleeType->isFunctionPointerType() &&
|
|
"Call must have function pointer type!");
|
|
|
|
const Decl *TargetDecl =
|
|
OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
|
|
|
|
assert((!isa_and_present<FunctionDecl>(TargetDecl) ||
|
|
!cast<FunctionDecl>(TargetDecl)->isImmediateFunction()) &&
|
|
"trying to emit a call to an immediate function");
|
|
|
|
CalleeType = getContext().getCanonicalType(CalleeType);
|
|
|
|
auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
|
|
|
|
CGCallee Callee = OrigCallee;
|
|
|
|
if (SanOpts.has(SanitizerKind::Function) &&
|
|
(!TargetDecl || !isa<FunctionDecl>(TargetDecl)) &&
|
|
!isa<FunctionNoProtoType>(PointeeType)) {
|
|
if (llvm::Constant *PrefixSig =
|
|
CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
|
|
SanitizerScope SanScope(this);
|
|
auto *TypeHash = getUBSanFunctionTypeHash(PointeeType);
|
|
|
|
llvm::Type *PrefixSigType = PrefixSig->getType();
|
|
llvm::StructType *PrefixStructTy = llvm::StructType::get(
|
|
CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
|
|
|
|
llvm::Value *CalleePtr = Callee.getFunctionPointer();
|
|
if (CGM.getCodeGenOpts().PointerAuth.FunctionPointers) {
|
|
// Use raw pointer since we are using the callee pointer as data here.
|
|
Address Addr =
|
|
Address(CalleePtr, CalleePtr->getType(),
|
|
CharUnits::fromQuantity(
|
|
CalleePtr->getPointerAlignment(CGM.getDataLayout())),
|
|
Callee.getPointerAuthInfo(), nullptr);
|
|
CalleePtr = Addr.emitRawPointer(*this);
|
|
}
|
|
|
|
// On 32-bit Arm, the low bit of a function pointer indicates whether
|
|
// it's using the Arm or Thumb instruction set. The actual first
|
|
// instruction lives at the same address either way, so we must clear
|
|
// that low bit before using the function address to find the prefix
|
|
// structure.
|
|
//
|
|
// This applies to both Arm and Thumb target triples, because
|
|
// either one could be used in an interworking context where it
|
|
// might be passed function pointers of both types.
|
|
llvm::Value *AlignedCalleePtr;
|
|
if (CGM.getTriple().isARM() || CGM.getTriple().isThumb()) {
|
|
llvm::Value *CalleeAddress =
|
|
Builder.CreatePtrToInt(CalleePtr, IntPtrTy);
|
|
llvm::Value *Mask = llvm::ConstantInt::get(IntPtrTy, ~1);
|
|
llvm::Value *AlignedCalleeAddress =
|
|
Builder.CreateAnd(CalleeAddress, Mask);
|
|
AlignedCalleePtr =
|
|
Builder.CreateIntToPtr(AlignedCalleeAddress, CalleePtr->getType());
|
|
} else {
|
|
AlignedCalleePtr = CalleePtr;
|
|
}
|
|
|
|
llvm::Value *CalleePrefixStruct = AlignedCalleePtr;
|
|
llvm::Value *CalleeSigPtr =
|
|
Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 0);
|
|
llvm::Value *CalleeSig =
|
|
Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
|
|
llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
|
|
|
|
llvm::BasicBlock *Cont = createBasicBlock("cont");
|
|
llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
|
|
Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
|
|
|
|
EmitBlock(TypeCheck);
|
|
llvm::Value *CalleeTypeHash = Builder.CreateAlignedLoad(
|
|
Int32Ty,
|
|
Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 1),
|
|
getPointerAlign());
|
|
llvm::Value *CalleeTypeHashMatch =
|
|
Builder.CreateICmpEQ(CalleeTypeHash, TypeHash);
|
|
llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
|
|
EmitCheckTypeDescriptor(CalleeType)};
|
|
EmitCheck(std::make_pair(CalleeTypeHashMatch, SanitizerKind::SO_Function),
|
|
SanitizerHandler::FunctionTypeMismatch, StaticData,
|
|
{CalleePtr});
|
|
|
|
Builder.CreateBr(Cont);
|
|
EmitBlock(Cont);
|
|
}
|
|
}
|
|
|
|
const auto *FnType = cast<FunctionType>(PointeeType);
|
|
|
|
if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
|
|
FD && FD->hasAttr<OpenCLKernelAttr>())
|
|
CGM.getTargetCodeGenInfo().setOCLKernelStubCallingConvention(FnType);
|
|
|
|
// If we are checking indirect calls and this call is indirect, check that the
|
|
// function pointer is a member of the bit set for the function type.
|
|
if (SanOpts.has(SanitizerKind::CFIICall) &&
|
|
(!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
|
|
SanitizerScope SanScope(this);
|
|
EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
|
|
|
|
llvm::Metadata *MD;
|
|
if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
|
|
MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
|
|
else
|
|
MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
|
|
|
|
llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
|
|
|
|
llvm::Value *CalleePtr = Callee.getFunctionPointer();
|
|
llvm::Value *TypeTest = Builder.CreateCall(
|
|
CGM.getIntrinsic(llvm::Intrinsic::type_test), {CalleePtr, TypeId});
|
|
|
|
auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
|
|
llvm::Constant *StaticData[] = {
|
|
llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
|
|
EmitCheckSourceLocation(E->getBeginLoc()),
|
|
EmitCheckTypeDescriptor(QualType(FnType, 0)),
|
|
};
|
|
if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
|
|
EmitCfiSlowPathCheck(SanitizerKind::SO_CFIICall, TypeTest, CrossDsoTypeId,
|
|
CalleePtr, StaticData);
|
|
} else {
|
|
EmitCheck(std::make_pair(TypeTest, SanitizerKind::SO_CFIICall),
|
|
SanitizerHandler::CFICheckFail, StaticData,
|
|
{CalleePtr, llvm::UndefValue::get(IntPtrTy)});
|
|
}
|
|
}
|
|
|
|
CallArgList Args;
|
|
if (Chain)
|
|
Args.add(RValue::get(Chain), CGM.getContext().VoidPtrTy);
|
|
|
|
// C++17 requires that we evaluate arguments to a call using assignment syntax
|
|
// right-to-left, and that we evaluate arguments to certain other operators
|
|
// left-to-right. Note that we allow this to override the order dictated by
|
|
// the calling convention on the MS ABI, which means that parameter
|
|
// destruction order is not necessarily reverse construction order.
|
|
// FIXME: Revisit this based on C++ committee response to unimplementability.
|
|
EvaluationOrder Order = EvaluationOrder::Default;
|
|
bool StaticOperator = false;
|
|
if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
|
|
if (OCE->isAssignmentOp())
|
|
Order = EvaluationOrder::ForceRightToLeft;
|
|
else {
|
|
switch (OCE->getOperator()) {
|
|
case OO_LessLess:
|
|
case OO_GreaterGreater:
|
|
case OO_AmpAmp:
|
|
case OO_PipePipe:
|
|
case OO_Comma:
|
|
case OO_ArrowStar:
|
|
Order = EvaluationOrder::ForceLeftToRight;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (const auto *MD =
|
|
dyn_cast_if_present<CXXMethodDecl>(OCE->getCalleeDecl());
|
|
MD && MD->isStatic())
|
|
StaticOperator = true;
|
|
}
|
|
|
|
auto Arguments = E->arguments();
|
|
if (StaticOperator) {
|
|
// If we're calling a static operator, we need to emit the object argument
|
|
// and ignore it.
|
|
EmitIgnoredExpr(E->getArg(0));
|
|
Arguments = drop_begin(Arguments, 1);
|
|
}
|
|
EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), Arguments,
|
|
E->getDirectCallee(), /*ParamsToSkip=*/0, Order);
|
|
|
|
const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
|
|
Args, FnType, /*ChainCall=*/Chain);
|
|
|
|
if (ResolvedFnInfo)
|
|
*ResolvedFnInfo = &FnInfo;
|
|
|
|
// HIP function pointer contains kernel handle when it is used in triple
|
|
// chevron. The kernel stub needs to be loaded from kernel handle and used
|
|
// as callee.
|
|
if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
|
|
isa<CUDAKernelCallExpr>(E) &&
|
|
(!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
|
|
llvm::Value *Handle = Callee.getFunctionPointer();
|
|
auto *Stub = Builder.CreateLoad(
|
|
Address(Handle, Handle->getType(), CGM.getPointerAlign()));
|
|
Callee.setFunctionPointer(Stub);
|
|
}
|
|
llvm::CallBase *LocalCallOrInvoke = nullptr;
|
|
RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &LocalCallOrInvoke,
|
|
E == MustTailCall, E->getExprLoc());
|
|
|
|
// Generate function declaration DISuprogram in order to be used
|
|
// in debug info about call sites.
|
|
if (CGDebugInfo *DI = getDebugInfo()) {
|
|
if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
|
|
FunctionArgList Args;
|
|
QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
|
|
DI->EmitFuncDeclForCallSite(LocalCallOrInvoke,
|
|
DI->getFunctionType(CalleeDecl, ResTy, Args),
|
|
CalleeDecl);
|
|
}
|
|
}
|
|
if (CallOrInvoke)
|
|
*CallOrInvoke = LocalCallOrInvoke;
|
|
|
|
return Call;
|
|
}
|
|
|
|
LValue CodeGenFunction::
|
|
EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
|
|
Address BaseAddr = Address::invalid();
|
|
if (E->getOpcode() == BO_PtrMemI) {
|
|
BaseAddr = EmitPointerWithAlignment(E->getLHS());
|
|
} else {
|
|
BaseAddr = EmitLValue(E->getLHS()).getAddress();
|
|
}
|
|
|
|
llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
|
|
const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
|
|
|
|
LValueBaseInfo BaseInfo;
|
|
TBAAAccessInfo TBAAInfo;
|
|
Address MemberAddr =
|
|
EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
|
|
&TBAAInfo);
|
|
|
|
return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
|
|
}
|
|
|
|
/// Given the address of a temporary variable, produce an r-value of
|
|
/// its type.
|
|
RValue CodeGenFunction::convertTempToRValue(Address addr,
|
|
QualType type,
|
|
SourceLocation loc) {
|
|
LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
|
|
switch (getEvaluationKind(type)) {
|
|
case TEK_Complex:
|
|
return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
|
|
case TEK_Aggregate:
|
|
return lvalue.asAggregateRValue();
|
|
case TEK_Scalar:
|
|
return RValue::get(EmitLoadOfScalar(lvalue, loc));
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
|
|
assert(Val->getType()->isFPOrFPVectorTy());
|
|
if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
|
|
return;
|
|
|
|
llvm::MDBuilder MDHelper(getLLVMContext());
|
|
llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
|
|
|
|
cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
|
|
}
|
|
|
|
void CodeGenFunction::SetSqrtFPAccuracy(llvm::Value *Val) {
|
|
llvm::Type *EltTy = Val->getType()->getScalarType();
|
|
if (!EltTy->isFloatTy())
|
|
return;
|
|
|
|
if ((getLangOpts().OpenCL &&
|
|
!CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
|
|
(getLangOpts().HIP && getLangOpts().CUDAIsDevice &&
|
|
!CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
|
|
// OpenCL v1.1 s7.4: minimum accuracy of single precision / is 3ulp
|
|
//
|
|
// OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
|
|
// build option allows an application to specify that single precision
|
|
// floating-point divide (x/y and 1/x) and sqrt used in the program
|
|
// source are correctly rounded.
|
|
//
|
|
// TODO: CUDA has a prec-sqrt flag
|
|
SetFPAccuracy(Val, 3.0f);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::SetDivFPAccuracy(llvm::Value *Val) {
|
|
llvm::Type *EltTy = Val->getType()->getScalarType();
|
|
if (!EltTy->isFloatTy())
|
|
return;
|
|
|
|
if ((getLangOpts().OpenCL &&
|
|
!CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
|
|
(getLangOpts().HIP && getLangOpts().CUDAIsDevice &&
|
|
!CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
|
|
// OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
|
|
//
|
|
// OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
|
|
// build option allows an application to specify that single precision
|
|
// floating-point divide (x/y and 1/x) and sqrt used in the program
|
|
// source are correctly rounded.
|
|
//
|
|
// TODO: CUDA has a prec-div flag
|
|
SetFPAccuracy(Val, 2.5f);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct LValueOrRValue {
|
|
LValue LV;
|
|
RValue RV;
|
|
};
|
|
}
|
|
|
|
static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
|
|
const PseudoObjectExpr *E,
|
|
bool forLValue,
|
|
AggValueSlot slot) {
|
|
SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
|
|
|
|
// Find the result expression, if any.
|
|
const Expr *resultExpr = E->getResultExpr();
|
|
LValueOrRValue result;
|
|
|
|
for (PseudoObjectExpr::const_semantics_iterator
|
|
i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
|
|
const Expr *semantic = *i;
|
|
|
|
// If this semantic expression is an opaque value, bind it
|
|
// to the result of its source expression.
|
|
if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
|
|
// Skip unique OVEs.
|
|
if (ov->isUnique()) {
|
|
assert(ov != resultExpr &&
|
|
"A unique OVE cannot be used as the result expression");
|
|
continue;
|
|
}
|
|
|
|
// If this is the result expression, we may need to evaluate
|
|
// directly into the slot.
|
|
typedef CodeGenFunction::OpaqueValueMappingData OVMA;
|
|
OVMA opaqueData;
|
|
if (ov == resultExpr && ov->isPRValue() && !forLValue &&
|
|
CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
|
|
CGF.EmitAggExpr(ov->getSourceExpr(), slot);
|
|
LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
|
|
AlignmentSource::Decl);
|
|
opaqueData = OVMA::bind(CGF, ov, LV);
|
|
result.RV = slot.asRValue();
|
|
|
|
// Otherwise, emit as normal.
|
|
} else {
|
|
opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
|
|
|
|
// If this is the result, also evaluate the result now.
|
|
if (ov == resultExpr) {
|
|
if (forLValue)
|
|
result.LV = CGF.EmitLValue(ov);
|
|
else
|
|
result.RV = CGF.EmitAnyExpr(ov, slot);
|
|
}
|
|
}
|
|
|
|
opaques.push_back(opaqueData);
|
|
|
|
// Otherwise, if the expression is the result, evaluate it
|
|
// and remember the result.
|
|
} else if (semantic == resultExpr) {
|
|
if (forLValue)
|
|
result.LV = CGF.EmitLValue(semantic);
|
|
else
|
|
result.RV = CGF.EmitAnyExpr(semantic, slot);
|
|
|
|
// Otherwise, evaluate the expression in an ignored context.
|
|
} else {
|
|
CGF.EmitIgnoredExpr(semantic);
|
|
}
|
|
}
|
|
|
|
// Unbind all the opaques now.
|
|
for (unsigned i = 0, e = opaques.size(); i != e; ++i)
|
|
opaques[i].unbind(CGF);
|
|
|
|
return result;
|
|
}
|
|
|
|
RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
|
|
AggValueSlot slot) {
|
|
return emitPseudoObjectExpr(*this, E, false, slot).RV;
|
|
}
|
|
|
|
LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
|
|
return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
|
|
}
|
|
|
|
void CodeGenFunction::FlattenAccessAndType(
|
|
Address Addr, QualType AddrType,
|
|
SmallVectorImpl<std::pair<Address, llvm::Value *>> &AccessList,
|
|
SmallVectorImpl<QualType> &FlatTypes) {
|
|
// WorkList is list of type we are processing + the Index List to access
|
|
// the field of that type in Addr for use in a GEP
|
|
llvm::SmallVector<std::pair<QualType, llvm::SmallVector<llvm::Value *, 4>>,
|
|
16>
|
|
WorkList;
|
|
llvm::IntegerType *IdxTy = llvm::IntegerType::get(getLLVMContext(), 32);
|
|
// Addr should be a pointer so we need to 'dereference' it
|
|
WorkList.push_back({AddrType, {llvm::ConstantInt::get(IdxTy, 0)}});
|
|
|
|
while (!WorkList.empty()) {
|
|
auto [T, IdxList] = WorkList.pop_back_val();
|
|
T = T.getCanonicalType().getUnqualifiedType();
|
|
assert(!isa<MatrixType>(T) && "Matrix types not yet supported in HLSL");
|
|
if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) {
|
|
uint64_t Size = CAT->getZExtSize();
|
|
for (int64_t I = Size - 1; I > -1; I--) {
|
|
llvm::SmallVector<llvm::Value *, 4> IdxListCopy = IdxList;
|
|
IdxListCopy.push_back(llvm::ConstantInt::get(IdxTy, I));
|
|
WorkList.emplace_back(CAT->getElementType(), IdxListCopy);
|
|
}
|
|
} else if (const auto *RT = dyn_cast<RecordType>(T)) {
|
|
const RecordDecl *Record = RT->getDecl();
|
|
assert(!Record->isUnion() && "Union types not supported in flat cast.");
|
|
|
|
const CXXRecordDecl *CXXD = dyn_cast<CXXRecordDecl>(Record);
|
|
|
|
llvm::SmallVector<QualType, 16> FieldTypes;
|
|
if (CXXD && CXXD->isStandardLayout())
|
|
Record = CXXD->getStandardLayoutBaseWithFields();
|
|
|
|
// deal with potential base classes
|
|
if (CXXD && !CXXD->isStandardLayout()) {
|
|
for (auto &Base : CXXD->bases())
|
|
FieldTypes.push_back(Base.getType());
|
|
}
|
|
|
|
for (auto *FD : Record->fields())
|
|
FieldTypes.push_back(FD->getType());
|
|
|
|
for (int64_t I = FieldTypes.size() - 1; I > -1; I--) {
|
|
llvm::SmallVector<llvm::Value *, 4> IdxListCopy = IdxList;
|
|
IdxListCopy.push_back(llvm::ConstantInt::get(IdxTy, I));
|
|
WorkList.insert(WorkList.end(), {FieldTypes[I], IdxListCopy});
|
|
}
|
|
} else if (const auto *VT = dyn_cast<VectorType>(T)) {
|
|
llvm::Type *LLVMT = ConvertTypeForMem(T);
|
|
CharUnits Align = getContext().getTypeAlignInChars(T);
|
|
Address GEP =
|
|
Builder.CreateInBoundsGEP(Addr, IdxList, LLVMT, Align, "vector.gep");
|
|
for (unsigned I = 0, E = VT->getNumElements(); I < E; I++) {
|
|
llvm::Value *Idx = llvm::ConstantInt::get(IdxTy, I);
|
|
// gep on vector fields is not recommended so combine gep with
|
|
// extract/insert
|
|
AccessList.emplace_back(GEP, Idx);
|
|
FlatTypes.push_back(VT->getElementType());
|
|
}
|
|
} else {
|
|
// a scalar/builtin type
|
|
llvm::Type *LLVMT = ConvertTypeForMem(T);
|
|
CharUnits Align = getContext().getTypeAlignInChars(T);
|
|
Address GEP =
|
|
Builder.CreateInBoundsGEP(Addr, IdxList, LLVMT, Align, "gep");
|
|
AccessList.emplace_back(GEP, nullptr);
|
|
FlatTypes.push_back(T);
|
|
}
|
|
}
|
|
}
|