llvm-project/llvm/lib/MC/MCSchedule.cpp
Jon Roelofs 4c3e1e3c4a
[llvm][AsmPrinter] Add an option to print instruction latencies (#113243)
... matching what we have in the disassembler. This isn't turned on by
default since several of the scheduling models are not completely
accurate, and we don't want to be misleading.
2024-11-05 17:28:52 -08:00

177 lines
6.4 KiB
C++

//===- MCSchedule.cpp - Scheduling ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the default scheduling model.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCSchedule.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include <optional>
#include <type_traits>
using namespace llvm;
static_assert(std::is_trivial_v<MCSchedModel>,
"MCSchedModel is required to be a trivial type");
const MCSchedModel MCSchedModel::Default = {DefaultIssueWidth,
DefaultMicroOpBufferSize,
DefaultLoopMicroOpBufferSize,
DefaultLoadLatency,
DefaultHighLatency,
DefaultMispredictPenalty,
false,
true,
/*EnableIntervals=*/false,
0,
nullptr,
nullptr,
0,
0,
nullptr,
nullptr};
int MCSchedModel::computeInstrLatency(const MCSubtargetInfo &STI,
const MCSchedClassDesc &SCDesc) {
int Latency = 0;
for (unsigned DefIdx = 0, DefEnd = SCDesc.NumWriteLatencyEntries;
DefIdx != DefEnd; ++DefIdx) {
// Lookup the definition's write latency in SubtargetInfo.
const MCWriteLatencyEntry *WLEntry =
STI.getWriteLatencyEntry(&SCDesc, DefIdx);
// Early exit if we found an invalid latency.
if (WLEntry->Cycles < 0)
return WLEntry->Cycles;
Latency = std::max(Latency, static_cast<int>(WLEntry->Cycles));
}
return Latency;
}
int MCSchedModel::computeInstrLatency(const MCSubtargetInfo &STI,
unsigned SchedClass) const {
const MCSchedClassDesc &SCDesc = *getSchedClassDesc(SchedClass);
if (!SCDesc.isValid())
return 0;
if (!SCDesc.isVariant())
return MCSchedModel::computeInstrLatency(STI, SCDesc);
llvm_unreachable("unsupported variant scheduling class");
}
int MCSchedModel::computeInstrLatency(const MCSubtargetInfo &STI,
const MCInstrInfo &MCII,
const MCInst &Inst) const {
return MCSchedModel::computeInstrLatency<MCSubtargetInfo, MCInstrInfo,
InstrItineraryData, MCInst>(
STI, MCII, Inst,
[&](const MCSchedClassDesc *SCDesc) -> const MCSchedClassDesc * {
if (!SCDesc->isValid())
return nullptr;
unsigned CPUID = getProcessorID();
unsigned SchedClass = 0;
while (SCDesc->isVariant()) {
SchedClass =
STI.resolveVariantSchedClass(SchedClass, &Inst, &MCII, CPUID);
SCDesc = getSchedClassDesc(SchedClass);
}
if (!SchedClass) {
assert(false && "unsupported variant scheduling class");
return nullptr;
}
return SCDesc;
});
}
double
MCSchedModel::getReciprocalThroughput(const MCSubtargetInfo &STI,
const MCSchedClassDesc &SCDesc) {
std::optional<double> Throughput;
const MCSchedModel &SM = STI.getSchedModel();
const MCWriteProcResEntry *I = STI.getWriteProcResBegin(&SCDesc);
const MCWriteProcResEntry *E = STI.getWriteProcResEnd(&SCDesc);
for (; I != E; ++I) {
if (!I->ReleaseAtCycle)
continue;
unsigned NumUnits = SM.getProcResource(I->ProcResourceIdx)->NumUnits;
double Temp = NumUnits * 1.0 / I->ReleaseAtCycle;
Throughput = Throughput ? std::min(*Throughput, Temp) : Temp;
}
if (Throughput)
return 1.0 / *Throughput;
// If no throughput value was calculated, assume that we can execute at the
// maximum issue width scaled by number of micro-ops for the schedule class.
return ((double)SCDesc.NumMicroOps) / SM.IssueWidth;
}
double
MCSchedModel::getReciprocalThroughput(const MCSubtargetInfo &STI,
const MCInstrInfo &MCII,
const MCInst &Inst) const {
unsigned SchedClass = MCII.get(Inst.getOpcode()).getSchedClass();
const MCSchedClassDesc *SCDesc = getSchedClassDesc(SchedClass);
// If there's no valid class, assume that the instruction executes/completes
// at the maximum issue width.
if (!SCDesc->isValid())
return 1.0 / IssueWidth;
unsigned CPUID = getProcessorID();
while (SCDesc->isVariant()) {
SchedClass = STI.resolveVariantSchedClass(SchedClass, &Inst, &MCII, CPUID);
SCDesc = getSchedClassDesc(SchedClass);
}
if (SchedClass)
return MCSchedModel::getReciprocalThroughput(STI, *SCDesc);
llvm_unreachable("unsupported variant scheduling class");
}
double
MCSchedModel::getReciprocalThroughput(unsigned SchedClass,
const InstrItineraryData &IID) {
std::optional<double> Throughput;
const InstrStage *I = IID.beginStage(SchedClass);
const InstrStage *E = IID.endStage(SchedClass);
for (; I != E; ++I) {
if (!I->getCycles())
continue;
double Temp = llvm::popcount(I->getUnits()) * 1.0 / I->getCycles();
Throughput = Throughput ? std::min(*Throughput, Temp) : Temp;
}
if (Throughput)
return 1.0 / *Throughput;
// If there are no execution resources specified for this class, then assume
// that it can execute at the maximum default issue width.
return 1.0 / DefaultIssueWidth;
}
unsigned
MCSchedModel::getForwardingDelayCycles(ArrayRef<MCReadAdvanceEntry> Entries,
unsigned WriteResourceID) {
if (Entries.empty())
return 0;
int DelayCycles = 0;
for (const MCReadAdvanceEntry &E : Entries) {
if (E.WriteResourceID != WriteResourceID)
continue;
DelayCycles = std::min(DelayCycles, E.Cycles);
}
return std::abs(DelayCycles);
}