mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-29 10:56:07 +00:00

The getShuffleCost api, in concept, expects to only deal with non-length changing shuffles. We were failing to extend the mask appropriately before invoking it. This came up in https://github.com/llvm/llvm-project/pull/128537 in discussion of a potential invariant, but is otherwise unrelated.
2808 lines
110 KiB
C++
2808 lines
110 KiB
C++
//===-- RISCVTargetTransformInfo.cpp - RISC-V specific TTI ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RISCVTargetTransformInfo.h"
|
|
#include "MCTargetDesc/RISCVMatInt.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
#include "llvm/CodeGen/CostTable.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include <cmath>
|
|
#include <optional>
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "riscvtti"
|
|
|
|
static cl::opt<unsigned> RVVRegisterWidthLMUL(
|
|
"riscv-v-register-bit-width-lmul",
|
|
cl::desc(
|
|
"The LMUL to use for getRegisterBitWidth queries. Affects LMUL used "
|
|
"by autovectorized code. Fractional LMULs are not supported."),
|
|
cl::init(2), cl::Hidden);
|
|
|
|
static cl::opt<unsigned> SLPMaxVF(
|
|
"riscv-v-slp-max-vf",
|
|
cl::desc(
|
|
"Overrides result used for getMaximumVF query which is used "
|
|
"exclusively by SLP vectorizer."),
|
|
cl::Hidden);
|
|
|
|
InstructionCost
|
|
RISCVTTIImpl::getRISCVInstructionCost(ArrayRef<unsigned> OpCodes, MVT VT,
|
|
TTI::TargetCostKind CostKind) {
|
|
// Check if the type is valid for all CostKind
|
|
if (!VT.isVector())
|
|
return InstructionCost::getInvalid();
|
|
size_t NumInstr = OpCodes.size();
|
|
if (CostKind == TTI::TCK_CodeSize)
|
|
return NumInstr;
|
|
InstructionCost LMULCost = TLI->getLMULCost(VT);
|
|
if ((CostKind != TTI::TCK_RecipThroughput) && (CostKind != TTI::TCK_Latency))
|
|
return LMULCost * NumInstr;
|
|
InstructionCost Cost = 0;
|
|
for (auto Op : OpCodes) {
|
|
switch (Op) {
|
|
case RISCV::VRGATHER_VI:
|
|
Cost += TLI->getVRGatherVICost(VT);
|
|
break;
|
|
case RISCV::VRGATHER_VV:
|
|
Cost += TLI->getVRGatherVVCost(VT);
|
|
break;
|
|
case RISCV::VSLIDEUP_VI:
|
|
case RISCV::VSLIDEDOWN_VI:
|
|
Cost += TLI->getVSlideVICost(VT);
|
|
break;
|
|
case RISCV::VSLIDEUP_VX:
|
|
case RISCV::VSLIDEDOWN_VX:
|
|
Cost += TLI->getVSlideVXCost(VT);
|
|
break;
|
|
case RISCV::VREDMAX_VS:
|
|
case RISCV::VREDMIN_VS:
|
|
case RISCV::VREDMAXU_VS:
|
|
case RISCV::VREDMINU_VS:
|
|
case RISCV::VREDSUM_VS:
|
|
case RISCV::VREDAND_VS:
|
|
case RISCV::VREDOR_VS:
|
|
case RISCV::VREDXOR_VS:
|
|
case RISCV::VFREDMAX_VS:
|
|
case RISCV::VFREDMIN_VS:
|
|
case RISCV::VFREDUSUM_VS: {
|
|
unsigned VL = VT.getVectorMinNumElements();
|
|
if (!VT.isFixedLengthVector())
|
|
VL *= *getVScaleForTuning();
|
|
Cost += Log2_32_Ceil(VL);
|
|
break;
|
|
}
|
|
case RISCV::VFREDOSUM_VS: {
|
|
unsigned VL = VT.getVectorMinNumElements();
|
|
if (!VT.isFixedLengthVector())
|
|
VL *= *getVScaleForTuning();
|
|
Cost += VL;
|
|
break;
|
|
}
|
|
case RISCV::VMV_X_S:
|
|
case RISCV::VMV_S_X:
|
|
case RISCV::VFMV_F_S:
|
|
case RISCV::VFMV_S_F:
|
|
case RISCV::VMOR_MM:
|
|
case RISCV::VMXOR_MM:
|
|
case RISCV::VMAND_MM:
|
|
case RISCV::VMANDN_MM:
|
|
case RISCV::VMNAND_MM:
|
|
case RISCV::VCPOP_M:
|
|
case RISCV::VFIRST_M:
|
|
Cost += 1;
|
|
break;
|
|
default:
|
|
Cost += LMULCost;
|
|
}
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
static InstructionCost getIntImmCostImpl(const DataLayout &DL,
|
|
const RISCVSubtarget *ST,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind,
|
|
bool FreeZeroes) {
|
|
assert(Ty->isIntegerTy() &&
|
|
"getIntImmCost can only estimate cost of materialising integers");
|
|
|
|
// We have a Zero register, so 0 is always free.
|
|
if (Imm == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
// Otherwise, we check how many instructions it will take to materialise.
|
|
return RISCVMatInt::getIntMatCost(Imm, DL.getTypeSizeInBits(Ty), *ST,
|
|
/*CompressionCost=*/false, FreeZeroes);
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind, false);
|
|
}
|
|
|
|
// Look for patterns of shift followed by AND that can be turned into a pair of
|
|
// shifts. We won't need to materialize an immediate for the AND so these can
|
|
// be considered free.
|
|
static bool canUseShiftPair(Instruction *Inst, const APInt &Imm) {
|
|
uint64_t Mask = Imm.getZExtValue();
|
|
auto *BO = dyn_cast<BinaryOperator>(Inst->getOperand(0));
|
|
if (!BO || !BO->hasOneUse())
|
|
return false;
|
|
|
|
if (BO->getOpcode() != Instruction::Shl)
|
|
return false;
|
|
|
|
if (!isa<ConstantInt>(BO->getOperand(1)))
|
|
return false;
|
|
|
|
unsigned ShAmt = cast<ConstantInt>(BO->getOperand(1))->getZExtValue();
|
|
// (and (shl x, c2), c1) will be matched to (srli (slli x, c2+c3), c3) if c1
|
|
// is a mask shifted by c2 bits with c3 leading zeros.
|
|
if (isShiftedMask_64(Mask)) {
|
|
unsigned Trailing = llvm::countr_zero(Mask);
|
|
if (ShAmt == Trailing)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind,
|
|
Instruction *Inst) {
|
|
assert(Ty->isIntegerTy() &&
|
|
"getIntImmCost can only estimate cost of materialising integers");
|
|
|
|
// We have a Zero register, so 0 is always free.
|
|
if (Imm == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
// Some instructions in RISC-V can take a 12-bit immediate. Some of these are
|
|
// commutative, in others the immediate comes from a specific argument index.
|
|
bool Takes12BitImm = false;
|
|
unsigned ImmArgIdx = ~0U;
|
|
|
|
switch (Opcode) {
|
|
case Instruction::GetElementPtr:
|
|
// Never hoist any arguments to a GetElementPtr. CodeGenPrepare will
|
|
// split up large offsets in GEP into better parts than ConstantHoisting
|
|
// can.
|
|
return TTI::TCC_Free;
|
|
case Instruction::Store: {
|
|
// Use the materialization cost regardless of if it's the address or the
|
|
// value that is constant, except for if the store is misaligned and
|
|
// misaligned accesses are not legal (experience shows constant hoisting
|
|
// can sometimes be harmful in such cases).
|
|
if (Idx == 1 || !Inst)
|
|
return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind,
|
|
/*FreeZeroes=*/true);
|
|
|
|
StoreInst *ST = cast<StoreInst>(Inst);
|
|
if (!getTLI()->allowsMemoryAccessForAlignment(
|
|
Ty->getContext(), DL, getTLI()->getValueType(DL, Ty),
|
|
ST->getPointerAddressSpace(), ST->getAlign()))
|
|
return TTI::TCC_Free;
|
|
|
|
return getIntImmCostImpl(getDataLayout(), getST(), Imm, Ty, CostKind,
|
|
/*FreeZeroes=*/true);
|
|
}
|
|
case Instruction::Load:
|
|
// If the address is a constant, use the materialization cost.
|
|
return getIntImmCost(Imm, Ty, CostKind);
|
|
case Instruction::And:
|
|
// zext.h
|
|
if (Imm == UINT64_C(0xffff) && ST->hasStdExtZbb())
|
|
return TTI::TCC_Free;
|
|
// zext.w
|
|
if (Imm == UINT64_C(0xffffffff) &&
|
|
((ST->hasStdExtZba() && ST->isRV64()) || ST->isRV32()))
|
|
return TTI::TCC_Free;
|
|
// bclri
|
|
if (ST->hasStdExtZbs() && (~Imm).isPowerOf2())
|
|
return TTI::TCC_Free;
|
|
if (Inst && Idx == 1 && Imm.getBitWidth() <= ST->getXLen() &&
|
|
canUseShiftPair(Inst, Imm))
|
|
return TTI::TCC_Free;
|
|
Takes12BitImm = true;
|
|
break;
|
|
case Instruction::Add:
|
|
Takes12BitImm = true;
|
|
break;
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
// bseti/binvi
|
|
if (ST->hasStdExtZbs() && Imm.isPowerOf2())
|
|
return TTI::TCC_Free;
|
|
Takes12BitImm = true;
|
|
break;
|
|
case Instruction::Mul:
|
|
// Power of 2 is a shift. Negated power of 2 is a shift and a negate.
|
|
if (Imm.isPowerOf2() || Imm.isNegatedPowerOf2())
|
|
return TTI::TCC_Free;
|
|
// One more or less than a power of 2 can use SLLI+ADD/SUB.
|
|
if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2())
|
|
return TTI::TCC_Free;
|
|
// FIXME: There is no MULI instruction.
|
|
Takes12BitImm = true;
|
|
break;
|
|
case Instruction::Sub:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
Takes12BitImm = true;
|
|
ImmArgIdx = 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (Takes12BitImm) {
|
|
// Check immediate is the correct argument...
|
|
if (Instruction::isCommutative(Opcode) || Idx == ImmArgIdx) {
|
|
// ... and fits into the 12-bit immediate.
|
|
if (Imm.getSignificantBits() <= 64 &&
|
|
getTLI()->isLegalAddImmediate(Imm.getSExtValue())) {
|
|
return TTI::TCC_Free;
|
|
}
|
|
}
|
|
|
|
// Otherwise, use the full materialisation cost.
|
|
return getIntImmCost(Imm, Ty, CostKind);
|
|
}
|
|
|
|
// By default, prevent hoisting.
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
InstructionCost
|
|
RISCVTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
// Prevent hoisting in unknown cases.
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
bool RISCVTTIImpl::hasActiveVectorLength(unsigned, Type *DataTy, Align) const {
|
|
return ST->hasVInstructions();
|
|
}
|
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
RISCVTTIImpl::getPopcntSupport(unsigned TyWidth) {
|
|
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
|
|
return ST->hasStdExtZbb() || (ST->hasVendorXCVbitmanip() && !ST->is64Bit())
|
|
? TTI::PSK_FastHardware
|
|
: TTI::PSK_Software;
|
|
}
|
|
|
|
bool RISCVTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const {
|
|
// Currently, the ExpandReductions pass can't expand scalable-vector
|
|
// reductions, but we still request expansion as RVV doesn't support certain
|
|
// reductions and the SelectionDAG can't legalize them either.
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
return false;
|
|
// These reductions have no equivalent in RVV
|
|
case Intrinsic::vector_reduce_mul:
|
|
case Intrinsic::vector_reduce_fmul:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
std::optional<unsigned> RISCVTTIImpl::getMaxVScale() const {
|
|
if (ST->hasVInstructions())
|
|
return ST->getRealMaxVLen() / RISCV::RVVBitsPerBlock;
|
|
return BaseT::getMaxVScale();
|
|
}
|
|
|
|
std::optional<unsigned> RISCVTTIImpl::getVScaleForTuning() const {
|
|
if (ST->hasVInstructions())
|
|
if (unsigned MinVLen = ST->getRealMinVLen();
|
|
MinVLen >= RISCV::RVVBitsPerBlock)
|
|
return MinVLen / RISCV::RVVBitsPerBlock;
|
|
return BaseT::getVScaleForTuning();
|
|
}
|
|
|
|
TypeSize
|
|
RISCVTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
|
|
unsigned LMUL =
|
|
llvm::bit_floor(std::clamp<unsigned>(RVVRegisterWidthLMUL, 1, 8));
|
|
switch (K) {
|
|
case TargetTransformInfo::RGK_Scalar:
|
|
return TypeSize::getFixed(ST->getXLen());
|
|
case TargetTransformInfo::RGK_FixedWidthVector:
|
|
return TypeSize::getFixed(
|
|
ST->useRVVForFixedLengthVectors() ? LMUL * ST->getRealMinVLen() : 0);
|
|
case TargetTransformInfo::RGK_ScalableVector:
|
|
return TypeSize::getScalable(
|
|
(ST->hasVInstructions() &&
|
|
ST->getRealMinVLen() >= RISCV::RVVBitsPerBlock)
|
|
? LMUL * RISCV::RVVBitsPerBlock
|
|
: 0);
|
|
}
|
|
|
|
llvm_unreachable("Unsupported register kind");
|
|
}
|
|
|
|
InstructionCost
|
|
RISCVTTIImpl::getConstantPoolLoadCost(Type *Ty, TTI::TargetCostKind CostKind) {
|
|
// Add a cost of address generation + the cost of the load. The address
|
|
// is expected to be a PC relative offset to a constant pool entry
|
|
// using auipc/addi.
|
|
return 2 + getMemoryOpCost(Instruction::Load, Ty, DL.getABITypeAlign(Ty),
|
|
/*AddressSpace=*/0, CostKind);
|
|
}
|
|
|
|
static bool isRepeatedConcatMask(ArrayRef<int> Mask, int &SubVectorSize) {
|
|
unsigned Size = Mask.size();
|
|
if (!isPowerOf2_32(Size))
|
|
return false;
|
|
for (unsigned I = 0; I != Size; ++I) {
|
|
if (static_cast<unsigned>(Mask[I]) == I)
|
|
continue;
|
|
if (Mask[I] != 0)
|
|
return false;
|
|
if (Size % I != 0)
|
|
return false;
|
|
for (unsigned J = I + 1; J != Size; ++J)
|
|
// Check the pattern is repeated.
|
|
if (static_cast<unsigned>(Mask[J]) != J % I)
|
|
return false;
|
|
SubVectorSize = I;
|
|
return true;
|
|
}
|
|
// That means Mask is <0, 1, 2, 3>. This is not a concatenation.
|
|
return false;
|
|
}
|
|
|
|
static VectorType *getVRGatherIndexType(MVT DataVT, const RISCVSubtarget &ST,
|
|
LLVMContext &C) {
|
|
assert((DataVT.getScalarSizeInBits() != 8 ||
|
|
DataVT.getVectorNumElements() <= 256) && "unhandled case in lowering");
|
|
MVT IndexVT = DataVT.changeTypeToInteger();
|
|
if (IndexVT.getScalarType().bitsGT(ST.getXLenVT()))
|
|
IndexVT = IndexVT.changeVectorElementType(MVT::i16);
|
|
return cast<VectorType>(EVT(IndexVT).getTypeForEVT(C));
|
|
}
|
|
|
|
/// Try to perform better estimation of the permutation.
|
|
/// 1. Split the source/destination vectors into real registers.
|
|
/// 2. Do the mask analysis to identify which real registers are
|
|
/// permuted. If more than 1 source registers are used for the
|
|
/// destination register building, the cost for this destination register
|
|
/// is (Number_of_source_register - 1) * Cost_PermuteTwoSrc. If only one
|
|
/// source register is used, build mask and calculate the cost as a cost
|
|
/// of PermuteSingleSrc.
|
|
/// Also, for the single register permute we try to identify if the
|
|
/// destination register is just a copy of the source register or the
|
|
/// copy of the previous destination register (the cost is
|
|
/// TTI::TCC_Basic). If the source register is just reused, the cost for
|
|
/// this operation is 0.
|
|
static InstructionCost
|
|
costShuffleViaVRegSplitting(RISCVTTIImpl &TTI, MVT LegalVT,
|
|
std::optional<unsigned> VLen, VectorType *Tp,
|
|
ArrayRef<int> Mask, TTI::TargetCostKind CostKind) {
|
|
assert(LegalVT.isFixedLengthVector());
|
|
InstructionCost NumOfDests = InstructionCost::getInvalid();
|
|
if (VLen && !Mask.empty()) {
|
|
MVT ElemVT = LegalVT.getVectorElementType();
|
|
unsigned ElemsPerVReg = *VLen / ElemVT.getFixedSizeInBits();
|
|
LegalVT = TTI.getTypeLegalizationCost(
|
|
FixedVectorType::get(Tp->getElementType(), ElemsPerVReg))
|
|
.second;
|
|
// Number of destination vectors after legalization:
|
|
NumOfDests = divideCeil(Mask.size(), LegalVT.getVectorNumElements());
|
|
}
|
|
if (!NumOfDests.isValid() || NumOfDests <= 1 ||
|
|
LegalVT.getVectorElementType().getSizeInBits() !=
|
|
Tp->getElementType()->getPrimitiveSizeInBits() ||
|
|
LegalVT.getVectorNumElements() >= Tp->getElementCount().getFixedValue())
|
|
return InstructionCost::getInvalid();
|
|
|
|
unsigned VecTySize = TTI.getDataLayout().getTypeStoreSize(Tp);
|
|
unsigned LegalVTSize = LegalVT.getStoreSize();
|
|
// Number of source vectors after legalization:
|
|
unsigned NumOfSrcs = divideCeil(VecTySize, LegalVTSize);
|
|
|
|
auto *SingleOpTy = FixedVectorType::get(Tp->getElementType(),
|
|
LegalVT.getVectorNumElements());
|
|
|
|
unsigned E = *NumOfDests.getValue();
|
|
unsigned NormalizedVF =
|
|
LegalVT.getVectorNumElements() * std::max(NumOfSrcs, E);
|
|
unsigned NumOfSrcRegs = NormalizedVF / LegalVT.getVectorNumElements();
|
|
unsigned NumOfDestRegs = NormalizedVF / LegalVT.getVectorNumElements();
|
|
SmallVector<int> NormalizedMask(NormalizedVF, PoisonMaskElem);
|
|
assert(NormalizedVF >= Mask.size() &&
|
|
"Normalized mask expected to be not shorter than original mask.");
|
|
copy(Mask, NormalizedMask.begin());
|
|
InstructionCost Cost = 0;
|
|
SmallBitVector ExtractedRegs(2 * NumOfSrcRegs);
|
|
int NumShuffles = 0;
|
|
processShuffleMasks(
|
|
NormalizedMask, NumOfSrcRegs, NumOfDestRegs, NumOfDestRegs, []() {},
|
|
[&](ArrayRef<int> RegMask, unsigned SrcReg, unsigned DestReg) {
|
|
if (ExtractedRegs.test(SrcReg)) {
|
|
Cost += TTI.getShuffleCost(TTI::SK_ExtractSubvector, Tp, {}, CostKind,
|
|
(SrcReg % NumOfSrcRegs) *
|
|
SingleOpTy->getNumElements(),
|
|
SingleOpTy);
|
|
ExtractedRegs.set(SrcReg);
|
|
}
|
|
if (!ShuffleVectorInst::isIdentityMask(RegMask, RegMask.size())) {
|
|
++NumShuffles;
|
|
Cost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, SingleOpTy,
|
|
RegMask, CostKind, 0, nullptr);
|
|
return;
|
|
}
|
|
},
|
|
[&](ArrayRef<int> RegMask, unsigned Idx1, unsigned Idx2, bool NewReg) {
|
|
if (ExtractedRegs.test(Idx1)) {
|
|
Cost += TTI.getShuffleCost(
|
|
TTI::SK_ExtractSubvector, Tp, {}, CostKind,
|
|
(Idx1 % NumOfSrcRegs) * SingleOpTy->getNumElements(), SingleOpTy);
|
|
ExtractedRegs.set(Idx1);
|
|
}
|
|
if (ExtractedRegs.test(Idx2)) {
|
|
Cost += TTI.getShuffleCost(
|
|
TTI::SK_ExtractSubvector, Tp, {}, CostKind,
|
|
(Idx2 % NumOfSrcRegs) * SingleOpTy->getNumElements(), SingleOpTy);
|
|
ExtractedRegs.set(Idx2);
|
|
}
|
|
Cost += TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, RegMask,
|
|
CostKind, 0, nullptr);
|
|
NumShuffles += 2;
|
|
});
|
|
// Note: check that we do not emit too many shuffles here to prevent code
|
|
// size explosion.
|
|
// TODO: investigate, if it can be improved by extra analysis of the masks
|
|
// to check if the code is more profitable.
|
|
if ((NumOfDestRegs > 2 && NumShuffles <= static_cast<int>(NumOfDestRegs)) ||
|
|
(NumOfDestRegs <= 2 && NumShuffles < 4))
|
|
return Cost;
|
|
return InstructionCost::getInvalid();
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
|
|
VectorType *Tp, ArrayRef<int> Mask,
|
|
TTI::TargetCostKind CostKind,
|
|
int Index, VectorType *SubTp,
|
|
ArrayRef<const Value *> Args,
|
|
const Instruction *CxtI) {
|
|
Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp);
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
|
|
|
|
// First, handle cases where having a fixed length vector enables us to
|
|
// give a more accurate cost than falling back to generic scalable codegen.
|
|
// TODO: Each of these cases hints at a modeling gap around scalable vectors.
|
|
if (ST->hasVInstructions() && isa<FixedVectorType>(Tp) &&
|
|
LT.second.isFixedLengthVector()) {
|
|
InstructionCost VRegSplittingCost = costShuffleViaVRegSplitting(
|
|
*this, LT.second, ST->getRealVLen(), Tp, Mask, CostKind);
|
|
if (VRegSplittingCost.isValid())
|
|
return VRegSplittingCost;
|
|
switch (Kind) {
|
|
default:
|
|
break;
|
|
case TTI::SK_PermuteSingleSrc: {
|
|
if (Mask.size() >= 2) {
|
|
MVT EltTp = LT.second.getVectorElementType();
|
|
// If the size of the element is < ELEN then shuffles of interleaves and
|
|
// deinterleaves of 2 vectors can be lowered into the following
|
|
// sequences
|
|
if (EltTp.getScalarSizeInBits() < ST->getELen()) {
|
|
// Example sequence:
|
|
// vsetivli zero, 4, e8, mf4, ta, ma (ignored)
|
|
// vwaddu.vv v10, v8, v9
|
|
// li a0, -1 (ignored)
|
|
// vwmaccu.vx v10, a0, v9
|
|
if (ShuffleVectorInst::isInterleaveMask(Mask, 2, Mask.size()))
|
|
return 2 * LT.first * TLI->getLMULCost(LT.second);
|
|
|
|
if (Mask[0] == 0 || Mask[0] == 1) {
|
|
auto DeinterleaveMask = createStrideMask(Mask[0], 2, Mask.size());
|
|
// Example sequence:
|
|
// vnsrl.wi v10, v8, 0
|
|
if (equal(DeinterleaveMask, Mask))
|
|
return LT.first * getRISCVInstructionCost(RISCV::VNSRL_WI,
|
|
LT.second, CostKind);
|
|
}
|
|
}
|
|
int SubVectorSize;
|
|
if (LT.second.getScalarSizeInBits() != 1 &&
|
|
isRepeatedConcatMask(Mask, SubVectorSize)) {
|
|
InstructionCost Cost = 0;
|
|
unsigned NumSlides = Log2_32(Mask.size() / SubVectorSize);
|
|
// The cost of extraction from a subvector is 0 if the index is 0.
|
|
for (unsigned I = 0; I != NumSlides; ++I) {
|
|
unsigned InsertIndex = SubVectorSize * (1 << I);
|
|
FixedVectorType *SubTp =
|
|
FixedVectorType::get(Tp->getElementType(), InsertIndex);
|
|
FixedVectorType *DestTp =
|
|
FixedVectorType::getDoubleElementsVectorType(SubTp);
|
|
std::pair<InstructionCost, MVT> DestLT =
|
|
getTypeLegalizationCost(DestTp);
|
|
// Add the cost of whole vector register move because the
|
|
// destination vector register group for vslideup cannot overlap the
|
|
// source.
|
|
Cost += DestLT.first * TLI->getLMULCost(DestLT.second);
|
|
Cost += getShuffleCost(TTI::SK_InsertSubvector, DestTp, {},
|
|
CostKind, InsertIndex, SubTp);
|
|
}
|
|
return Cost;
|
|
}
|
|
}
|
|
// vrgather + cost of generating the mask constant.
|
|
// We model this for an unknown mask with a single vrgather.
|
|
if (LT.first == 1 && (LT.second.getScalarSizeInBits() != 8 ||
|
|
LT.second.getVectorNumElements() <= 256)) {
|
|
VectorType *IdxTy =
|
|
getVRGatherIndexType(LT.second, *ST, Tp->getContext());
|
|
InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind);
|
|
return IndexCost +
|
|
getRISCVInstructionCost(RISCV::VRGATHER_VV, LT.second, CostKind);
|
|
}
|
|
break;
|
|
}
|
|
case TTI::SK_Transpose:
|
|
case TTI::SK_PermuteTwoSrc: {
|
|
// 2 x (vrgather + cost of generating the mask constant) + cost of mask
|
|
// register for the second vrgather. We model this for an unknown
|
|
// (shuffle) mask.
|
|
if (LT.first == 1 && (LT.second.getScalarSizeInBits() != 8 ||
|
|
LT.second.getVectorNumElements() <= 256)) {
|
|
auto &C = Tp->getContext();
|
|
auto EC = Tp->getElementCount();
|
|
VectorType *IdxTy = getVRGatherIndexType(LT.second, *ST, C);
|
|
VectorType *MaskTy = VectorType::get(IntegerType::getInt1Ty(C), EC);
|
|
InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind);
|
|
InstructionCost MaskCost = getConstantPoolLoadCost(MaskTy, CostKind);
|
|
return 2 * IndexCost +
|
|
getRISCVInstructionCost({RISCV::VRGATHER_VV, RISCV::VRGATHER_VV},
|
|
LT.second, CostKind) +
|
|
MaskCost;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
auto shouldSplit = [](TTI::ShuffleKind Kind) {
|
|
switch (Kind) {
|
|
default:
|
|
return false;
|
|
case TTI::SK_PermuteSingleSrc:
|
|
case TTI::SK_Transpose:
|
|
case TTI::SK_PermuteTwoSrc:
|
|
return true;
|
|
}
|
|
};
|
|
// We are going to permute multiple sources and the result will be in
|
|
// multiple destinations. Providing an accurate cost only for splits where
|
|
// the element type remains the same.
|
|
if (!Mask.empty() && LT.first.isValid() && LT.first != 1 &&
|
|
shouldSplit(Kind) &&
|
|
LT.second.getVectorElementType().getSizeInBits() ==
|
|
Tp->getElementType()->getPrimitiveSizeInBits() &&
|
|
LT.second.getVectorNumElements() <
|
|
cast<FixedVectorType>(Tp)->getNumElements() &&
|
|
divideCeil(Mask.size(),
|
|
cast<FixedVectorType>(Tp)->getNumElements()) ==
|
|
static_cast<unsigned>(*LT.first.getValue())) {
|
|
unsigned NumRegs = *LT.first.getValue();
|
|
unsigned VF = cast<FixedVectorType>(Tp)->getNumElements();
|
|
unsigned SubVF = PowerOf2Ceil(VF / NumRegs);
|
|
auto *SubVecTy = FixedVectorType::get(Tp->getElementType(), SubVF);
|
|
|
|
InstructionCost Cost = 0;
|
|
for (unsigned I = 0, NumSrcRegs = divideCeil(Mask.size(), SubVF);
|
|
I < NumSrcRegs; ++I) {
|
|
bool IsSingleVector = true;
|
|
SmallVector<int> SubMask(SubVF, PoisonMaskElem);
|
|
transform(
|
|
Mask.slice(I * SubVF,
|
|
I == NumSrcRegs - 1 ? Mask.size() % SubVF : SubVF),
|
|
SubMask.begin(), [&](int I) -> int {
|
|
if (I == PoisonMaskElem)
|
|
return PoisonMaskElem;
|
|
bool SingleSubVector = I / VF == 0;
|
|
IsSingleVector &= SingleSubVector;
|
|
return (SingleSubVector ? 0 : 1) * SubVF + (I % VF) % SubVF;
|
|
});
|
|
if (all_of(enumerate(SubMask), [](auto &&P) {
|
|
return P.value() == PoisonMaskElem ||
|
|
static_cast<unsigned>(P.value()) == P.index();
|
|
}))
|
|
continue;
|
|
Cost += getShuffleCost(IsSingleVector ? TTI::SK_PermuteSingleSrc
|
|
: TTI::SK_PermuteTwoSrc,
|
|
SubVecTy, SubMask, CostKind, 0, nullptr);
|
|
}
|
|
return Cost;
|
|
}
|
|
}
|
|
|
|
// Handle scalable vectors (and fixed vectors legalized to scalable vectors).
|
|
switch (Kind) {
|
|
default:
|
|
// Fallthrough to generic handling.
|
|
// TODO: Most of these cases will return getInvalid in generic code, and
|
|
// must be implemented here.
|
|
break;
|
|
case TTI::SK_ExtractSubvector:
|
|
// Extract at zero is always a subregister extract
|
|
if (Index == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
// If we're extracting a subvector of at most m1 size at a sub-register
|
|
// boundary - which unfortunately we need exact vlen to identify - this is
|
|
// a subregister extract at worst and thus won't require a vslidedown.
|
|
// TODO: Extend for aligned m2, m4 subvector extracts
|
|
// TODO: Extend for misalgined (but contained) extracts
|
|
// TODO: Extend for scalable subvector types
|
|
if (std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
|
|
SubLT.second.isValid() && SubLT.second.isFixedLengthVector()) {
|
|
const unsigned MinVLen = ST->getRealMinVLen();
|
|
const unsigned MaxVLen = ST->getRealMaxVLen();
|
|
if (MinVLen == MaxVLen &&
|
|
SubLT.second.getScalarSizeInBits() * Index % MinVLen == 0 &&
|
|
SubLT.second.getSizeInBits() <= MinVLen)
|
|
return TTI::TCC_Free;
|
|
}
|
|
|
|
// Example sequence:
|
|
// vsetivli zero, 4, e8, mf2, tu, ma (ignored)
|
|
// vslidedown.vi v8, v9, 2
|
|
return LT.first *
|
|
getRISCVInstructionCost(RISCV::VSLIDEDOWN_VI, LT.second, CostKind);
|
|
case TTI::SK_InsertSubvector:
|
|
// Example sequence:
|
|
// vsetivli zero, 4, e8, mf2, tu, ma (ignored)
|
|
// vslideup.vi v8, v9, 2
|
|
return LT.first *
|
|
getRISCVInstructionCost(RISCV::VSLIDEUP_VI, LT.second, CostKind);
|
|
case TTI::SK_Select: {
|
|
// Example sequence:
|
|
// li a0, 90
|
|
// vsetivli zero, 8, e8, mf2, ta, ma (ignored)
|
|
// vmv.s.x v0, a0
|
|
// vmerge.vvm v8, v9, v8, v0
|
|
// We use 2 for the cost of the mask materialization as this is the true
|
|
// cost for small masks and most shuffles are small. At worst, this cost
|
|
// should be a very small constant for the constant pool load. As such,
|
|
// we may bias towards large selects slightly more than truly warranted.
|
|
return LT.first *
|
|
(1 + getRISCVInstructionCost({RISCV::VMV_S_X, RISCV::VMERGE_VVM},
|
|
LT.second, CostKind));
|
|
}
|
|
case TTI::SK_Broadcast: {
|
|
bool HasScalar = (Args.size() > 0) && (Operator::getOpcode(Args[0]) ==
|
|
Instruction::InsertElement);
|
|
if (LT.second.getScalarSizeInBits() == 1) {
|
|
if (HasScalar) {
|
|
// Example sequence:
|
|
// andi a0, a0, 1
|
|
// vsetivli zero, 2, e8, mf8, ta, ma (ignored)
|
|
// vmv.v.x v8, a0
|
|
// vmsne.vi v0, v8, 0
|
|
return LT.first *
|
|
(1 + getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI},
|
|
LT.second, CostKind));
|
|
}
|
|
// Example sequence:
|
|
// vsetivli zero, 2, e8, mf8, ta, mu (ignored)
|
|
// vmv.v.i v8, 0
|
|
// vmerge.vim v8, v8, 1, v0
|
|
// vmv.x.s a0, v8
|
|
// andi a0, a0, 1
|
|
// vmv.v.x v8, a0
|
|
// vmsne.vi v0, v8, 0
|
|
|
|
return LT.first *
|
|
(1 + getRISCVInstructionCost({RISCV::VMV_V_I, RISCV::VMERGE_VIM,
|
|
RISCV::VMV_X_S, RISCV::VMV_V_X,
|
|
RISCV::VMSNE_VI},
|
|
LT.second, CostKind));
|
|
}
|
|
|
|
if (HasScalar) {
|
|
// Example sequence:
|
|
// vmv.v.x v8, a0
|
|
return LT.first *
|
|
getRISCVInstructionCost(RISCV::VMV_V_X, LT.second, CostKind);
|
|
}
|
|
|
|
// Example sequence:
|
|
// vrgather.vi v9, v8, 0
|
|
return LT.first *
|
|
getRISCVInstructionCost(RISCV::VRGATHER_VI, LT.second, CostKind);
|
|
}
|
|
case TTI::SK_Splice: {
|
|
// vslidedown+vslideup.
|
|
// TODO: Multiplying by LT.first implies this legalizes into multiple copies
|
|
// of similar code, but I think we expand through memory.
|
|
unsigned Opcodes[2] = {RISCV::VSLIDEDOWN_VX, RISCV::VSLIDEUP_VX};
|
|
if (Index >= 0 && Index < 32)
|
|
Opcodes[0] = RISCV::VSLIDEDOWN_VI;
|
|
else if (Index < 0 && Index > -32)
|
|
Opcodes[1] = RISCV::VSLIDEUP_VI;
|
|
return LT.first * getRISCVInstructionCost(Opcodes, LT.second, CostKind);
|
|
}
|
|
case TTI::SK_Reverse: {
|
|
// TODO: Cases to improve here:
|
|
// * Illegal vector types
|
|
// * i64 on RV32
|
|
// * i1 vector
|
|
// At low LMUL, most of the cost is producing the vrgather index register.
|
|
// At high LMUL, the cost of the vrgather itself will dominate.
|
|
// Example sequence:
|
|
// csrr a0, vlenb
|
|
// srli a0, a0, 3
|
|
// addi a0, a0, -1
|
|
// vsetvli a1, zero, e8, mf8, ta, mu (ignored)
|
|
// vid.v v9
|
|
// vrsub.vx v10, v9, a0
|
|
// vrgather.vv v9, v8, v10
|
|
InstructionCost LenCost = 3;
|
|
if (LT.second.isFixedLengthVector())
|
|
// vrsub.vi has a 5 bit immediate field, otherwise an li suffices
|
|
LenCost = isInt<5>(LT.second.getVectorNumElements() - 1) ? 0 : 1;
|
|
unsigned Opcodes[] = {RISCV::VID_V, RISCV::VRSUB_VX, RISCV::VRGATHER_VV};
|
|
if (LT.second.isFixedLengthVector() &&
|
|
isInt<5>(LT.second.getVectorNumElements() - 1))
|
|
Opcodes[1] = RISCV::VRSUB_VI;
|
|
InstructionCost GatherCost =
|
|
getRISCVInstructionCost(Opcodes, LT.second, CostKind);
|
|
// Mask operation additionally required extend and truncate
|
|
InstructionCost ExtendCost = Tp->getElementType()->isIntegerTy(1) ? 3 : 0;
|
|
return LT.first * (LenCost + GatherCost + ExtendCost);
|
|
}
|
|
}
|
|
return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
|
|
}
|
|
|
|
static unsigned isM1OrSmaller(MVT VT) {
|
|
RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT);
|
|
return (LMUL == RISCVVType::VLMUL::LMUL_F8 ||
|
|
LMUL == RISCVVType::VLMUL::LMUL_F4 ||
|
|
LMUL == RISCVVType::VLMUL::LMUL_F2 ||
|
|
LMUL == RISCVVType::VLMUL::LMUL_1);
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getScalarizationOverhead(
|
|
VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
|
|
TTI::TargetCostKind CostKind, ArrayRef<Value *> VL) {
|
|
if (isa<ScalableVectorType>(Ty))
|
|
return InstructionCost::getInvalid();
|
|
|
|
// A build_vector (which is m1 sized or smaller) can be done in no
|
|
// worse than one vslide1down.vx per element in the type. We could
|
|
// in theory do an explode_vector in the inverse manner, but our
|
|
// lowering today does not have a first class node for this pattern.
|
|
InstructionCost Cost = BaseT::getScalarizationOverhead(
|
|
Ty, DemandedElts, Insert, Extract, CostKind);
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
|
|
if (Insert && !Extract && LT.first.isValid() && LT.second.isVector()) {
|
|
if (Ty->getScalarSizeInBits() == 1) {
|
|
auto *WideVecTy = cast<VectorType>(Ty->getWithNewBitWidth(8));
|
|
// Note: Implicit scalar anyextend is assumed to be free since the i1
|
|
// must be stored in a GPR.
|
|
return getScalarizationOverhead(WideVecTy, DemandedElts, Insert, Extract,
|
|
CostKind) +
|
|
getCastInstrCost(Instruction::Trunc, Ty, WideVecTy,
|
|
TTI::CastContextHint::None, CostKind, nullptr);
|
|
}
|
|
|
|
assert(LT.second.isFixedLengthVector());
|
|
MVT ContainerVT = TLI->getContainerForFixedLengthVector(LT.second);
|
|
if (isM1OrSmaller(ContainerVT)) {
|
|
InstructionCost BV =
|
|
cast<FixedVectorType>(Ty)->getNumElements() *
|
|
getRISCVInstructionCost(RISCV::VSLIDE1DOWN_VX, LT.second, CostKind);
|
|
if (BV < Cost)
|
|
Cost = BV;
|
|
}
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost
|
|
RISCVTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (!isLegalMaskedLoadStore(Src, Alignment) ||
|
|
CostKind != TTI::TCK_RecipThroughput)
|
|
return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind);
|
|
|
|
return getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getInterleavedMemoryOpCost(
|
|
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
|
|
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
|
|
bool UseMaskForCond, bool UseMaskForGaps) {
|
|
|
|
// The interleaved memory access pass will lower interleaved memory ops (i.e
|
|
// a load and store followed by a specific shuffle) to vlseg/vsseg
|
|
// intrinsics.
|
|
if (!UseMaskForCond && !UseMaskForGaps &&
|
|
Factor <= TLI->getMaxSupportedInterleaveFactor()) {
|
|
auto *VTy = cast<VectorType>(VecTy);
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VTy);
|
|
// Need to make sure type has't been scalarized
|
|
if (LT.second.isVector()) {
|
|
auto *SubVecTy =
|
|
VectorType::get(VTy->getElementType(),
|
|
VTy->getElementCount().divideCoefficientBy(Factor));
|
|
if (VTy->getElementCount().isKnownMultipleOf(Factor) &&
|
|
TLI->isLegalInterleavedAccessType(SubVecTy, Factor, Alignment,
|
|
AddressSpace, DL)) {
|
|
|
|
// Some processors optimize segment loads/stores as one wide memory op +
|
|
// Factor * LMUL shuffle ops.
|
|
if (ST->hasOptimizedSegmentLoadStore(Factor)) {
|
|
InstructionCost Cost =
|
|
getMemoryOpCost(Opcode, VTy, Alignment, AddressSpace, CostKind);
|
|
MVT SubVecVT = getTLI()->getValueType(DL, SubVecTy).getSimpleVT();
|
|
Cost += Factor * TLI->getLMULCost(SubVecVT);
|
|
return LT.first * Cost;
|
|
}
|
|
|
|
// Otherwise, the cost is proportional to the number of elements (VL *
|
|
// Factor ops).
|
|
InstructionCost MemOpCost =
|
|
getMemoryOpCost(Opcode, VTy->getElementType(), Alignment, 0,
|
|
CostKind, {TTI::OK_AnyValue, TTI::OP_None});
|
|
unsigned NumLoads = getEstimatedVLFor(VTy);
|
|
return NumLoads * MemOpCost;
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: Return the cost of interleaved accesses for scalable vector when
|
|
// unable to convert to segment accesses instructions.
|
|
if (isa<ScalableVectorType>(VecTy))
|
|
return InstructionCost::getInvalid();
|
|
|
|
auto *FVTy = cast<FixedVectorType>(VecTy);
|
|
InstructionCost MemCost =
|
|
getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace, CostKind);
|
|
unsigned VF = FVTy->getNumElements() / Factor;
|
|
|
|
// An interleaved load will look like this for Factor=3:
|
|
// %wide.vec = load <12 x i32>, ptr %3, align 4
|
|
// %strided.vec = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
|
|
// %strided.vec1 = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
|
|
// %strided.vec2 = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
|
|
if (Opcode == Instruction::Load) {
|
|
InstructionCost Cost = MemCost;
|
|
for (unsigned Index : Indices) {
|
|
FixedVectorType *VecTy =
|
|
FixedVectorType::get(FVTy->getElementType(), VF * Factor);
|
|
auto Mask = createStrideMask(Index, Factor, VF);
|
|
Mask.resize(VF * Factor, -1);
|
|
InstructionCost ShuffleCost =
|
|
getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, VecTy, Mask,
|
|
CostKind, 0, nullptr, {});
|
|
Cost += ShuffleCost;
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
// TODO: Model for NF > 2
|
|
// We'll need to enhance getShuffleCost to model shuffles that are just
|
|
// inserts and extracts into subvectors, since they won't have the full cost
|
|
// of a vrgather.
|
|
// An interleaved store for 3 vectors of 4 lanes will look like
|
|
// %11 = shufflevector <4 x i32> %4, <4 x i32> %6, <8 x i32> <0...7>
|
|
// %12 = shufflevector <4 x i32> %9, <4 x i32> poison, <8 x i32> <0...3>
|
|
// %13 = shufflevector <8 x i32> %11, <8 x i32> %12, <12 x i32> <0...11>
|
|
// %interleaved.vec = shufflevector %13, poison, <12 x i32> <interleave mask>
|
|
// store <12 x i32> %interleaved.vec, ptr %10, align 4
|
|
if (Factor != 2)
|
|
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
|
|
Alignment, AddressSpace, CostKind,
|
|
UseMaskForCond, UseMaskForGaps);
|
|
|
|
assert(Opcode == Instruction::Store && "Opcode must be a store");
|
|
// For an interleaving store of 2 vectors, we perform one large interleaving
|
|
// shuffle that goes into the wide store
|
|
auto Mask = createInterleaveMask(VF, Factor);
|
|
InstructionCost ShuffleCost =
|
|
getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, FVTy, Mask,
|
|
CostKind, 0, nullptr, {});
|
|
return MemCost + ShuffleCost;
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getGatherScatterOpCost(
|
|
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
|
|
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
|
|
Alignment, CostKind, I);
|
|
|
|
if ((Opcode == Instruction::Load &&
|
|
!isLegalMaskedGather(DataTy, Align(Alignment))) ||
|
|
(Opcode == Instruction::Store &&
|
|
!isLegalMaskedScatter(DataTy, Align(Alignment))))
|
|
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
|
|
Alignment, CostKind, I);
|
|
|
|
// Cost is proportional to the number of memory operations implied. For
|
|
// scalable vectors, we use an estimate on that number since we don't
|
|
// know exactly what VL will be.
|
|
auto &VTy = *cast<VectorType>(DataTy);
|
|
InstructionCost MemOpCost =
|
|
getMemoryOpCost(Opcode, VTy.getElementType(), Alignment, 0, CostKind,
|
|
{TTI::OK_AnyValue, TTI::OP_None}, I);
|
|
unsigned NumLoads = getEstimatedVLFor(&VTy);
|
|
return NumLoads * MemOpCost;
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getExpandCompressMemoryOpCost(
|
|
unsigned Opcode, Type *DataTy, bool VariableMask, Align Alignment,
|
|
TTI::TargetCostKind CostKind, const Instruction *I) {
|
|
bool IsLegal = (Opcode == Instruction::Store &&
|
|
isLegalMaskedCompressStore(DataTy, Alignment)) ||
|
|
(Opcode == Instruction::Load &&
|
|
isLegalMaskedExpandLoad(DataTy, Alignment));
|
|
if (!IsLegal || CostKind != TTI::TCK_RecipThroughput)
|
|
return BaseT::getExpandCompressMemoryOpCost(Opcode, DataTy, VariableMask,
|
|
Alignment, CostKind, I);
|
|
// Example compressstore sequence:
|
|
// vsetivli zero, 8, e32, m2, ta, ma (ignored)
|
|
// vcompress.vm v10, v8, v0
|
|
// vcpop.m a1, v0
|
|
// vsetvli zero, a1, e32, m2, ta, ma
|
|
// vse32.v v10, (a0)
|
|
// Example expandload sequence:
|
|
// vsetivli zero, 8, e8, mf2, ta, ma (ignored)
|
|
// vcpop.m a1, v0
|
|
// vsetvli zero, a1, e32, m2, ta, ma
|
|
// vle32.v v10, (a0)
|
|
// vsetivli zero, 8, e32, m2, ta, ma
|
|
// viota.m v12, v0
|
|
// vrgather.vv v8, v10, v12, v0.t
|
|
auto MemOpCost =
|
|
getMemoryOpCost(Opcode, DataTy, Alignment, /*AddressSpace*/ 0, CostKind);
|
|
auto LT = getTypeLegalizationCost(DataTy);
|
|
SmallVector<unsigned, 4> Opcodes{RISCV::VSETVLI};
|
|
if (VariableMask)
|
|
Opcodes.push_back(RISCV::VCPOP_M);
|
|
if (Opcode == Instruction::Store)
|
|
Opcodes.append({RISCV::VCOMPRESS_VM});
|
|
else
|
|
Opcodes.append({RISCV::VSETIVLI, RISCV::VIOTA_M, RISCV::VRGATHER_VV});
|
|
return MemOpCost +
|
|
LT.first * getRISCVInstructionCost(Opcodes, LT.second, CostKind);
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getStridedMemoryOpCost(
|
|
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
|
|
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
|
|
if (((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
|
|
!isLegalStridedLoadStore(DataTy, Alignment)) ||
|
|
(Opcode != Instruction::Load && Opcode != Instruction::Store))
|
|
return BaseT::getStridedMemoryOpCost(Opcode, DataTy, Ptr, VariableMask,
|
|
Alignment, CostKind, I);
|
|
|
|
if (CostKind == TTI::TCK_CodeSize)
|
|
return TTI::TCC_Basic;
|
|
|
|
// Cost is proportional to the number of memory operations implied. For
|
|
// scalable vectors, we use an estimate on that number since we don't
|
|
// know exactly what VL will be.
|
|
auto &VTy = *cast<VectorType>(DataTy);
|
|
InstructionCost MemOpCost =
|
|
getMemoryOpCost(Opcode, VTy.getElementType(), Alignment, 0, CostKind,
|
|
{TTI::OK_AnyValue, TTI::OP_None}, I);
|
|
unsigned NumLoads = getEstimatedVLFor(&VTy);
|
|
return NumLoads * MemOpCost;
|
|
}
|
|
|
|
InstructionCost
|
|
RISCVTTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
|
|
// FIXME: This is a property of the default vector convention, not
|
|
// all possible calling conventions. Fixing that will require
|
|
// some TTI API and SLP rework.
|
|
InstructionCost Cost = 0;
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
for (auto *Ty : Tys) {
|
|
if (!Ty->isVectorTy())
|
|
continue;
|
|
Align A = DL.getPrefTypeAlign(Ty);
|
|
Cost += getMemoryOpCost(Instruction::Store, Ty, A, 0, CostKind) +
|
|
getMemoryOpCost(Instruction::Load, Ty, A, 0, CostKind);
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
// Currently, these represent both throughput and codesize costs
|
|
// for the respective intrinsics. The costs in this table are simply
|
|
// instruction counts with the following adjustments made:
|
|
// * One vsetvli is considered free.
|
|
static const CostTblEntry VectorIntrinsicCostTable[]{
|
|
{Intrinsic::floor, MVT::f32, 9},
|
|
{Intrinsic::floor, MVT::f64, 9},
|
|
{Intrinsic::ceil, MVT::f32, 9},
|
|
{Intrinsic::ceil, MVT::f64, 9},
|
|
{Intrinsic::trunc, MVT::f32, 7},
|
|
{Intrinsic::trunc, MVT::f64, 7},
|
|
{Intrinsic::round, MVT::f32, 9},
|
|
{Intrinsic::round, MVT::f64, 9},
|
|
{Intrinsic::roundeven, MVT::f32, 9},
|
|
{Intrinsic::roundeven, MVT::f64, 9},
|
|
{Intrinsic::rint, MVT::f32, 7},
|
|
{Intrinsic::rint, MVT::f64, 7},
|
|
{Intrinsic::lrint, MVT::i32, 1},
|
|
{Intrinsic::lrint, MVT::i64, 1},
|
|
{Intrinsic::llrint, MVT::i64, 1},
|
|
{Intrinsic::nearbyint, MVT::f32, 9},
|
|
{Intrinsic::nearbyint, MVT::f64, 9},
|
|
{Intrinsic::bswap, MVT::i16, 3},
|
|
{Intrinsic::bswap, MVT::i32, 12},
|
|
{Intrinsic::bswap, MVT::i64, 31},
|
|
{Intrinsic::vp_bswap, MVT::i16, 3},
|
|
{Intrinsic::vp_bswap, MVT::i32, 12},
|
|
{Intrinsic::vp_bswap, MVT::i64, 31},
|
|
{Intrinsic::vp_fshl, MVT::i8, 7},
|
|
{Intrinsic::vp_fshl, MVT::i16, 7},
|
|
{Intrinsic::vp_fshl, MVT::i32, 7},
|
|
{Intrinsic::vp_fshl, MVT::i64, 7},
|
|
{Intrinsic::vp_fshr, MVT::i8, 7},
|
|
{Intrinsic::vp_fshr, MVT::i16, 7},
|
|
{Intrinsic::vp_fshr, MVT::i32, 7},
|
|
{Intrinsic::vp_fshr, MVT::i64, 7},
|
|
{Intrinsic::bitreverse, MVT::i8, 17},
|
|
{Intrinsic::bitreverse, MVT::i16, 24},
|
|
{Intrinsic::bitreverse, MVT::i32, 33},
|
|
{Intrinsic::bitreverse, MVT::i64, 52},
|
|
{Intrinsic::vp_bitreverse, MVT::i8, 17},
|
|
{Intrinsic::vp_bitreverse, MVT::i16, 24},
|
|
{Intrinsic::vp_bitreverse, MVT::i32, 33},
|
|
{Intrinsic::vp_bitreverse, MVT::i64, 52},
|
|
{Intrinsic::ctpop, MVT::i8, 12},
|
|
{Intrinsic::ctpop, MVT::i16, 19},
|
|
{Intrinsic::ctpop, MVT::i32, 20},
|
|
{Intrinsic::ctpop, MVT::i64, 21},
|
|
{Intrinsic::ctlz, MVT::i8, 19},
|
|
{Intrinsic::ctlz, MVT::i16, 28},
|
|
{Intrinsic::ctlz, MVT::i32, 31},
|
|
{Intrinsic::ctlz, MVT::i64, 35},
|
|
{Intrinsic::cttz, MVT::i8, 16},
|
|
{Intrinsic::cttz, MVT::i16, 23},
|
|
{Intrinsic::cttz, MVT::i32, 24},
|
|
{Intrinsic::cttz, MVT::i64, 25},
|
|
{Intrinsic::vp_ctpop, MVT::i8, 12},
|
|
{Intrinsic::vp_ctpop, MVT::i16, 19},
|
|
{Intrinsic::vp_ctpop, MVT::i32, 20},
|
|
{Intrinsic::vp_ctpop, MVT::i64, 21},
|
|
{Intrinsic::vp_ctlz, MVT::i8, 19},
|
|
{Intrinsic::vp_ctlz, MVT::i16, 28},
|
|
{Intrinsic::vp_ctlz, MVT::i32, 31},
|
|
{Intrinsic::vp_ctlz, MVT::i64, 35},
|
|
{Intrinsic::vp_cttz, MVT::i8, 16},
|
|
{Intrinsic::vp_cttz, MVT::i16, 23},
|
|
{Intrinsic::vp_cttz, MVT::i32, 24},
|
|
{Intrinsic::vp_cttz, MVT::i64, 25},
|
|
};
|
|
|
|
static unsigned getISDForVPIntrinsicID(Intrinsic::ID ID) {
|
|
switch (ID) {
|
|
#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
|
|
case Intrinsic::VPID: \
|
|
return ISD::VPSD;
|
|
#include "llvm/IR/VPIntrinsics.def"
|
|
#undef HELPER_MAP_VPID_TO_VPSD
|
|
}
|
|
return ISD::DELETED_NODE;
|
|
}
|
|
|
|
InstructionCost
|
|
RISCVTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind) {
|
|
auto *RetTy = ICA.getReturnType();
|
|
switch (ICA.getID()) {
|
|
case Intrinsic::lrint:
|
|
case Intrinsic::llrint:
|
|
// We can't currently lower half or bfloat vector lrint/llrint.
|
|
if (auto *VecTy = dyn_cast<VectorType>(ICA.getArgTypes()[0]);
|
|
VecTy && VecTy->getElementType()->is16bitFPTy())
|
|
return InstructionCost::getInvalid();
|
|
[[fallthrough]];
|
|
case Intrinsic::ceil:
|
|
case Intrinsic::floor:
|
|
case Intrinsic::trunc:
|
|
case Intrinsic::rint:
|
|
case Intrinsic::round:
|
|
case Intrinsic::roundeven: {
|
|
// These all use the same code.
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
if (!LT.second.isVector() && TLI->isOperationCustom(ISD::FCEIL, LT.second))
|
|
return LT.first * 8;
|
|
break;
|
|
}
|
|
case Intrinsic::umin:
|
|
case Intrinsic::umax:
|
|
case Intrinsic::smin:
|
|
case Intrinsic::smax: {
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
if (LT.second.isScalarInteger() && ST->hasStdExtZbb())
|
|
return LT.first;
|
|
|
|
if (ST->hasVInstructions() && LT.second.isVector()) {
|
|
unsigned Op;
|
|
switch (ICA.getID()) {
|
|
case Intrinsic::umin:
|
|
Op = RISCV::VMINU_VV;
|
|
break;
|
|
case Intrinsic::umax:
|
|
Op = RISCV::VMAXU_VV;
|
|
break;
|
|
case Intrinsic::smin:
|
|
Op = RISCV::VMIN_VV;
|
|
break;
|
|
case Intrinsic::smax:
|
|
Op = RISCV::VMAX_VV;
|
|
break;
|
|
}
|
|
return LT.first * getRISCVInstructionCost(Op, LT.second, CostKind);
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::sadd_sat:
|
|
case Intrinsic::ssub_sat:
|
|
case Intrinsic::uadd_sat:
|
|
case Intrinsic::usub_sat: {
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
if (ST->hasVInstructions() && LT.second.isVector()) {
|
|
unsigned Op;
|
|
switch (ICA.getID()) {
|
|
case Intrinsic::sadd_sat:
|
|
Op = RISCV::VSADD_VV;
|
|
break;
|
|
case Intrinsic::ssub_sat:
|
|
Op = RISCV::VSSUBU_VV;
|
|
break;
|
|
case Intrinsic::uadd_sat:
|
|
Op = RISCV::VSADDU_VV;
|
|
break;
|
|
case Intrinsic::usub_sat:
|
|
Op = RISCV::VSSUBU_VV;
|
|
break;
|
|
}
|
|
return LT.first * getRISCVInstructionCost(Op, LT.second, CostKind);
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::fma:
|
|
case Intrinsic::fmuladd: {
|
|
// TODO: handle promotion with f16/bf16 with zvfhmin/zvfbfmin
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
if (ST->hasVInstructions() && LT.second.isVector())
|
|
return LT.first *
|
|
getRISCVInstructionCost(RISCV::VFMADD_VV, LT.second, CostKind);
|
|
break;
|
|
}
|
|
case Intrinsic::fabs: {
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
if (ST->hasVInstructions() && LT.second.isVector()) {
|
|
// lui a0, 8
|
|
// addi a0, a0, -1
|
|
// vsetvli a1, zero, e16, m1, ta, ma
|
|
// vand.vx v8, v8, a0
|
|
// f16 with zvfhmin and bf16 with zvfhbmin
|
|
if (LT.second.getVectorElementType() == MVT::bf16 ||
|
|
(LT.second.getVectorElementType() == MVT::f16 &&
|
|
!ST->hasVInstructionsF16()))
|
|
return LT.first * getRISCVInstructionCost(RISCV::VAND_VX, LT.second,
|
|
CostKind) +
|
|
2;
|
|
else
|
|
return LT.first *
|
|
getRISCVInstructionCost(RISCV::VFSGNJX_VV, LT.second, CostKind);
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::sqrt: {
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
if (ST->hasVInstructions() && LT.second.isVector()) {
|
|
SmallVector<unsigned, 4> ConvOp;
|
|
SmallVector<unsigned, 2> FsqrtOp;
|
|
MVT ConvType = LT.second;
|
|
MVT FsqrtType = LT.second;
|
|
// f16 with zvfhmin and bf16 with zvfbfmin and the type of nxv32[b]f16
|
|
// will be spilt.
|
|
if (LT.second.getVectorElementType() == MVT::bf16) {
|
|
if (LT.second == MVT::nxv32bf16) {
|
|
ConvOp = {RISCV::VFWCVTBF16_F_F_V, RISCV::VFWCVTBF16_F_F_V,
|
|
RISCV::VFNCVTBF16_F_F_W, RISCV::VFNCVTBF16_F_F_W};
|
|
FsqrtOp = {RISCV::VFSQRT_V, RISCV::VFSQRT_V};
|
|
ConvType = MVT::nxv16f16;
|
|
FsqrtType = MVT::nxv16f32;
|
|
} else {
|
|
ConvOp = {RISCV::VFWCVTBF16_F_F_V, RISCV::VFNCVTBF16_F_F_W};
|
|
FsqrtOp = {RISCV::VFSQRT_V};
|
|
FsqrtType = TLI->getTypeToPromoteTo(ISD::FSQRT, FsqrtType);
|
|
}
|
|
} else if (LT.second.getVectorElementType() == MVT::f16 &&
|
|
!ST->hasVInstructionsF16()) {
|
|
if (LT.second == MVT::nxv32f16) {
|
|
ConvOp = {RISCV::VFWCVT_F_F_V, RISCV::VFWCVT_F_F_V,
|
|
RISCV::VFNCVT_F_F_W, RISCV::VFNCVT_F_F_W};
|
|
FsqrtOp = {RISCV::VFSQRT_V, RISCV::VFSQRT_V};
|
|
ConvType = MVT::nxv16f16;
|
|
FsqrtType = MVT::nxv16f32;
|
|
} else {
|
|
ConvOp = {RISCV::VFWCVT_F_F_V, RISCV::VFNCVT_F_F_W};
|
|
FsqrtOp = {RISCV::VFSQRT_V};
|
|
FsqrtType = TLI->getTypeToPromoteTo(ISD::FSQRT, FsqrtType);
|
|
}
|
|
} else {
|
|
FsqrtOp = {RISCV::VFSQRT_V};
|
|
}
|
|
|
|
return LT.first * (getRISCVInstructionCost(FsqrtOp, FsqrtType, CostKind) +
|
|
getRISCVInstructionCost(ConvOp, ConvType, CostKind));
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::cttz:
|
|
case Intrinsic::ctlz:
|
|
case Intrinsic::ctpop: {
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
if (ST->hasVInstructions() && ST->hasStdExtZvbb() && LT.second.isVector()) {
|
|
unsigned Op;
|
|
switch (ICA.getID()) {
|
|
case Intrinsic::cttz:
|
|
Op = RISCV::VCTZ_V;
|
|
break;
|
|
case Intrinsic::ctlz:
|
|
Op = RISCV::VCLZ_V;
|
|
break;
|
|
case Intrinsic::ctpop:
|
|
Op = RISCV::VCPOP_V;
|
|
break;
|
|
}
|
|
return LT.first * getRISCVInstructionCost(Op, LT.second, CostKind);
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::abs: {
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
if (ST->hasVInstructions() && LT.second.isVector()) {
|
|
// vrsub.vi v10, v8, 0
|
|
// vmax.vv v8, v8, v10
|
|
return LT.first *
|
|
getRISCVInstructionCost({RISCV::VRSUB_VI, RISCV::VMAX_VV},
|
|
LT.second, CostKind);
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::get_active_lane_mask: {
|
|
if (ST->hasVInstructions()) {
|
|
Type *ExpRetTy = VectorType::get(
|
|
ICA.getArgTypes()[0], cast<VectorType>(RetTy)->getElementCount());
|
|
auto LT = getTypeLegalizationCost(ExpRetTy);
|
|
|
|
// vid.v v8 // considered hoisted
|
|
// vsaddu.vx v8, v8, a0
|
|
// vmsltu.vx v0, v8, a1
|
|
return LT.first *
|
|
getRISCVInstructionCost({RISCV::VSADDU_VX, RISCV::VMSLTU_VX},
|
|
LT.second, CostKind);
|
|
}
|
|
break;
|
|
}
|
|
// TODO: add more intrinsic
|
|
case Intrinsic::stepvector: {
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
// Legalisation of illegal types involves an `index' instruction plus
|
|
// (LT.first - 1) vector adds.
|
|
if (ST->hasVInstructions())
|
|
return getRISCVInstructionCost(RISCV::VID_V, LT.second, CostKind) +
|
|
(LT.first - 1) *
|
|
getRISCVInstructionCost(RISCV::VADD_VX, LT.second, CostKind);
|
|
return 1 + (LT.first - 1);
|
|
}
|
|
case Intrinsic::experimental_cttz_elts: {
|
|
Type *ArgTy = ICA.getArgTypes()[0];
|
|
EVT ArgType = TLI->getValueType(DL, ArgTy, true);
|
|
if (getTLI()->shouldExpandCttzElements(ArgType))
|
|
break;
|
|
InstructionCost Cost = getRISCVInstructionCost(
|
|
RISCV::VFIRST_M, getTypeLegalizationCost(ArgTy).second, CostKind);
|
|
|
|
// If zero_is_poison is false, then we will generate additional
|
|
// cmp + select instructions to convert -1 to EVL.
|
|
Type *BoolTy = Type::getInt1Ty(RetTy->getContext());
|
|
if (ICA.getArgs().size() > 1 &&
|
|
cast<ConstantInt>(ICA.getArgs()[1])->isZero())
|
|
Cost += getCmpSelInstrCost(Instruction::ICmp, BoolTy, RetTy,
|
|
CmpInst::ICMP_SLT, CostKind) +
|
|
getCmpSelInstrCost(Instruction::Select, RetTy, BoolTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
|
|
return Cost;
|
|
}
|
|
case Intrinsic::vp_rint: {
|
|
// RISC-V target uses at least 5 instructions to lower rounding intrinsics.
|
|
unsigned Cost = 5;
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second))
|
|
return Cost * LT.first;
|
|
break;
|
|
}
|
|
case Intrinsic::vp_nearbyint: {
|
|
// More one read and one write for fflags than vp_rint.
|
|
unsigned Cost = 7;
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second))
|
|
return Cost * LT.first;
|
|
break;
|
|
}
|
|
case Intrinsic::vp_ceil:
|
|
case Intrinsic::vp_floor:
|
|
case Intrinsic::vp_round:
|
|
case Intrinsic::vp_roundeven:
|
|
case Intrinsic::vp_roundtozero: {
|
|
// Rounding with static rounding mode needs two more instructions to
|
|
// swap/write FRM than vp_rint.
|
|
unsigned Cost = 7;
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
unsigned VPISD = getISDForVPIntrinsicID(ICA.getID());
|
|
if (TLI->isOperationCustom(VPISD, LT.second))
|
|
return Cost * LT.first;
|
|
break;
|
|
}
|
|
case Intrinsic::vp_select: {
|
|
Intrinsic::ID IID = ICA.getID();
|
|
std::optional<unsigned> FOp = VPIntrinsic::getFunctionalOpcodeForVP(IID);
|
|
assert(FOp.has_value());
|
|
return getCmpSelInstrCost(*FOp, ICA.getReturnType(), ICA.getArgTypes()[0],
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
}
|
|
case Intrinsic::vp_merge:
|
|
return getCmpSelInstrCost(Instruction::Select, ICA.getReturnType(),
|
|
ICA.getArgTypes()[0], CmpInst::BAD_ICMP_PREDICATE,
|
|
CostKind);
|
|
case Intrinsic::experimental_vp_splat: {
|
|
auto LT = getTypeLegalizationCost(RetTy);
|
|
// TODO: Lower i1 experimental_vp_splat
|
|
if (!ST->hasVInstructions() || LT.second.getScalarType() == MVT::i1)
|
|
return InstructionCost::getInvalid();
|
|
return LT.first * getRISCVInstructionCost(LT.second.isFloatingPoint()
|
|
? RISCV::VFMV_V_F
|
|
: RISCV::VMV_V_X,
|
|
LT.second, CostKind);
|
|
}
|
|
case Intrinsic::experimental_vp_splice: {
|
|
// To support type-based query from vectorizer, set the index to 0.
|
|
// Note that index only change the cost from vslide.vx to vslide.vi and in
|
|
// current implementations they have same costs.
|
|
return getShuffleCost(TTI::SK_Splice,
|
|
cast<VectorType>(ICA.getArgTypes()[0]), {}, CostKind,
|
|
0, cast<VectorType>(ICA.getReturnType()));
|
|
}
|
|
}
|
|
|
|
if (ST->hasVInstructions() && RetTy->isVectorTy()) {
|
|
if (auto LT = getTypeLegalizationCost(RetTy);
|
|
LT.second.isVector()) {
|
|
MVT EltTy = LT.second.getVectorElementType();
|
|
if (const auto *Entry = CostTableLookup(VectorIntrinsicCostTable,
|
|
ICA.getID(), EltTy))
|
|
return LT.first * Entry->Cost;
|
|
}
|
|
}
|
|
|
|
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src,
|
|
TTI::CastContextHint CCH,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
bool IsVectorType = isa<VectorType>(Dst) && isa<VectorType>(Src);
|
|
if (!IsVectorType)
|
|
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
|
|
|
|
// FIXME: Need to compute legalizing cost for illegal types. The current
|
|
// code handles only legal types and those which can be trivially
|
|
// promoted to legal.
|
|
if (!ST->hasVInstructions() || Src->getScalarSizeInBits() > ST->getELen() ||
|
|
Dst->getScalarSizeInBits() > ST->getELen())
|
|
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Src);
|
|
std::pair<InstructionCost, MVT> DstLT = getTypeLegalizationCost(Dst);
|
|
|
|
// Handle i1 source and dest cases *before* calling logic in BasicTTI.
|
|
// The shared implementation doesn't model vector widening during legalization
|
|
// and instead assumes scalarization. In order to scalarize an <N x i1>
|
|
// vector, we need to extend/trunc to/from i8. If we don't special case
|
|
// this, we can get an infinite recursion cycle.
|
|
switch (ISD) {
|
|
default:
|
|
break;
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
if (Src->getScalarSizeInBits() == 1) {
|
|
// We do not use vsext/vzext to extend from mask vector.
|
|
// Instead we use the following instructions to extend from mask vector:
|
|
// vmv.v.i v8, 0
|
|
// vmerge.vim v8, v8, -1, v0 (repeated per split)
|
|
return getRISCVInstructionCost(RISCV::VMV_V_I, DstLT.second, CostKind) +
|
|
DstLT.first * getRISCVInstructionCost(RISCV::VMERGE_VIM,
|
|
DstLT.second, CostKind) +
|
|
DstLT.first - 1;
|
|
}
|
|
break;
|
|
case ISD::TRUNCATE:
|
|
if (Dst->getScalarSizeInBits() == 1) {
|
|
// We do not use several vncvt to truncate to mask vector. So we could
|
|
// not use PowDiff to calculate it.
|
|
// Instead we use the following instructions to truncate to mask vector:
|
|
// vand.vi v8, v8, 1
|
|
// vmsne.vi v0, v8, 0
|
|
return SrcLT.first *
|
|
getRISCVInstructionCost({RISCV::VAND_VI, RISCV::VMSNE_VI},
|
|
SrcLT.second, CostKind) +
|
|
SrcLT.first - 1;
|
|
}
|
|
break;
|
|
};
|
|
|
|
// Our actual lowering for the case where a wider legal type is available
|
|
// uses promotion to the wider type. This is reflected in the result of
|
|
// getTypeLegalizationCost, but BasicTTI assumes the widened cases are
|
|
// scalarized if the legalized Src and Dst are not equal sized.
|
|
const DataLayout &DL = this->getDataLayout();
|
|
if (!SrcLT.second.isVector() || !DstLT.second.isVector() ||
|
|
!TypeSize::isKnownLE(DL.getTypeSizeInBits(Src),
|
|
SrcLT.second.getSizeInBits()) ||
|
|
!TypeSize::isKnownLE(DL.getTypeSizeInBits(Dst),
|
|
DstLT.second.getSizeInBits()))
|
|
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
|
|
|
|
// The split cost is handled by the base getCastInstrCost
|
|
assert((SrcLT.first == 1) && (DstLT.first == 1) && "Illegal type");
|
|
|
|
int PowDiff = (int)Log2_32(DstLT.second.getScalarSizeInBits()) -
|
|
(int)Log2_32(SrcLT.second.getScalarSizeInBits());
|
|
switch (ISD) {
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND: {
|
|
if ((PowDiff < 1) || (PowDiff > 3))
|
|
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
|
|
unsigned SExtOp[] = {RISCV::VSEXT_VF2, RISCV::VSEXT_VF4, RISCV::VSEXT_VF8};
|
|
unsigned ZExtOp[] = {RISCV::VZEXT_VF2, RISCV::VZEXT_VF4, RISCV::VZEXT_VF8};
|
|
unsigned Op =
|
|
(ISD == ISD::SIGN_EXTEND) ? SExtOp[PowDiff - 1] : ZExtOp[PowDiff - 1];
|
|
return getRISCVInstructionCost(Op, DstLT.second, CostKind);
|
|
}
|
|
case ISD::TRUNCATE:
|
|
case ISD::FP_EXTEND:
|
|
case ISD::FP_ROUND: {
|
|
// Counts of narrow/widen instructions.
|
|
unsigned SrcEltSize = SrcLT.second.getScalarSizeInBits();
|
|
unsigned DstEltSize = DstLT.second.getScalarSizeInBits();
|
|
|
|
unsigned Op = (ISD == ISD::TRUNCATE) ? RISCV::VNSRL_WI
|
|
: (ISD == ISD::FP_EXTEND) ? RISCV::VFWCVT_F_F_V
|
|
: RISCV::VFNCVT_F_F_W;
|
|
InstructionCost Cost = 0;
|
|
for (; SrcEltSize != DstEltSize;) {
|
|
MVT ElementMVT = (ISD == ISD::TRUNCATE)
|
|
? MVT::getIntegerVT(DstEltSize)
|
|
: MVT::getFloatingPointVT(DstEltSize);
|
|
MVT DstMVT = DstLT.second.changeVectorElementType(ElementMVT);
|
|
DstEltSize =
|
|
(DstEltSize > SrcEltSize) ? DstEltSize >> 1 : DstEltSize << 1;
|
|
Cost += getRISCVInstructionCost(Op, DstMVT, CostKind);
|
|
}
|
|
return Cost;
|
|
}
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT: {
|
|
unsigned IsSigned = ISD == ISD::FP_TO_SINT;
|
|
unsigned FCVT = IsSigned ? RISCV::VFCVT_RTZ_X_F_V : RISCV::VFCVT_RTZ_XU_F_V;
|
|
unsigned FWCVT =
|
|
IsSigned ? RISCV::VFWCVT_RTZ_X_F_V : RISCV::VFWCVT_RTZ_XU_F_V;
|
|
unsigned FNCVT =
|
|
IsSigned ? RISCV::VFNCVT_RTZ_X_F_W : RISCV::VFNCVT_RTZ_XU_F_W;
|
|
unsigned SrcEltSize = Src->getScalarSizeInBits();
|
|
unsigned DstEltSize = Dst->getScalarSizeInBits();
|
|
InstructionCost Cost = 0;
|
|
if ((SrcEltSize == 16) &&
|
|
(!ST->hasVInstructionsF16() || ((DstEltSize / 2) > SrcEltSize))) {
|
|
// If the target only supports zvfhmin or it is fp16-to-i64 conversion
|
|
// pre-widening to f32 and then convert f32 to integer
|
|
VectorType *VecF32Ty =
|
|
VectorType::get(Type::getFloatTy(Dst->getContext()),
|
|
cast<VectorType>(Dst)->getElementCount());
|
|
std::pair<InstructionCost, MVT> VecF32LT =
|
|
getTypeLegalizationCost(VecF32Ty);
|
|
Cost +=
|
|
VecF32LT.first * getRISCVInstructionCost(RISCV::VFWCVT_F_F_V,
|
|
VecF32LT.second, CostKind);
|
|
Cost += getCastInstrCost(Opcode, Dst, VecF32Ty, CCH, CostKind, I);
|
|
return Cost;
|
|
}
|
|
if (DstEltSize == SrcEltSize)
|
|
Cost += getRISCVInstructionCost(FCVT, DstLT.second, CostKind);
|
|
else if (DstEltSize > SrcEltSize)
|
|
Cost += getRISCVInstructionCost(FWCVT, DstLT.second, CostKind);
|
|
else { // (SrcEltSize > DstEltSize)
|
|
// First do a narrowing conversion to an integer half the size, then
|
|
// truncate if needed.
|
|
MVT ElementVT = MVT::getIntegerVT(SrcEltSize / 2);
|
|
MVT VecVT = DstLT.second.changeVectorElementType(ElementVT);
|
|
Cost += getRISCVInstructionCost(FNCVT, VecVT, CostKind);
|
|
if ((SrcEltSize / 2) > DstEltSize) {
|
|
Type *VecTy = EVT(VecVT).getTypeForEVT(Dst->getContext());
|
|
Cost +=
|
|
getCastInstrCost(Instruction::Trunc, Dst, VecTy, CCH, CostKind, I);
|
|
}
|
|
}
|
|
return Cost;
|
|
}
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP: {
|
|
unsigned IsSigned = ISD == ISD::SINT_TO_FP;
|
|
unsigned FCVT = IsSigned ? RISCV::VFCVT_F_X_V : RISCV::VFCVT_F_XU_V;
|
|
unsigned FWCVT = IsSigned ? RISCV::VFWCVT_F_X_V : RISCV::VFWCVT_F_XU_V;
|
|
unsigned FNCVT = IsSigned ? RISCV::VFNCVT_F_X_W : RISCV::VFNCVT_F_XU_W;
|
|
unsigned SrcEltSize = Src->getScalarSizeInBits();
|
|
unsigned DstEltSize = Dst->getScalarSizeInBits();
|
|
|
|
InstructionCost Cost = 0;
|
|
if ((DstEltSize == 16) &&
|
|
(!ST->hasVInstructionsF16() || ((SrcEltSize / 2) > DstEltSize))) {
|
|
// If the target only supports zvfhmin or it is i64-to-fp16 conversion
|
|
// it is converted to f32 and then converted to f16
|
|
VectorType *VecF32Ty =
|
|
VectorType::get(Type::getFloatTy(Dst->getContext()),
|
|
cast<VectorType>(Dst)->getElementCount());
|
|
std::pair<InstructionCost, MVT> VecF32LT =
|
|
getTypeLegalizationCost(VecF32Ty);
|
|
Cost += getCastInstrCost(Opcode, VecF32Ty, Src, CCH, CostKind, I);
|
|
Cost += VecF32LT.first * getRISCVInstructionCost(RISCV::VFNCVT_F_F_W,
|
|
DstLT.second, CostKind);
|
|
return Cost;
|
|
}
|
|
|
|
if (DstEltSize == SrcEltSize)
|
|
Cost += getRISCVInstructionCost(FCVT, DstLT.second, CostKind);
|
|
else if (DstEltSize > SrcEltSize) {
|
|
if ((DstEltSize / 2) > SrcEltSize) {
|
|
VectorType *VecTy =
|
|
VectorType::get(IntegerType::get(Dst->getContext(), DstEltSize / 2),
|
|
cast<VectorType>(Dst)->getElementCount());
|
|
unsigned Op = IsSigned ? Instruction::SExt : Instruction::ZExt;
|
|
Cost += getCastInstrCost(Op, VecTy, Src, CCH, CostKind, I);
|
|
}
|
|
Cost += getRISCVInstructionCost(FWCVT, DstLT.second, CostKind);
|
|
} else
|
|
Cost += getRISCVInstructionCost(FNCVT, DstLT.second, CostKind);
|
|
return Cost;
|
|
}
|
|
}
|
|
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
|
|
}
|
|
|
|
unsigned RISCVTTIImpl::getEstimatedVLFor(VectorType *Ty) {
|
|
if (isa<ScalableVectorType>(Ty)) {
|
|
const unsigned EltSize = DL.getTypeSizeInBits(Ty->getElementType());
|
|
const unsigned MinSize = DL.getTypeSizeInBits(Ty).getKnownMinValue();
|
|
const unsigned VectorBits = *getVScaleForTuning() * RISCV::RVVBitsPerBlock;
|
|
return RISCVTargetLowering::computeVLMAX(VectorBits, EltSize, MinSize);
|
|
}
|
|
return cast<FixedVectorType>(Ty)->getNumElements();
|
|
}
|
|
|
|
InstructionCost
|
|
RISCVTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
|
|
FastMathFlags FMF,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
|
|
return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
|
|
|
|
// Skip if scalar size of Ty is bigger than ELEN.
|
|
if (Ty->getScalarSizeInBits() > ST->getELen())
|
|
return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
|
|
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
|
|
if (Ty->getElementType()->isIntegerTy(1)) {
|
|
// SelectionDAGBuilder does following transforms:
|
|
// vector_reduce_{smin,umax}(<n x i1>) --> vector_reduce_or(<n x i1>)
|
|
// vector_reduce_{smax,umin}(<n x i1>) --> vector_reduce_and(<n x i1>)
|
|
if (IID == Intrinsic::umax || IID == Intrinsic::smin)
|
|
return getArithmeticReductionCost(Instruction::Or, Ty, FMF, CostKind);
|
|
else
|
|
return getArithmeticReductionCost(Instruction::And, Ty, FMF, CostKind);
|
|
}
|
|
|
|
if (IID == Intrinsic::maximum || IID == Intrinsic::minimum) {
|
|
SmallVector<unsigned, 3> Opcodes;
|
|
InstructionCost ExtraCost = 0;
|
|
switch (IID) {
|
|
case Intrinsic::maximum:
|
|
if (FMF.noNaNs()) {
|
|
Opcodes = {RISCV::VFREDMAX_VS, RISCV::VFMV_F_S};
|
|
} else {
|
|
Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMAX_VS,
|
|
RISCV::VFMV_F_S};
|
|
// Cost of Canonical Nan + branch
|
|
// lui a0, 523264
|
|
// fmv.w.x fa0, a0
|
|
Type *DstTy = Ty->getScalarType();
|
|
const unsigned EltTyBits = DstTy->getScalarSizeInBits();
|
|
Type *SrcTy = IntegerType::getIntNTy(DstTy->getContext(), EltTyBits);
|
|
ExtraCost = 1 +
|
|
getCastInstrCost(Instruction::UIToFP, DstTy, SrcTy,
|
|
TTI::CastContextHint::None, CostKind) +
|
|
getCFInstrCost(Instruction::Br, CostKind);
|
|
}
|
|
break;
|
|
|
|
case Intrinsic::minimum:
|
|
if (FMF.noNaNs()) {
|
|
Opcodes = {RISCV::VFREDMIN_VS, RISCV::VFMV_F_S};
|
|
} else {
|
|
Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMIN_VS,
|
|
RISCV::VFMV_F_S};
|
|
// Cost of Canonical Nan + branch
|
|
// lui a0, 523264
|
|
// fmv.w.x fa0, a0
|
|
Type *DstTy = Ty->getScalarType();
|
|
const unsigned EltTyBits = DL.getTypeSizeInBits(DstTy);
|
|
Type *SrcTy = IntegerType::getIntNTy(DstTy->getContext(), EltTyBits);
|
|
ExtraCost = 1 +
|
|
getCastInstrCost(Instruction::UIToFP, DstTy, SrcTy,
|
|
TTI::CastContextHint::None, CostKind) +
|
|
getCFInstrCost(Instruction::Br, CostKind);
|
|
}
|
|
break;
|
|
}
|
|
return ExtraCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
|
|
}
|
|
|
|
// IR Reduction is composed by one rvv reduction instruction and vmv
|
|
unsigned SplitOp;
|
|
SmallVector<unsigned, 3> Opcodes;
|
|
switch (IID) {
|
|
default:
|
|
llvm_unreachable("Unsupported intrinsic");
|
|
case Intrinsic::smax:
|
|
SplitOp = RISCV::VMAX_VV;
|
|
Opcodes = {RISCV::VREDMAX_VS, RISCV::VMV_X_S};
|
|
break;
|
|
case Intrinsic::smin:
|
|
SplitOp = RISCV::VMIN_VV;
|
|
Opcodes = {RISCV::VREDMIN_VS, RISCV::VMV_X_S};
|
|
break;
|
|
case Intrinsic::umax:
|
|
SplitOp = RISCV::VMAXU_VV;
|
|
Opcodes = {RISCV::VREDMAXU_VS, RISCV::VMV_X_S};
|
|
break;
|
|
case Intrinsic::umin:
|
|
SplitOp = RISCV::VMINU_VV;
|
|
Opcodes = {RISCV::VREDMINU_VS, RISCV::VMV_X_S};
|
|
break;
|
|
case Intrinsic::maxnum:
|
|
SplitOp = RISCV::VFMAX_VV;
|
|
Opcodes = {RISCV::VFREDMAX_VS, RISCV::VFMV_F_S};
|
|
break;
|
|
case Intrinsic::minnum:
|
|
SplitOp = RISCV::VFMIN_VV;
|
|
Opcodes = {RISCV::VFREDMIN_VS, RISCV::VFMV_F_S};
|
|
break;
|
|
}
|
|
// Add a cost for data larger than LMUL8
|
|
InstructionCost SplitCost =
|
|
(LT.first > 1) ? (LT.first - 1) *
|
|
getRISCVInstructionCost(SplitOp, LT.second, CostKind)
|
|
: 0;
|
|
return SplitCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
|
|
}
|
|
|
|
InstructionCost
|
|
RISCVTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
|
|
std::optional<FastMathFlags> FMF,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
|
|
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
|
|
|
|
// Skip if scalar size of Ty is bigger than ELEN.
|
|
if (Ty->getScalarSizeInBits() > ST->getELen())
|
|
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
if (ISD != ISD::ADD && ISD != ISD::OR && ISD != ISD::XOR && ISD != ISD::AND &&
|
|
ISD != ISD::FADD)
|
|
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
|
|
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
|
|
Type *ElementTy = Ty->getElementType();
|
|
if (ElementTy->isIntegerTy(1)) {
|
|
// Example sequences:
|
|
// vfirst.m a0, v0
|
|
// seqz a0, a0
|
|
if (LT.second == MVT::v1i1)
|
|
return getRISCVInstructionCost(RISCV::VFIRST_M, LT.second, CostKind) +
|
|
getCmpSelInstrCost(Instruction::ICmp, ElementTy, ElementTy,
|
|
CmpInst::ICMP_EQ, CostKind);
|
|
|
|
if (ISD == ISD::AND) {
|
|
// Example sequences:
|
|
// vmand.mm v8, v9, v8 ; needed every time type is split
|
|
// vmnot.m v8, v0 ; alias for vmnand
|
|
// vcpop.m a0, v8
|
|
// seqz a0, a0
|
|
|
|
// See the discussion: https://github.com/llvm/llvm-project/pull/119160
|
|
// For LMUL <= 8, there is no splitting,
|
|
// the sequences are vmnot, vcpop and seqz.
|
|
// When LMUL > 8 and split = 1,
|
|
// the sequences are vmnand, vcpop and seqz.
|
|
// When LMUL > 8 and split > 1,
|
|
// the sequences are (LT.first-2) * vmand, vmnand, vcpop and seqz.
|
|
return ((LT.first > 2) ? (LT.first - 2) : 0) *
|
|
getRISCVInstructionCost(RISCV::VMAND_MM, LT.second, CostKind) +
|
|
getRISCVInstructionCost(RISCV::VMNAND_MM, LT.second, CostKind) +
|
|
getRISCVInstructionCost(RISCV::VCPOP_M, LT.second, CostKind) +
|
|
getCmpSelInstrCost(Instruction::ICmp, ElementTy, ElementTy,
|
|
CmpInst::ICMP_EQ, CostKind);
|
|
} else if (ISD == ISD::XOR || ISD == ISD::ADD) {
|
|
// Example sequences:
|
|
// vsetvli a0, zero, e8, mf8, ta, ma
|
|
// vmxor.mm v8, v0, v8 ; needed every time type is split
|
|
// vcpop.m a0, v8
|
|
// andi a0, a0, 1
|
|
return (LT.first - 1) *
|
|
getRISCVInstructionCost(RISCV::VMXOR_MM, LT.second, CostKind) +
|
|
getRISCVInstructionCost(RISCV::VCPOP_M, LT.second, CostKind) + 1;
|
|
} else {
|
|
assert(ISD == ISD::OR);
|
|
// Example sequences:
|
|
// vsetvli a0, zero, e8, mf8, ta, ma
|
|
// vmor.mm v8, v9, v8 ; needed every time type is split
|
|
// vcpop.m a0, v0
|
|
// snez a0, a0
|
|
return (LT.first - 1) *
|
|
getRISCVInstructionCost(RISCV::VMOR_MM, LT.second, CostKind) +
|
|
getRISCVInstructionCost(RISCV::VCPOP_M, LT.second, CostKind) +
|
|
getCmpSelInstrCost(Instruction::ICmp, ElementTy, ElementTy,
|
|
CmpInst::ICMP_NE, CostKind);
|
|
}
|
|
}
|
|
|
|
// IR Reduction of or/and is composed by one vmv and one rvv reduction
|
|
// instruction, and others is composed by two vmv and one rvv reduction
|
|
// instruction
|
|
unsigned SplitOp;
|
|
SmallVector<unsigned, 3> Opcodes;
|
|
switch (ISD) {
|
|
case ISD::ADD:
|
|
SplitOp = RISCV::VADD_VV;
|
|
Opcodes = {RISCV::VMV_S_X, RISCV::VREDSUM_VS, RISCV::VMV_X_S};
|
|
break;
|
|
case ISD::OR:
|
|
SplitOp = RISCV::VOR_VV;
|
|
Opcodes = {RISCV::VREDOR_VS, RISCV::VMV_X_S};
|
|
break;
|
|
case ISD::XOR:
|
|
SplitOp = RISCV::VXOR_VV;
|
|
Opcodes = {RISCV::VMV_S_X, RISCV::VREDXOR_VS, RISCV::VMV_X_S};
|
|
break;
|
|
case ISD::AND:
|
|
SplitOp = RISCV::VAND_VV;
|
|
Opcodes = {RISCV::VREDAND_VS, RISCV::VMV_X_S};
|
|
break;
|
|
case ISD::FADD:
|
|
// We can't promote f16/bf16 fadd reductions.
|
|
if ((LT.second.getVectorElementType() == MVT::f16 &&
|
|
!ST->hasVInstructionsF16()) ||
|
|
LT.second.getVectorElementType() == MVT::bf16)
|
|
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
|
|
if (TTI::requiresOrderedReduction(FMF)) {
|
|
Opcodes.push_back(RISCV::VFMV_S_F);
|
|
for (unsigned i = 0; i < LT.first.getValue(); i++)
|
|
Opcodes.push_back(RISCV::VFREDOSUM_VS);
|
|
Opcodes.push_back(RISCV::VFMV_F_S);
|
|
return getRISCVInstructionCost(Opcodes, LT.second, CostKind);
|
|
}
|
|
SplitOp = RISCV::VFADD_VV;
|
|
Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDUSUM_VS, RISCV::VFMV_F_S};
|
|
break;
|
|
}
|
|
// Add a cost for data larger than LMUL8
|
|
InstructionCost SplitCost =
|
|
(LT.first > 1) ? (LT.first - 1) *
|
|
getRISCVInstructionCost(SplitOp, LT.second, CostKind)
|
|
: 0;
|
|
return SplitCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getExtendedReductionCost(
|
|
unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy,
|
|
FastMathFlags FMF, TTI::TargetCostKind CostKind) {
|
|
if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors())
|
|
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
|
|
FMF, CostKind);
|
|
|
|
// Skip if scalar size of ResTy is bigger than ELEN.
|
|
if (ResTy->getScalarSizeInBits() > ST->getELen())
|
|
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
|
|
FMF, CostKind);
|
|
|
|
if (Opcode != Instruction::Add && Opcode != Instruction::FAdd)
|
|
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
|
|
FMF, CostKind);
|
|
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
|
|
|
|
if (IsUnsigned && Opcode == Instruction::Add &&
|
|
LT.second.isFixedLengthVector() && LT.second.getScalarType() == MVT::i1) {
|
|
// Represent vector_reduce_add(ZExt(<n x i1>)) as
|
|
// ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
|
|
return LT.first *
|
|
getRISCVInstructionCost(RISCV::VCPOP_M, LT.second, CostKind);
|
|
}
|
|
|
|
if (ResTy->getScalarSizeInBits() != 2 * LT.second.getScalarSizeInBits())
|
|
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
|
|
FMF, CostKind);
|
|
|
|
return (LT.first - 1) +
|
|
getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getStoreImmCost(Type *Ty,
|
|
TTI::OperandValueInfo OpInfo,
|
|
TTI::TargetCostKind CostKind) {
|
|
assert(OpInfo.isConstant() && "non constant operand?");
|
|
if (!isa<VectorType>(Ty))
|
|
// FIXME: We need to account for immediate materialization here, but doing
|
|
// a decent job requires more knowledge about the immediate than we
|
|
// currently have here.
|
|
return 0;
|
|
|
|
if (OpInfo.isUniform())
|
|
// vmv.v.i, vmv.v.x, or vfmv.v.f
|
|
// We ignore the cost of the scalar constant materialization to be consistent
|
|
// with how we treat scalar constants themselves just above.
|
|
return 1;
|
|
|
|
return getConstantPoolLoadCost(Ty, CostKind);
|
|
}
|
|
|
|
|
|
InstructionCost RISCVTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
MaybeAlign Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo OpInfo,
|
|
const Instruction *I) {
|
|
EVT VT = TLI->getValueType(DL, Src, true);
|
|
// Type legalization can't handle structs
|
|
if (VT == MVT::Other)
|
|
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind, OpInfo, I);
|
|
|
|
InstructionCost Cost = 0;
|
|
if (Opcode == Instruction::Store && OpInfo.isConstant())
|
|
Cost += getStoreImmCost(Src, OpInfo, CostKind);
|
|
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
|
|
|
|
InstructionCost BaseCost = [&]() {
|
|
InstructionCost Cost = LT.first;
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Cost;
|
|
|
|
// Our actual lowering for the case where a wider legal type is available
|
|
// uses the a VL predicated load on the wider type. This is reflected in
|
|
// the result of getTypeLegalizationCost, but BasicTTI assumes the
|
|
// widened cases are scalarized.
|
|
const DataLayout &DL = this->getDataLayout();
|
|
if (Src->isVectorTy() && LT.second.isVector() &&
|
|
TypeSize::isKnownLT(DL.getTypeStoreSizeInBits(Src),
|
|
LT.second.getSizeInBits()))
|
|
return Cost;
|
|
|
|
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind, OpInfo, I);
|
|
}();
|
|
|
|
// Assume memory ops cost scale with the number of vector registers
|
|
// possible accessed by the instruction. Note that BasicTTI already
|
|
// handles the LT.first term for us.
|
|
if (LT.second.isVector() && CostKind != TTI::TCK_CodeSize)
|
|
BaseCost *= TLI->getLMULCost(LT.second);
|
|
return Cost + BaseCost;
|
|
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getCmpSelInstrCost(
|
|
unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
|
|
TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info,
|
|
TTI::OperandValueInfo Op2Info, const Instruction *I) {
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
|
|
Op1Info, Op2Info, I);
|
|
|
|
if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors())
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
|
|
Op1Info, Op2Info, I);
|
|
|
|
// Skip if scalar size of ValTy is bigger than ELEN.
|
|
if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() > ST->getELen())
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
|
|
Op1Info, Op2Info, I);
|
|
|
|
auto GetConstantMatCost =
|
|
[&](TTI::OperandValueInfo OpInfo) -> InstructionCost {
|
|
if (OpInfo.isUniform())
|
|
// We return 0 we currently ignore the cost of materializing scalar
|
|
// constants in GPRs.
|
|
return 0;
|
|
|
|
return getConstantPoolLoadCost(ValTy, CostKind);
|
|
};
|
|
|
|
InstructionCost ConstantMatCost;
|
|
if (Op1Info.isConstant())
|
|
ConstantMatCost += GetConstantMatCost(Op1Info);
|
|
if (Op2Info.isConstant())
|
|
ConstantMatCost += GetConstantMatCost(Op2Info);
|
|
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
|
|
if (Opcode == Instruction::Select && ValTy->isVectorTy()) {
|
|
if (CondTy->isVectorTy()) {
|
|
if (ValTy->getScalarSizeInBits() == 1) {
|
|
// vmandn.mm v8, v8, v9
|
|
// vmand.mm v9, v0, v9
|
|
// vmor.mm v0, v9, v8
|
|
return ConstantMatCost +
|
|
LT.first *
|
|
getRISCVInstructionCost(
|
|
{RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM},
|
|
LT.second, CostKind);
|
|
}
|
|
// vselect and max/min are supported natively.
|
|
return ConstantMatCost +
|
|
LT.first * getRISCVInstructionCost(RISCV::VMERGE_VVM, LT.second,
|
|
CostKind);
|
|
}
|
|
|
|
if (ValTy->getScalarSizeInBits() == 1) {
|
|
// vmv.v.x v9, a0
|
|
// vmsne.vi v9, v9, 0
|
|
// vmandn.mm v8, v8, v9
|
|
// vmand.mm v9, v0, v9
|
|
// vmor.mm v0, v9, v8
|
|
MVT InterimVT = LT.second.changeVectorElementType(MVT::i8);
|
|
return ConstantMatCost +
|
|
LT.first *
|
|
getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI},
|
|
InterimVT, CostKind) +
|
|
LT.first * getRISCVInstructionCost(
|
|
{RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM},
|
|
LT.second, CostKind);
|
|
}
|
|
|
|
// vmv.v.x v10, a0
|
|
// vmsne.vi v0, v10, 0
|
|
// vmerge.vvm v8, v9, v8, v0
|
|
return ConstantMatCost +
|
|
LT.first * getRISCVInstructionCost(
|
|
{RISCV::VMV_V_X, RISCV::VMSNE_VI, RISCV::VMERGE_VVM},
|
|
LT.second, CostKind);
|
|
}
|
|
|
|
if ((Opcode == Instruction::ICmp) && ValTy->isVectorTy() &&
|
|
CmpInst::isIntPredicate(VecPred)) {
|
|
// Use VMSLT_VV to represent VMSEQ, VMSNE, VMSLTU, VMSLEU, VMSLT, VMSLE
|
|
// provided they incur the same cost across all implementations
|
|
return ConstantMatCost + LT.first * getRISCVInstructionCost(RISCV::VMSLT_VV,
|
|
LT.second,
|
|
CostKind);
|
|
}
|
|
|
|
if ((Opcode == Instruction::FCmp) && ValTy->isVectorTy() &&
|
|
CmpInst::isFPPredicate(VecPred)) {
|
|
|
|
// Use VMXOR_MM and VMXNOR_MM to generate all true/false mask
|
|
if ((VecPred == CmpInst::FCMP_FALSE) || (VecPred == CmpInst::FCMP_TRUE))
|
|
return ConstantMatCost +
|
|
getRISCVInstructionCost(RISCV::VMXOR_MM, LT.second, CostKind);
|
|
|
|
// If we do not support the input floating point vector type, use the base
|
|
// one which will calculate as:
|
|
// ScalarizeCost + Num * Cost for fixed vector,
|
|
// InvalidCost for scalable vector.
|
|
if ((ValTy->getScalarSizeInBits() == 16 && !ST->hasVInstructionsF16()) ||
|
|
(ValTy->getScalarSizeInBits() == 32 && !ST->hasVInstructionsF32()) ||
|
|
(ValTy->getScalarSizeInBits() == 64 && !ST->hasVInstructionsF64()))
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
|
|
Op1Info, Op2Info, I);
|
|
|
|
// Assuming vector fp compare and mask instructions are all the same cost
|
|
// until a need arises to differentiate them.
|
|
switch (VecPred) {
|
|
case CmpInst::FCMP_ONE: // vmflt.vv + vmflt.vv + vmor.mm
|
|
case CmpInst::FCMP_ORD: // vmfeq.vv + vmfeq.vv + vmand.mm
|
|
case CmpInst::FCMP_UNO: // vmfne.vv + vmfne.vv + vmor.mm
|
|
case CmpInst::FCMP_UEQ: // vmflt.vv + vmflt.vv + vmnor.mm
|
|
return ConstantMatCost +
|
|
LT.first * getRISCVInstructionCost(
|
|
{RISCV::VMFLT_VV, RISCV::VMFLT_VV, RISCV::VMOR_MM},
|
|
LT.second, CostKind);
|
|
|
|
case CmpInst::FCMP_UGT: // vmfle.vv + vmnot.m
|
|
case CmpInst::FCMP_UGE: // vmflt.vv + vmnot.m
|
|
case CmpInst::FCMP_ULT: // vmfle.vv + vmnot.m
|
|
case CmpInst::FCMP_ULE: // vmflt.vv + vmnot.m
|
|
return ConstantMatCost +
|
|
LT.first *
|
|
getRISCVInstructionCost({RISCV::VMFLT_VV, RISCV::VMNAND_MM},
|
|
LT.second, CostKind);
|
|
|
|
case CmpInst::FCMP_OEQ: // vmfeq.vv
|
|
case CmpInst::FCMP_OGT: // vmflt.vv
|
|
case CmpInst::FCMP_OGE: // vmfle.vv
|
|
case CmpInst::FCMP_OLT: // vmflt.vv
|
|
case CmpInst::FCMP_OLE: // vmfle.vv
|
|
case CmpInst::FCMP_UNE: // vmfne.vv
|
|
return ConstantMatCost +
|
|
LT.first *
|
|
getRISCVInstructionCost(RISCV::VMFLT_VV, LT.second, CostKind);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// With ShortForwardBranchOpt or ConditionalMoveFusion, scalar icmp + select
|
|
// instructions will lower to SELECT_CC and lower to PseudoCCMOVGPR which will
|
|
// generate a conditional branch + mv. The cost of scalar (icmp + select) will
|
|
// be (0 + select instr cost).
|
|
if (ST->hasConditionalMoveFusion() && I && isa<ICmpInst>(I) &&
|
|
ValTy->isIntegerTy() && !I->user_empty()) {
|
|
if (all_of(I->users(), [&](const User *U) {
|
|
return match(U, m_Select(m_Specific(I), m_Value(), m_Value())) &&
|
|
U->getType()->isIntegerTy() &&
|
|
!isa<ConstantData>(U->getOperand(1)) &&
|
|
!isa<ConstantData>(U->getOperand(2));
|
|
}))
|
|
return 0;
|
|
}
|
|
|
|
// TODO: Add cost for scalar type.
|
|
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
|
|
Op1Info, Op2Info, I);
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getCFInstrCost(unsigned Opcode,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Opcode == Instruction::PHI ? 0 : 1;
|
|
// Branches are assumed to be predicted.
|
|
return 0;
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
TTI::TargetCostKind CostKind,
|
|
unsigned Index, Value *Op0,
|
|
Value *Op1) {
|
|
assert(Val->isVectorTy() && "This must be a vector type");
|
|
|
|
if (Opcode != Instruction::ExtractElement &&
|
|
Opcode != Instruction::InsertElement)
|
|
return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
|
|
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);
|
|
|
|
// This type is legalized to a scalar type.
|
|
if (!LT.second.isVector()) {
|
|
auto *FixedVecTy = cast<FixedVectorType>(Val);
|
|
// If Index is a known constant, cost is zero.
|
|
if (Index != -1U)
|
|
return 0;
|
|
// Extract/InsertElement with non-constant index is very costly when
|
|
// scalarized; estimate cost of loads/stores sequence via the stack:
|
|
// ExtractElement cost: store vector to stack, load scalar;
|
|
// InsertElement cost: store vector to stack, store scalar, load vector.
|
|
Type *ElemTy = FixedVecTy->getElementType();
|
|
auto NumElems = FixedVecTy->getNumElements();
|
|
auto Align = DL.getPrefTypeAlign(ElemTy);
|
|
InstructionCost LoadCost =
|
|
getMemoryOpCost(Instruction::Load, ElemTy, Align, 0, CostKind);
|
|
InstructionCost StoreCost =
|
|
getMemoryOpCost(Instruction::Store, ElemTy, Align, 0, CostKind);
|
|
return Opcode == Instruction::ExtractElement
|
|
? StoreCost * NumElems + LoadCost
|
|
: (StoreCost + LoadCost) * NumElems + StoreCost;
|
|
}
|
|
|
|
// For unsupported scalable vector.
|
|
if (LT.second.isScalableVector() && !LT.first.isValid())
|
|
return LT.first;
|
|
|
|
// Mask vector extract/insert is expanded via e8.
|
|
if (Val->getScalarSizeInBits() == 1) {
|
|
VectorType *WideTy =
|
|
VectorType::get(IntegerType::get(Val->getContext(), 8),
|
|
cast<VectorType>(Val)->getElementCount());
|
|
if (Opcode == Instruction::ExtractElement) {
|
|
InstructionCost ExtendCost
|
|
= getCastInstrCost(Instruction::ZExt, WideTy, Val,
|
|
TTI::CastContextHint::None, CostKind);
|
|
InstructionCost ExtractCost
|
|
= getVectorInstrCost(Opcode, WideTy, CostKind, Index, nullptr, nullptr);
|
|
return ExtendCost + ExtractCost;
|
|
}
|
|
InstructionCost ExtendCost
|
|
= getCastInstrCost(Instruction::ZExt, WideTy, Val,
|
|
TTI::CastContextHint::None, CostKind);
|
|
InstructionCost InsertCost
|
|
= getVectorInstrCost(Opcode, WideTy, CostKind, Index, nullptr, nullptr);
|
|
InstructionCost TruncCost
|
|
= getCastInstrCost(Instruction::Trunc, Val, WideTy,
|
|
TTI::CastContextHint::None, CostKind);
|
|
return ExtendCost + InsertCost + TruncCost;
|
|
}
|
|
|
|
|
|
// In RVV, we could use vslidedown + vmv.x.s to extract element from vector
|
|
// and vslideup + vmv.s.x to insert element to vector.
|
|
unsigned BaseCost = 1;
|
|
// When insertelement we should add the index with 1 as the input of vslideup.
|
|
unsigned SlideCost = Opcode == Instruction::InsertElement ? 2 : 1;
|
|
|
|
if (Index != -1U) {
|
|
// The type may be split. For fixed-width vectors we can normalize the
|
|
// index to the new type.
|
|
if (LT.second.isFixedLengthVector()) {
|
|
unsigned Width = LT.second.getVectorNumElements();
|
|
Index = Index % Width;
|
|
}
|
|
|
|
// If exact VLEN is known, we will insert/extract into the appropriate
|
|
// subvector with no additional subvector insert/extract cost.
|
|
if (auto VLEN = ST->getRealVLen()) {
|
|
unsigned EltSize = LT.second.getScalarSizeInBits();
|
|
unsigned M1Max = *VLEN / EltSize;
|
|
Index = Index % M1Max;
|
|
}
|
|
|
|
// We could extract/insert the first element without vslidedown/vslideup.
|
|
if (Index == 0)
|
|
SlideCost = 0;
|
|
else if (Opcode == Instruction::InsertElement)
|
|
SlideCost = 1; // With a constant index, we do not need to use addi.
|
|
}
|
|
|
|
// When the vector needs to split into multiple register groups and the index
|
|
// exceeds single vector register group, we need to insert/extract the element
|
|
// via stack.
|
|
if (LT.first > 1 &&
|
|
((Index == -1U) || (Index >= LT.second.getVectorMinNumElements() &&
|
|
LT.second.isScalableVector()))) {
|
|
Type *ScalarType = Val->getScalarType();
|
|
Align VecAlign = DL.getPrefTypeAlign(Val);
|
|
Align SclAlign = DL.getPrefTypeAlign(ScalarType);
|
|
// Extra addi for unknown index.
|
|
InstructionCost IdxCost = Index == -1U ? 1 : 0;
|
|
|
|
// Store all split vectors into stack and load the target element.
|
|
if (Opcode == Instruction::ExtractElement)
|
|
return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0, CostKind) +
|
|
getMemoryOpCost(Instruction::Load, ScalarType, SclAlign, 0,
|
|
CostKind) +
|
|
IdxCost;
|
|
|
|
// Store all split vectors into stack and store the target element and load
|
|
// vectors back.
|
|
return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0, CostKind) +
|
|
getMemoryOpCost(Instruction::Load, Val, VecAlign, 0, CostKind) +
|
|
getMemoryOpCost(Instruction::Store, ScalarType, SclAlign, 0,
|
|
CostKind) +
|
|
IdxCost;
|
|
}
|
|
|
|
// Extract i64 in the target that has XLEN=32 need more instruction.
|
|
if (Val->getScalarType()->isIntegerTy() &&
|
|
ST->getXLen() < Val->getScalarSizeInBits()) {
|
|
// For extractelement, we need the following instructions:
|
|
// vsetivli zero, 1, e64, m1, ta, mu (not count)
|
|
// vslidedown.vx v8, v8, a0
|
|
// vmv.x.s a0, v8
|
|
// li a1, 32
|
|
// vsrl.vx v8, v8, a1
|
|
// vmv.x.s a1, v8
|
|
|
|
// For insertelement, we need the following instructions:
|
|
// vsetivli zero, 2, e32, m4, ta, mu (not count)
|
|
// vmv.v.i v12, 0
|
|
// vslide1up.vx v16, v12, a1
|
|
// vslide1up.vx v12, v16, a0
|
|
// addi a0, a2, 1
|
|
// vsetvli zero, a0, e64, m4, tu, mu (not count)
|
|
// vslideup.vx v8, v12, a2
|
|
|
|
// TODO: should we count these special vsetvlis?
|
|
BaseCost = Opcode == Instruction::InsertElement ? 3 : 4;
|
|
}
|
|
return BaseCost + SlideCost;
|
|
}
|
|
|
|
InstructionCost RISCVTTIImpl::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
|
|
ArrayRef<const Value *> Args, const Instruction *CxtI) {
|
|
|
|
// TODO: Handle more cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
|
|
Args, CxtI);
|
|
|
|
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
|
|
Args, CxtI);
|
|
|
|
// Skip if scalar size of Ty is bigger than ELEN.
|
|
if (isa<VectorType>(Ty) && Ty->getScalarSizeInBits() > ST->getELen())
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
|
|
Args, CxtI);
|
|
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
|
|
|
|
// TODO: Handle scalar type.
|
|
if (!LT.second.isVector())
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
|
|
Args, CxtI);
|
|
|
|
// f16 with zvfhmin and bf16 will be promoted to f32.
|
|
// FIXME: nxv32[b]f16 will be custom lowered and split.
|
|
unsigned ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
|
|
InstructionCost CastCost = 0;
|
|
if ((LT.second.getVectorElementType() == MVT::f16 ||
|
|
LT.second.getVectorElementType() == MVT::bf16) &&
|
|
TLI->getOperationAction(ISDOpcode, LT.second) ==
|
|
TargetLoweringBase::LegalizeAction::Promote) {
|
|
MVT PromotedVT = TLI->getTypeToPromoteTo(ISDOpcode, LT.second);
|
|
Type *PromotedTy = EVT(PromotedVT).getTypeForEVT(Ty->getContext());
|
|
Type *LegalTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
|
|
// Add cost of extending arguments
|
|
CastCost += LT.first * Args.size() *
|
|
getCastInstrCost(Instruction::FPExt, PromotedTy, LegalTy,
|
|
TTI::CastContextHint::None, CostKind);
|
|
// Add cost of truncating result
|
|
CastCost +=
|
|
LT.first * getCastInstrCost(Instruction::FPTrunc, LegalTy, PromotedTy,
|
|
TTI::CastContextHint::None, CostKind);
|
|
// Compute cost of op in promoted type
|
|
LT.second = PromotedVT;
|
|
}
|
|
|
|
auto getConstantMatCost =
|
|
[&](unsigned Operand, TTI::OperandValueInfo OpInfo) -> InstructionCost {
|
|
if (OpInfo.isUniform() && canSplatOperand(Opcode, Operand))
|
|
// Two sub-cases:
|
|
// * Has a 5 bit immediate operand which can be splatted.
|
|
// * Has a larger immediate which must be materialized in scalar register
|
|
// We return 0 for both as we currently ignore the cost of materializing
|
|
// scalar constants in GPRs.
|
|
return 0;
|
|
|
|
return getConstantPoolLoadCost(Ty, CostKind);
|
|
};
|
|
|
|
// Add the cost of materializing any constant vectors required.
|
|
InstructionCost ConstantMatCost = 0;
|
|
if (Op1Info.isConstant())
|
|
ConstantMatCost += getConstantMatCost(0, Op1Info);
|
|
if (Op2Info.isConstant())
|
|
ConstantMatCost += getConstantMatCost(1, Op2Info);
|
|
|
|
unsigned Op;
|
|
switch (ISDOpcode) {
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
Op = RISCV::VADD_VV;
|
|
break;
|
|
case ISD::SHL:
|
|
case ISD::SRL:
|
|
case ISD::SRA:
|
|
Op = RISCV::VSLL_VV;
|
|
break;
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
Op = (Ty->getScalarSizeInBits() == 1) ? RISCV::VMAND_MM : RISCV::VAND_VV;
|
|
break;
|
|
case ISD::MUL:
|
|
case ISD::MULHS:
|
|
case ISD::MULHU:
|
|
Op = RISCV::VMUL_VV;
|
|
break;
|
|
case ISD::SDIV:
|
|
case ISD::UDIV:
|
|
Op = RISCV::VDIV_VV;
|
|
break;
|
|
case ISD::SREM:
|
|
case ISD::UREM:
|
|
Op = RISCV::VREM_VV;
|
|
break;
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
Op = RISCV::VFADD_VV;
|
|
break;
|
|
case ISD::FMUL:
|
|
Op = RISCV::VFMUL_VV;
|
|
break;
|
|
case ISD::FDIV:
|
|
Op = RISCV::VFDIV_VV;
|
|
break;
|
|
case ISD::FNEG:
|
|
Op = RISCV::VFSGNJN_VV;
|
|
break;
|
|
default:
|
|
// Assuming all other instructions have the same cost until a need arises to
|
|
// differentiate them.
|
|
return CastCost + ConstantMatCost +
|
|
BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
|
|
Args, CxtI);
|
|
}
|
|
|
|
InstructionCost InstrCost = getRISCVInstructionCost(Op, LT.second, CostKind);
|
|
// We use BasicTTIImpl to calculate scalar costs, which assumes floating point
|
|
// ops are twice as expensive as integer ops. Do the same for vectors so
|
|
// scalar floating point ops aren't cheaper than their vector equivalents.
|
|
if (Ty->isFPOrFPVectorTy())
|
|
InstrCost *= 2;
|
|
return CastCost + ConstantMatCost + LT.first * InstrCost;
|
|
}
|
|
|
|
// TODO: Deduplicate from TargetTransformInfoImplCRTPBase.
|
|
InstructionCost RISCVTTIImpl::getPointersChainCost(
|
|
ArrayRef<const Value *> Ptrs, const Value *Base,
|
|
const TTI::PointersChainInfo &Info, Type *AccessTy,
|
|
TTI::TargetCostKind CostKind) {
|
|
InstructionCost Cost = TTI::TCC_Free;
|
|
// In the basic model we take into account GEP instructions only
|
|
// (although here can come alloca instruction, a value, constants and/or
|
|
// constant expressions, PHIs, bitcasts ... whatever allowed to be used as a
|
|
// pointer). Typically, if Base is a not a GEP-instruction and all the
|
|
// pointers are relative to the same base address, all the rest are
|
|
// either GEP instructions, PHIs, bitcasts or constants. When we have same
|
|
// base, we just calculate cost of each non-Base GEP as an ADD operation if
|
|
// any their index is a non-const.
|
|
// If no known dependencies between the pointers cost is calculated as a sum
|
|
// of costs of GEP instructions.
|
|
for (auto [I, V] : enumerate(Ptrs)) {
|
|
const auto *GEP = dyn_cast<GetElementPtrInst>(V);
|
|
if (!GEP)
|
|
continue;
|
|
if (Info.isSameBase() && V != Base) {
|
|
if (GEP->hasAllConstantIndices())
|
|
continue;
|
|
// If the chain is unit-stride and BaseReg + stride*i is a legal
|
|
// addressing mode, then presume the base GEP is sitting around in a
|
|
// register somewhere and check if we can fold the offset relative to
|
|
// it.
|
|
unsigned Stride = DL.getTypeStoreSize(AccessTy);
|
|
if (Info.isUnitStride() &&
|
|
isLegalAddressingMode(AccessTy,
|
|
/* BaseGV */ nullptr,
|
|
/* BaseOffset */ Stride * I,
|
|
/* HasBaseReg */ true,
|
|
/* Scale */ 0,
|
|
GEP->getType()->getPointerAddressSpace()))
|
|
continue;
|
|
Cost += getArithmeticInstrCost(Instruction::Add, GEP->getType(), CostKind,
|
|
{TTI::OK_AnyValue, TTI::OP_None},
|
|
{TTI::OK_AnyValue, TTI::OP_None}, {});
|
|
} else {
|
|
SmallVector<const Value *> Indices(GEP->indices());
|
|
Cost += getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
|
|
Indices, AccessTy, CostKind);
|
|
}
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
void RISCVTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
// TODO: More tuning on benchmarks and metrics with changes as needed
|
|
// would apply to all settings below to enable performance.
|
|
|
|
|
|
if (ST->enableDefaultUnroll())
|
|
return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
|
|
|
|
// Enable Upper bound unrolling universally, not dependent upon the conditions
|
|
// below.
|
|
UP.UpperBound = true;
|
|
|
|
// Disable loop unrolling for Oz and Os.
|
|
UP.OptSizeThreshold = 0;
|
|
UP.PartialOptSizeThreshold = 0;
|
|
if (L->getHeader()->getParent()->hasOptSize())
|
|
return;
|
|
|
|
SmallVector<BasicBlock *, 4> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
LLVM_DEBUG(dbgs() << "Loop has:\n"
|
|
<< "Blocks: " << L->getNumBlocks() << "\n"
|
|
<< "Exit blocks: " << ExitingBlocks.size() << "\n");
|
|
|
|
// Only allow another exit other than the latch. This acts as an early exit
|
|
// as it mirrors the profitability calculation of the runtime unroller.
|
|
if (ExitingBlocks.size() > 2)
|
|
return;
|
|
|
|
// Limit the CFG of the loop body for targets with a branch predictor.
|
|
// Allowing 4 blocks permits if-then-else diamonds in the body.
|
|
if (L->getNumBlocks() > 4)
|
|
return;
|
|
|
|
// Don't unroll vectorized loops, including the remainder loop
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
|
|
return;
|
|
|
|
// Scan the loop: don't unroll loops with calls as this could prevent
|
|
// inlining.
|
|
InstructionCost Cost = 0;
|
|
for (auto *BB : L->getBlocks()) {
|
|
for (auto &I : *BB) {
|
|
// Initial setting - Don't unroll loops containing vectorized
|
|
// instructions.
|
|
if (I.getType()->isVectorTy())
|
|
return;
|
|
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
|
|
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
|
|
if (!isLoweredToCall(F))
|
|
continue;
|
|
}
|
|
return;
|
|
}
|
|
|
|
SmallVector<const Value *> Operands(I.operand_values());
|
|
Cost += getInstructionCost(&I, Operands,
|
|
TargetTransformInfo::TCK_SizeAndLatency);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
|
|
|
|
UP.Partial = true;
|
|
UP.Runtime = true;
|
|
UP.UnrollRemainder = true;
|
|
UP.UnrollAndJam = true;
|
|
|
|
// Force unrolling small loops can be very useful because of the branch
|
|
// taken cost of the backedge.
|
|
if (Cost < 12)
|
|
UP.Force = true;
|
|
}
|
|
|
|
void RISCVTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::PeelingPreferences &PP) {
|
|
BaseT::getPeelingPreferences(L, SE, PP);
|
|
}
|
|
|
|
unsigned RISCVTTIImpl::getRegUsageForType(Type *Ty) const {
|
|
if (Ty->isVectorTy()) {
|
|
// f16 with only zvfhmin and bf16 will be promoted to f32
|
|
Type *EltTy = cast<VectorType>(Ty)->getElementType();
|
|
if ((EltTy->isHalfTy() && !ST->hasVInstructionsF16()) ||
|
|
EltTy->isBFloatTy())
|
|
Ty = VectorType::get(Type::getFloatTy(Ty->getContext()),
|
|
cast<VectorType>(Ty));
|
|
|
|
TypeSize Size = DL.getTypeSizeInBits(Ty);
|
|
if (Size.isScalable() && ST->hasVInstructions())
|
|
return divideCeil(Size.getKnownMinValue(), RISCV::RVVBitsPerBlock);
|
|
|
|
if (ST->useRVVForFixedLengthVectors())
|
|
return divideCeil(Size, ST->getRealMinVLen());
|
|
}
|
|
|
|
return BaseT::getRegUsageForType(Ty);
|
|
}
|
|
|
|
unsigned RISCVTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
|
|
if (SLPMaxVF.getNumOccurrences())
|
|
return SLPMaxVF;
|
|
|
|
// Return how many elements can fit in getRegisterBitwidth. This is the
|
|
// same routine as used in LoopVectorizer. We should probably be
|
|
// accounting for whether we actually have instructions with the right
|
|
// lane type, but we don't have enough information to do that without
|
|
// some additional plumbing which hasn't been justified yet.
|
|
TypeSize RegWidth =
|
|
getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
|
|
// If no vector registers, or absurd element widths, disable
|
|
// vectorization by returning 1.
|
|
return std::max<unsigned>(1U, RegWidth.getFixedValue() / ElemWidth);
|
|
}
|
|
|
|
TTI::AddressingModeKind
|
|
RISCVTTIImpl::getPreferredAddressingMode(const Loop *L,
|
|
ScalarEvolution *SE) const {
|
|
if (ST->hasVendorXCVmem() && !ST->is64Bit())
|
|
return TTI::AMK_PostIndexed;
|
|
|
|
return BasicTTIImplBase::getPreferredAddressingMode(L, SE);
|
|
}
|
|
|
|
bool RISCVTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
|
|
const TargetTransformInfo::LSRCost &C2) {
|
|
// RISC-V specific here are "instruction number 1st priority".
|
|
// If we need to emit adds inside the loop to add up base registers, then
|
|
// we need at least one extra temporary register.
|
|
unsigned C1NumRegs = C1.NumRegs + (C1.NumBaseAdds != 0);
|
|
unsigned C2NumRegs = C2.NumRegs + (C2.NumBaseAdds != 0);
|
|
return std::tie(C1.Insns, C1NumRegs, C1.AddRecCost,
|
|
C1.NumIVMuls, C1.NumBaseAdds,
|
|
C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
|
|
std::tie(C2.Insns, C2NumRegs, C2.AddRecCost,
|
|
C2.NumIVMuls, C2.NumBaseAdds,
|
|
C2.ScaleCost, C2.ImmCost, C2.SetupCost);
|
|
}
|
|
|
|
bool RISCVTTIImpl::isLegalMaskedExpandLoad(Type *DataTy, Align Alignment) {
|
|
auto *VTy = dyn_cast<VectorType>(DataTy);
|
|
if (!VTy || VTy->isScalableTy())
|
|
return false;
|
|
|
|
if (!isLegalMaskedLoadStore(DataTy, Alignment))
|
|
return false;
|
|
|
|
// FIXME: If it is an i8 vector and the element count exceeds 256, we should
|
|
// scalarize these types with LMUL >= maximum fixed-length LMUL.
|
|
if (VTy->getElementType()->isIntegerTy(8))
|
|
if (VTy->getElementCount().getFixedValue() > 256)
|
|
return VTy->getPrimitiveSizeInBits() / ST->getRealMinVLen() <
|
|
ST->getMaxLMULForFixedLengthVectors();
|
|
return true;
|
|
}
|
|
|
|
bool RISCVTTIImpl::isLegalMaskedCompressStore(Type *DataTy, Align Alignment) {
|
|
auto *VTy = dyn_cast<VectorType>(DataTy);
|
|
if (!VTy || VTy->isScalableTy())
|
|
return false;
|
|
|
|
if (!isLegalMaskedLoadStore(DataTy, Alignment))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// See if \p I should be considered for address type promotion. We check if \p
|
|
/// I is a sext with right type and used in memory accesses. If it used in a
|
|
/// "complex" getelementptr, we allow it to be promoted without finding other
|
|
/// sext instructions that sign extended the same initial value. A getelementptr
|
|
/// is considered as "complex" if it has more than 2 operands.
|
|
bool RISCVTTIImpl::shouldConsiderAddressTypePromotion(
|
|
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
|
|
bool Considerable = false;
|
|
AllowPromotionWithoutCommonHeader = false;
|
|
if (!isa<SExtInst>(&I))
|
|
return false;
|
|
Type *ConsideredSExtType =
|
|
Type::getInt64Ty(I.getParent()->getParent()->getContext());
|
|
if (I.getType() != ConsideredSExtType)
|
|
return false;
|
|
// See if the sext is the one with the right type and used in at least one
|
|
// GetElementPtrInst.
|
|
for (const User *U : I.users()) {
|
|
if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
|
|
Considerable = true;
|
|
// A getelementptr is considered as "complex" if it has more than 2
|
|
// operands. We will promote a SExt used in such complex GEP as we
|
|
// expect some computation to be merged if they are done on 64 bits.
|
|
if (GEPInst->getNumOperands() > 2) {
|
|
AllowPromotionWithoutCommonHeader = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return Considerable;
|
|
}
|
|
|
|
bool RISCVTTIImpl::canSplatOperand(unsigned Opcode, int Operand) const {
|
|
switch (Opcode) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::FAdd:
|
|
case Instruction::FSub:
|
|
case Instruction::FMul:
|
|
case Instruction::FDiv:
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
return true;
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::Select:
|
|
return Operand == 1;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool RISCVTTIImpl::canSplatOperand(Instruction *I, int Operand) const {
|
|
if (!I->getType()->isVectorTy() || !ST->hasVInstructions())
|
|
return false;
|
|
|
|
if (canSplatOperand(I->getOpcode(), Operand))
|
|
return true;
|
|
|
|
auto *II = dyn_cast<IntrinsicInst>(I);
|
|
if (!II)
|
|
return false;
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::fma:
|
|
case Intrinsic::vp_fma:
|
|
case Intrinsic::fmuladd:
|
|
case Intrinsic::vp_fmuladd:
|
|
return Operand == 0 || Operand == 1;
|
|
case Intrinsic::vp_shl:
|
|
case Intrinsic::vp_lshr:
|
|
case Intrinsic::vp_ashr:
|
|
case Intrinsic::vp_udiv:
|
|
case Intrinsic::vp_sdiv:
|
|
case Intrinsic::vp_urem:
|
|
case Intrinsic::vp_srem:
|
|
case Intrinsic::ssub_sat:
|
|
case Intrinsic::vp_ssub_sat:
|
|
case Intrinsic::usub_sat:
|
|
case Intrinsic::vp_usub_sat:
|
|
case Intrinsic::vp_select:
|
|
return Operand == 1;
|
|
// These intrinsics are commutative.
|
|
case Intrinsic::vp_add:
|
|
case Intrinsic::vp_mul:
|
|
case Intrinsic::vp_and:
|
|
case Intrinsic::vp_or:
|
|
case Intrinsic::vp_xor:
|
|
case Intrinsic::vp_fadd:
|
|
case Intrinsic::vp_fmul:
|
|
case Intrinsic::vp_icmp:
|
|
case Intrinsic::vp_fcmp:
|
|
case Intrinsic::smin:
|
|
case Intrinsic::vp_smin:
|
|
case Intrinsic::umin:
|
|
case Intrinsic::vp_umin:
|
|
case Intrinsic::smax:
|
|
case Intrinsic::vp_smax:
|
|
case Intrinsic::umax:
|
|
case Intrinsic::vp_umax:
|
|
case Intrinsic::sadd_sat:
|
|
case Intrinsic::vp_sadd_sat:
|
|
case Intrinsic::uadd_sat:
|
|
case Intrinsic::vp_uadd_sat:
|
|
// These intrinsics have 'vr' versions.
|
|
case Intrinsic::vp_sub:
|
|
case Intrinsic::vp_fsub:
|
|
case Intrinsic::vp_fdiv:
|
|
return Operand == 0 || Operand == 1;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Check if sinking \p I's operands to I's basic block is profitable, because
|
|
/// the operands can be folded into a target instruction, e.g.
|
|
/// splats of scalars can fold into vector instructions.
|
|
bool RISCVTTIImpl::isProfitableToSinkOperands(
|
|
Instruction *I, SmallVectorImpl<Use *> &Ops) const {
|
|
using namespace llvm::PatternMatch;
|
|
|
|
if (!I->getType()->isVectorTy() || !ST->hasVInstructions())
|
|
return false;
|
|
|
|
// Don't sink splat operands if the target prefers it. Some targets requires
|
|
// S2V transfer buffers and we can run out of them copying the same value
|
|
// repeatedly.
|
|
// FIXME: It could still be worth doing if it would improve vector register
|
|
// pressure and prevent a vector spill.
|
|
if (!ST->sinkSplatOperands())
|
|
return false;
|
|
|
|
for (auto OpIdx : enumerate(I->operands())) {
|
|
if (!canSplatOperand(I, OpIdx.index()))
|
|
continue;
|
|
|
|
Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
|
|
// Make sure we are not already sinking this operand
|
|
if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
|
|
continue;
|
|
|
|
// We are looking for a splat that can be sunk.
|
|
if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
|
|
m_Undef(), m_ZeroMask())))
|
|
continue;
|
|
|
|
// Don't sink i1 splats.
|
|
if (cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(1))
|
|
continue;
|
|
|
|
// All uses of the shuffle should be sunk to avoid duplicating it across gpr
|
|
// and vector registers
|
|
for (Use &U : Op->uses()) {
|
|
Instruction *Insn = cast<Instruction>(U.getUser());
|
|
if (!canSplatOperand(Insn, U.getOperandNo()))
|
|
return false;
|
|
}
|
|
|
|
Use *InsertEltUse = &Op->getOperandUse(0);
|
|
// Sink any fpexts since they might be used in a widening fp pattern.
|
|
auto *InsertElt = cast<InsertElementInst>(InsertEltUse);
|
|
if (isa<FPExtInst>(InsertElt->getOperand(1)))
|
|
Ops.push_back(&InsertElt->getOperandUse(1));
|
|
Ops.push_back(InsertEltUse);
|
|
Ops.push_back(&OpIdx.value());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
RISCVTTIImpl::TTI::MemCmpExpansionOptions
|
|
RISCVTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
|
|
TTI::MemCmpExpansionOptions Options;
|
|
// TODO: Enable expansion when unaligned access is not supported after we fix
|
|
// issues in ExpandMemcmp.
|
|
if (!ST->enableUnalignedScalarMem())
|
|
return Options;
|
|
|
|
if (!ST->hasStdExtZbb() && !ST->hasStdExtZbkb() && !IsZeroCmp)
|
|
return Options;
|
|
|
|
Options.AllowOverlappingLoads = true;
|
|
Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
|
|
Options.NumLoadsPerBlock = Options.MaxNumLoads;
|
|
if (ST->is64Bit()) {
|
|
Options.LoadSizes = {8, 4, 2, 1};
|
|
Options.AllowedTailExpansions = {3, 5, 6};
|
|
} else {
|
|
Options.LoadSizes = {4, 2, 1};
|
|
Options.AllowedTailExpansions = {3};
|
|
}
|
|
return Options;
|
|
}
|