
This is a basic implementation of P2719: "Type-aware allocation and deallocation functions" described at http://wg21.link/P2719 The proposal includes some more details but the basic change in functionality is the addition of support for an additional implicit parameter in operators `new` and `delete` to act as a type tag. Tag is of type `std::type_identity<T>` where T is the concrete type being allocated. So for example, a custom type specific allocator for `int` say can be provided by the declaration of void *operator new(std::type_identity<int>, size_t, std::align_val_t); void operator delete(std::type_identity<int>, void*, size_t, std::align_val_t); However this becomes more powerful by specifying templated declarations, for example template <typename T> void *operator new(std::type_identity<T>, size_t, std::align_val_t); template <typename T> void operator delete(std::type_identity<T>, void*, size_t, std::align_val_t);); Where the operators being resolved will be the concrete type being operated over (NB. A completely unconstrained global definition as above is not recommended as it triggers many problems similar to a general override of the global operators). These type aware operators can be declared as either free functions or in class, and can be specified with or without the other implicit parameters, with overload resolution performed according to the existing standard parameter prioritisation, only with type parameterised operators having higher precedence than non-type aware operators. The only exception is destroying_delete which for reasons discussed in the paper we do not support type-aware variants by default.
The LLVM Compiler Infrastructure
Welcome to the LLVM project!
This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Getting the Source Code and Building LLVM
Consult the Getting Started with LLVM page for information on building and running LLVM.
For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Getting in touch
Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.