0
0
mirror of https://github.com/llvm/llvm-project.git synced 2025-04-27 09:16:06 +00:00
Fraser Cormack 82912fd620
[libclc] Update license headers ()
This commit bulk-updates the libclc license headers to the current
Apache-2.0 WITH LLVM-exception license in situations where they were
previously attributed to AMD - and occasionally under an additional
single individual contributor - under an MIT license.

AMD signed the LLVM relicensing agreement and so agreed for their past
contributions under the new LLVM license.

The LLVM project also has had a long-standing, unwritten, policy of not
adding copyright notices to source code. This policy was recently
written up [1]. This commit therefore also removes these copyright
notices at the same time.

Note that there are outstanding copyright notices attributed to others -
and many files missing copyright headers - which will be dealt with in
future work.

[1]
https://llvm.org/docs/DeveloperPolicy.html#embedded-copyright-or-contributed-by-statements
2025-03-20 11:40:09 +00:00

120 lines
4.5 KiB
C

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
_CLC_INLINE double2
__libclc__sincos_piby4(double x, double xx)
{
// Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
// = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
// = x * f(w)
// where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
// We use a minimax approximation of (f(w) - 1) / w
// because this produces an expansion in even powers of x.
// If xx (the tail of x) is non-zero, we add a correction
// term g(x,xx) = (1-x*x/2)*xx to the result, where g(x,xx)
// is an approximation to cos(x)*sin(xx) valid because
// xx is tiny relative to x.
// Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
// = f(w)
// where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
// We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
// because this produces an expansion in even powers of x.
// If xx (the tail of x) is non-zero, we subtract a correction
// term g(x,xx) = x*xx to the result, where g(x,xx)
// is an approximation to sin(x)*sin(xx) valid because
// xx is tiny relative to x.
const double sc1 = -0.166666666666666646259241729;
const double sc2 = 0.833333333333095043065222816e-2;
const double sc3 = -0.19841269836761125688538679e-3;
const double sc4 = 0.275573161037288022676895908448e-5;
const double sc5 = -0.25051132068021699772257377197e-7;
const double sc6 = 0.159181443044859136852668200e-9;
const double cc1 = 0.41666666666666665390037e-1;
const double cc2 = -0.13888888888887398280412e-2;
const double cc3 = 0.248015872987670414957399e-4;
const double cc4 = -0.275573172723441909470836e-6;
const double cc5 = 0.208761463822329611076335e-8;
const double cc6 = -0.113826398067944859590880e-10;
double x2 = x * x;
double x3 = x2 * x;
double r = 0.5 * x2;
double t = 1.0 - r;
double sp = fma(fma(fma(fma(sc6, x2, sc5), x2, sc4), x2, sc3), x2, sc2);
double cp = t + fma(fma(fma(fma(fma(fma(cc6, x2, cc5), x2, cc4), x2, cc3), x2, cc2), x2, cc1),
x2*x2, fma(x, xx, (1.0 - t) - r));
double2 ret;
ret.lo = x - fma(-x3, sc1, fma(fma(-x3, sp, 0.5*xx), x2, -xx));
ret.hi = cp;
return ret;
}
_CLC_INLINE double2
__clc_tan_piby4(double x, double xx)
{
const double piby4_lead = 7.85398163397448278999e-01; // 0x3fe921fb54442d18
const double piby4_tail = 3.06161699786838240164e-17; // 0x3c81a62633145c06
// In order to maintain relative precision transform using the identity:
// tan(pi/4-x) = (1-tan(x))/(1+tan(x)) for arguments close to pi/4.
// Similarly use tan(x-pi/4) = (tan(x)-1)/(tan(x)+1) close to -pi/4.
int ca = x > 0.68;
int cb = x < -0.68;
double transform = ca ? 1.0 : 0.0;
transform = cb ? -1.0 : transform;
double tx = fma(-transform, x, piby4_lead) + fma(-transform, xx, piby4_tail);
int c = ca | cb;
x = c ? tx : x;
xx = c ? 0.0 : xx;
// Core Remez [2,3] approximation to tan(x+xx) on the interval [0,0.68].
double t1 = x;
double r = fma(2.0, x*xx, x*x);
double a = fma(r,
fma(r, 0.224044448537022097264602535574e-3, -0.229345080057565662883358588111e-1),
0.372379159759792203640806338901e0);
double b = fma(r,
fma(r,
fma(r, -0.232371494088563558304549252913e-3, 0.260656620398645407524064091208e-1),
-0.515658515729031149329237816945e0),
0.111713747927937668539901657944e1);
double t2 = fma(MATH_DIVIDE(a, b), x*r, xx);
double tp = t1 + t2;
// Compute -1.0/(t1 + t2) accurately
double z1 = as_double(as_long(tp) & 0xffffffff00000000L);
double z2 = t2 - (z1 - t1);
double trec = -MATH_RECIP(tp);
double trec_top = as_double(as_long(trec) & 0xffffffff00000000L);
double tpr = fma(fma(trec_top, z2, fma(trec_top, z1, 1.0)), trec, trec_top);
double tpt = transform * (1.0 - MATH_DIVIDE(2.0*tp, 1.0 + tp));
double tptr = transform * (MATH_DIVIDE(2.0*tp, tp - 1.0) - 1.0);
double2 ret;
ret.lo = c ? tpt : tp;
ret.hi = c ? tptr : tpr;
return ret;
}