mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-30 08:06:06 +00:00

Salvage debug info of instruction that is about to be deleted as dead in Combiner pass. Currently supported instructions are COPY and G_TRUNC. It allows to salvage debug info of some dead arguments of functions, by putting DWARF expression corresponding to the instruction being deleted into related DBG_VALUE instruction. Here is an example of missing variables location https://godbolt.org/z/K48osb9dK. We see that arguments x, y of function foo are not available in debugger, and corresponding DBG_VALUE instructions have undefined register operand instead of variables locaton after Aarch64PreLegalizerCombiner pass. The reason is that registers where variables are located are removed as dead (with instruction G_TRUNC). We can use salvageDebugInfo analogue for gMIR to preserve debug locations of dead variables. Statistics of llvm object files built with vs without this commit on -O2 optimization level (CMAKE_BUILD_TYPE=RelWithDebInfo, -fglobal-isel) on Aarch64 (macOS): Number of variables with 100% of parent scope covered by DW_AT_location has been increased by 7,9%. Number of variables with 0% coverage of parent scope has been decreased by 1,2%. Number of variables processed by location statistics has been increased by 2,9%. Average PC ranges coverage has been increased by 1,8 percentage points. Coverage can be improved by supporting more instructions, or by calling salvageDebugInfo for instructions that are deleted during Combiner rules exection. Reviewed By: aprantl Differential Revision: https://reviews.llvm.org/D129909
288 lines
9.9 KiB
C++
288 lines
9.9 KiB
C++
//===-- CodeGenCommonISel.cpp ---------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines common utilies that are shared between SelectionDAG and
|
|
// GlobalISel frameworks.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/CodeGenCommonISel.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
|
|
#define DEBUG_TYPE "codegen-common"
|
|
|
|
using namespace llvm;
|
|
|
|
/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
|
|
/// is 0.
|
|
MachineBasicBlock *
|
|
StackProtectorDescriptor::addSuccessorMBB(
|
|
const BasicBlock *BB, MachineBasicBlock *ParentMBB, bool IsLikely,
|
|
MachineBasicBlock *SuccMBB) {
|
|
// If SuccBB has not been created yet, create it.
|
|
if (!SuccMBB) {
|
|
MachineFunction *MF = ParentMBB->getParent();
|
|
MachineFunction::iterator BBI(ParentMBB);
|
|
SuccMBB = MF->CreateMachineBasicBlock(BB);
|
|
MF->insert(++BBI, SuccMBB);
|
|
}
|
|
// Add it as a successor of ParentMBB.
|
|
ParentMBB->addSuccessor(
|
|
SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
|
|
return SuccMBB;
|
|
}
|
|
|
|
/// Given that the input MI is before a partial terminator sequence TSeq, return
|
|
/// true if M + TSeq also a partial terminator sequence.
|
|
///
|
|
/// A Terminator sequence is a sequence of MachineInstrs which at this point in
|
|
/// lowering copy vregs into physical registers, which are then passed into
|
|
/// terminator instructors so we can satisfy ABI constraints. A partial
|
|
/// terminator sequence is an improper subset of a terminator sequence (i.e. it
|
|
/// may be the whole terminator sequence).
|
|
static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
|
|
// If we do not have a copy or an implicit def, we return true if and only if
|
|
// MI is a debug value.
|
|
if (!MI.isCopy() && !MI.isImplicitDef()) {
|
|
// Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
|
|
// physical registers if there is debug info associated with the terminator
|
|
// of our mbb. We want to include said debug info in our terminator
|
|
// sequence, so we return true in that case.
|
|
if (MI.isDebugInstr())
|
|
return true;
|
|
|
|
// For GlobalISel, we may have extension instructions for arguments within
|
|
// copy sequences. Allow these.
|
|
switch (MI.getOpcode()) {
|
|
case TargetOpcode::G_TRUNC:
|
|
case TargetOpcode::G_ZEXT:
|
|
case TargetOpcode::G_ANYEXT:
|
|
case TargetOpcode::G_SEXT:
|
|
case TargetOpcode::G_MERGE_VALUES:
|
|
case TargetOpcode::G_UNMERGE_VALUES:
|
|
case TargetOpcode::G_CONCAT_VECTORS:
|
|
case TargetOpcode::G_BUILD_VECTOR:
|
|
case TargetOpcode::G_EXTRACT:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We have left the terminator sequence if we are not doing one of the
|
|
// following:
|
|
//
|
|
// 1. Copying a vreg into a physical register.
|
|
// 2. Copying a vreg into a vreg.
|
|
// 3. Defining a register via an implicit def.
|
|
|
|
// OPI should always be a register definition...
|
|
MachineInstr::const_mop_iterator OPI = MI.operands_begin();
|
|
if (!OPI->isReg() || !OPI->isDef())
|
|
return false;
|
|
|
|
// Defining any register via an implicit def is always ok.
|
|
if (MI.isImplicitDef())
|
|
return true;
|
|
|
|
// Grab the copy source...
|
|
MachineInstr::const_mop_iterator OPI2 = OPI;
|
|
++OPI2;
|
|
assert(OPI2 != MI.operands_end()
|
|
&& "Should have a copy implying we should have 2 arguments.");
|
|
|
|
// Make sure that the copy dest is not a vreg when the copy source is a
|
|
// physical register.
|
|
if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) &&
|
|
Register::isPhysicalRegister(OPI2->getReg())))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Find the split point at which to splice the end of BB into its success stack
|
|
/// protector check machine basic block.
|
|
///
|
|
/// On many platforms, due to ABI constraints, terminators, even before register
|
|
/// allocation, use physical registers. This creates an issue for us since
|
|
/// physical registers at this point can not travel across basic
|
|
/// blocks. Luckily, selectiondag always moves physical registers into vregs
|
|
/// when they enter functions and moves them through a sequence of copies back
|
|
/// into the physical registers right before the terminator creating a
|
|
/// ``Terminator Sequence''. This function is searching for the beginning of the
|
|
/// terminator sequence so that we can ensure that we splice off not just the
|
|
/// terminator, but additionally the copies that move the vregs into the
|
|
/// physical registers.
|
|
MachineBasicBlock::iterator
|
|
llvm::findSplitPointForStackProtector(MachineBasicBlock *BB,
|
|
const TargetInstrInfo &TII) {
|
|
MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
|
|
if (SplitPoint == BB->begin())
|
|
return SplitPoint;
|
|
|
|
MachineBasicBlock::iterator Start = BB->begin();
|
|
MachineBasicBlock::iterator Previous = SplitPoint;
|
|
do {
|
|
--Previous;
|
|
} while (Previous != Start && Previous->isDebugInstr());
|
|
|
|
if (TII.isTailCall(*SplitPoint) &&
|
|
Previous->getOpcode() == TII.getCallFrameDestroyOpcode()) {
|
|
// Call frames cannot be nested, so if this frame is describing the tail
|
|
// call itself, then we must insert before the sequence even starts. For
|
|
// example:
|
|
// <split point>
|
|
// ADJCALLSTACKDOWN ...
|
|
// <Moves>
|
|
// ADJCALLSTACKUP ...
|
|
// TAILJMP somewhere
|
|
// On the other hand, it could be an unrelated call in which case this tail
|
|
// call has no register moves of its own and should be the split point. For
|
|
// example:
|
|
// ADJCALLSTACKDOWN
|
|
// CALL something_else
|
|
// ADJCALLSTACKUP
|
|
// <split point>
|
|
// TAILJMP somewhere
|
|
do {
|
|
--Previous;
|
|
if (Previous->isCall())
|
|
return SplitPoint;
|
|
} while(Previous->getOpcode() != TII.getCallFrameSetupOpcode());
|
|
|
|
return Previous;
|
|
}
|
|
|
|
while (MIIsInTerminatorSequence(*Previous)) {
|
|
SplitPoint = Previous;
|
|
if (Previous == Start)
|
|
break;
|
|
--Previous;
|
|
}
|
|
|
|
return SplitPoint;
|
|
}
|
|
|
|
unsigned llvm::getInvertedFPClassTest(unsigned Test) {
|
|
unsigned InvertedTest = ~Test & fcAllFlags;
|
|
switch (InvertedTest) {
|
|
default:
|
|
break;
|
|
case fcNan:
|
|
case fcSNan:
|
|
case fcQNan:
|
|
case fcInf:
|
|
case fcPosInf:
|
|
case fcNegInf:
|
|
case fcNormal:
|
|
case fcPosNormal:
|
|
case fcNegNormal:
|
|
case fcSubnormal:
|
|
case fcPosSubnormal:
|
|
case fcNegSubnormal:
|
|
case fcZero:
|
|
case fcPosZero:
|
|
case fcNegZero:
|
|
case fcFinite:
|
|
case fcPosFinite:
|
|
case fcNegFinite:
|
|
return InvertedTest;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static MachineOperand *getSalvageOpsForCopy(const MachineRegisterInfo &MRI,
|
|
MachineInstr &Copy) {
|
|
assert(Copy.getOpcode() == TargetOpcode::COPY && "Must be a COPY");
|
|
|
|
return &Copy.getOperand(1);
|
|
}
|
|
|
|
static MachineOperand *getSalvageOpsForTrunc(const MachineRegisterInfo &MRI,
|
|
MachineInstr &Trunc,
|
|
SmallVectorImpl<uint64_t> &Ops) {
|
|
assert(Trunc.getOpcode() == TargetOpcode::G_TRUNC && "Must be a G_TRUNC");
|
|
|
|
const auto FromLLT = MRI.getType(Trunc.getOperand(1).getReg());
|
|
const auto ToLLT = MRI.getType(Trunc.defs().begin()->getReg());
|
|
|
|
// TODO: Support non-scalar types.
|
|
if (!FromLLT.isScalar()) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto ExtOps = DIExpression::getExtOps(FromLLT.getSizeInBits(),
|
|
ToLLT.getSizeInBits(), false);
|
|
Ops.append(ExtOps.begin(), ExtOps.end());
|
|
return &Trunc.getOperand(1);
|
|
}
|
|
|
|
static MachineOperand *salvageDebugInfoImpl(const MachineRegisterInfo &MRI,
|
|
MachineInstr &MI,
|
|
SmallVectorImpl<uint64_t> &Ops) {
|
|
switch (MI.getOpcode()) {
|
|
case TargetOpcode::G_TRUNC:
|
|
return getSalvageOpsForTrunc(MRI, MI, Ops);
|
|
case TargetOpcode::COPY:
|
|
return getSalvageOpsForCopy(MRI, MI);
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
void llvm::salvageDebugInfoForDbgValue(const MachineRegisterInfo &MRI,
|
|
MachineInstr &MI,
|
|
ArrayRef<MachineOperand *> DbgUsers) {
|
|
// These are arbitrary chosen limits on the maximum number of values and the
|
|
// maximum size of a debug expression we can salvage up to, used for
|
|
// performance reasons.
|
|
const unsigned MaxExpressionSize = 128;
|
|
|
|
for (auto *DefMO : DbgUsers) {
|
|
MachineInstr *DbgMI = DefMO->getParent();
|
|
if (DbgMI->isIndirectDebugValue()) {
|
|
continue;
|
|
}
|
|
|
|
int UseMOIdx = DbgMI->findRegisterUseOperandIdx(DefMO->getReg());
|
|
assert(UseMOIdx != -1 && DbgMI->hasDebugOperandForReg(DefMO->getReg()) &&
|
|
"Must use salvaged instruction as its location");
|
|
|
|
// TODO: Support DBG_VALUE_LIST.
|
|
if (DbgMI->getOpcode() != TargetOpcode::DBG_VALUE) {
|
|
assert(DbgMI->getOpcode() == TargetOpcode::DBG_VALUE_LIST &&
|
|
"Must be either DBG_VALUE or DBG_VALUE_LIST");
|
|
continue;
|
|
}
|
|
|
|
const DIExpression *SalvagedExpr = DbgMI->getDebugExpression();
|
|
|
|
SmallVector<uint64_t, 16> Ops;
|
|
auto Op0 = salvageDebugInfoImpl(MRI, MI, Ops);
|
|
if (!Op0)
|
|
continue;
|
|
SalvagedExpr = DIExpression::appendOpsToArg(SalvagedExpr, Ops, 0, true);
|
|
|
|
bool IsValidSalvageExpr =
|
|
SalvagedExpr->getNumElements() <= MaxExpressionSize;
|
|
if (IsValidSalvageExpr) {
|
|
auto &UseMO = DbgMI->getOperand(UseMOIdx);
|
|
UseMO.setReg(Op0->getReg());
|
|
UseMO.setSubReg(Op0->getSubReg());
|
|
DbgMI->getDebugExpressionOp().setMetadata(SalvagedExpr);
|
|
|
|
LLVM_DEBUG(dbgs() << "SALVAGE: " << *DbgMI << '\n');
|
|
}
|
|
}
|
|
}
|