mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-16 11:16:31 +00:00
1549 lines
61 KiB
C++
1549 lines
61 KiB
C++
//===- InputSection.cpp ---------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputSection.h"
|
|
#include "Config.h"
|
|
#include "InputFiles.h"
|
|
#include "OutputSections.h"
|
|
#include "Relocations.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/CommonLinkerContext.h"
|
|
#include "lld/Common/DWARF.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Compression.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/xxhash.h"
|
|
#include <algorithm>
|
|
#include <mutex>
|
|
#include <optional>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::ELF;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::sys;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
// Returns a string to construct an error message.
|
|
std::string elf::toStr(Ctx &ctx, const InputSectionBase *sec) {
|
|
return (toStr(ctx, sec->file) + ":(" + sec->name + ")").str();
|
|
}
|
|
|
|
const ELFSyncStream &elf::operator<<(const ELFSyncStream &s,
|
|
const InputSectionBase *sec) {
|
|
return s << toStr(s.ctx, sec);
|
|
}
|
|
|
|
template <class ELFT>
|
|
static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
|
|
const typename ELFT::Shdr &hdr) {
|
|
if (hdr.sh_type == SHT_NOBITS)
|
|
return ArrayRef<uint8_t>(nullptr, hdr.sh_size);
|
|
return check(file.getObj().getSectionContents(hdr));
|
|
}
|
|
|
|
InputSectionBase::InputSectionBase(InputFile *file, StringRef name,
|
|
uint32_t type, uint64_t flags, uint32_t link,
|
|
uint32_t info, uint32_t addralign,
|
|
uint32_t entsize, ArrayRef<uint8_t> data,
|
|
Kind sectionKind)
|
|
: SectionBase(sectionKind, file, name, type, flags, link, info, addralign,
|
|
entsize),
|
|
bss(0), decodedCrel(0), keepUnique(0), nopFiller(0),
|
|
content_(data.data()), size(data.size()) {
|
|
// In order to reduce memory allocation, we assume that mergeable
|
|
// sections are smaller than 4 GiB, which is not an unreasonable
|
|
// assumption as of 2017.
|
|
if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX)
|
|
ErrAlways(getCtx()) << this << ": section too large";
|
|
|
|
// The ELF spec states that a value of 0 means the section has
|
|
// no alignment constraints.
|
|
uint32_t v = std::max<uint32_t>(addralign, 1);
|
|
if (!isPowerOf2_64(v))
|
|
Fatal(getCtx()) << this << ": sh_addralign is not a power of 2";
|
|
this->addralign = v;
|
|
|
|
// If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no
|
|
// longer supported.
|
|
if (flags & SHF_COMPRESSED) {
|
|
Ctx &ctx = file->ctx;
|
|
invokeELFT(parseCompressedHeader, ctx);
|
|
}
|
|
}
|
|
|
|
// SHF_INFO_LINK and SHF_GROUP are normally resolved and not copied to the
|
|
// output section. However, for relocatable linking without
|
|
// --force-group-allocation, the SHF_GROUP flag and section groups are retained.
|
|
static uint64_t getFlags(Ctx &ctx, uint64_t flags) {
|
|
flags &= ~(uint64_t)SHF_INFO_LINK;
|
|
if (ctx.arg.resolveGroups)
|
|
flags &= ~(uint64_t)SHF_GROUP;
|
|
return flags;
|
|
}
|
|
|
|
template <class ELFT>
|
|
InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
|
|
const typename ELFT::Shdr &hdr,
|
|
StringRef name, Kind sectionKind)
|
|
: InputSectionBase(&file, name, hdr.sh_type,
|
|
getFlags(file.ctx, hdr.sh_flags), hdr.sh_link,
|
|
hdr.sh_info, hdr.sh_addralign, hdr.sh_entsize,
|
|
getSectionContents(file, hdr), sectionKind) {
|
|
// We reject object files having insanely large alignments even though
|
|
// they are allowed by the spec. I think 4GB is a reasonable limitation.
|
|
// We might want to relax this in the future.
|
|
if (hdr.sh_addralign > UINT32_MAX)
|
|
Fatal(getCtx()) << &file << ": section sh_addralign is too large";
|
|
}
|
|
|
|
size_t InputSectionBase::getSize() const {
|
|
if (auto *s = dyn_cast<SyntheticSection>(this))
|
|
return s->getSize();
|
|
return size - bytesDropped;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void decompressAux(Ctx &ctx, const InputSectionBase &sec, uint8_t *out,
|
|
size_t size) {
|
|
auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_);
|
|
auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize)
|
|
.slice(sizeof(typename ELFT::Chdr));
|
|
if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
|
|
? compression::zlib::decompress(compressed, out, size)
|
|
: compression::zstd::decompress(compressed, out, size))
|
|
Fatal(ctx) << &sec << ": decompress failed: " << std::move(e);
|
|
}
|
|
|
|
void InputSectionBase::decompress() const {
|
|
Ctx &ctx = getCtx();
|
|
uint8_t *uncompressedBuf;
|
|
{
|
|
static std::mutex mu;
|
|
std::lock_guard<std::mutex> lock(mu);
|
|
uncompressedBuf = ctx.bAlloc.Allocate<uint8_t>(size);
|
|
}
|
|
|
|
invokeELFT(decompressAux, ctx, *this, uncompressedBuf, size);
|
|
content_ = uncompressedBuf;
|
|
compressed = false;
|
|
}
|
|
|
|
template <class ELFT>
|
|
RelsOrRelas<ELFT> InputSectionBase::relsOrRelas(bool supportsCrel) const {
|
|
if (relSecIdx == 0)
|
|
return {};
|
|
RelsOrRelas<ELFT> ret;
|
|
auto *f = cast<ObjFile<ELFT>>(file);
|
|
typename ELFT::Shdr shdr = f->template getELFShdrs<ELFT>()[relSecIdx];
|
|
if (shdr.sh_type == SHT_CREL) {
|
|
// Return an iterator if supported by caller.
|
|
if (supportsCrel) {
|
|
ret.crels = Relocs<typename ELFT::Crel>(
|
|
(const uint8_t *)f->mb.getBufferStart() + shdr.sh_offset);
|
|
return ret;
|
|
}
|
|
InputSectionBase *const &relSec = f->getSections()[relSecIdx];
|
|
// Otherwise, allocate a buffer to hold the decoded RELA relocations. When
|
|
// called for the first time, relSec is null (without --emit-relocs) or an
|
|
// InputSection with false decodedCrel.
|
|
if (!relSec || !cast<InputSection>(relSec)->decodedCrel) {
|
|
auto *sec = makeThreadLocal<InputSection>(*f, shdr, name);
|
|
f->cacheDecodedCrel(relSecIdx, sec);
|
|
sec->type = SHT_RELA;
|
|
sec->decodedCrel = true;
|
|
|
|
RelocsCrel<ELFT::Is64Bits> entries(sec->content_);
|
|
sec->size = entries.size() * sizeof(typename ELFT::Rela);
|
|
auto *relas = makeThreadLocalN<typename ELFT::Rela>(entries.size());
|
|
sec->content_ = reinterpret_cast<uint8_t *>(relas);
|
|
for (auto [i, r] : llvm::enumerate(entries)) {
|
|
relas[i].r_offset = r.r_offset;
|
|
relas[i].setSymbolAndType(r.r_symidx, r.r_type, false);
|
|
relas[i].r_addend = r.r_addend;
|
|
}
|
|
}
|
|
ret.relas = {ArrayRef(
|
|
reinterpret_cast<const typename ELFT::Rela *>(relSec->content_),
|
|
relSec->size / sizeof(typename ELFT::Rela))};
|
|
return ret;
|
|
}
|
|
|
|
const void *content = f->mb.getBufferStart() + shdr.sh_offset;
|
|
size_t size = shdr.sh_size;
|
|
if (shdr.sh_type == SHT_REL) {
|
|
ret.rels = {ArrayRef(reinterpret_cast<const typename ELFT::Rel *>(content),
|
|
size / sizeof(typename ELFT::Rel))};
|
|
} else {
|
|
assert(shdr.sh_type == SHT_RELA);
|
|
ret.relas = {
|
|
ArrayRef(reinterpret_cast<const typename ELFT::Rela *>(content),
|
|
size / sizeof(typename ELFT::Rela))};
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
Ctx &SectionBase::getCtx() const { return file->ctx; }
|
|
|
|
uint64_t SectionBase::getOffset(uint64_t offset) const {
|
|
switch (kind()) {
|
|
case Output: {
|
|
auto *os = cast<OutputSection>(this);
|
|
// For output sections we treat offset -1 as the end of the section.
|
|
return offset == uint64_t(-1) ? os->size : offset;
|
|
}
|
|
case Class:
|
|
llvm_unreachable("section classes do not have offsets");
|
|
case Regular:
|
|
case Synthetic:
|
|
case Spill:
|
|
return cast<InputSection>(this)->outSecOff + offset;
|
|
case EHFrame: {
|
|
// Two code paths may reach here. First, clang_rt.crtbegin.o and GCC
|
|
// crtbeginT.o may reference the start of an empty .eh_frame to identify the
|
|
// start of the output .eh_frame. Just return offset.
|
|
//
|
|
// Second, InputSection::copyRelocations on .eh_frame. Some pieces may be
|
|
// discarded due to GC/ICF. We should compute the output section offset.
|
|
const EhInputSection *es = cast<EhInputSection>(this);
|
|
if (!es->content().empty())
|
|
if (InputSection *isec = es->getParent())
|
|
return isec->outSecOff + es->getParentOffset(offset);
|
|
return offset;
|
|
}
|
|
case Merge:
|
|
const MergeInputSection *ms = cast<MergeInputSection>(this);
|
|
if (InputSection *isec = ms->getParent())
|
|
return isec->outSecOff + ms->getParentOffset(offset);
|
|
return ms->getParentOffset(offset);
|
|
}
|
|
llvm_unreachable("invalid section kind");
|
|
}
|
|
|
|
uint64_t SectionBase::getVA(uint64_t offset) const {
|
|
const OutputSection *out = getOutputSection();
|
|
return (out ? out->addr : 0) + getOffset(offset);
|
|
}
|
|
|
|
OutputSection *SectionBase::getOutputSection() {
|
|
InputSection *sec;
|
|
if (auto *isec = dyn_cast<InputSection>(this))
|
|
sec = isec;
|
|
else if (auto *ms = dyn_cast<MergeInputSection>(this))
|
|
sec = ms->getParent();
|
|
else if (auto *eh = dyn_cast<EhInputSection>(this))
|
|
sec = eh->getParent();
|
|
else
|
|
return cast<OutputSection>(this);
|
|
return sec ? sec->getParent() : nullptr;
|
|
}
|
|
|
|
// When a section is compressed, `rawData` consists with a header followed
|
|
// by zlib-compressed data. This function parses a header to initialize
|
|
// `uncompressedSize` member and remove the header from `rawData`.
|
|
template <typename ELFT>
|
|
void InputSectionBase::parseCompressedHeader(Ctx &ctx) {
|
|
flags &= ~(uint64_t)SHF_COMPRESSED;
|
|
|
|
// New-style header
|
|
if (content().size() < sizeof(typename ELFT::Chdr)) {
|
|
ErrAlways(ctx) << this << ": corrupted compressed section";
|
|
return;
|
|
}
|
|
|
|
auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data());
|
|
if (hdr->ch_type == ELFCOMPRESS_ZLIB) {
|
|
if (!compression::zlib::isAvailable())
|
|
ErrAlways(ctx) << this
|
|
<< " is compressed with ELFCOMPRESS_ZLIB, but lld is "
|
|
"not built with zlib support";
|
|
} else if (hdr->ch_type == ELFCOMPRESS_ZSTD) {
|
|
if (!compression::zstd::isAvailable())
|
|
ErrAlways(ctx) << this
|
|
<< " is compressed with ELFCOMPRESS_ZSTD, but lld is "
|
|
"not built with zstd support";
|
|
} else {
|
|
ErrAlways(ctx) << this << ": unsupported compression type ("
|
|
<< uint32_t(hdr->ch_type) << ")";
|
|
return;
|
|
}
|
|
|
|
compressed = true;
|
|
compressedSize = size;
|
|
size = hdr->ch_size;
|
|
addralign = std::max<uint32_t>(hdr->ch_addralign, 1);
|
|
}
|
|
|
|
InputSection *InputSectionBase::getLinkOrderDep() const {
|
|
assert(flags & SHF_LINK_ORDER);
|
|
if (!link)
|
|
return nullptr;
|
|
return cast<InputSection>(file->getSections()[link]);
|
|
}
|
|
|
|
// Find a symbol that encloses a given location.
|
|
Defined *InputSectionBase::getEnclosingSymbol(uint64_t offset,
|
|
uint8_t type) const {
|
|
if (file->isInternal())
|
|
return nullptr;
|
|
for (Symbol *b : file->getSymbols())
|
|
if (Defined *d = dyn_cast<Defined>(b))
|
|
if (d->section == this && d->value <= offset &&
|
|
offset < d->value + d->size && (type == 0 || type == d->type))
|
|
return d;
|
|
return nullptr;
|
|
}
|
|
|
|
// Returns an object file location string. Used to construct an error message.
|
|
std::string InputSectionBase::getLocation(uint64_t offset) const {
|
|
std::string secAndOffset =
|
|
(name + "+0x" + Twine::utohexstr(offset) + ")").str();
|
|
|
|
std::string filename = toStr(getCtx(), file);
|
|
if (Defined *d = getEnclosingFunction(offset))
|
|
return filename + ":(function " + toStr(getCtx(), *d) + ": " + secAndOffset;
|
|
|
|
return filename + ":(" + secAndOffset;
|
|
}
|
|
|
|
static void printFileLine(const ELFSyncStream &s, StringRef path,
|
|
unsigned line) {
|
|
StringRef filename = path::filename(path);
|
|
s << filename << ':' << line;
|
|
if (filename != path)
|
|
s << " (" << path << ':' << line << ')';
|
|
}
|
|
|
|
// Print an error message that looks like this:
|
|
//
|
|
// foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
|
|
const ELFSyncStream &elf::operator<<(const ELFSyncStream &s,
|
|
InputSectionBase::SrcMsg &&msg) {
|
|
auto &sec = msg.sec;
|
|
if (sec.file->kind() != InputFile::ObjKind)
|
|
return s;
|
|
auto &file = cast<ELFFileBase>(*sec.file);
|
|
|
|
// First, look up the DWARF line table.
|
|
ArrayRef<InputSectionBase *> sections = file.getSections();
|
|
auto it = llvm::find(sections, &sec);
|
|
uint64_t sectionIndex = it != sections.end()
|
|
? it - sections.begin()
|
|
: object::SectionedAddress::UndefSection;
|
|
DWARFCache *dwarf = file.getDwarf();
|
|
if (auto info = dwarf->getDILineInfo(msg.offset, sectionIndex))
|
|
printFileLine(s, info->FileName, info->Line);
|
|
else if (auto fileLine = dwarf->getVariableLoc(msg.sym.getName()))
|
|
// If it failed, look up again as a variable.
|
|
printFileLine(s, fileLine->first, fileLine->second);
|
|
else
|
|
// File.sourceFile contains STT_FILE symbol, and that is a last resort.
|
|
s << file.sourceFile;
|
|
return s;
|
|
}
|
|
|
|
// Returns a filename string along with an optional section name. This
|
|
// function is intended to be used for constructing an error
|
|
// message. The returned message looks like this:
|
|
//
|
|
// path/to/foo.o:(function bar)
|
|
//
|
|
// or
|
|
//
|
|
// path/to/foo.o:(function bar) in archive path/to/bar.a
|
|
const ELFSyncStream &elf::operator<<(const ELFSyncStream &s,
|
|
InputSectionBase::ObjMsg &&msg) {
|
|
auto *sec = msg.sec;
|
|
s << sec->file->getName() << ":(";
|
|
|
|
// Find a symbol that encloses a given location. getObjMsg may be called
|
|
// before ObjFile::initSectionsAndLocalSyms where local symbols are
|
|
// initialized.
|
|
if (Defined *d = sec->getEnclosingSymbol(msg.offset))
|
|
s << d;
|
|
else
|
|
s << sec->name << "+0x" << Twine::utohexstr(msg.offset);
|
|
s << ')';
|
|
if (!sec->file->archiveName.empty())
|
|
s << (" in archive " + sec->file->archiveName).str();
|
|
return s;
|
|
}
|
|
|
|
PotentialSpillSection::PotentialSpillSection(const InputSectionBase &source,
|
|
InputSectionDescription &isd)
|
|
: InputSection(source.file, source.name, source.type, source.flags,
|
|
source.addralign, source.addralign, {}, SectionBase::Spill),
|
|
isd(&isd) {}
|
|
|
|
InputSection InputSection::discarded(nullptr, "", 0, 0, 0, 0,
|
|
ArrayRef<uint8_t>());
|
|
|
|
InputSection::InputSection(InputFile *f, StringRef name, uint32_t type,
|
|
uint64_t flags, uint32_t addralign, uint32_t entsize,
|
|
ArrayRef<uint8_t> data, Kind k)
|
|
: InputSectionBase(f, name, type, flags,
|
|
/*link=*/0, /*info=*/0, addralign, /*entsize=*/entsize,
|
|
data, k) {
|
|
assert(f || this == &InputSection::discarded);
|
|
}
|
|
|
|
template <class ELFT>
|
|
InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
|
|
StringRef name)
|
|
: InputSectionBase(f, header, name, InputSectionBase::Regular) {}
|
|
|
|
// Copy SHT_GROUP section contents. Used only for the -r option.
|
|
template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
|
|
// ELFT::Word is the 32-bit integral type in the target endianness.
|
|
using u32 = typename ELFT::Word;
|
|
ArrayRef<u32> from = getDataAs<u32>();
|
|
auto *to = reinterpret_cast<u32 *>(buf);
|
|
|
|
// The first entry is not a section number but a flag.
|
|
*to++ = from[0];
|
|
|
|
// Adjust section numbers because section numbers in an input object files are
|
|
// different in the output. We also need to handle combined or discarded
|
|
// members.
|
|
ArrayRef<InputSectionBase *> sections = file->getSections();
|
|
DenseSet<uint32_t> seen;
|
|
for (uint32_t idx : from.slice(1)) {
|
|
OutputSection *osec = sections[idx]->getOutputSection();
|
|
if (osec && seen.insert(osec->sectionIndex).second)
|
|
*to++ = osec->sectionIndex;
|
|
}
|
|
}
|
|
|
|
InputSectionBase *InputSection::getRelocatedSection() const {
|
|
if (file->isInternal() || !isStaticRelSecType(type))
|
|
return nullptr;
|
|
ArrayRef<InputSectionBase *> sections = file->getSections();
|
|
return sections[info];
|
|
}
|
|
|
|
template <class ELFT, class RelTy>
|
|
void InputSection::copyRelocations(Ctx &ctx, uint8_t *buf) {
|
|
if (ctx.arg.relax && !ctx.arg.relocatable &&
|
|
(ctx.arg.emachine == EM_RISCV || ctx.arg.emachine == EM_LOONGARCH)) {
|
|
// On LoongArch and RISC-V, relaxation might change relocations: copy
|
|
// from internal ones that are updated by relaxation.
|
|
InputSectionBase *sec = getRelocatedSection();
|
|
copyRelocations<ELFT, RelTy>(
|
|
ctx, buf,
|
|
llvm::make_range(sec->relocations.begin(), sec->relocations.end()));
|
|
} else {
|
|
// Convert the raw relocations in the input section into Relocation objects
|
|
// suitable to be used by copyRelocations below.
|
|
struct MapRel {
|
|
Ctx &ctx;
|
|
const ObjFile<ELFT> &file;
|
|
Relocation operator()(const RelTy &rel) const {
|
|
// RelExpr is not used so set to a dummy value.
|
|
return Relocation{R_NONE, rel.getType(ctx.arg.isMips64EL), rel.r_offset,
|
|
getAddend<ELFT>(rel), &file.getRelocTargetSym(rel)};
|
|
}
|
|
};
|
|
|
|
using RawRels = ArrayRef<RelTy>;
|
|
using MapRelIter =
|
|
llvm::mapped_iterator<typename RawRels::iterator, MapRel>;
|
|
auto mapRel = MapRel{ctx, *getFile<ELFT>()};
|
|
RawRels rawRels = getDataAs<RelTy>();
|
|
auto rels = llvm::make_range(MapRelIter(rawRels.begin(), mapRel),
|
|
MapRelIter(rawRels.end(), mapRel));
|
|
copyRelocations<ELFT, RelTy>(ctx, buf, rels);
|
|
}
|
|
}
|
|
|
|
// This is used for -r and --emit-relocs. We can't use memcpy to copy
|
|
// relocations because we need to update symbol table offset and section index
|
|
// for each relocation. So we copy relocations one by one.
|
|
template <class ELFT, class RelTy, class RelIt>
|
|
void InputSection::copyRelocations(Ctx &ctx, uint8_t *buf,
|
|
llvm::iterator_range<RelIt> rels) {
|
|
const TargetInfo &target = *ctx.target;
|
|
InputSectionBase *sec = getRelocatedSection();
|
|
(void)sec->contentMaybeDecompress(); // uncompress if needed
|
|
|
|
for (const Relocation &rel : rels) {
|
|
RelType type = rel.type;
|
|
const ObjFile<ELFT> *file = getFile<ELFT>();
|
|
Symbol &sym = *rel.sym;
|
|
|
|
auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
|
|
buf += sizeof(RelTy);
|
|
|
|
if (RelTy::HasAddend)
|
|
p->r_addend = rel.addend;
|
|
|
|
// Output section VA is zero for -r, so r_offset is an offset within the
|
|
// section, but for --emit-relocs it is a virtual address.
|
|
p->r_offset = sec->getVA(rel.offset);
|
|
p->setSymbolAndType(ctx.in.symTab->getSymbolIndex(sym), type,
|
|
ctx.arg.isMips64EL);
|
|
|
|
if (sym.type == STT_SECTION) {
|
|
// We combine multiple section symbols into only one per
|
|
// section. This means we have to update the addend. That is
|
|
// trivial for Elf_Rela, but for Elf_Rel we have to write to the
|
|
// section data. We do that by adding to the Relocation vector.
|
|
|
|
// .eh_frame is horribly special and can reference discarded sections. To
|
|
// avoid having to parse and recreate .eh_frame, we just replace any
|
|
// relocation in it pointing to discarded sections with R_*_NONE, which
|
|
// hopefully creates a frame that is ignored at runtime. Also, don't warn
|
|
// on .gcc_except_table and debug sections.
|
|
//
|
|
// See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
|
|
auto *d = dyn_cast<Defined>(&sym);
|
|
if (!d) {
|
|
if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
|
|
sec->name != ".gcc_except_table" && sec->name != ".got2" &&
|
|
sec->name != ".toc") {
|
|
uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
|
|
Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx];
|
|
Warn(ctx) << "relocation refers to a discarded section: "
|
|
<< CHECK2(file->getObj().getSectionName(sec), file)
|
|
<< "\n>>> referenced by " << getObjMsg(p->r_offset);
|
|
}
|
|
p->setSymbolAndType(0, 0, false);
|
|
continue;
|
|
}
|
|
SectionBase *section = d->section;
|
|
assert(section->isLive());
|
|
|
|
int64_t addend = rel.addend;
|
|
const uint8_t *bufLoc = sec->content().begin() + rel.offset;
|
|
if (!RelTy::HasAddend)
|
|
addend = target.getImplicitAddend(bufLoc, type);
|
|
|
|
if (ctx.arg.emachine == EM_MIPS &&
|
|
target.getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
|
|
// Some MIPS relocations depend on "gp" value. By default,
|
|
// this value has 0x7ff0 offset from a .got section. But
|
|
// relocatable files produced by a compiler or a linker
|
|
// might redefine this default value and we must use it
|
|
// for a calculation of the relocation result. When we
|
|
// generate EXE or DSO it's trivial. Generating a relocatable
|
|
// output is more difficult case because the linker does
|
|
// not calculate relocations in this mode and loses
|
|
// individual "gp" values used by each input object file.
|
|
// As a workaround we add the "gp" value to the relocation
|
|
// addend and save it back to the file.
|
|
addend += sec->getFile<ELFT>()->mipsGp0;
|
|
}
|
|
|
|
if (RelTy::HasAddend)
|
|
p->r_addend =
|
|
sym.getVA(ctx, addend) - section->getOutputSection()->addr;
|
|
// For SHF_ALLOC sections relocated by REL, append a relocation to
|
|
// sec->relocations so that relocateAlloc transitively called by
|
|
// writeSections will update the implicit addend. Non-SHF_ALLOC sections
|
|
// utilize relocateNonAlloc to process raw relocations and do not need
|
|
// this sec->relocations change.
|
|
else if (ctx.arg.relocatable && (sec->flags & SHF_ALLOC) &&
|
|
type != target.noneRel)
|
|
sec->addReloc({R_ABS, type, rel.offset, addend, &sym});
|
|
} else if (ctx.arg.emachine == EM_PPC && type == R_PPC_PLTREL24 &&
|
|
p->r_addend >= 0x8000 && sec->file->ppc32Got2) {
|
|
// Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
|
|
// indicates that r30 is relative to the input section .got2
|
|
// (r_addend>=0x8000), after linking, r30 should be relative to the output
|
|
// section .got2 . To compensate for the shift, adjust r_addend by
|
|
// ppc32Got->outSecOff.
|
|
p->r_addend += sec->file->ppc32Got2->outSecOff;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
|
|
// references specially. The general rule is that the value of the symbol in
|
|
// this context is the address of the place P. A further special case is that
|
|
// branch relocations to an undefined weak reference resolve to the next
|
|
// instruction.
|
|
static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
|
|
uint32_t p) {
|
|
switch (type) {
|
|
// Unresolved branch relocations to weak references resolve to next
|
|
// instruction, this will be either 2 or 4 bytes on from P.
|
|
case R_ARM_THM_JUMP8:
|
|
case R_ARM_THM_JUMP11:
|
|
return p + 2 + a;
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
case R_ARM_PREL31:
|
|
case R_ARM_THM_JUMP19:
|
|
case R_ARM_THM_JUMP24:
|
|
return p + 4 + a;
|
|
case R_ARM_THM_CALL:
|
|
// We don't want an interworking BLX to ARM
|
|
return p + 5 + a;
|
|
// Unresolved non branch pc-relative relocations
|
|
// R_ARM_TARGET2 which can be resolved relatively is not present as it never
|
|
// targets a weak-reference.
|
|
case R_ARM_MOVW_PREL_NC:
|
|
case R_ARM_MOVT_PREL:
|
|
case R_ARM_REL32:
|
|
case R_ARM_THM_ALU_PREL_11_0:
|
|
case R_ARM_THM_MOVW_PREL_NC:
|
|
case R_ARM_THM_MOVT_PREL:
|
|
case R_ARM_THM_PC12:
|
|
return p + a;
|
|
// p + a is unrepresentable as negative immediates can't be encoded.
|
|
case R_ARM_THM_PC8:
|
|
return p;
|
|
}
|
|
llvm_unreachable("ARM pc-relative relocation expected\n");
|
|
}
|
|
|
|
// The comment above getARMUndefinedRelativeWeakVA applies to this function.
|
|
static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
|
|
switch (type) {
|
|
// Unresolved branch relocations to weak references resolve to next
|
|
// instruction, this is 4 bytes on from P.
|
|
case R_AARCH64_CALL26:
|
|
case R_AARCH64_CONDBR19:
|
|
case R_AARCH64_JUMP26:
|
|
case R_AARCH64_TSTBR14:
|
|
return p + 4;
|
|
// Unresolved non branch pc-relative relocations
|
|
case R_AARCH64_PREL16:
|
|
case R_AARCH64_PREL32:
|
|
case R_AARCH64_PREL64:
|
|
case R_AARCH64_ADR_PREL_LO21:
|
|
case R_AARCH64_LD_PREL_LO19:
|
|
case R_AARCH64_PLT32:
|
|
return p;
|
|
}
|
|
llvm_unreachable("AArch64 pc-relative relocation expected\n");
|
|
}
|
|
|
|
static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
|
|
switch (type) {
|
|
case R_RISCV_BRANCH:
|
|
case R_RISCV_JAL:
|
|
case R_RISCV_CALL:
|
|
case R_RISCV_CALL_PLT:
|
|
case R_RISCV_RVC_BRANCH:
|
|
case R_RISCV_RVC_JUMP:
|
|
case R_RISCV_PLT32:
|
|
return p;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// ARM SBREL relocations are of the form S + A - B where B is the static base
|
|
// The ARM ABI defines base to be "addressing origin of the output segment
|
|
// defining the symbol S". We defined the "addressing origin"/static base to be
|
|
// the base of the PT_LOAD segment containing the Sym.
|
|
// The procedure call standard only defines a Read Write Position Independent
|
|
// RWPI variant so in practice we should expect the static base to be the base
|
|
// of the RW segment.
|
|
static uint64_t getARMStaticBase(const Symbol &sym) {
|
|
OutputSection *os = sym.getOutputSection();
|
|
if (!os || !os->ptLoad || !os->ptLoad->firstSec)
|
|
Fatal(os->ctx) << "SBREL relocation to " << sym.getName()
|
|
<< " without static base";
|
|
return os->ptLoad->firstSec->addr;
|
|
}
|
|
|
|
// For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
|
|
// points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
|
|
// is calculated using PCREL_HI20's symbol.
|
|
//
|
|
// This function returns the R_RISCV_PCREL_HI20 relocation from the
|
|
// R_RISCV_PCREL_LO12 relocation.
|
|
static Relocation *getRISCVPCRelHi20(Ctx &ctx, const InputSectionBase *loSec,
|
|
const Relocation &loReloc) {
|
|
uint64_t addend = loReloc.addend;
|
|
Symbol *sym = loReloc.sym;
|
|
|
|
const Defined *d = cast<Defined>(sym);
|
|
if (!d->section) {
|
|
Err(ctx) << loSec->getLocation(loReloc.offset)
|
|
<< ": R_RISCV_PCREL_LO12 relocation points to an absolute symbol: "
|
|
<< sym->getName();
|
|
return nullptr;
|
|
}
|
|
InputSection *hiSec = cast<InputSection>(d->section);
|
|
|
|
if (hiSec != loSec)
|
|
Err(ctx) << loSec->getLocation(loReloc.offset)
|
|
<< ": R_RISCV_PCREL_LO12 relocation points to a symbol '"
|
|
<< sym->getName() << "' in a different section '" << hiSec->name
|
|
<< "'";
|
|
|
|
if (addend != 0)
|
|
Warn(ctx) << loSec->getLocation(loReloc.offset)
|
|
<< ": non-zero addend in R_RISCV_PCREL_LO12 relocation to "
|
|
<< hiSec->getObjMsg(d->value) << " is ignored";
|
|
|
|
// Relocations are sorted by offset, so we can use std::equal_range to do
|
|
// binary search.
|
|
Relocation hiReloc;
|
|
hiReloc.offset = d->value;
|
|
auto range =
|
|
std::equal_range(hiSec->relocs().begin(), hiSec->relocs().end(), hiReloc,
|
|
[](const Relocation &lhs, const Relocation &rhs) {
|
|
return lhs.offset < rhs.offset;
|
|
});
|
|
|
|
for (auto it = range.first; it != range.second; ++it)
|
|
if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
|
|
it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
|
|
return &*it;
|
|
|
|
Err(ctx) << loSec->getLocation(loReloc.offset)
|
|
<< ": R_RISCV_PCREL_LO12 relocation points to "
|
|
<< hiSec->getObjMsg(d->value)
|
|
<< " without an associated R_RISCV_PCREL_HI20 relocation";
|
|
return nullptr;
|
|
}
|
|
|
|
// A TLS symbol's virtual address is relative to the TLS segment. Add a
|
|
// target-specific adjustment to produce a thread-pointer-relative offset.
|
|
static int64_t getTlsTpOffset(Ctx &ctx, const Symbol &s) {
|
|
// On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
|
|
if (&s == ctx.sym.tlsModuleBase)
|
|
return 0;
|
|
|
|
// There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
|
|
// while most others use Variant 1. At run time TP will be aligned to p_align.
|
|
|
|
// Variant 1. TP will be followed by an optional gap (which is the size of 2
|
|
// pointers on ARM/AArch64, 0 on other targets), followed by alignment
|
|
// padding, then the static TLS blocks. The alignment padding is added so that
|
|
// (TP + gap + padding) is congruent to p_vaddr modulo p_align.
|
|
//
|
|
// Variant 2. Static TLS blocks, followed by alignment padding are placed
|
|
// before TP. The alignment padding is added so that (TP - padding -
|
|
// p_memsz) is congruent to p_vaddr modulo p_align.
|
|
PhdrEntry *tls = ctx.tlsPhdr;
|
|
if (!tls) // Reported an error in getSymVA
|
|
return 0;
|
|
switch (ctx.arg.emachine) {
|
|
// Variant 1.
|
|
case EM_ARM:
|
|
case EM_AARCH64:
|
|
return s.getVA(ctx, 0) + ctx.arg.wordsize * 2 +
|
|
((tls->p_vaddr - ctx.arg.wordsize * 2) & (tls->p_align - 1));
|
|
case EM_MIPS:
|
|
case EM_PPC:
|
|
case EM_PPC64:
|
|
// Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
|
|
// to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
|
|
// data and 0xf000 of the program's TLS segment.
|
|
return s.getVA(ctx, 0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
|
|
case EM_LOONGARCH:
|
|
case EM_RISCV:
|
|
// See the comment in handleTlsRelocation. For TLSDESC=>IE,
|
|
// R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} also reach here. While
|
|
// `tls` may be null, the return value is ignored.
|
|
if (s.type != STT_TLS)
|
|
return 0;
|
|
return s.getVA(ctx, 0) + (tls->p_vaddr & (tls->p_align - 1));
|
|
|
|
// Variant 2.
|
|
case EM_HEXAGON:
|
|
case EM_S390:
|
|
case EM_SPARCV9:
|
|
case EM_386:
|
|
case EM_X86_64:
|
|
return s.getVA(ctx, 0) - tls->p_memsz -
|
|
((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
|
|
default:
|
|
llvm_unreachable("unhandled ctx.arg.emachine");
|
|
}
|
|
}
|
|
|
|
uint64_t InputSectionBase::getRelocTargetVA(Ctx &ctx, const Relocation &r,
|
|
uint64_t p) const {
|
|
int64_t a = r.addend;
|
|
switch (r.expr) {
|
|
case R_ABS:
|
|
case R_DTPREL:
|
|
case R_RELAX_TLS_LD_TO_LE_ABS:
|
|
case R_RELAX_GOT_PC_NOPIC:
|
|
case R_AARCH64_AUTH:
|
|
case R_RISCV_ADD:
|
|
case R_RISCV_LEB128:
|
|
return r.sym->getVA(ctx, a);
|
|
case R_ADDEND:
|
|
return a;
|
|
case R_RELAX_HINT:
|
|
return 0;
|
|
case R_ARM_SBREL:
|
|
return r.sym->getVA(ctx, a) - getARMStaticBase(*r.sym);
|
|
case R_GOT:
|
|
case R_RELAX_TLS_GD_TO_IE_ABS:
|
|
return r.sym->getGotVA(ctx) + a;
|
|
case R_LOONGARCH_GOT:
|
|
// The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc r.type
|
|
// for their page offsets. The arithmetics are different in the TLS case
|
|
// so we have to duplicate some logic here.
|
|
if (r.sym->hasFlag(NEEDS_TLSGD) && r.type != R_LARCH_TLS_IE_PC_LO12)
|
|
// Like R_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value.
|
|
return ctx.in.got->getGlobalDynAddr(*r.sym) + a;
|
|
return r.sym->getGotVA(ctx) + a;
|
|
case R_GOTONLY_PC:
|
|
return ctx.in.got->getVA() + a - p;
|
|
case R_GOTPLTONLY_PC:
|
|
return ctx.in.gotPlt->getVA() + a - p;
|
|
case R_GOTREL:
|
|
case R_PPC64_RELAX_TOC:
|
|
return r.sym->getVA(ctx, a) - ctx.in.got->getVA();
|
|
case R_GOTPLTREL:
|
|
return r.sym->getVA(ctx, a) - ctx.in.gotPlt->getVA();
|
|
case R_GOTPLT:
|
|
case R_RELAX_TLS_GD_TO_IE_GOTPLT:
|
|
return r.sym->getGotVA(ctx) + a - ctx.in.gotPlt->getVA();
|
|
case R_TLSLD_GOT_OFF:
|
|
case R_GOT_OFF:
|
|
case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
|
|
return r.sym->getGotOffset(ctx) + a;
|
|
case R_AARCH64_GOT_PAGE_PC:
|
|
case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
|
|
return getAArch64Page(r.sym->getGotVA(ctx) + a) - getAArch64Page(p);
|
|
case R_AARCH64_GOT_PAGE:
|
|
return r.sym->getGotVA(ctx) + a - getAArch64Page(ctx.in.got->getVA());
|
|
case R_GOT_PC:
|
|
case R_RELAX_TLS_GD_TO_IE:
|
|
return r.sym->getGotVA(ctx) + a - p;
|
|
case R_GOTPLT_GOTREL:
|
|
return r.sym->getGotPltVA(ctx) + a - ctx.in.got->getVA();
|
|
case R_GOTPLT_PC:
|
|
return r.sym->getGotPltVA(ctx) + a - p;
|
|
case R_LOONGARCH_GOT_PAGE_PC:
|
|
if (r.sym->hasFlag(NEEDS_TLSGD))
|
|
return getLoongArchPageDelta(ctx.in.got->getGlobalDynAddr(*r.sym) + a, p,
|
|
r.type);
|
|
return getLoongArchPageDelta(r.sym->getGotVA(ctx) + a, p, r.type);
|
|
case R_MIPS_GOTREL:
|
|
return r.sym->getVA(ctx, a) - ctx.in.mipsGot->getGp(file);
|
|
case R_MIPS_GOT_GP:
|
|
return ctx.in.mipsGot->getGp(file) + a;
|
|
case R_MIPS_GOT_GP_PC: {
|
|
// R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC r.type iif the target
|
|
// is _gp_disp symbol. In that case we should use the following
|
|
// formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
// microMIPS variants of these relocations use slightly different
|
|
// expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
|
|
// to correctly handle less-significant bit of the microMIPS symbol.
|
|
uint64_t v = ctx.in.mipsGot->getGp(file) + a - p;
|
|
if (r.type == R_MIPS_LO16 || r.type == R_MICROMIPS_LO16)
|
|
v += 4;
|
|
if (r.type == R_MICROMIPS_LO16 || r.type == R_MICROMIPS_HI16)
|
|
v -= 1;
|
|
return v;
|
|
}
|
|
case R_MIPS_GOT_LOCAL_PAGE:
|
|
// If relocation against MIPS local symbol requires GOT entry, this entry
|
|
// should be initialized by 'page address'. This address is high 16-bits
|
|
// of sum the symbol's value and the addend.
|
|
return ctx.in.mipsGot->getVA() +
|
|
ctx.in.mipsGot->getPageEntryOffset(file, *r.sym, a) -
|
|
ctx.in.mipsGot->getGp(file);
|
|
case R_MIPS_GOT_OFF:
|
|
case R_MIPS_GOT_OFF32:
|
|
// In case of MIPS if a GOT relocation has non-zero addend this addend
|
|
// should be applied to the GOT entry content not to the GOT entry offset.
|
|
// That is why we use separate expression r.type.
|
|
return ctx.in.mipsGot->getVA() +
|
|
ctx.in.mipsGot->getSymEntryOffset(file, *r.sym, a) -
|
|
ctx.in.mipsGot->getGp(file);
|
|
case R_MIPS_TLSGD:
|
|
return ctx.in.mipsGot->getVA() +
|
|
ctx.in.mipsGot->getGlobalDynOffset(file, *r.sym) -
|
|
ctx.in.mipsGot->getGp(file);
|
|
case R_MIPS_TLSLD:
|
|
return ctx.in.mipsGot->getVA() + ctx.in.mipsGot->getTlsIndexOffset(file) -
|
|
ctx.in.mipsGot->getGp(file);
|
|
case R_AARCH64_PAGE_PC: {
|
|
uint64_t val = r.sym->isUndefWeak() ? p + a : r.sym->getVA(ctx, a);
|
|
return getAArch64Page(val) - getAArch64Page(p);
|
|
}
|
|
case R_RISCV_PC_INDIRECT: {
|
|
if (const Relocation *hiRel = getRISCVPCRelHi20(ctx, this, r))
|
|
return getRelocTargetVA(ctx, *hiRel, r.sym->getVA(ctx));
|
|
return 0;
|
|
}
|
|
case R_LOONGARCH_PAGE_PC:
|
|
return getLoongArchPageDelta(r.sym->getVA(ctx, a), p, r.type);
|
|
case R_PC:
|
|
case R_ARM_PCA: {
|
|
uint64_t dest;
|
|
if (r.expr == R_ARM_PCA)
|
|
// Some PC relative ARM (Thumb) relocations align down the place.
|
|
p = p & 0xfffffffc;
|
|
if (r.sym->isUndefined()) {
|
|
// On ARM and AArch64 a branch to an undefined weak resolves to the next
|
|
// instruction, otherwise the place. On RISC-V, resolve an undefined weak
|
|
// to the same instruction to cause an infinite loop (making the user
|
|
// aware of the issue) while ensuring no overflow.
|
|
// Note: if the symbol is hidden, its binding has been converted to local,
|
|
// so we just check isUndefined() here.
|
|
if (ctx.arg.emachine == EM_ARM)
|
|
dest = getARMUndefinedRelativeWeakVA(r.type, a, p);
|
|
else if (ctx.arg.emachine == EM_AARCH64)
|
|
dest = getAArch64UndefinedRelativeWeakVA(r.type, p) + a;
|
|
else if (ctx.arg.emachine == EM_PPC)
|
|
dest = p;
|
|
else if (ctx.arg.emachine == EM_RISCV)
|
|
dest = getRISCVUndefinedRelativeWeakVA(r.type, p) + a;
|
|
else
|
|
dest = r.sym->getVA(ctx, a);
|
|
} else {
|
|
dest = r.sym->getVA(ctx, a);
|
|
}
|
|
return dest - p;
|
|
}
|
|
case R_PLT:
|
|
return r.sym->getPltVA(ctx) + a;
|
|
case R_PLT_PC:
|
|
case R_PPC64_CALL_PLT:
|
|
return r.sym->getPltVA(ctx) + a - p;
|
|
case R_LOONGARCH_PLT_PAGE_PC:
|
|
return getLoongArchPageDelta(r.sym->getPltVA(ctx) + a, p, r.type);
|
|
case R_PLT_GOTPLT:
|
|
return r.sym->getPltVA(ctx) + a - ctx.in.gotPlt->getVA();
|
|
case R_PLT_GOTREL:
|
|
return r.sym->getPltVA(ctx) + a - ctx.in.got->getVA();
|
|
case R_PPC32_PLTREL:
|
|
// R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
|
|
// stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
|
|
// target VA computation.
|
|
return r.sym->getPltVA(ctx) - p;
|
|
case R_PPC64_CALL: {
|
|
uint64_t symVA = r.sym->getVA(ctx, a);
|
|
// If we have an undefined weak symbol, we might get here with a symbol
|
|
// address of zero. That could overflow, but the code must be unreachable,
|
|
// so don't bother doing anything at all.
|
|
if (!symVA)
|
|
return 0;
|
|
|
|
// PPC64 V2 ABI describes two entry points to a function. The global entry
|
|
// point is used for calls where the caller and callee (may) have different
|
|
// TOC base pointers and r2 needs to be modified to hold the TOC base for
|
|
// the callee. For local calls the caller and callee share the same
|
|
// TOC base and so the TOC pointer initialization code should be skipped by
|
|
// branching to the local entry point.
|
|
return symVA - p +
|
|
getPPC64GlobalEntryToLocalEntryOffset(ctx, r.sym->stOther);
|
|
}
|
|
case R_PPC64_TOCBASE:
|
|
return getPPC64TocBase(ctx) + a;
|
|
case R_RELAX_GOT_PC:
|
|
case R_PPC64_RELAX_GOT_PC:
|
|
return r.sym->getVA(ctx, a) - p;
|
|
case R_RELAX_TLS_GD_TO_LE:
|
|
case R_RELAX_TLS_IE_TO_LE:
|
|
case R_RELAX_TLS_LD_TO_LE:
|
|
case R_TPREL:
|
|
// It is not very clear what to return if the symbol is undefined. With
|
|
// --noinhibit-exec, even a non-weak undefined reference may reach here.
|
|
// Just return A, which matches R_ABS, and the behavior of some dynamic
|
|
// loaders.
|
|
if (r.sym->isUndefined())
|
|
return a;
|
|
return getTlsTpOffset(ctx, *r.sym) + a;
|
|
case R_RELAX_TLS_GD_TO_LE_NEG:
|
|
case R_TPREL_NEG:
|
|
if (r.sym->isUndefined())
|
|
return a;
|
|
return -getTlsTpOffset(ctx, *r.sym) + a;
|
|
case R_SIZE:
|
|
return r.sym->getSize() + a;
|
|
case R_TLSDESC:
|
|
return ctx.in.got->getTlsDescAddr(*r.sym) + a;
|
|
case R_TLSDESC_PC:
|
|
return ctx.in.got->getTlsDescAddr(*r.sym) + a - p;
|
|
case R_TLSDESC_GOTPLT:
|
|
return ctx.in.got->getTlsDescAddr(*r.sym) + a - ctx.in.gotPlt->getVA();
|
|
case R_AARCH64_TLSDESC_PAGE:
|
|
return getAArch64Page(ctx.in.got->getTlsDescAddr(*r.sym) + a) -
|
|
getAArch64Page(p);
|
|
case R_LOONGARCH_TLSDESC_PAGE_PC:
|
|
return getLoongArchPageDelta(ctx.in.got->getTlsDescAddr(*r.sym) + a, p,
|
|
r.type);
|
|
case R_TLSGD_GOT:
|
|
return ctx.in.got->getGlobalDynOffset(*r.sym) + a;
|
|
case R_TLSGD_GOTPLT:
|
|
return ctx.in.got->getGlobalDynAddr(*r.sym) + a - ctx.in.gotPlt->getVA();
|
|
case R_TLSGD_PC:
|
|
return ctx.in.got->getGlobalDynAddr(*r.sym) + a - p;
|
|
case R_LOONGARCH_TLSGD_PAGE_PC:
|
|
return getLoongArchPageDelta(ctx.in.got->getGlobalDynAddr(*r.sym) + a, p,
|
|
r.type);
|
|
case R_TLSLD_GOTPLT:
|
|
return ctx.in.got->getVA() + ctx.in.got->getTlsIndexOff() + a -
|
|
ctx.in.gotPlt->getVA();
|
|
case R_TLSLD_GOT:
|
|
return ctx.in.got->getTlsIndexOff() + a;
|
|
case R_TLSLD_PC:
|
|
return ctx.in.got->getTlsIndexVA() + a - p;
|
|
default:
|
|
llvm_unreachable("invalid expression");
|
|
}
|
|
}
|
|
|
|
// This function applies relocations to sections without SHF_ALLOC bit.
|
|
// Such sections are never mapped to memory at runtime. Debug sections are
|
|
// an example. Relocations in non-alloc sections are much easier to
|
|
// handle than in allocated sections because it will never need complex
|
|
// treatment such as GOT or PLT (because at runtime no one refers them).
|
|
// So, we handle relocations for non-alloc sections directly in this
|
|
// function as a performance optimization.
|
|
template <class ELFT, class RelTy>
|
|
void InputSection::relocateNonAlloc(Ctx &ctx, uint8_t *buf,
|
|
Relocs<RelTy> rels) {
|
|
const unsigned bits = sizeof(typename ELFT::uint) * 8;
|
|
const TargetInfo &target = *ctx.target;
|
|
const auto emachine = ctx.arg.emachine;
|
|
const bool isDebug = isDebugSection(*this);
|
|
const bool isDebugLine = isDebug && name == ".debug_line";
|
|
std::optional<uint64_t> tombstone;
|
|
if (isDebug) {
|
|
if (name == ".debug_loc" || name == ".debug_ranges")
|
|
tombstone = 1;
|
|
else if (name == ".debug_names")
|
|
tombstone = UINT64_MAX; // tombstone value
|
|
else
|
|
tombstone = 0;
|
|
}
|
|
for (const auto &patAndValue : llvm::reverse(ctx.arg.deadRelocInNonAlloc))
|
|
if (patAndValue.first.match(this->name)) {
|
|
tombstone = patAndValue.second;
|
|
break;
|
|
}
|
|
|
|
const InputFile *f = this->file;
|
|
for (auto it = rels.begin(), end = rels.end(); it != end; ++it) {
|
|
const RelTy &rel = *it;
|
|
const RelType type = rel.getType(ctx.arg.isMips64EL);
|
|
const uint64_t offset = rel.r_offset;
|
|
uint8_t *bufLoc = buf + offset;
|
|
int64_t addend = getAddend<ELFT>(rel);
|
|
if (!RelTy::HasAddend)
|
|
addend += target.getImplicitAddend(bufLoc, type);
|
|
|
|
Symbol &sym = f->getRelocTargetSym(rel);
|
|
RelExpr expr = target.getRelExpr(type, sym, bufLoc);
|
|
if (expr == R_NONE)
|
|
continue;
|
|
auto *ds = dyn_cast<Defined>(&sym);
|
|
|
|
if (emachine == EM_RISCV && type == R_RISCV_SET_ULEB128) {
|
|
if (++it != end &&
|
|
it->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128 &&
|
|
it->r_offset == offset) {
|
|
uint64_t val;
|
|
if (!ds && tombstone) {
|
|
val = *tombstone;
|
|
} else {
|
|
val = sym.getVA(ctx, addend) -
|
|
(f->getRelocTargetSym(*it).getVA(ctx) + getAddend<ELFT>(*it));
|
|
}
|
|
if (overwriteULEB128(bufLoc, val) >= 0x80)
|
|
Err(ctx) << getLocation(offset) << ": ULEB128 value " << val
|
|
<< " exceeds available space; references '" << &sym << "'";
|
|
continue;
|
|
}
|
|
Err(ctx) << getLocation(offset)
|
|
<< ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128";
|
|
return;
|
|
}
|
|
|
|
if (tombstone && (expr == R_ABS || expr == R_DTPREL)) {
|
|
// Resolve relocations in .debug_* referencing (discarded symbols or ICF
|
|
// folded section symbols) to a tombstone value. Resolving to addend is
|
|
// unsatisfactory because the result address range may collide with a
|
|
// valid range of low address, or leave multiple CUs claiming ownership of
|
|
// the same range of code, which may confuse consumers.
|
|
//
|
|
// To address the problems, we use -1 as a tombstone value for most
|
|
// .debug_* sections. We have to ignore the addend because we don't want
|
|
// to resolve an address attribute (which may have a non-zero addend) to
|
|
// -1+addend (wrap around to a low address).
|
|
//
|
|
// R_DTPREL type relocations represent an offset into the dynamic thread
|
|
// vector. The computed value is st_value plus a non-negative offset.
|
|
// Negative values are invalid, so -1 can be used as the tombstone value.
|
|
//
|
|
// If the referenced symbol is relative to a discarded section (due to
|
|
// --gc-sections, COMDAT, etc), it has been converted to a Undefined.
|
|
// `ds->folded` catches the ICF folded case. However, resolving a
|
|
// relocation in .debug_line to -1 would stop debugger users from setting
|
|
// breakpoints on the folded-in function, so exclude .debug_line.
|
|
//
|
|
// For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
|
|
// (base address selection entry), use 1 (which is used by GNU ld for
|
|
// .debug_ranges).
|
|
//
|
|
// TODO To reduce disruption, we use 0 instead of -1 as the tombstone
|
|
// value. Enable -1 in a future release.
|
|
if (!ds || (ds->folded && !isDebugLine)) {
|
|
// If -z dead-reloc-in-nonalloc= is specified, respect it.
|
|
uint64_t value = SignExtend64<bits>(*tombstone);
|
|
// For a 32-bit local TU reference in .debug_names, X86_64::relocate
|
|
// requires that the unsigned value for R_X86_64_32 is truncated to
|
|
// 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit
|
|
// absolute relocations and do not need this change.
|
|
if (emachine == EM_X86_64 && type == R_X86_64_32)
|
|
value = static_cast<uint32_t>(value);
|
|
target.relocateNoSym(bufLoc, type, value);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// For a relocatable link, content relocated by relocation types with an
|
|
// explicit addend, such as RELA, remain unchanged and we can stop here.
|
|
// While content relocated by relocation types with an implicit addend, such
|
|
// as REL, needs the implicit addend updated.
|
|
if (ctx.arg.relocatable && (RelTy::HasAddend || sym.type != STT_SECTION))
|
|
continue;
|
|
|
|
// R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
|
|
// sections.
|
|
if (LLVM_LIKELY(expr == R_ABS) || expr == R_DTPREL || expr == R_GOTPLTREL ||
|
|
expr == R_RISCV_ADD || expr == R_ARM_SBREL) {
|
|
target.relocateNoSym(bufLoc, type,
|
|
SignExtend64<bits>(sym.getVA(ctx, addend)));
|
|
continue;
|
|
}
|
|
|
|
if (expr == R_SIZE) {
|
|
target.relocateNoSym(bufLoc, type,
|
|
SignExtend64<bits>(sym.getSize() + addend));
|
|
continue;
|
|
}
|
|
|
|
// If the control reaches here, we found a PC-relative relocation in a
|
|
// non-ALLOC section. Since non-ALLOC section is not loaded into memory
|
|
// at runtime, the notion of PC-relative doesn't make sense here. So,
|
|
// this is a usage error. However, GNU linkers historically accept such
|
|
// relocations without any errors and relocate them as if they were at
|
|
// address 0. For bug-compatibility, we accept them with warnings. We
|
|
// know Steel Bank Common Lisp as of 2018 have this bug.
|
|
//
|
|
// GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
|
|
// against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in
|
|
// 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to
|
|
// keep this bug-compatible code for a while.
|
|
bool isErr = expr != R_PC && !(emachine == EM_386 && type == R_386_GOTPC);
|
|
{
|
|
ELFSyncStream diag(ctx, isErr && !ctx.arg.noinhibitExec
|
|
? DiagLevel::Err
|
|
: DiagLevel::Warn);
|
|
diag << getLocation(offset) << ": has non-ABS relocation " << type
|
|
<< " against symbol '" << &sym << "'";
|
|
}
|
|
if (!isErr)
|
|
target.relocateNoSym(
|
|
bufLoc, type,
|
|
SignExtend64<bits>(sym.getVA(ctx, addend - offset - outSecOff)));
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void InputSectionBase::relocate(Ctx &ctx, uint8_t *buf, uint8_t *bufEnd) {
|
|
if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack))
|
|
adjustSplitStackFunctionPrologues<ELFT>(ctx, buf, bufEnd);
|
|
|
|
if (flags & SHF_ALLOC) {
|
|
ctx.target->relocateAlloc(*this, buf);
|
|
return;
|
|
}
|
|
|
|
auto *sec = cast<InputSection>(this);
|
|
// For a relocatable link, also call relocateNonAlloc() to rewrite applicable
|
|
// locations with tombstone values.
|
|
invokeOnRelocs(*sec, sec->relocateNonAlloc<ELFT>, ctx, buf);
|
|
}
|
|
|
|
// For each function-defining prologue, find any calls to __morestack,
|
|
// and replace them with calls to __morestack_non_split.
|
|
static void switchMorestackCallsToMorestackNonSplit(
|
|
Ctx &ctx, DenseSet<Defined *> &prologues,
|
|
SmallVector<Relocation *, 0> &morestackCalls) {
|
|
|
|
// If the target adjusted a function's prologue, all calls to
|
|
// __morestack inside that function should be switched to
|
|
// __morestack_non_split.
|
|
Symbol *moreStackNonSplit = ctx.symtab->find("__morestack_non_split");
|
|
if (!moreStackNonSplit) {
|
|
ErrAlways(ctx) << "mixing split-stack objects requires a definition of "
|
|
"__morestack_non_split";
|
|
return;
|
|
}
|
|
|
|
// Sort both collections to compare addresses efficiently.
|
|
llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
|
|
return l->offset < r->offset;
|
|
});
|
|
std::vector<Defined *> functions(prologues.begin(), prologues.end());
|
|
llvm::sort(functions, [](const Defined *l, const Defined *r) {
|
|
return l->value < r->value;
|
|
});
|
|
|
|
auto it = morestackCalls.begin();
|
|
for (Defined *f : functions) {
|
|
// Find the first call to __morestack within the function.
|
|
while (it != morestackCalls.end() && (*it)->offset < f->value)
|
|
++it;
|
|
// Adjust all calls inside the function.
|
|
while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
|
|
(*it)->sym = moreStackNonSplit;
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool enclosingPrologueAttempted(uint64_t offset,
|
|
const DenseSet<Defined *> &prologues) {
|
|
for (Defined *f : prologues)
|
|
if (f->value <= offset && offset < f->value + f->size)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// If a function compiled for split stack calls a function not
|
|
// compiled for split stack, then the caller needs its prologue
|
|
// adjusted to ensure that the called function will have enough stack
|
|
// available. Find those functions, and adjust their prologues.
|
|
template <class ELFT>
|
|
void InputSectionBase::adjustSplitStackFunctionPrologues(Ctx &ctx, uint8_t *buf,
|
|
uint8_t *end) {
|
|
DenseSet<Defined *> prologues;
|
|
SmallVector<Relocation *, 0> morestackCalls;
|
|
|
|
for (Relocation &rel : relocs()) {
|
|
// Ignore calls into the split-stack api.
|
|
if (rel.sym->getName().starts_with("__morestack")) {
|
|
if (rel.sym->getName() == "__morestack")
|
|
morestackCalls.push_back(&rel);
|
|
continue;
|
|
}
|
|
|
|
// A relocation to non-function isn't relevant. Sometimes
|
|
// __morestack is not marked as a function, so this check comes
|
|
// after the name check.
|
|
if (rel.sym->type != STT_FUNC)
|
|
continue;
|
|
|
|
// If the callee's-file was compiled with split stack, nothing to do. In
|
|
// this context, a "Defined" symbol is one "defined by the binary currently
|
|
// being produced". So an "undefined" symbol might be provided by a shared
|
|
// library. It is not possible to tell how such symbols were compiled, so be
|
|
// conservative.
|
|
if (Defined *d = dyn_cast<Defined>(rel.sym))
|
|
if (InputSection *isec = cast_or_null<InputSection>(d->section))
|
|
if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
|
|
continue;
|
|
|
|
if (enclosingPrologueAttempted(rel.offset, prologues))
|
|
continue;
|
|
|
|
if (Defined *f = getEnclosingFunction(rel.offset)) {
|
|
prologues.insert(f);
|
|
if (ctx.target->adjustPrologueForCrossSplitStack(buf + f->value, end,
|
|
f->stOther))
|
|
continue;
|
|
if (!getFile<ELFT>()->someNoSplitStack)
|
|
Err(ctx)
|
|
<< this << ": " << f->getName() << " (with -fsplit-stack) calls "
|
|
<< rel.sym->getName()
|
|
<< " (without -fsplit-stack), but couldn't adjust its prologue";
|
|
}
|
|
}
|
|
|
|
if (ctx.target->needsMoreStackNonSplit)
|
|
switchMorestackCallsToMorestackNonSplit(ctx, prologues, morestackCalls);
|
|
}
|
|
|
|
template <class ELFT> void InputSection::writeTo(Ctx &ctx, uint8_t *buf) {
|
|
if (LLVM_UNLIKELY(type == SHT_NOBITS))
|
|
return;
|
|
// If -r or --emit-relocs is given, then an InputSection
|
|
// may be a relocation section.
|
|
if (LLVM_UNLIKELY(type == SHT_RELA)) {
|
|
copyRelocations<ELFT, typename ELFT::Rela>(ctx, buf);
|
|
return;
|
|
}
|
|
if (LLVM_UNLIKELY(type == SHT_REL)) {
|
|
copyRelocations<ELFT, typename ELFT::Rel>(ctx, buf);
|
|
return;
|
|
}
|
|
|
|
// If -r is given, we may have a SHT_GROUP section.
|
|
if (LLVM_UNLIKELY(type == SHT_GROUP)) {
|
|
copyShtGroup<ELFT>(buf);
|
|
return;
|
|
}
|
|
|
|
// If this is a compressed section, uncompress section contents directly
|
|
// to the buffer.
|
|
if (compressed) {
|
|
auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_);
|
|
auto compressed = ArrayRef<uint8_t>(content_, compressedSize)
|
|
.slice(sizeof(typename ELFT::Chdr));
|
|
size_t size = this->size;
|
|
if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
|
|
? compression::zlib::decompress(compressed, buf, size)
|
|
: compression::zstd::decompress(compressed, buf, size))
|
|
Fatal(ctx) << this << ": decompress failed: " << std::move(e);
|
|
uint8_t *bufEnd = buf + size;
|
|
relocate<ELFT>(ctx, buf, bufEnd);
|
|
return;
|
|
}
|
|
|
|
// Copy section contents from source object file to output file
|
|
// and then apply relocations.
|
|
memcpy(buf, content().data(), content().size());
|
|
relocate<ELFT>(ctx, buf, buf + content().size());
|
|
}
|
|
|
|
void InputSection::replace(InputSection *other) {
|
|
addralign = std::max(addralign, other->addralign);
|
|
|
|
// When a section is replaced with another section that was allocated to
|
|
// another partition, the replacement section (and its associated sections)
|
|
// need to be placed in the main partition so that both partitions will be
|
|
// able to access it.
|
|
if (partition != other->partition) {
|
|
partition = 1;
|
|
for (InputSection *isec : dependentSections)
|
|
isec->partition = 1;
|
|
}
|
|
|
|
other->repl = repl;
|
|
other->markDead();
|
|
}
|
|
|
|
template <class ELFT>
|
|
EhInputSection::EhInputSection(ObjFile<ELFT> &f,
|
|
const typename ELFT::Shdr &header,
|
|
StringRef name)
|
|
: InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
|
|
|
|
SyntheticSection *EhInputSection::getParent() const {
|
|
return cast_or_null<SyntheticSection>(parent);
|
|
}
|
|
|
|
// .eh_frame is a sequence of CIE or FDE records.
|
|
// This function splits an input section into records and returns them.
|
|
template <class ELFT> void EhInputSection::split() {
|
|
const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(/*supportsCrel=*/false);
|
|
// getReloc expects the relocations to be sorted by r_offset. See the comment
|
|
// in scanRelocs.
|
|
if (rels.areRelocsRel()) {
|
|
SmallVector<typename ELFT::Rel, 0> storage;
|
|
split<ELFT>(sortRels(rels.rels, storage));
|
|
} else {
|
|
SmallVector<typename ELFT::Rela, 0> storage;
|
|
split<ELFT>(sortRels(rels.relas, storage));
|
|
}
|
|
}
|
|
|
|
template <class ELFT, class RelTy>
|
|
void EhInputSection::split(ArrayRef<RelTy> rels) {
|
|
ArrayRef<uint8_t> d = content();
|
|
const char *msg = nullptr;
|
|
unsigned relI = 0;
|
|
while (!d.empty()) {
|
|
if (d.size() < 4) {
|
|
msg = "CIE/FDE too small";
|
|
break;
|
|
}
|
|
uint64_t size = endian::read32<ELFT::Endianness>(d.data());
|
|
if (size == 0) // ZERO terminator
|
|
break;
|
|
uint32_t id = endian::read32<ELFT::Endianness>(d.data() + 4);
|
|
size += 4;
|
|
if (LLVM_UNLIKELY(size > d.size())) {
|
|
// If it is 0xFFFFFFFF, the next 8 bytes contain the size instead,
|
|
// but we do not support that format yet.
|
|
msg = size == UINT32_MAX + uint64_t(4)
|
|
? "CIE/FDE too large"
|
|
: "CIE/FDE ends past the end of the section";
|
|
break;
|
|
}
|
|
|
|
// Find the first relocation that points to [off,off+size). Relocations
|
|
// have been sorted by r_offset.
|
|
const uint64_t off = d.data() - content().data();
|
|
while (relI != rels.size() && rels[relI].r_offset < off)
|
|
++relI;
|
|
unsigned firstRel = -1;
|
|
if (relI != rels.size() && rels[relI].r_offset < off + size)
|
|
firstRel = relI;
|
|
(id == 0 ? cies : fdes).emplace_back(off, this, size, firstRel);
|
|
d = d.slice(size);
|
|
}
|
|
if (msg)
|
|
Err(file->ctx) << "corrupted .eh_frame: " << msg << "\n>>> defined in "
|
|
<< getObjMsg(d.data() - content().data());
|
|
}
|
|
|
|
// Return the offset in an output section for a given input offset.
|
|
uint64_t EhInputSection::getParentOffset(uint64_t offset) const {
|
|
auto it = partition_point(
|
|
fdes, [=](EhSectionPiece p) { return p.inputOff <= offset; });
|
|
if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) {
|
|
it = partition_point(
|
|
cies, [=](EhSectionPiece p) { return p.inputOff <= offset; });
|
|
if (it == cies.begin()) // invalid piece
|
|
return offset;
|
|
}
|
|
if (it[-1].outputOff == -1) // invalid piece
|
|
return offset - it[-1].inputOff;
|
|
return it[-1].outputOff + (offset - it[-1].inputOff);
|
|
}
|
|
|
|
static size_t findNull(StringRef s, size_t entSize) {
|
|
for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
|
|
const char *b = s.begin() + i;
|
|
if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
|
|
return i;
|
|
}
|
|
llvm_unreachable("");
|
|
}
|
|
|
|
// Split SHF_STRINGS section. Such section is a sequence of
|
|
// null-terminated strings.
|
|
void MergeInputSection::splitStrings(StringRef s, size_t entSize) {
|
|
const bool live = !(flags & SHF_ALLOC) || !getCtx().arg.gcSections;
|
|
const char *p = s.data(), *end = s.data() + s.size();
|
|
if (!std::all_of(end - entSize, end, [](char c) { return c == 0; }))
|
|
Fatal(getCtx()) << this << ": string is not null terminated";
|
|
if (entSize == 1) {
|
|
// Optimize the common case.
|
|
do {
|
|
size_t size = strlen(p);
|
|
pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live);
|
|
p += size + 1;
|
|
} while (p != end);
|
|
} else {
|
|
do {
|
|
size_t size = findNull(StringRef(p, end - p), entSize);
|
|
pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live);
|
|
p += size + entSize;
|
|
} while (p != end);
|
|
}
|
|
}
|
|
|
|
// Split non-SHF_STRINGS section. Such section is a sequence of
|
|
// fixed size records.
|
|
void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
|
|
size_t entSize) {
|
|
size_t size = data.size();
|
|
assert((size % entSize) == 0);
|
|
const bool live = !(flags & SHF_ALLOC) || !getCtx().arg.gcSections;
|
|
|
|
pieces.resize_for_overwrite(size / entSize);
|
|
for (size_t i = 0, j = 0; i != size; i += entSize, j++)
|
|
pieces[j] = {i, (uint32_t)xxh3_64bits(data.slice(i, entSize)), live};
|
|
}
|
|
|
|
template <class ELFT>
|
|
MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
|
|
const typename ELFT::Shdr &header,
|
|
StringRef name)
|
|
: InputSectionBase(f, header, name, InputSectionBase::Merge) {}
|
|
|
|
MergeInputSection::MergeInputSection(Ctx &ctx, StringRef name, uint32_t type,
|
|
uint64_t flags, uint64_t entsize,
|
|
ArrayRef<uint8_t> data)
|
|
: InputSectionBase(ctx.internalFile, name, type, flags, /*link=*/0,
|
|
/*info=*/0,
|
|
/*addralign=*/entsize, entsize, data,
|
|
SectionBase::Merge) {}
|
|
|
|
// This function is called after we obtain a complete list of input sections
|
|
// that need to be linked. This is responsible to split section contents
|
|
// into small chunks for further processing.
|
|
//
|
|
// Note that this function is called from parallelForEach. This must be
|
|
// thread-safe (i.e. no memory allocation from the pools).
|
|
void MergeInputSection::splitIntoPieces() {
|
|
assert(pieces.empty());
|
|
|
|
if (flags & SHF_STRINGS)
|
|
splitStrings(toStringRef(contentMaybeDecompress()), entsize);
|
|
else
|
|
splitNonStrings(contentMaybeDecompress(), entsize);
|
|
}
|
|
|
|
SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) {
|
|
if (content().size() <= offset)
|
|
Fatal(getCtx()) << this << ": offset is outside the section";
|
|
return partition_point(
|
|
pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1];
|
|
}
|
|
|
|
// Return the offset in an output section for a given input offset.
|
|
uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
|
|
const SectionPiece &piece = getSectionPiece(offset);
|
|
return piece.outputOff + (offset - piece.inputOff);
|
|
}
|
|
|
|
template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
|
|
StringRef);
|
|
template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
|
|
StringRef);
|
|
template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
|
|
StringRef);
|
|
template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
|
|
StringRef);
|
|
|
|
template void InputSection::writeTo<ELF32LE>(Ctx &, uint8_t *);
|
|
template void InputSection::writeTo<ELF32BE>(Ctx &, uint8_t *);
|
|
template void InputSection::writeTo<ELF64LE>(Ctx &, uint8_t *);
|
|
template void InputSection::writeTo<ELF64BE>(Ctx &, uint8_t *);
|
|
|
|
template RelsOrRelas<ELF32LE>
|
|
InputSectionBase::relsOrRelas<ELF32LE>(bool) const;
|
|
template RelsOrRelas<ELF32BE>
|
|
InputSectionBase::relsOrRelas<ELF32BE>(bool) const;
|
|
template RelsOrRelas<ELF64LE>
|
|
InputSectionBase::relsOrRelas<ELF64LE>(bool) const;
|
|
template RelsOrRelas<ELF64BE>
|
|
InputSectionBase::relsOrRelas<ELF64BE>(bool) const;
|
|
|
|
template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
|
|
const ELF32LE::Shdr &, StringRef);
|
|
template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
|
|
const ELF32BE::Shdr &, StringRef);
|
|
template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
|
|
const ELF64LE::Shdr &, StringRef);
|
|
template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
|
|
const ELF64BE::Shdr &, StringRef);
|
|
|
|
template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
|
|
const ELF32LE::Shdr &, StringRef);
|
|
template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
|
|
const ELF32BE::Shdr &, StringRef);
|
|
template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
|
|
const ELF64LE::Shdr &, StringRef);
|
|
template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
|
|
const ELF64BE::Shdr &, StringRef);
|
|
|
|
template void EhInputSection::split<ELF32LE>();
|
|
template void EhInputSection::split<ELF32BE>();
|
|
template void EhInputSection::split<ELF64LE>();
|
|
template void EhInputSection::split<ELF64BE>();
|