mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-25 13:56:07 +00:00

The addFile implementation does not rely on the SymbolTable object. With #119294, the symbol table for input files is determined during the construction of the objects representing them. To clarify that relationship, this change moves the implementation from the SymbolTable class to the LinkerDriver class.
1417 lines
51 KiB
C++
1417 lines
51 KiB
C++
//===- InputFiles.cpp -----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "COFFLinkerContext.h"
|
|
#include "Chunks.h"
|
|
#include "Config.h"
|
|
#include "DebugTypes.h"
|
|
#include "Driver.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "lld/Common/DWARF.h"
|
|
#include "llvm-c/lto.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/BinaryFormat/COFF.h"
|
|
#include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
|
|
#include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
|
|
#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
|
|
#include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
|
|
#include "llvm/DebugInfo/PDB/Native/NativeSession.h"
|
|
#include "llvm/DebugInfo/PDB/Native/PDBFile.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
#include "llvm/LTO/LTO.h"
|
|
#include "llvm/Object/Binary.h"
|
|
#include "llvm/Object/COFF.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/ErrorOr.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/TargetParser/Triple.h"
|
|
#include <cstring>
|
|
#include <optional>
|
|
#include <system_error>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::COFF;
|
|
using namespace llvm::codeview;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace lld;
|
|
using namespace lld::coff;
|
|
|
|
using llvm::Triple;
|
|
using llvm::support::ulittle32_t;
|
|
|
|
// Returns the last element of a path, which is supposed to be a filename.
|
|
static StringRef getBasename(StringRef path) {
|
|
return sys::path::filename(path, sys::path::Style::windows);
|
|
}
|
|
|
|
// Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)".
|
|
std::string lld::toString(const coff::InputFile *file) {
|
|
if (!file)
|
|
return "<internal>";
|
|
if (file->parentName.empty())
|
|
return std::string(file->getName());
|
|
|
|
return (getBasename(file->parentName) + "(" + getBasename(file->getName()) +
|
|
")")
|
|
.str();
|
|
}
|
|
|
|
const COFFSyncStream &coff::operator<<(const COFFSyncStream &s,
|
|
const InputFile *f) {
|
|
return s << toString(f);
|
|
}
|
|
|
|
/// Checks that Source is compatible with being a weak alias to Target.
|
|
/// If Source is Undefined and has no weak alias set, makes it a weak
|
|
/// alias to Target.
|
|
static void checkAndSetWeakAlias(SymbolTable &symtab, InputFile *f,
|
|
Symbol *source, Symbol *target,
|
|
bool isAntiDep) {
|
|
if (auto *u = dyn_cast<Undefined>(source)) {
|
|
if (u->weakAlias && u->weakAlias != target) {
|
|
// Ignore duplicated anti-dependency symbols.
|
|
if (isAntiDep)
|
|
return;
|
|
if (!u->isAntiDep) {
|
|
// Weak aliases as produced by GCC are named in the form
|
|
// .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name
|
|
// of another symbol emitted near the weak symbol.
|
|
// Just use the definition from the first object file that defined
|
|
// this weak symbol.
|
|
if (symtab.ctx.config.allowDuplicateWeak)
|
|
return;
|
|
symtab.reportDuplicate(source, f);
|
|
}
|
|
}
|
|
u->setWeakAlias(target, isAntiDep);
|
|
}
|
|
}
|
|
|
|
static bool ignoredSymbolName(StringRef name) {
|
|
return name == "@feat.00" || name == "@comp.id";
|
|
}
|
|
|
|
ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m)
|
|
: InputFile(ctx.symtab, ArchiveKind, m) {}
|
|
|
|
void ArchiveFile::parse() {
|
|
COFFLinkerContext &ctx = symtab.ctx;
|
|
// Parse a MemoryBufferRef as an archive file.
|
|
file = CHECK(Archive::create(mb), this);
|
|
|
|
// Try to read symbols from ECSYMBOLS section on ARM64EC.
|
|
if (ctx.symtabEC) {
|
|
iterator_range<Archive::symbol_iterator> symbols =
|
|
CHECK(file->ec_symbols(), this);
|
|
if (!symbols.empty()) {
|
|
for (const Archive::Symbol &sym : symbols)
|
|
ctx.symtabEC->addLazyArchive(this, sym);
|
|
|
|
// Read both EC and native symbols on ARM64X.
|
|
if (!ctx.hybridSymtab)
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Read the symbol table to construct Lazy objects.
|
|
for (const Archive::Symbol &sym : file->symbols())
|
|
ctx.symtab.addLazyArchive(this, sym);
|
|
}
|
|
|
|
// Returns a buffer pointing to a member file containing a given symbol.
|
|
void ArchiveFile::addMember(const Archive::Symbol &sym) {
|
|
const Archive::Child &c =
|
|
CHECK(sym.getMember(), "could not get the member for symbol " +
|
|
toCOFFString(symtab.ctx, sym));
|
|
|
|
// Return an empty buffer if we have already returned the same buffer.
|
|
if (!seen.insert(c.getChildOffset()).second)
|
|
return;
|
|
|
|
symtab.ctx.driver.enqueueArchiveMember(c, sym, getName());
|
|
}
|
|
|
|
std::vector<MemoryBufferRef>
|
|
lld::coff::getArchiveMembers(COFFLinkerContext &ctx, Archive *file) {
|
|
std::vector<MemoryBufferRef> v;
|
|
Error err = Error::success();
|
|
for (const Archive::Child &c : file->children(err)) {
|
|
MemoryBufferRef mbref =
|
|
CHECK(c.getMemoryBufferRef(),
|
|
file->getFileName() +
|
|
": could not get the buffer for a child of the archive");
|
|
v.push_back(mbref);
|
|
}
|
|
if (err)
|
|
Fatal(ctx) << file->getFileName()
|
|
<< ": Archive::children failed: " << toString(std::move(err));
|
|
return v;
|
|
}
|
|
|
|
ObjFile::ObjFile(SymbolTable &symtab, COFFObjectFile *coffObj, bool lazy)
|
|
: InputFile(symtab, ObjectKind, coffObj->getMemoryBufferRef(), lazy),
|
|
coffObj(coffObj) {}
|
|
|
|
ObjFile *ObjFile::create(COFFLinkerContext &ctx, MemoryBufferRef m, bool lazy) {
|
|
// Parse a memory buffer as a COFF file.
|
|
Expected<std::unique_ptr<Binary>> bin = createBinary(m);
|
|
if (!bin)
|
|
Fatal(ctx) << "Could not parse " << m.getBufferIdentifier();
|
|
|
|
auto *obj = dyn_cast<COFFObjectFile>(bin->get());
|
|
if (!obj)
|
|
Fatal(ctx) << m.getBufferIdentifier() << " is not a COFF file";
|
|
|
|
bin->release();
|
|
return make<ObjFile>(ctx.getSymtab(MachineTypes(obj->getMachine())), obj,
|
|
lazy);
|
|
}
|
|
|
|
void ObjFile::parseLazy() {
|
|
// Native object file.
|
|
uint32_t numSymbols = coffObj->getNumberOfSymbols();
|
|
for (uint32_t i = 0; i < numSymbols; ++i) {
|
|
COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
|
|
if (coffSym.isUndefined() || !coffSym.isExternal() ||
|
|
coffSym.isWeakExternal())
|
|
continue;
|
|
StringRef name = check(coffObj->getSymbolName(coffSym));
|
|
if (coffSym.isAbsolute() && ignoredSymbolName(name))
|
|
continue;
|
|
symtab.addLazyObject(this, name);
|
|
if (!lazy)
|
|
return;
|
|
i += coffSym.getNumberOfAuxSymbols();
|
|
}
|
|
}
|
|
|
|
struct ECMapEntry {
|
|
ulittle32_t src;
|
|
ulittle32_t dst;
|
|
ulittle32_t type;
|
|
};
|
|
|
|
void ObjFile::initializeECThunks() {
|
|
for (SectionChunk *chunk : hybmpChunks) {
|
|
if (chunk->getContents().size() % sizeof(ECMapEntry)) {
|
|
Err(symtab.ctx) << "Invalid .hybmp chunk size "
|
|
<< chunk->getContents().size();
|
|
continue;
|
|
}
|
|
|
|
const uint8_t *end =
|
|
chunk->getContents().data() + chunk->getContents().size();
|
|
for (const uint8_t *iter = chunk->getContents().data(); iter != end;
|
|
iter += sizeof(ECMapEntry)) {
|
|
auto entry = reinterpret_cast<const ECMapEntry *>(iter);
|
|
switch (entry->type) {
|
|
case Arm64ECThunkType::Entry:
|
|
symtab.addEntryThunk(getSymbol(entry->src), getSymbol(entry->dst));
|
|
break;
|
|
case Arm64ECThunkType::Exit:
|
|
symtab.addExitThunk(getSymbol(entry->src), getSymbol(entry->dst));
|
|
break;
|
|
case Arm64ECThunkType::GuestExit:
|
|
break;
|
|
default:
|
|
Warn(symtab.ctx) << "Ignoring unknown EC thunk type " << entry->type;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ObjFile::parse() {
|
|
// Read section and symbol tables.
|
|
initializeChunks();
|
|
initializeSymbols();
|
|
initializeFlags();
|
|
initializeDependencies();
|
|
initializeECThunks();
|
|
}
|
|
|
|
const coff_section *ObjFile::getSection(uint32_t i) {
|
|
auto sec = coffObj->getSection(i);
|
|
if (!sec)
|
|
Fatal(symtab.ctx) << "getSection failed: #" << i << ": " << sec.takeError();
|
|
return *sec;
|
|
}
|
|
|
|
// We set SectionChunk pointers in the SparseChunks vector to this value
|
|
// temporarily to mark comdat sections as having an unknown resolution. As we
|
|
// walk the object file's symbol table, once we visit either a leader symbol or
|
|
// an associative section definition together with the parent comdat's leader,
|
|
// we set the pointer to either nullptr (to mark the section as discarded) or a
|
|
// valid SectionChunk for that section.
|
|
static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1);
|
|
|
|
void ObjFile::initializeChunks() {
|
|
uint32_t numSections = coffObj->getNumberOfSections();
|
|
sparseChunks.resize(numSections + 1);
|
|
for (uint32_t i = 1; i < numSections + 1; ++i) {
|
|
const coff_section *sec = getSection(i);
|
|
if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT)
|
|
sparseChunks[i] = pendingComdat;
|
|
else
|
|
sparseChunks[i] = readSection(i, nullptr, "");
|
|
}
|
|
}
|
|
|
|
SectionChunk *ObjFile::readSection(uint32_t sectionNumber,
|
|
const coff_aux_section_definition *def,
|
|
StringRef leaderName) {
|
|
const coff_section *sec = getSection(sectionNumber);
|
|
|
|
StringRef name;
|
|
if (Expected<StringRef> e = coffObj->getSectionName(sec))
|
|
name = *e;
|
|
else
|
|
Fatal(symtab.ctx) << "getSectionName failed: #" << sectionNumber << ": "
|
|
<< e.takeError();
|
|
|
|
if (name == ".drectve") {
|
|
ArrayRef<uint8_t> data;
|
|
cantFail(coffObj->getSectionContents(sec, data));
|
|
directives = StringRef((const char *)data.data(), data.size());
|
|
return nullptr;
|
|
}
|
|
|
|
if (name == ".llvm_addrsig") {
|
|
addrsigSec = sec;
|
|
return nullptr;
|
|
}
|
|
|
|
if (name == ".llvm.call-graph-profile") {
|
|
callgraphSec = sec;
|
|
return nullptr;
|
|
}
|
|
|
|
// Object files may have DWARF debug info or MS CodeView debug info
|
|
// (or both).
|
|
//
|
|
// DWARF sections don't need any special handling from the perspective
|
|
// of the linker; they are just a data section containing relocations.
|
|
// We can just link them to complete debug info.
|
|
//
|
|
// CodeView needs linker support. We need to interpret debug info,
|
|
// and then write it to a separate .pdb file.
|
|
|
|
// Ignore DWARF debug info unless requested to be included.
|
|
if (!symtab.ctx.config.includeDwarfChunks && name.starts_with(".debug_"))
|
|
return nullptr;
|
|
|
|
if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE)
|
|
return nullptr;
|
|
SectionChunk *c;
|
|
if (isArm64EC(getMachineType()))
|
|
c = make<SectionChunkEC>(this, sec);
|
|
else
|
|
c = make<SectionChunk>(this, sec);
|
|
if (def)
|
|
c->checksum = def->CheckSum;
|
|
|
|
// CodeView sections are stored to a different vector because they are not
|
|
// linked in the regular manner.
|
|
if (c->isCodeView())
|
|
debugChunks.push_back(c);
|
|
else if (name == ".gfids$y")
|
|
guardFidChunks.push_back(c);
|
|
else if (name == ".giats$y")
|
|
guardIATChunks.push_back(c);
|
|
else if (name == ".gljmp$y")
|
|
guardLJmpChunks.push_back(c);
|
|
else if (name == ".gehcont$y")
|
|
guardEHContChunks.push_back(c);
|
|
else if (name == ".sxdata")
|
|
sxDataChunks.push_back(c);
|
|
else if (isArm64EC(getMachineType()) && name == ".hybmp$x")
|
|
hybmpChunks.push_back(c);
|
|
else if (symtab.ctx.config.tailMerge && sec->NumberOfRelocations == 0 &&
|
|
name == ".rdata" && leaderName.starts_with("??_C@"))
|
|
// COFF sections that look like string literal sections (i.e. no
|
|
// relocations, in .rdata, leader symbol name matches the MSVC name mangling
|
|
// for string literals) are subject to string tail merging.
|
|
MergeChunk::addSection(symtab.ctx, c);
|
|
else if (name == ".rsrc" || name.starts_with(".rsrc$"))
|
|
resourceChunks.push_back(c);
|
|
else
|
|
chunks.push_back(c);
|
|
|
|
return c;
|
|
}
|
|
|
|
void ObjFile::includeResourceChunks() {
|
|
chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end());
|
|
}
|
|
|
|
void ObjFile::readAssociativeDefinition(
|
|
COFFSymbolRef sym, const coff_aux_section_definition *def) {
|
|
readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj()));
|
|
}
|
|
|
|
void ObjFile::readAssociativeDefinition(COFFSymbolRef sym,
|
|
const coff_aux_section_definition *def,
|
|
uint32_t parentIndex) {
|
|
SectionChunk *parent = sparseChunks[parentIndex];
|
|
int32_t sectionNumber = sym.getSectionNumber();
|
|
|
|
auto diag = [&]() {
|
|
StringRef name = check(coffObj->getSymbolName(sym));
|
|
|
|
StringRef parentName;
|
|
const coff_section *parentSec = getSection(parentIndex);
|
|
if (Expected<StringRef> e = coffObj->getSectionName(parentSec))
|
|
parentName = *e;
|
|
Err(symtab.ctx) << toString(this) << ": associative comdat " << name
|
|
<< " (sec " << sectionNumber
|
|
<< ") has invalid reference to section " << parentName
|
|
<< " (sec " << parentIndex << ")";
|
|
};
|
|
|
|
if (parent == pendingComdat) {
|
|
// This can happen if an associative comdat refers to another associative
|
|
// comdat that appears after it (invalid per COFF spec) or to a section
|
|
// without any symbols.
|
|
diag();
|
|
return;
|
|
}
|
|
|
|
// Check whether the parent is prevailing. If it is, so are we, and we read
|
|
// the section; otherwise mark it as discarded.
|
|
if (parent) {
|
|
SectionChunk *c = readSection(sectionNumber, def, "");
|
|
sparseChunks[sectionNumber] = c;
|
|
if (c) {
|
|
c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE;
|
|
parent->addAssociative(c);
|
|
}
|
|
} else {
|
|
sparseChunks[sectionNumber] = nullptr;
|
|
}
|
|
}
|
|
|
|
void ObjFile::recordPrevailingSymbolForMingw(
|
|
COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
|
|
// For comdat symbols in executable sections, where this is the copy
|
|
// of the section chunk we actually include instead of discarding it,
|
|
// add the symbol to a map to allow using it for implicitly
|
|
// associating .[px]data$<func> sections to it.
|
|
// Use the suffix from the .text$<func> instead of the leader symbol
|
|
// name, for cases where the names differ (i386 mangling/decorations,
|
|
// cases where the leader is a weak symbol named .weak.func.default*).
|
|
int32_t sectionNumber = sym.getSectionNumber();
|
|
SectionChunk *sc = sparseChunks[sectionNumber];
|
|
if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) {
|
|
StringRef name = sc->getSectionName().split('$').second;
|
|
prevailingSectionMap[name] = sectionNumber;
|
|
}
|
|
}
|
|
|
|
void ObjFile::maybeAssociateSEHForMingw(
|
|
COFFSymbolRef sym, const coff_aux_section_definition *def,
|
|
const DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
|
|
StringRef name = check(coffObj->getSymbolName(sym));
|
|
if (name.consume_front(".pdata$") || name.consume_front(".xdata$") ||
|
|
name.consume_front(".eh_frame$")) {
|
|
// For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly
|
|
// associative to the symbol <func>.
|
|
auto parentSym = prevailingSectionMap.find(name);
|
|
if (parentSym != prevailingSectionMap.end())
|
|
readAssociativeDefinition(sym, def, parentSym->second);
|
|
}
|
|
}
|
|
|
|
Symbol *ObjFile::createRegular(COFFSymbolRef sym) {
|
|
SectionChunk *sc = sparseChunks[sym.getSectionNumber()];
|
|
if (sym.isExternal()) {
|
|
StringRef name = check(coffObj->getSymbolName(sym));
|
|
if (sc)
|
|
return symtab.addRegular(this, name, sym.getGeneric(), sc,
|
|
sym.getValue());
|
|
// For MinGW symbols named .weak.* that point to a discarded section,
|
|
// don't create an Undefined symbol. If nothing ever refers to the symbol,
|
|
// everything should be fine. If something actually refers to the symbol
|
|
// (e.g. the undefined weak alias), linking will fail due to undefined
|
|
// references at the end.
|
|
if (symtab.ctx.config.mingw && name.starts_with(".weak."))
|
|
return nullptr;
|
|
return symtab.addUndefined(name, this, false);
|
|
}
|
|
if (sc)
|
|
return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
|
|
/*IsExternal*/ false, sym.getGeneric(), sc);
|
|
return nullptr;
|
|
}
|
|
|
|
void ObjFile::initializeSymbols() {
|
|
uint32_t numSymbols = coffObj->getNumberOfSymbols();
|
|
symbols.resize(numSymbols);
|
|
|
|
SmallVector<std::pair<Symbol *, const coff_aux_weak_external *>, 8>
|
|
weakAliases;
|
|
std::vector<uint32_t> pendingIndexes;
|
|
pendingIndexes.reserve(numSymbols);
|
|
|
|
DenseMap<StringRef, uint32_t> prevailingSectionMap;
|
|
std::vector<const coff_aux_section_definition *> comdatDefs(
|
|
coffObj->getNumberOfSections() + 1);
|
|
COFFLinkerContext &ctx = symtab.ctx;
|
|
|
|
for (uint32_t i = 0; i < numSymbols; ++i) {
|
|
COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
|
|
bool prevailingComdat;
|
|
if (coffSym.isUndefined()) {
|
|
symbols[i] = createUndefined(coffSym, false);
|
|
} else if (coffSym.isWeakExternal()) {
|
|
auto aux = coffSym.getAux<coff_aux_weak_external>();
|
|
bool overrideLazy = true;
|
|
|
|
// On ARM64EC, external function calls emit a pair of weak-dependency
|
|
// aliases: func to #func and #func to the func guess exit thunk
|
|
// (instead of a single undefined func symbol, which would be emitted on
|
|
// other targets). Allow such aliases to be overridden by lazy archive
|
|
// symbols, just as we would for undefined symbols.
|
|
if (isArm64EC(getMachineType()) &&
|
|
aux->Characteristics == IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY) {
|
|
COFFSymbolRef targetSym = check(coffObj->getSymbol(aux->TagIndex));
|
|
if (!targetSym.isAnyUndefined()) {
|
|
// If the target is defined, it may be either a guess exit thunk or
|
|
// the actual implementation. If it's the latter, consider the alias
|
|
// to be part of the implementation and override potential lazy
|
|
// archive symbols.
|
|
StringRef targetName = check(coffObj->getSymbolName(targetSym));
|
|
StringRef name = check(coffObj->getSymbolName(coffSym));
|
|
std::optional<std::string> mangledName =
|
|
getArm64ECMangledFunctionName(name);
|
|
overrideLazy = mangledName == targetName;
|
|
} else {
|
|
overrideLazy = false;
|
|
}
|
|
}
|
|
symbols[i] = createUndefined(coffSym, overrideLazy);
|
|
weakAliases.emplace_back(symbols[i], aux);
|
|
} else if (std::optional<Symbol *> optSym =
|
|
createDefined(coffSym, comdatDefs, prevailingComdat)) {
|
|
symbols[i] = *optSym;
|
|
if (ctx.config.mingw && prevailingComdat)
|
|
recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap);
|
|
} else {
|
|
// createDefined() returns std::nullopt if a symbol belongs to a section
|
|
// that was pending at the point when the symbol was read. This can happen
|
|
// in two cases:
|
|
// 1) section definition symbol for a comdat leader;
|
|
// 2) symbol belongs to a comdat section associated with another section.
|
|
// In both of these cases, we can expect the section to be resolved by
|
|
// the time we finish visiting the remaining symbols in the symbol
|
|
// table. So we postpone the handling of this symbol until that time.
|
|
pendingIndexes.push_back(i);
|
|
}
|
|
i += coffSym.getNumberOfAuxSymbols();
|
|
}
|
|
|
|
for (uint32_t i : pendingIndexes) {
|
|
COFFSymbolRef sym = check(coffObj->getSymbol(i));
|
|
if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
|
|
if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE)
|
|
readAssociativeDefinition(sym, def);
|
|
else if (ctx.config.mingw)
|
|
maybeAssociateSEHForMingw(sym, def, prevailingSectionMap);
|
|
}
|
|
if (sparseChunks[sym.getSectionNumber()] == pendingComdat) {
|
|
StringRef name = check(coffObj->getSymbolName(sym));
|
|
Log(ctx) << "comdat section " << name
|
|
<< " without leader and unassociated, discarding";
|
|
continue;
|
|
}
|
|
symbols[i] = createRegular(sym);
|
|
}
|
|
|
|
for (auto &kv : weakAliases) {
|
|
Symbol *sym = kv.first;
|
|
const coff_aux_weak_external *aux = kv.second;
|
|
checkAndSetWeakAlias(symtab, this, sym, symbols[aux->TagIndex],
|
|
aux->Characteristics ==
|
|
IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY);
|
|
}
|
|
|
|
// Free the memory used by sparseChunks now that symbol loading is finished.
|
|
decltype(sparseChunks)().swap(sparseChunks);
|
|
}
|
|
|
|
Symbol *ObjFile::createUndefined(COFFSymbolRef sym, bool overrideLazy) {
|
|
StringRef name = check(coffObj->getSymbolName(sym));
|
|
Symbol *s = symtab.addUndefined(name, this, overrideLazy);
|
|
|
|
// Add an anti-dependency alias for undefined AMD64 symbols on the ARM64EC
|
|
// target.
|
|
if (symtab.isEC() && getMachineType() == AMD64) {
|
|
auto u = dyn_cast<Undefined>(s);
|
|
if (u && !u->weakAlias) {
|
|
if (std::optional<std::string> mangledName =
|
|
getArm64ECMangledFunctionName(name)) {
|
|
Symbol *m = symtab.addUndefined(saver().save(*mangledName), this,
|
|
/*overrideLazy=*/false);
|
|
u->setWeakAlias(m, /*antiDep=*/true);
|
|
}
|
|
}
|
|
}
|
|
return s;
|
|
}
|
|
|
|
static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj,
|
|
int32_t section) {
|
|
uint32_t numSymbols = obj->getNumberOfSymbols();
|
|
for (uint32_t i = 0; i < numSymbols; ++i) {
|
|
COFFSymbolRef sym = check(obj->getSymbol(i));
|
|
if (sym.getSectionNumber() != section)
|
|
continue;
|
|
if (const coff_aux_section_definition *def = sym.getSectionDefinition())
|
|
return def;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void ObjFile::handleComdatSelection(
|
|
COFFSymbolRef sym, COMDATType &selection, bool &prevailing,
|
|
DefinedRegular *leader,
|
|
const llvm::object::coff_aux_section_definition *def) {
|
|
if (prevailing)
|
|
return;
|
|
// There's already an existing comdat for this symbol: `Leader`.
|
|
// Use the comdats's selection field to determine if the new
|
|
// symbol in `Sym` should be discarded, produce a duplicate symbol
|
|
// error, etc.
|
|
|
|
SectionChunk *leaderChunk = leader->getChunk();
|
|
COMDATType leaderSelection = leaderChunk->selection;
|
|
COFFLinkerContext &ctx = symtab.ctx;
|
|
|
|
assert(leader->data && "Comdat leader without SectionChunk?");
|
|
if (isa<BitcodeFile>(leader->file)) {
|
|
// If the leader is only a LTO symbol, we don't know e.g. its final size
|
|
// yet, so we can't do the full strict comdat selection checking yet.
|
|
selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY;
|
|
}
|
|
|
|
if ((selection == IMAGE_COMDAT_SELECT_ANY &&
|
|
leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) ||
|
|
(selection == IMAGE_COMDAT_SELECT_LARGEST &&
|
|
leaderSelection == IMAGE_COMDAT_SELECT_ANY)) {
|
|
// cl.exe picks "any" for vftables when building with /GR- and
|
|
// "largest" when building with /GR. To be able to link object files
|
|
// compiled with each flag, "any" and "largest" are merged as "largest".
|
|
leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST;
|
|
}
|
|
|
|
// GCCs __declspec(selectany) doesn't actually pick "any" but "same size as".
|
|
// Clang on the other hand picks "any". To be able to link two object files
|
|
// with a __declspec(selectany) declaration, one compiled with gcc and the
|
|
// other with clang, we merge them as proper "same size as"
|
|
if (ctx.config.mingw && ((selection == IMAGE_COMDAT_SELECT_ANY &&
|
|
leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) ||
|
|
(selection == IMAGE_COMDAT_SELECT_SAME_SIZE &&
|
|
leaderSelection == IMAGE_COMDAT_SELECT_ANY))) {
|
|
leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE;
|
|
}
|
|
|
|
// Other than that, comdat selections must match. This is a bit more
|
|
// strict than link.exe which allows merging "any" and "largest" if "any"
|
|
// is the first symbol the linker sees, and it allows merging "largest"
|
|
// with everything (!) if "largest" is the first symbol the linker sees.
|
|
// Making this symmetric independent of which selection is seen first
|
|
// seems better though.
|
|
// (This behavior matches ModuleLinker::getComdatResult().)
|
|
if (selection != leaderSelection) {
|
|
Log(ctx) << "conflicting comdat type for " << leader << ": "
|
|
<< (int)leaderSelection << " in " << leader->getFile() << " and "
|
|
<< (int)selection << " in " << this;
|
|
symtab.reportDuplicate(leader, this);
|
|
return;
|
|
}
|
|
|
|
switch (selection) {
|
|
case IMAGE_COMDAT_SELECT_NODUPLICATES:
|
|
symtab.reportDuplicate(leader, this);
|
|
break;
|
|
|
|
case IMAGE_COMDAT_SELECT_ANY:
|
|
// Nothing to do.
|
|
break;
|
|
|
|
case IMAGE_COMDAT_SELECT_SAME_SIZE:
|
|
if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) {
|
|
if (!ctx.config.mingw) {
|
|
symtab.reportDuplicate(leader, this);
|
|
} else {
|
|
const coff_aux_section_definition *leaderDef = nullptr;
|
|
if (leaderChunk->file)
|
|
leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(),
|
|
leaderChunk->getSectionNumber());
|
|
if (!leaderDef || leaderDef->Length != def->Length)
|
|
symtab.reportDuplicate(leader, this);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case IMAGE_COMDAT_SELECT_EXACT_MATCH: {
|
|
SectionChunk newChunk(this, getSection(sym));
|
|
// link.exe only compares section contents here and doesn't complain
|
|
// if the two comdat sections have e.g. different alignment.
|
|
// Match that.
|
|
if (leaderChunk->getContents() != newChunk.getContents())
|
|
symtab.reportDuplicate(leader, this, &newChunk, sym.getValue());
|
|
break;
|
|
}
|
|
|
|
case IMAGE_COMDAT_SELECT_ASSOCIATIVE:
|
|
// createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE.
|
|
// (This means lld-link doesn't produce duplicate symbol errors for
|
|
// associative comdats while link.exe does, but associate comdats
|
|
// are never extern in practice.)
|
|
llvm_unreachable("createDefined not called for associative comdats");
|
|
|
|
case IMAGE_COMDAT_SELECT_LARGEST:
|
|
if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) {
|
|
// Replace the existing comdat symbol with the new one.
|
|
StringRef name = check(coffObj->getSymbolName(sym));
|
|
// FIXME: This is incorrect: With /opt:noref, the previous sections
|
|
// make it into the final executable as well. Correct handling would
|
|
// be to undo reading of the whole old section that's being replaced,
|
|
// or doing one pass that determines what the final largest comdat
|
|
// is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading
|
|
// only the largest one.
|
|
replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true,
|
|
/*IsExternal*/ true, sym.getGeneric(),
|
|
nullptr);
|
|
prevailing = true;
|
|
}
|
|
break;
|
|
|
|
case IMAGE_COMDAT_SELECT_NEWEST:
|
|
llvm_unreachable("should have been rejected earlier");
|
|
}
|
|
}
|
|
|
|
std::optional<Symbol *> ObjFile::createDefined(
|
|
COFFSymbolRef sym,
|
|
std::vector<const coff_aux_section_definition *> &comdatDefs,
|
|
bool &prevailing) {
|
|
prevailing = false;
|
|
auto getName = [&]() { return check(coffObj->getSymbolName(sym)); };
|
|
|
|
if (sym.isCommon()) {
|
|
auto *c = make<CommonChunk>(sym);
|
|
chunks.push_back(c);
|
|
return symtab.addCommon(this, getName(), sym.getValue(), sym.getGeneric(),
|
|
c);
|
|
}
|
|
|
|
COFFLinkerContext &ctx = symtab.ctx;
|
|
if (sym.isAbsolute()) {
|
|
StringRef name = getName();
|
|
|
|
if (name == "@feat.00")
|
|
feat00Flags = sym.getValue();
|
|
// Skip special symbols.
|
|
if (ignoredSymbolName(name))
|
|
return nullptr;
|
|
|
|
if (sym.isExternal())
|
|
return symtab.addAbsolute(name, sym);
|
|
return make<DefinedAbsolute>(ctx, name, sym);
|
|
}
|
|
|
|
int32_t sectionNumber = sym.getSectionNumber();
|
|
if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG)
|
|
return nullptr;
|
|
|
|
if (llvm::COFF::isReservedSectionNumber(sectionNumber))
|
|
Fatal(ctx) << toString(this) << ": " << getName()
|
|
<< " should not refer to special section "
|
|
<< Twine(sectionNumber);
|
|
|
|
if ((uint32_t)sectionNumber >= sparseChunks.size())
|
|
Fatal(ctx) << toString(this) << ": " << getName()
|
|
<< " should not refer to non-existent section "
|
|
<< Twine(sectionNumber);
|
|
|
|
// Comdat handling.
|
|
// A comdat symbol consists of two symbol table entries.
|
|
// The first symbol entry has the name of the section (e.g. .text), fixed
|
|
// values for the other fields, and one auxiliary record.
|
|
// The second symbol entry has the name of the comdat symbol, called the
|
|
// "comdat leader".
|
|
// When this function is called for the first symbol entry of a comdat,
|
|
// it sets comdatDefs and returns std::nullopt, and when it's called for the
|
|
// second symbol entry it reads comdatDefs and then sets it back to nullptr.
|
|
|
|
// Handle comdat leader.
|
|
if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) {
|
|
comdatDefs[sectionNumber] = nullptr;
|
|
DefinedRegular *leader;
|
|
|
|
if (sym.isExternal()) {
|
|
std::tie(leader, prevailing) =
|
|
symtab.addComdat(this, getName(), sym.getGeneric());
|
|
} else {
|
|
leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
|
|
/*IsExternal*/ false, sym.getGeneric());
|
|
prevailing = true;
|
|
}
|
|
|
|
if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES ||
|
|
// Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe
|
|
// doesn't understand IMAGE_COMDAT_SELECT_NEWEST either.
|
|
def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) {
|
|
Fatal(ctx) << "unknown comdat type "
|
|
<< std::to_string((int)def->Selection) << " for " << getName()
|
|
<< " in " << toString(this);
|
|
}
|
|
COMDATType selection = (COMDATType)def->Selection;
|
|
|
|
if (leader->isCOMDAT)
|
|
handleComdatSelection(sym, selection, prevailing, leader, def);
|
|
|
|
if (prevailing) {
|
|
SectionChunk *c = readSection(sectionNumber, def, getName());
|
|
sparseChunks[sectionNumber] = c;
|
|
if (!c)
|
|
return nullptr;
|
|
c->sym = cast<DefinedRegular>(leader);
|
|
c->selection = selection;
|
|
cast<DefinedRegular>(leader)->data = &c->repl;
|
|
} else {
|
|
sparseChunks[sectionNumber] = nullptr;
|
|
}
|
|
return leader;
|
|
}
|
|
|
|
// Prepare to handle the comdat leader symbol by setting the section's
|
|
// ComdatDefs pointer if we encounter a non-associative comdat.
|
|
if (sparseChunks[sectionNumber] == pendingComdat) {
|
|
if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
|
|
if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE)
|
|
comdatDefs[sectionNumber] = def;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
return createRegular(sym);
|
|
}
|
|
|
|
MachineTypes ObjFile::getMachineType() const {
|
|
return static_cast<MachineTypes>(coffObj->getMachine());
|
|
}
|
|
|
|
ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) {
|
|
if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName))
|
|
return sec->consumeDebugMagic();
|
|
return {};
|
|
}
|
|
|
|
// OBJ files systematically store critical information in a .debug$S stream,
|
|
// even if the TU was compiled with no debug info. At least two records are
|
|
// always there. S_OBJNAME stores a 32-bit signature, which is loaded into the
|
|
// PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is
|
|
// currently used to initialize the hotPatchable member.
|
|
void ObjFile::initializeFlags() {
|
|
ArrayRef<uint8_t> data = getDebugSection(".debug$S");
|
|
if (data.empty())
|
|
return;
|
|
|
|
DebugSubsectionArray subsections;
|
|
|
|
BinaryStreamReader reader(data, llvm::endianness::little);
|
|
ExitOnError exitOnErr;
|
|
exitOnErr(reader.readArray(subsections, data.size()));
|
|
|
|
for (const DebugSubsectionRecord &ss : subsections) {
|
|
if (ss.kind() != DebugSubsectionKind::Symbols)
|
|
continue;
|
|
|
|
unsigned offset = 0;
|
|
|
|
// Only parse the first two records. We are only looking for S_OBJNAME
|
|
// and S_COMPILE3, and they usually appear at the beginning of the
|
|
// stream.
|
|
for (unsigned i = 0; i < 2; ++i) {
|
|
Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset);
|
|
if (!sym) {
|
|
consumeError(sym.takeError());
|
|
return;
|
|
}
|
|
if (sym->kind() == SymbolKind::S_COMPILE3) {
|
|
auto cs =
|
|
cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get()));
|
|
hotPatchable =
|
|
(cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None;
|
|
}
|
|
if (sym->kind() == SymbolKind::S_OBJNAME) {
|
|
auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>(
|
|
sym.get()));
|
|
if (objName.Signature)
|
|
pchSignature = objName.Signature;
|
|
}
|
|
offset += sym->length();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Depending on the compilation flags, OBJs can refer to external files,
|
|
// necessary to merge this OBJ into the final PDB. We currently support two
|
|
// types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu.
|
|
// And PDB type servers, when compiling with /Zi. This function extracts these
|
|
// dependencies and makes them available as a TpiSource interface (see
|
|
// DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular
|
|
// output even with /Yc and /Yu and with /Zi.
|
|
void ObjFile::initializeDependencies() {
|
|
COFFLinkerContext &ctx = symtab.ctx;
|
|
if (!ctx.config.debug)
|
|
return;
|
|
|
|
bool isPCH = false;
|
|
|
|
ArrayRef<uint8_t> data = getDebugSection(".debug$P");
|
|
if (!data.empty())
|
|
isPCH = true;
|
|
else
|
|
data = getDebugSection(".debug$T");
|
|
|
|
// symbols but no types, make a plain, empty TpiSource anyway, because it
|
|
// simplifies adding the symbols later.
|
|
if (data.empty()) {
|
|
if (!debugChunks.empty())
|
|
debugTypesObj = makeTpiSource(ctx, this);
|
|
return;
|
|
}
|
|
|
|
// Get the first type record. It will indicate if this object uses a type
|
|
// server (/Zi) or a PCH file (/Yu).
|
|
CVTypeArray types;
|
|
BinaryStreamReader reader(data, llvm::endianness::little);
|
|
cantFail(reader.readArray(types, reader.getLength()));
|
|
CVTypeArray::Iterator firstType = types.begin();
|
|
if (firstType == types.end())
|
|
return;
|
|
|
|
// Remember the .debug$T or .debug$P section.
|
|
debugTypes = data;
|
|
|
|
// This object file is a PCH file that others will depend on.
|
|
if (isPCH) {
|
|
debugTypesObj = makePrecompSource(ctx, this);
|
|
return;
|
|
}
|
|
|
|
// This object file was compiled with /Zi. Enqueue the PDB dependency.
|
|
if (firstType->kind() == LF_TYPESERVER2) {
|
|
TypeServer2Record ts = cantFail(
|
|
TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data()));
|
|
debugTypesObj = makeUseTypeServerSource(ctx, this, ts);
|
|
enqueuePdbFile(ts.getName(), this);
|
|
return;
|
|
}
|
|
|
|
// This object was compiled with /Yu. It uses types from another object file
|
|
// with a matching signature.
|
|
if (firstType->kind() == LF_PRECOMP) {
|
|
PrecompRecord precomp = cantFail(
|
|
TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data()));
|
|
// We're better off trusting the LF_PRECOMP signature. In some cases the
|
|
// S_OBJNAME record doesn't contain a valid PCH signature.
|
|
if (precomp.Signature)
|
|
pchSignature = precomp.Signature;
|
|
debugTypesObj = makeUsePrecompSource(ctx, this, precomp);
|
|
// Drop the LF_PRECOMP record from the input stream.
|
|
debugTypes = debugTypes.drop_front(firstType->RecordData.size());
|
|
return;
|
|
}
|
|
|
|
// This is a plain old object file.
|
|
debugTypesObj = makeTpiSource(ctx, this);
|
|
}
|
|
|
|
// The casing of the PDB path stamped in the OBJ can differ from the actual path
|
|
// on disk. With this, we ensure to always use lowercase as a key for the
|
|
// pdbInputFileInstances map, at least on Windows.
|
|
static std::string normalizePdbPath(StringRef path) {
|
|
#if defined(_WIN32)
|
|
return path.lower();
|
|
#else // LINUX
|
|
return std::string(path);
|
|
#endif
|
|
}
|
|
|
|
// If existing, return the actual PDB path on disk.
|
|
static std::optional<std::string>
|
|
findPdbPath(StringRef pdbPath, ObjFile *dependentFile, StringRef outputPath) {
|
|
// Ensure the file exists before anything else. In some cases, if the path
|
|
// points to a removable device, Driver::enqueuePath() would fail with an
|
|
// error (EAGAIN, "resource unavailable try again") which we want to skip
|
|
// silently.
|
|
if (llvm::sys::fs::exists(pdbPath))
|
|
return normalizePdbPath(pdbPath);
|
|
|
|
StringRef objPath = !dependentFile->parentName.empty()
|
|
? dependentFile->parentName
|
|
: dependentFile->getName();
|
|
|
|
// Currently, type server PDBs are only created by MSVC cl, which only runs
|
|
// on Windows, so we can assume type server paths are Windows style.
|
|
StringRef pdbName = sys::path::filename(pdbPath, sys::path::Style::windows);
|
|
|
|
// Check if the PDB is in the same folder as the OBJ.
|
|
SmallString<128> path;
|
|
sys::path::append(path, sys::path::parent_path(objPath), pdbName);
|
|
if (llvm::sys::fs::exists(path))
|
|
return normalizePdbPath(path);
|
|
|
|
// Check if the PDB is in the output folder.
|
|
path.clear();
|
|
sys::path::append(path, sys::path::parent_path(outputPath), pdbName);
|
|
if (llvm::sys::fs::exists(path))
|
|
return normalizePdbPath(path);
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m)
|
|
: InputFile(ctx.symtab, PDBKind, m) {}
|
|
|
|
PDBInputFile::~PDBInputFile() = default;
|
|
|
|
PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx,
|
|
StringRef path,
|
|
ObjFile *fromFile) {
|
|
auto p = findPdbPath(path.str(), fromFile, ctx.config.outputFile);
|
|
if (!p)
|
|
return nullptr;
|
|
auto it = ctx.pdbInputFileInstances.find(*p);
|
|
if (it != ctx.pdbInputFileInstances.end())
|
|
return it->second;
|
|
return nullptr;
|
|
}
|
|
|
|
void PDBInputFile::parse() {
|
|
symtab.ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this;
|
|
|
|
std::unique_ptr<pdb::IPDBSession> thisSession;
|
|
Error E = pdb::NativeSession::createFromPdb(
|
|
MemoryBuffer::getMemBuffer(mb, false), thisSession);
|
|
if (E) {
|
|
loadErrorStr.emplace(toString(std::move(E)));
|
|
return; // fail silently at this point - the error will be handled later,
|
|
// when merging the debug type stream
|
|
}
|
|
|
|
session.reset(static_cast<pdb::NativeSession *>(thisSession.release()));
|
|
|
|
pdb::PDBFile &pdbFile = session->getPDBFile();
|
|
auto expectedInfo = pdbFile.getPDBInfoStream();
|
|
// All PDB Files should have an Info stream.
|
|
if (!expectedInfo) {
|
|
loadErrorStr.emplace(toString(expectedInfo.takeError()));
|
|
return;
|
|
}
|
|
debugTypesObj = makeTypeServerSource(symtab.ctx, this);
|
|
}
|
|
|
|
// Used only for DWARF debug info, which is not common (except in MinGW
|
|
// environments). This returns an optional pair of file name and line
|
|
// number for where the variable was defined.
|
|
std::optional<std::pair<StringRef, uint32_t>>
|
|
ObjFile::getVariableLocation(StringRef var) {
|
|
if (!dwarf) {
|
|
dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
|
|
if (!dwarf)
|
|
return std::nullopt;
|
|
}
|
|
if (symtab.machine == I386)
|
|
var.consume_front("_");
|
|
std::optional<std::pair<std::string, unsigned>> ret =
|
|
dwarf->getVariableLoc(var);
|
|
if (!ret)
|
|
return std::nullopt;
|
|
return std::make_pair(saver().save(ret->first), ret->second);
|
|
}
|
|
|
|
// Used only for DWARF debug info, which is not common (except in MinGW
|
|
// environments).
|
|
std::optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset,
|
|
uint32_t sectionIndex) {
|
|
if (!dwarf) {
|
|
dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
|
|
if (!dwarf)
|
|
return std::nullopt;
|
|
}
|
|
|
|
return dwarf->getDILineInfo(offset, sectionIndex);
|
|
}
|
|
|
|
void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) {
|
|
auto p = findPdbPath(path.str(), fromFile, symtab.ctx.config.outputFile);
|
|
if (!p)
|
|
return;
|
|
auto it = symtab.ctx.pdbInputFileInstances.emplace(*p, nullptr);
|
|
if (!it.second)
|
|
return; // already scheduled for load
|
|
symtab.ctx.driver.enqueuePDB(*p);
|
|
}
|
|
|
|
ImportFile::ImportFile(COFFLinkerContext &ctx, MemoryBufferRef m)
|
|
: InputFile(ctx.symtab, ImportKind, m), live(!ctx.config.doGC) {}
|
|
|
|
MachineTypes ImportFile::getMachineType() const {
|
|
uint16_t machine =
|
|
reinterpret_cast<const coff_import_header *>(mb.getBufferStart())
|
|
->Machine;
|
|
return MachineTypes(machine);
|
|
}
|
|
|
|
ImportThunkChunk *ImportFile::makeImportThunk() {
|
|
switch (hdr->Machine) {
|
|
case AMD64:
|
|
return make<ImportThunkChunkX64>(symtab.ctx, impSym);
|
|
case I386:
|
|
return make<ImportThunkChunkX86>(symtab.ctx, impSym);
|
|
case ARM64:
|
|
return make<ImportThunkChunkARM64>(symtab.ctx, impSym, ARM64);
|
|
case ARMNT:
|
|
return make<ImportThunkChunkARM>(symtab.ctx, impSym);
|
|
}
|
|
llvm_unreachable("unknown machine type");
|
|
}
|
|
|
|
void ImportFile::parse() {
|
|
const auto *hdr =
|
|
reinterpret_cast<const coff_import_header *>(mb.getBufferStart());
|
|
|
|
// Check if the total size is valid.
|
|
if (mb.getBufferSize() < sizeof(*hdr) ||
|
|
mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData)
|
|
Fatal(symtab.ctx) << "broken import library";
|
|
|
|
// Read names and create an __imp_ symbol.
|
|
StringRef buf = mb.getBuffer().substr(sizeof(*hdr));
|
|
auto split = buf.split('\0');
|
|
buf = split.second;
|
|
StringRef name;
|
|
if (isArm64EC(hdr->Machine)) {
|
|
if (std::optional<std::string> demangledName =
|
|
getArm64ECDemangledFunctionName(split.first))
|
|
name = saver().save(*demangledName);
|
|
}
|
|
if (name.empty())
|
|
name = saver().save(split.first);
|
|
StringRef impName = saver().save("__imp_" + name);
|
|
dllName = buf.split('\0').first;
|
|
StringRef extName;
|
|
switch (hdr->getNameType()) {
|
|
case IMPORT_ORDINAL:
|
|
extName = "";
|
|
break;
|
|
case IMPORT_NAME:
|
|
extName = name;
|
|
break;
|
|
case IMPORT_NAME_NOPREFIX:
|
|
extName = ltrim1(name, "?@_");
|
|
break;
|
|
case IMPORT_NAME_UNDECORATE:
|
|
extName = ltrim1(name, "?@_");
|
|
extName = extName.substr(0, extName.find('@'));
|
|
break;
|
|
case IMPORT_NAME_EXPORTAS:
|
|
extName = buf.substr(dllName.size() + 1).split('\0').first;
|
|
break;
|
|
}
|
|
|
|
this->hdr = hdr;
|
|
externalName = extName;
|
|
|
|
bool isCode = hdr->getType() == llvm::COFF::IMPORT_CODE;
|
|
|
|
if (!symtab.isEC()) {
|
|
impSym = symtab.addImportData(impName, this, location);
|
|
} else {
|
|
// In addition to the regular IAT, ARM64EC also contains an auxiliary IAT,
|
|
// which holds addresses that are guaranteed to be callable directly from
|
|
// ARM64 code. Function symbol naming is swapped: __imp_ symbols refer to
|
|
// the auxiliary IAT, while __imp_aux_ symbols refer to the regular IAT. For
|
|
// data imports, the naming is reversed.
|
|
StringRef auxImpName = saver().save("__imp_aux_" + name);
|
|
if (isCode) {
|
|
impSym = symtab.addImportData(auxImpName, this, location);
|
|
impECSym = symtab.addImportData(impName, this, auxLocation);
|
|
} else {
|
|
impSym = symtab.addImportData(impName, this, location);
|
|
impECSym = symtab.addImportData(auxImpName, this, auxLocation);
|
|
}
|
|
if (!impECSym)
|
|
return;
|
|
|
|
StringRef auxImpCopyName = saver().save("__auximpcopy_" + name);
|
|
auxImpCopySym = symtab.addImportData(auxImpCopyName, this, auxCopyLocation);
|
|
if (!auxImpCopySym)
|
|
return;
|
|
}
|
|
// If this was a duplicate, we logged an error but may continue;
|
|
// in this case, impSym is nullptr.
|
|
if (!impSym)
|
|
return;
|
|
|
|
if (hdr->getType() == llvm::COFF::IMPORT_CONST)
|
|
static_cast<void>(symtab.addImportData(name, this, location));
|
|
|
|
// If type is function, we need to create a thunk which jump to an
|
|
// address pointed by the __imp_ symbol. (This allows you to call
|
|
// DLL functions just like regular non-DLL functions.)
|
|
if (isCode) {
|
|
if (!symtab.isEC()) {
|
|
thunkSym = symtab.addImportThunk(name, impSym, makeImportThunk());
|
|
} else {
|
|
thunkSym = symtab.addImportThunk(
|
|
name, impSym, make<ImportThunkChunkX64>(symtab.ctx, impSym));
|
|
|
|
if (std::optional<std::string> mangledName =
|
|
getArm64ECMangledFunctionName(name)) {
|
|
StringRef auxThunkName = saver().save(*mangledName);
|
|
auxThunkSym = symtab.addImportThunk(
|
|
auxThunkName, impECSym,
|
|
make<ImportThunkChunkARM64>(symtab.ctx, impECSym, ARM64EC));
|
|
}
|
|
|
|
StringRef impChkName = saver().save("__impchk_" + name);
|
|
impchkThunk = make<ImportThunkChunkARM64EC>(this);
|
|
impchkThunk->sym = symtab.addImportThunk(impChkName, impSym, impchkThunk);
|
|
symtab.ctx.driver.pullArm64ECIcallHelper();
|
|
}
|
|
}
|
|
}
|
|
|
|
BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb,
|
|
StringRef archiveName, uint64_t offsetInArchive,
|
|
bool lazy)
|
|
: InputFile(ctx.symtab, BitcodeKind, mb, lazy) {
|
|
std::string path = mb.getBufferIdentifier().str();
|
|
if (ctx.config.thinLTOIndexOnly)
|
|
path = replaceThinLTOSuffix(mb.getBufferIdentifier(),
|
|
ctx.config.thinLTOObjectSuffixReplace.first,
|
|
ctx.config.thinLTOObjectSuffixReplace.second);
|
|
|
|
// ThinLTO assumes that all MemoryBufferRefs given to it have a unique
|
|
// name. If two archives define two members with the same name, this
|
|
// causes a collision which result in only one of the objects being taken
|
|
// into consideration at LTO time (which very likely causes undefined
|
|
// symbols later in the link stage). So we append file offset to make
|
|
// filename unique.
|
|
MemoryBufferRef mbref(mb.getBuffer(),
|
|
saver().save(archiveName.empty()
|
|
? path
|
|
: archiveName +
|
|
sys::path::filename(path) +
|
|
utostr(offsetInArchive)));
|
|
|
|
obj = check(lto::InputFile::create(mbref));
|
|
}
|
|
|
|
BitcodeFile::~BitcodeFile() = default;
|
|
|
|
void BitcodeFile::parse() {
|
|
llvm::StringSaver &saver = lld::saver();
|
|
|
|
std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size());
|
|
for (size_t i = 0; i != obj->getComdatTable().size(); ++i)
|
|
// FIXME: Check nodeduplicate
|
|
comdat[i] =
|
|
symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first));
|
|
for (const lto::InputFile::Symbol &objSym : obj->symbols()) {
|
|
StringRef symName = saver.save(objSym.getName());
|
|
int comdatIndex = objSym.getComdatIndex();
|
|
Symbol *sym;
|
|
SectionChunk *fakeSC = nullptr;
|
|
if (objSym.isExecutable())
|
|
fakeSC = &symtab.ctx.ltoTextSectionChunk.chunk;
|
|
else
|
|
fakeSC = &symtab.ctx.ltoDataSectionChunk.chunk;
|
|
if (objSym.isUndefined()) {
|
|
sym = symtab.addUndefined(symName, this, false);
|
|
if (objSym.isWeak())
|
|
sym->deferUndefined = true;
|
|
// If one LTO object file references (i.e. has an undefined reference to)
|
|
// a symbol with an __imp_ prefix, the LTO compilation itself sees it
|
|
// as unprefixed but with a dllimport attribute instead, and doesn't
|
|
// understand the relation to a concrete IR symbol with the __imp_ prefix.
|
|
//
|
|
// For such cases, mark the symbol as used in a regular object (i.e. the
|
|
// symbol must be retained) so that the linker can associate the
|
|
// references in the end. If the symbol is defined in an import library
|
|
// or in a regular object file, this has no effect, but if it is defined
|
|
// in another LTO object file, this makes sure it is kept, to fulfill
|
|
// the reference when linking the output of the LTO compilation.
|
|
if (symName.starts_with("__imp_"))
|
|
sym->isUsedInRegularObj = true;
|
|
} else if (objSym.isCommon()) {
|
|
sym = symtab.addCommon(this, symName, objSym.getCommonSize());
|
|
} else if (objSym.isWeak() && objSym.isIndirect()) {
|
|
// Weak external.
|
|
sym = symtab.addUndefined(symName, this, true);
|
|
std::string fallback = std::string(objSym.getCOFFWeakExternalFallback());
|
|
Symbol *alias = symtab.addUndefined(saver.save(fallback));
|
|
checkAndSetWeakAlias(symtab, this, sym, alias, false);
|
|
} else if (comdatIndex != -1) {
|
|
if (symName == obj->getComdatTable()[comdatIndex].first) {
|
|
sym = comdat[comdatIndex].first;
|
|
if (cast<DefinedRegular>(sym)->data == nullptr)
|
|
cast<DefinedRegular>(sym)->data = &fakeSC->repl;
|
|
} else if (comdat[comdatIndex].second) {
|
|
sym = symtab.addRegular(this, symName, nullptr, fakeSC);
|
|
} else {
|
|
sym = symtab.addUndefined(symName, this, false);
|
|
}
|
|
} else {
|
|
sym =
|
|
symtab.addRegular(this, symName, nullptr, fakeSC, 0, objSym.isWeak());
|
|
}
|
|
symbols.push_back(sym);
|
|
if (objSym.isUsed())
|
|
symtab.ctx.config.gcroot.push_back(sym);
|
|
}
|
|
directives = saver.save(obj->getCOFFLinkerOpts());
|
|
}
|
|
|
|
void BitcodeFile::parseLazy() {
|
|
for (const lto::InputFile::Symbol &sym : obj->symbols())
|
|
if (!sym.isUndefined()) {
|
|
symtab.addLazyObject(this, sym.getName());
|
|
if (!lazy)
|
|
return;
|
|
}
|
|
}
|
|
|
|
MachineTypes BitcodeFile::getMachineType() const {
|
|
Triple t(obj->getTargetTriple());
|
|
switch (t.getArch()) {
|
|
case Triple::x86_64:
|
|
return AMD64;
|
|
case Triple::x86:
|
|
return I386;
|
|
case Triple::arm:
|
|
case Triple::thumb:
|
|
return ARMNT;
|
|
case Triple::aarch64:
|
|
return t.isWindowsArm64EC() ? ARM64EC : ARM64;
|
|
default:
|
|
return IMAGE_FILE_MACHINE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
std::string lld::coff::replaceThinLTOSuffix(StringRef path, StringRef suffix,
|
|
StringRef repl) {
|
|
if (path.consume_back(suffix))
|
|
return (path + repl).str();
|
|
return std::string(path);
|
|
}
|
|
|
|
static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) {
|
|
for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) {
|
|
const coff_section *sec = CHECK(coffObj->getSection(i), file);
|
|
if (rva >= sec->VirtualAddress &&
|
|
rva <= sec->VirtualAddress + sec->VirtualSize) {
|
|
return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void DLLFile::parse() {
|
|
// Parse a memory buffer as a PE-COFF executable.
|
|
std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
|
|
|
|
if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
|
|
bin.release();
|
|
coffObj.reset(obj);
|
|
} else {
|
|
Err(symtab.ctx) << toString(this) << " is not a COFF file";
|
|
return;
|
|
}
|
|
|
|
if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) {
|
|
Err(symtab.ctx) << toString(this) << " is not a PE-COFF executable";
|
|
return;
|
|
}
|
|
|
|
for (const auto &exp : coffObj->export_directories()) {
|
|
StringRef dllName, symbolName;
|
|
uint32_t exportRVA;
|
|
checkError(exp.getDllName(dllName));
|
|
checkError(exp.getSymbolName(symbolName));
|
|
checkError(exp.getExportRVA(exportRVA));
|
|
|
|
if (symbolName.empty())
|
|
continue;
|
|
|
|
bool code = isRVACode(coffObj.get(), exportRVA, this);
|
|
|
|
Symbol *s = make<Symbol>();
|
|
s->dllName = dllName;
|
|
s->symbolName = symbolName;
|
|
s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA;
|
|
s->nameType = ImportNameType::IMPORT_NAME;
|
|
|
|
if (coffObj->getMachine() == I386) {
|
|
s->symbolName = symbolName = saver().save("_" + symbolName);
|
|
s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX;
|
|
}
|
|
|
|
StringRef impName = saver().save("__imp_" + symbolName);
|
|
symtab.addLazyDLLSymbol(this, s, impName);
|
|
if (code)
|
|
symtab.addLazyDLLSymbol(this, s, symbolName);
|
|
}
|
|
}
|
|
|
|
MachineTypes DLLFile::getMachineType() const {
|
|
if (coffObj)
|
|
return static_cast<MachineTypes>(coffObj->getMachine());
|
|
return IMAGE_FILE_MACHINE_UNKNOWN;
|
|
}
|
|
|
|
void DLLFile::makeImport(DLLFile::Symbol *s) {
|
|
if (!seen.insert(s->symbolName).second)
|
|
return;
|
|
|
|
size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs
|
|
size_t size = sizeof(coff_import_header) + impSize;
|
|
char *buf = bAlloc().Allocate<char>(size);
|
|
memset(buf, 0, size);
|
|
char *p = buf;
|
|
auto *imp = reinterpret_cast<coff_import_header *>(p);
|
|
p += sizeof(*imp);
|
|
imp->Sig2 = 0xFFFF;
|
|
imp->Machine = coffObj->getMachine();
|
|
imp->SizeOfData = impSize;
|
|
imp->OrdinalHint = 0; // Only linking by name
|
|
imp->TypeInfo = (s->nameType << 2) | s->importType;
|
|
|
|
// Write symbol name and DLL name.
|
|
memcpy(p, s->symbolName.data(), s->symbolName.size());
|
|
p += s->symbolName.size() + 1;
|
|
memcpy(p, s->dllName.data(), s->dllName.size());
|
|
MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName);
|
|
ImportFile *impFile = make<ImportFile>(symtab.ctx, mbref);
|
|
symtab.ctx.driver.addFile(impFile);
|
|
}
|