llvm-project/llvm/test/Transforms/LoopVectorize/uniform-args-call-variants.ll
Nikita Popov a105877646
[InstCombine] Remove some of the complexity-based canonicalization (#91185)
The idea behind this canonicalization is that it allows us to handle less
patterns, because we know that some will be canonicalized away. This is
indeed very useful to e.g. know that constants are always on the right.

However, this is only useful if the canonicalization is actually
reliable. This is the case for constants, but not for arguments: Moving
these to the right makes it look like the "more complex" expression is
guaranteed to be on the left, but this is not actually the case in
practice. It fails as soon as you replace the argument with another
instruction.

The end result is that it looks like things correctly work in tests,
while they actually don't. We use the "thwart complexity-based
canonicalization" trick to handle this in tests, but it's often a
challenge for new contributors to get this right, and based on the
regressions this PR originally exposed, we clearly don't get this right
in many cases.

For this reason, I think that it's better to remove this complexity
canonicalization. It will make it much easier to write tests for
commuted cases and make sure that they are handled.
2024-08-21 12:02:54 +02:00

134 lines
7.3 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 2
; RUN: opt < %s -passes=loop-vectorize,instcombine -force-vector-width=2 -force-vector-interleave=1 -S | FileCheck %s
; A call whose argument can remain a scalar for a vectorized function variant
; with a uniform argument because it's loop invariant
define void @test_uniform(ptr noalias %dst, ptr readonly %src, i64 %uniform , i64 %n) {
; CHECK-LABEL: define void @test_uniform
; CHECK-SAME: (ptr noalias [[DST:%.*]], ptr readonly [[SRC:%.*]], i64 [[UNIFORM:%.*]], i64 [[N:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], 2
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[N]], -2
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP0:%.*]] = getelementptr double, ptr [[SRC]], i64 [[INDEX]]
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <2 x double>, ptr [[TMP0]], align 8
; CHECK-NEXT: [[TMP1:%.*]] = call <2 x double> @foo_uniform(<2 x double> [[WIDE_LOAD]], i64 [[UNIFORM]])
; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds double, ptr [[DST]], i64 [[INDEX]]
; CHECK-NEXT: store <2 x double> [[TMP1]], ptr [[TMP2]], align 8
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], 2
; CHECK-NEXT: [[TMP3:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP3]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP0:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_COND_CLEANUP:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[INDVARS_IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[GEPSRC:%.*]] = getelementptr double, ptr [[SRC]], i64 [[INDVARS_IV]]
; CHECK-NEXT: [[DATA:%.*]] = load double, ptr [[GEPSRC]], align 8
; CHECK-NEXT: [[CALL:%.*]] = call double @foo(double [[DATA]], i64 [[UNIFORM]]) #[[ATTR0:[0-9]+]]
; CHECK-NEXT: [[GEPDST:%.*]] = getelementptr inbounds double, ptr [[DST]], i64 [[INDVARS_IV]]
; CHECK-NEXT: store double [[CALL]], ptr [[GEPDST]], align 8
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[INDVARS_IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_COND_CLEANUP]], label [[FOR_BODY]], !llvm.loop [[LOOP3:![0-9]+]]
; CHECK: for.cond.cleanup:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%gepsrc = getelementptr double, ptr %src, i64 %indvars.iv
%data = load double, ptr %gepsrc, align 8
%call = call double @foo(double %data, i64 %uniform) #0
%gepdst = getelementptr inbounds double, ptr %dst, i64 %indvars.iv
store double %call, ptr %gepdst
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %n
br i1 %exitcond, label %for.cond.cleanup, label %for.body
for.cond.cleanup:
ret void
}
; If the parameter is not uniform, then we can't use the vector variant and
; must fall back to scalarization.
define void @test_uniform_not_invariant(ptr noalias %dst, ptr readonly %src, i64 %n) {
; CHECK-LABEL: define void @test_uniform_not_invariant
; CHECK-SAME: (ptr noalias [[DST:%.*]], ptr readonly [[SRC:%.*]], i64 [[N:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], 2
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[N]], -2
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP0:%.*]] = or disjoint i64 [[INDEX]], 1
; CHECK-NEXT: [[TMP1:%.*]] = getelementptr double, ptr [[SRC]], i64 [[INDEX]]
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <2 x double>, ptr [[TMP1]], align 8
; CHECK-NEXT: [[TMP2:%.*]] = extractelement <2 x double> [[WIDE_LOAD]], i64 0
; CHECK-NEXT: [[TMP3:%.*]] = call double @foo(double [[TMP2]], i64 [[INDEX]]) #[[ATTR0]]
; CHECK-NEXT: [[TMP4:%.*]] = extractelement <2 x double> [[WIDE_LOAD]], i64 1
; CHECK-NEXT: [[TMP5:%.*]] = call double @foo(double [[TMP4]], i64 [[TMP0]]) #[[ATTR0]]
; CHECK-NEXT: [[TMP6:%.*]] = insertelement <2 x double> poison, double [[TMP3]], i64 0
; CHECK-NEXT: [[TMP7:%.*]] = insertelement <2 x double> [[TMP6]], double [[TMP5]], i64 1
; CHECK-NEXT: [[TMP8:%.*]] = getelementptr inbounds double, ptr [[DST]], i64 [[INDEX]]
; CHECK-NEXT: store <2 x double> [[TMP7]], ptr [[TMP8]], align 8
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], 2
; CHECK-NEXT: [[TMP9:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP9]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP4:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_COND_CLEANUP:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[INDVARS_IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[GEPSRC:%.*]] = getelementptr double, ptr [[SRC]], i64 [[INDVARS_IV]]
; CHECK-NEXT: [[DATA:%.*]] = load double, ptr [[GEPSRC]], align 8
; CHECK-NEXT: [[CALL:%.*]] = call double @foo(double [[DATA]], i64 [[INDVARS_IV]]) #[[ATTR0]]
; CHECK-NEXT: [[GEPDST:%.*]] = getelementptr inbounds double, ptr [[DST]], i64 [[INDVARS_IV]]
; CHECK-NEXT: store double [[CALL]], ptr [[GEPDST]], align 8
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[INDVARS_IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_COND_CLEANUP]], label [[FOR_BODY]], !llvm.loop [[LOOP5:![0-9]+]]
; CHECK: for.cond.cleanup:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%gepsrc = getelementptr double, ptr %src, i64 %indvars.iv
%data = load double, ptr %gepsrc, align 8
%call = call double @foo(double %data, i64 %indvars.iv) #0
%gepdst = getelementptr inbounds double, ptr %dst, i64 %indvars.iv
store double %call, ptr %gepdst
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %n
br i1 %exitcond, label %for.cond.cleanup, label %for.body
for.cond.cleanup:
ret void
}
; Scalar functions
declare double @foo(double, i64)
; Vector variants
declare <2 x double> @foo_uniform(<2 x double>, i64)
; Mappings
attributes #0 = { nounwind "vector-function-abi-variant"="_ZGV_LLVM_N2vu_foo(foo_uniform)" }