mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-03 06:46:06 +00:00

This patch creates a temporary of the appropriate length while lowering SetLength. The corresponding character can be truncated or padded if necessary. This fix issue with array constructor in argument and also with statement function. D132464 was fixing the same issue in genval. Reviewed By: jeanPerier Differential Revision: https://reviews.llvm.org/D132866
7794 lines
349 KiB
C++
7794 lines
349 KiB
C++
//===-- ConvertExpr.cpp ---------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Lower/ConvertExpr.h"
|
|
#include "flang/Common/default-kinds.h"
|
|
#include "flang/Common/unwrap.h"
|
|
#include "flang/Evaluate/fold.h"
|
|
#include "flang/Evaluate/real.h"
|
|
#include "flang/Evaluate/traverse.h"
|
|
#include "flang/Lower/Allocatable.h"
|
|
#include "flang/Lower/Bridge.h"
|
|
#include "flang/Lower/BuiltinModules.h"
|
|
#include "flang/Lower/CallInterface.h"
|
|
#include "flang/Lower/Coarray.h"
|
|
#include "flang/Lower/ComponentPath.h"
|
|
#include "flang/Lower/ConvertType.h"
|
|
#include "flang/Lower/ConvertVariable.h"
|
|
#include "flang/Lower/CustomIntrinsicCall.h"
|
|
#include "flang/Lower/DumpEvaluateExpr.h"
|
|
#include "flang/Lower/IntrinsicCall.h"
|
|
#include "flang/Lower/Mangler.h"
|
|
#include "flang/Lower/Runtime.h"
|
|
#include "flang/Lower/Support/Utils.h"
|
|
#include "flang/Optimizer/Builder/Character.h"
|
|
#include "flang/Optimizer/Builder/Complex.h"
|
|
#include "flang/Optimizer/Builder/Factory.h"
|
|
#include "flang/Optimizer/Builder/Runtime/Character.h"
|
|
#include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
|
|
#include "flang/Optimizer/Builder/Runtime/Ragged.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Optimizer/Dialect/FIRAttr.h"
|
|
#include "flang/Optimizer/Dialect/FIRDialect.h"
|
|
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
|
|
#include "flang/Optimizer/Support/FatalError.h"
|
|
#include "flang/Semantics/expression.h"
|
|
#include "flang/Semantics/symbol.h"
|
|
#include "flang/Semantics/tools.h"
|
|
#include "flang/Semantics/type.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
|
|
#define DEBUG_TYPE "flang-lower-expr"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// The composition and structure of Fortran::evaluate::Expr is defined in
|
|
// the various header files in include/flang/Evaluate. You are referred
|
|
// there for more information on these data structures. Generally speaking,
|
|
// these data structures are a strongly typed family of abstract data types
|
|
// that, composed as trees, describe the syntax of Fortran expressions.
|
|
//
|
|
// This part of the bridge can traverse these tree structures and lower them
|
|
// to the correct FIR representation in SSA form.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static llvm::cl::opt<bool> generateArrayCoordinate(
|
|
"gen-array-coor",
|
|
llvm::cl::desc("in lowering create ArrayCoorOp instead of CoordinateOp"),
|
|
llvm::cl::init(false));
|
|
|
|
// The default attempts to balance a modest allocation size with expected user
|
|
// input to minimize bounds checks and reallocations during dynamic array
|
|
// construction. Some user codes may have very large array constructors for
|
|
// which the default can be increased.
|
|
static llvm::cl::opt<unsigned> clInitialBufferSize(
|
|
"array-constructor-initial-buffer-size",
|
|
llvm::cl::desc(
|
|
"set the incremental array construction buffer size (default=32)"),
|
|
llvm::cl::init(32u));
|
|
|
|
// Lower TRANSPOSE as an "elemental" function that swaps the array
|
|
// expression's iteration space, so that no runtime call is needed.
|
|
// This lowering may help get rid of unnecessary creation of temporary
|
|
// arrays. Note that the runtime TRANSPOSE implementation may be different
|
|
// from the "inline" FIR, e.g. it may diagnose out-of-memory conditions
|
|
// during the temporary allocation whereas the inline implementation
|
|
// relies on AllocMemOp that will silently return null in case
|
|
// there is not enough memory.
|
|
//
|
|
// If it is set to false, then TRANSPOSE will be lowered using
|
|
// a runtime call. If it is set to true, then the lowering is controlled
|
|
// by LoweringOptions::optimizeTranspose bit (see isTransposeOptEnabled
|
|
// function in this file).
|
|
static llvm::cl::opt<bool> optimizeTranspose(
|
|
"opt-transpose",
|
|
llvm::cl::desc("lower transpose without using a runtime call"),
|
|
llvm::cl::init(true));
|
|
|
|
/// The various semantics of a program constituent (or a part thereof) as it may
|
|
/// appear in an expression.
|
|
///
|
|
/// Given the following Fortran declarations.
|
|
/// ```fortran
|
|
/// REAL :: v1, v2, v3
|
|
/// REAL, POINTER :: vp1
|
|
/// REAL :: a1(c), a2(c)
|
|
/// REAL ELEMENTAL FUNCTION f1(arg) ! array -> array
|
|
/// FUNCTION f2(arg) ! array -> array
|
|
/// vp1 => v3 ! 1
|
|
/// v1 = v2 * vp1 ! 2
|
|
/// a1 = a1 + a2 ! 3
|
|
/// a1 = f1(a2) ! 4
|
|
/// a1 = f2(a2) ! 5
|
|
/// ```
|
|
///
|
|
/// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is
|
|
/// constructed from the DataAddr of `v3`.
|
|
/// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed
|
|
/// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double
|
|
/// dereference in the `vp1` case.
|
|
/// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs
|
|
/// is CopyInCopyOut as `a1` is replaced elementally by the additions.
|
|
/// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if
|
|
/// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/
|
|
/// POINTER, respectively. `a1` on the lhs is CopyInCopyOut.
|
|
/// In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational.
|
|
/// `a1` on the lhs is again CopyInCopyOut.
|
|
enum class ConstituentSemantics {
|
|
// Scalar data reference semantics.
|
|
//
|
|
// For these let `v` be the location in memory of a variable with value `x`
|
|
DataValue, // refers to the value `x`
|
|
DataAddr, // refers to the address `v`
|
|
BoxValue, // refers to a box value containing `v`
|
|
BoxAddr, // refers to the address of a box value containing `v`
|
|
|
|
// Array data reference semantics.
|
|
//
|
|
// For these let `a` be the location in memory of a sequence of value `[xs]`.
|
|
// Let `x_i` be the `i`-th value in the sequence `[xs]`.
|
|
|
|
// Referentially transparent. Refers to the array's value, `[xs]`.
|
|
RefTransparent,
|
|
// Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7
|
|
// note 2). (Passing a copy by reference to simulate pass-by-value.)
|
|
ByValueArg,
|
|
// Refers to the merge of array value `[xs]` with another array value `[ys]`.
|
|
// This merged array value will be written into memory location `a`.
|
|
CopyInCopyOut,
|
|
// Similar to CopyInCopyOut but `a` may be a transient projection (rather than
|
|
// a whole array).
|
|
ProjectedCopyInCopyOut,
|
|
// Similar to ProjectedCopyInCopyOut, except the merge value is not assigned
|
|
// automatically by the framework. Instead, and address for `[xs]` is made
|
|
// accessible so that custom assignments to `[xs]` can be implemented.
|
|
CustomCopyInCopyOut,
|
|
// Referentially opaque. Refers to the address of `x_i`.
|
|
RefOpaque
|
|
};
|
|
|
|
/// Convert parser's INTEGER relational operators to MLIR. TODO: using
|
|
/// unordered, but we may want to cons ordered in certain situation.
|
|
static mlir::arith::CmpIPredicate
|
|
translateRelational(Fortran::common::RelationalOperator rop) {
|
|
switch (rop) {
|
|
case Fortran::common::RelationalOperator::LT:
|
|
return mlir::arith::CmpIPredicate::slt;
|
|
case Fortran::common::RelationalOperator::LE:
|
|
return mlir::arith::CmpIPredicate::sle;
|
|
case Fortran::common::RelationalOperator::EQ:
|
|
return mlir::arith::CmpIPredicate::eq;
|
|
case Fortran::common::RelationalOperator::NE:
|
|
return mlir::arith::CmpIPredicate::ne;
|
|
case Fortran::common::RelationalOperator::GT:
|
|
return mlir::arith::CmpIPredicate::sgt;
|
|
case Fortran::common::RelationalOperator::GE:
|
|
return mlir::arith::CmpIPredicate::sge;
|
|
}
|
|
llvm_unreachable("unhandled INTEGER relational operator");
|
|
}
|
|
|
|
/// Convert parser's REAL relational operators to MLIR.
|
|
/// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018
|
|
/// requirements in the IEEE context (table 17.1 of F2018). This choice is
|
|
/// also applied in other contexts because it is easier and in line with
|
|
/// other Fortran compilers.
|
|
/// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not
|
|
/// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee
|
|
/// whether the comparison will signal or not in case of quiet NaN argument.
|
|
static mlir::arith::CmpFPredicate
|
|
translateFloatRelational(Fortran::common::RelationalOperator rop) {
|
|
switch (rop) {
|
|
case Fortran::common::RelationalOperator::LT:
|
|
return mlir::arith::CmpFPredicate::OLT;
|
|
case Fortran::common::RelationalOperator::LE:
|
|
return mlir::arith::CmpFPredicate::OLE;
|
|
case Fortran::common::RelationalOperator::EQ:
|
|
return mlir::arith::CmpFPredicate::OEQ;
|
|
case Fortran::common::RelationalOperator::NE:
|
|
return mlir::arith::CmpFPredicate::UNE;
|
|
case Fortran::common::RelationalOperator::GT:
|
|
return mlir::arith::CmpFPredicate::OGT;
|
|
case Fortran::common::RelationalOperator::GE:
|
|
return mlir::arith::CmpFPredicate::OGE;
|
|
}
|
|
llvm_unreachable("unhandled REAL relational operator");
|
|
}
|
|
|
|
static mlir::Value genActualIsPresentTest(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
fir::ExtendedValue actual) {
|
|
if (const auto *ptrOrAlloc = actual.getBoxOf<fir::MutableBoxValue>())
|
|
return fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
|
|
*ptrOrAlloc);
|
|
// Optional case (not that optional allocatable/pointer cannot be absent
|
|
// when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is
|
|
// therefore possible to catch them in the `then` case above.
|
|
return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(),
|
|
fir::getBase(actual));
|
|
}
|
|
|
|
/// Convert the array_load, `load`, to an extended value. If `path` is not
|
|
/// empty, then traverse through the components designated. The base value is
|
|
/// `newBase`. This does not accept an array_load with a slice operand.
|
|
static fir::ExtendedValue
|
|
arrayLoadExtValue(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
fir::ArrayLoadOp load, llvm::ArrayRef<mlir::Value> path,
|
|
mlir::Value newBase, mlir::Value newLen = {}) {
|
|
// Recover the extended value from the load.
|
|
if (load.getSlice())
|
|
fir::emitFatalError(loc, "array_load with slice is not allowed");
|
|
mlir::Type arrTy = load.getType();
|
|
if (!path.empty()) {
|
|
mlir::Type ty = fir::applyPathToType(arrTy, path);
|
|
if (!ty)
|
|
fir::emitFatalError(loc, "path does not apply to type");
|
|
if (!ty.isa<fir::SequenceType>()) {
|
|
if (fir::isa_char(ty)) {
|
|
mlir::Value len = newLen;
|
|
if (!len)
|
|
len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
|
|
load.getMemref());
|
|
if (!len) {
|
|
assert(load.getTypeparams().size() == 1 &&
|
|
"length must be in array_load");
|
|
len = load.getTypeparams()[0];
|
|
}
|
|
return fir::CharBoxValue{newBase, len};
|
|
}
|
|
return newBase;
|
|
}
|
|
arrTy = ty.cast<fir::SequenceType>();
|
|
}
|
|
|
|
auto arrayToExtendedValue =
|
|
[&](const llvm::SmallVector<mlir::Value> &extents,
|
|
const llvm::SmallVector<mlir::Value> &origins) -> fir::ExtendedValue {
|
|
mlir::Type eleTy = fir::unwrapSequenceType(arrTy);
|
|
if (fir::isa_char(eleTy)) {
|
|
mlir::Value len = newLen;
|
|
if (!len)
|
|
len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
|
|
load.getMemref());
|
|
if (!len) {
|
|
assert(load.getTypeparams().size() == 1 &&
|
|
"length must be in array_load");
|
|
len = load.getTypeparams()[0];
|
|
}
|
|
return fir::CharArrayBoxValue(newBase, len, extents, origins);
|
|
}
|
|
return fir::ArrayBoxValue(newBase, extents, origins);
|
|
};
|
|
// Use the shape op, if there is one.
|
|
mlir::Value shapeVal = load.getShape();
|
|
if (shapeVal) {
|
|
if (!mlir::isa<fir::ShiftOp>(shapeVal.getDefiningOp())) {
|
|
auto extents = fir::factory::getExtents(shapeVal);
|
|
auto origins = fir::factory::getOrigins(shapeVal);
|
|
return arrayToExtendedValue(extents, origins);
|
|
}
|
|
if (!fir::isa_box_type(load.getMemref().getType()))
|
|
fir::emitFatalError(loc, "shift op is invalid in this context");
|
|
}
|
|
|
|
// If we're dealing with the array_load op (not a subobject) and the load does
|
|
// not have any type parameters, then read the extents from the original box.
|
|
// The origin may be either from the box or a shift operation. Create and
|
|
// return the array extended value.
|
|
if (path.empty() && load.getTypeparams().empty()) {
|
|
auto oldBox = load.getMemref();
|
|
fir::ExtendedValue exv = fir::factory::readBoxValue(builder, loc, oldBox);
|
|
auto extents = fir::factory::getExtents(loc, builder, exv);
|
|
auto origins = fir::factory::getNonDefaultLowerBounds(builder, loc, exv);
|
|
if (shapeVal) {
|
|
// shapeVal is a ShiftOp and load.memref() is a boxed value.
|
|
newBase = builder.create<fir::ReboxOp>(loc, oldBox.getType(), oldBox,
|
|
shapeVal, /*slice=*/mlir::Value{});
|
|
origins = fir::factory::getOrigins(shapeVal);
|
|
}
|
|
return fir::substBase(arrayToExtendedValue(extents, origins), newBase);
|
|
}
|
|
TODO(loc, "path to a POINTER, ALLOCATABLE, or other component that requires "
|
|
"dereferencing; generating the type parameters is a hard "
|
|
"requirement for correctness.");
|
|
}
|
|
|
|
/// Place \p exv in memory if it is not already a memory reference. If
|
|
/// \p forceValueType is provided, the value is first casted to the provided
|
|
/// type before being stored (this is mainly intended for logicals whose value
|
|
/// may be `i1` but needed to be stored as Fortran logicals).
|
|
static fir::ExtendedValue
|
|
placeScalarValueInMemory(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
const fir::ExtendedValue &exv,
|
|
mlir::Type storageType) {
|
|
mlir::Value valBase = fir::getBase(exv);
|
|
if (fir::conformsWithPassByRef(valBase.getType()))
|
|
return exv;
|
|
|
|
assert(!fir::hasDynamicSize(storageType) &&
|
|
"only expect statically sized scalars to be by value");
|
|
|
|
// Since `a` is not itself a valid referent, determine its value and
|
|
// create a temporary location at the beginning of the function for
|
|
// referencing.
|
|
mlir::Value val = builder.createConvert(loc, storageType, valBase);
|
|
mlir::Value temp = builder.createTemporary(
|
|
loc, storageType,
|
|
llvm::ArrayRef<mlir::NamedAttribute>{
|
|
Fortran::lower::getAdaptToByRefAttr(builder)});
|
|
builder.create<fir::StoreOp>(loc, val, temp);
|
|
return fir::substBase(exv, temp);
|
|
}
|
|
|
|
// Copy a copy of scalar \p exv in a new temporary.
|
|
static fir::ExtendedValue
|
|
createInMemoryScalarCopy(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
const fir::ExtendedValue &exv) {
|
|
assert(exv.rank() == 0 && "input to scalar memory copy must be a scalar");
|
|
if (exv.getCharBox() != nullptr)
|
|
return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(exv);
|
|
if (fir::isDerivedWithLenParameters(exv))
|
|
TODO(loc, "copy derived type with length parameters");
|
|
mlir::Type type = fir::unwrapPassByRefType(fir::getBase(exv).getType());
|
|
fir::ExtendedValue temp = builder.createTemporary(loc, type);
|
|
fir::factory::genScalarAssignment(builder, loc, temp, exv);
|
|
return temp;
|
|
}
|
|
|
|
// An expression with non-zero rank is an array expression.
|
|
template <typename A>
|
|
static bool isArray(const A &x) {
|
|
return x.Rank() != 0;
|
|
}
|
|
|
|
/// Is this a variable wrapped in parentheses?
|
|
template <typename A>
|
|
static bool isParenthesizedVariable(const A &) {
|
|
return false;
|
|
}
|
|
template <typename T>
|
|
static bool isParenthesizedVariable(const Fortran::evaluate::Expr<T> &expr) {
|
|
using ExprVariant = decltype(Fortran::evaluate::Expr<T>::u);
|
|
using Parentheses = Fortran::evaluate::Parentheses<T>;
|
|
if constexpr (Fortran::common::HasMember<Parentheses, ExprVariant>) {
|
|
if (const auto *parentheses = std::get_if<Parentheses>(&expr.u))
|
|
return Fortran::evaluate::IsVariable(parentheses->left());
|
|
return false;
|
|
} else {
|
|
return std::visit([&](const auto &x) { return isParenthesizedVariable(x); },
|
|
expr.u);
|
|
}
|
|
}
|
|
|
|
/// Does \p expr only refer to symbols that are mapped to IR values in \p symMap
|
|
/// ?
|
|
static bool allSymbolsInExprPresentInMap(const Fortran::lower::SomeExpr &expr,
|
|
Fortran::lower::SymMap &symMap) {
|
|
for (const auto &sym : Fortran::evaluate::CollectSymbols(expr))
|
|
if (!symMap.lookupSymbol(sym))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Generate a load of a value from an address. Beware that this will lose
|
|
/// any dynamic type information for polymorphic entities (note that unlimited
|
|
/// polymorphic cannot be loaded and must not be provided here).
|
|
static fir::ExtendedValue genLoad(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
const fir::ExtendedValue &addr) {
|
|
return addr.match(
|
|
[](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; },
|
|
[&](const fir::UnboxedValue &v) -> fir::ExtendedValue {
|
|
if (fir::unwrapRefType(fir::getBase(v).getType())
|
|
.isa<fir::RecordType>())
|
|
return v;
|
|
return builder.create<fir::LoadOp>(loc, fir::getBase(v));
|
|
},
|
|
[&](const fir::MutableBoxValue &box) -> fir::ExtendedValue {
|
|
return genLoad(builder, loc,
|
|
fir::factory::genMutableBoxRead(builder, loc, box));
|
|
},
|
|
[&](const fir::BoxValue &box) -> fir::ExtendedValue {
|
|
if (box.isUnlimitedPolymorphic())
|
|
fir::emitFatalError(
|
|
loc, "attempting to load an unlimited polymorphic entity");
|
|
return genLoad(builder, loc,
|
|
fir::factory::readBoxValue(builder, loc, box));
|
|
},
|
|
[&](const auto &) -> fir::ExtendedValue {
|
|
fir::emitFatalError(
|
|
loc, "attempting to load whole array or procedure address");
|
|
});
|
|
}
|
|
|
|
/// Create an optional dummy argument value from entity \p exv that may be
|
|
/// absent. This can only be called with numerical or logical scalar \p exv.
|
|
/// If \p exv is considered absent according to 15.5.2.12 point 1., the returned
|
|
/// value is zero (or false), otherwise it is the value of \p exv.
|
|
static fir::ExtendedValue genOptionalValue(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
const fir::ExtendedValue &exv,
|
|
mlir::Value isPresent) {
|
|
mlir::Type eleType = fir::getBaseTypeOf(exv);
|
|
assert(exv.rank() == 0 && fir::isa_trivial(eleType) &&
|
|
"must be a numerical or logical scalar");
|
|
return builder
|
|
.genIfOp(loc, {eleType}, isPresent,
|
|
/*withElseRegion=*/true)
|
|
.genThen([&]() {
|
|
mlir::Value val = fir::getBase(genLoad(builder, loc, exv));
|
|
builder.create<fir::ResultOp>(loc, val);
|
|
})
|
|
.genElse([&]() {
|
|
mlir::Value zero = fir::factory::createZeroValue(builder, loc, eleType);
|
|
builder.create<fir::ResultOp>(loc, zero);
|
|
})
|
|
.getResults()[0];
|
|
}
|
|
|
|
/// Create an optional dummy argument address from entity \p exv that may be
|
|
/// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
|
|
/// returned value is a null pointer, otherwise it is the address of \p exv.
|
|
static fir::ExtendedValue genOptionalAddr(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
const fir::ExtendedValue &exv,
|
|
mlir::Value isPresent) {
|
|
// If it is an exv pointer/allocatable, then it cannot be absent
|
|
// because it is passed to a non-pointer/non-allocatable.
|
|
if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
|
|
return fir::factory::genMutableBoxRead(builder, loc, *box);
|
|
// If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL
|
|
// address and can be passed directly.
|
|
return exv;
|
|
}
|
|
|
|
/// Create an optional dummy argument address from entity \p exv that may be
|
|
/// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
|
|
/// returned value is an absent fir.box, otherwise it is a fir.box describing \p
|
|
/// exv.
|
|
static fir::ExtendedValue genOptionalBox(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
const fir::ExtendedValue &exv,
|
|
mlir::Value isPresent) {
|
|
// Non allocatable/pointer optional box -> simply forward
|
|
if (exv.getBoxOf<fir::BoxValue>())
|
|
return exv;
|
|
|
|
fir::ExtendedValue newExv = exv;
|
|
// Optional allocatable/pointer -> Cannot be absent, but need to translate
|
|
// unallocated/diassociated into absent fir.box.
|
|
if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
|
|
newExv = fir::factory::genMutableBoxRead(builder, loc, *box);
|
|
|
|
// createBox will not do create any invalid memory dereferences if exv is
|
|
// absent. The created fir.box will not be usable, but the SelectOp below
|
|
// ensures it won't be.
|
|
mlir::Value box = builder.createBox(loc, newExv);
|
|
mlir::Type boxType = box.getType();
|
|
auto absent = builder.create<fir::AbsentOp>(loc, boxType);
|
|
auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
|
|
loc, boxType, isPresent, box, absent);
|
|
return fir::BoxValue(boxOrAbsent);
|
|
}
|
|
|
|
/// Is this a call to an elemental procedure with at least one array argument?
|
|
static bool
|
|
isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef &procRef) {
|
|
if (procRef.IsElemental())
|
|
for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
|
|
procRef.arguments())
|
|
if (arg && arg->Rank() != 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
template <typename T>
|
|
static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr<T> &) {
|
|
return false;
|
|
}
|
|
template <>
|
|
bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr &x) {
|
|
if (const auto *procRef = std::get_if<Fortran::evaluate::ProcedureRef>(&x.u))
|
|
return isElementalProcWithArrayArgs(*procRef);
|
|
return false;
|
|
}
|
|
|
|
/// Some auxiliary data for processing initialization in ScalarExprLowering
|
|
/// below. This is currently used for generating dense attributed global
|
|
/// arrays.
|
|
struct InitializerData {
|
|
explicit InitializerData(bool getRawVals = false) : genRawVals{getRawVals} {}
|
|
llvm::SmallVector<mlir::Attribute> rawVals; // initialization raw values
|
|
mlir::Type rawType; // Type of elements processed for rawVals vector.
|
|
bool genRawVals; // generate the rawVals vector if set.
|
|
};
|
|
|
|
/// If \p arg is the address of a function with a denoted host-association tuple
|
|
/// argument, then return the host-associations tuple value of the current
|
|
/// procedure. Otherwise, return nullptr.
|
|
static mlir::Value
|
|
argumentHostAssocs(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Value arg) {
|
|
if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) {
|
|
auto &builder = converter.getFirOpBuilder();
|
|
if (auto funcOp = builder.getNamedFunction(addr.getSymbol()))
|
|
if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName()))
|
|
return converter.hostAssocTupleValue();
|
|
}
|
|
return {};
|
|
}
|
|
|
|
/// \p argTy must be a tuple (pair) of boxproc and integral types. Convert the
|
|
/// \p funcAddr argument to a boxproc value, with the host-association as
|
|
/// required. Call the factory function to finish creating the tuple value.
|
|
static mlir::Value
|
|
createBoxProcCharTuple(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Type argTy, mlir::Value funcAddr,
|
|
mlir::Value charLen) {
|
|
auto boxTy =
|
|
argTy.cast<mlir::TupleType>().getType(0).cast<fir::BoxProcType>();
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
auto &builder = converter.getFirOpBuilder();
|
|
auto boxProc = [&]() -> mlir::Value {
|
|
if (auto host = argumentHostAssocs(converter, funcAddr))
|
|
return builder.create<fir::EmboxProcOp>(
|
|
loc, boxTy, llvm::ArrayRef<mlir::Value>{funcAddr, host});
|
|
return builder.create<fir::EmboxProcOp>(loc, boxTy, funcAddr);
|
|
}();
|
|
return fir::factory::createCharacterProcedureTuple(builder, loc, argTy,
|
|
boxProc, charLen);
|
|
}
|
|
|
|
/// Given an optional fir.box, returns an fir.box that is the original one if
|
|
/// it is present and it otherwise an unallocated box.
|
|
/// Absent fir.box are implemented as a null pointer descriptor. Generated
|
|
/// code may need to unconditionally read a fir.box that can be absent.
|
|
/// This helper allows creating a fir.box that can be read in all cases
|
|
/// outside of a fir.if (isPresent) region. However, the usages of the value
|
|
/// read from such box should still only be done in a fir.if(isPresent).
|
|
static fir::ExtendedValue
|
|
absentBoxToUnallocatedBox(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
const fir::ExtendedValue &exv,
|
|
mlir::Value isPresent) {
|
|
mlir::Value box = fir::getBase(exv);
|
|
mlir::Type boxType = box.getType();
|
|
assert(boxType.isa<fir::BoxType>() && "argument must be a fir.box");
|
|
mlir::Value emptyBox =
|
|
fir::factory::createUnallocatedBox(builder, loc, boxType, llvm::None);
|
|
auto safeToReadBox =
|
|
builder.create<mlir::arith::SelectOp>(loc, isPresent, box, emptyBox);
|
|
return fir::substBase(exv, safeToReadBox);
|
|
}
|
|
|
|
// Helper to get the ultimate first symbol. This works around the fact that
|
|
// symbol resolution in the front end doesn't always resolve a symbol to its
|
|
// ultimate symbol but may leave placeholder indirections for use and host
|
|
// associations.
|
|
template <typename A>
|
|
const Fortran::semantics::Symbol &getFirstSym(const A &obj) {
|
|
return obj.GetFirstSymbol().GetUltimate();
|
|
}
|
|
|
|
// Helper to get the ultimate last symbol.
|
|
template <typename A>
|
|
const Fortran::semantics::Symbol &getLastSym(const A &obj) {
|
|
return obj.GetLastSymbol().GetUltimate();
|
|
}
|
|
|
|
static bool
|
|
isIntrinsicModuleProcRef(const Fortran::evaluate::ProcedureRef &procRef) {
|
|
const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
|
|
if (!symbol)
|
|
return false;
|
|
const Fortran::semantics::Symbol *module =
|
|
symbol->GetUltimate().owner().GetSymbol();
|
|
return module && module->attrs().test(Fortran::semantics::Attr::INTRINSIC) &&
|
|
module->name().ToString().find("omp_lib") == std::string::npos;
|
|
}
|
|
|
|
// Return true if TRANSPOSE should be lowered without a runtime call.
|
|
static bool
|
|
isTransposeOptEnabled(const Fortran::lower::AbstractConverter &converter) {
|
|
return optimizeTranspose &&
|
|
converter.getLoweringOptions().getOptimizeTranspose();
|
|
}
|
|
|
|
// A set of visitors to detect if the given expression
|
|
// is a TRANSPOSE call that should be lowered without using
|
|
// runtime TRANSPOSE implementation.
|
|
template <typename T>
|
|
static bool isOptimizableTranspose(const T &,
|
|
const Fortran::lower::AbstractConverter &) {
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
isOptimizableTranspose(const Fortran::evaluate::ProcedureRef &procRef,
|
|
const Fortran::lower::AbstractConverter &converter) {
|
|
const Fortran::evaluate::SpecificIntrinsic *intrin =
|
|
procRef.proc().GetSpecificIntrinsic();
|
|
return isTransposeOptEnabled(converter) && intrin &&
|
|
intrin->name == "transpose";
|
|
}
|
|
|
|
template <typename T>
|
|
static bool
|
|
isOptimizableTranspose(const Fortran::evaluate::FunctionRef<T> &funcRef,
|
|
const Fortran::lower::AbstractConverter &converter) {
|
|
return isOptimizableTranspose(
|
|
static_cast<const Fortran::evaluate::ProcedureRef &>(funcRef), converter);
|
|
}
|
|
|
|
template <typename T>
|
|
static bool
|
|
isOptimizableTranspose(Fortran::evaluate::Expr<T> expr,
|
|
const Fortran::lower::AbstractConverter &converter) {
|
|
// If optimizeTranspose is not enabled, return false right away.
|
|
if (!isTransposeOptEnabled(converter))
|
|
return false;
|
|
|
|
return std::visit(
|
|
[&](const auto &e) { return isOptimizableTranspose(e, converter); },
|
|
expr.u);
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Lowering of Fortran::evaluate::Expr<T> expressions
|
|
class ScalarExprLowering {
|
|
public:
|
|
using ExtValue = fir::ExtendedValue;
|
|
|
|
explicit ScalarExprLowering(mlir::Location loc,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
InitializerData *initializer = nullptr)
|
|
: location{loc}, converter{converter},
|
|
builder{converter.getFirOpBuilder()}, stmtCtx{stmtCtx}, symMap{symMap},
|
|
inInitializer{initializer} {}
|
|
|
|
ExtValue genExtAddr(const Fortran::lower::SomeExpr &expr) {
|
|
return gen(expr);
|
|
}
|
|
|
|
/// Lower `expr` to be passed as a fir.box argument. Do not create a temp
|
|
/// for the expr if it is a variable that can be described as a fir.box.
|
|
ExtValue genBoxArg(const Fortran::lower::SomeExpr &expr) {
|
|
bool saveUseBoxArg = useBoxArg;
|
|
useBoxArg = true;
|
|
ExtValue result = gen(expr);
|
|
useBoxArg = saveUseBoxArg;
|
|
return result;
|
|
}
|
|
|
|
ExtValue genExtValue(const Fortran::lower::SomeExpr &expr) {
|
|
return genval(expr);
|
|
}
|
|
|
|
/// Lower an expression that is a pointer or an allocatable to a
|
|
/// MutableBoxValue.
|
|
fir::MutableBoxValue
|
|
genMutableBoxValue(const Fortran::lower::SomeExpr &expr) {
|
|
// Pointers and allocatables can only be:
|
|
// - a simple designator "x"
|
|
// - a component designator "a%b(i,j)%x"
|
|
// - a function reference "foo()"
|
|
// - result of NULL() or NULL(MOLD) intrinsic.
|
|
// NULL() requires some context to be lowered, so it is not handled
|
|
// here and must be lowered according to the context where it appears.
|
|
ExtValue exv = std::visit(
|
|
[&](const auto &x) { return genMutableBoxValueImpl(x); }, expr.u);
|
|
const fir::MutableBoxValue *mutableBox =
|
|
exv.getBoxOf<fir::MutableBoxValue>();
|
|
if (!mutableBox)
|
|
fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue");
|
|
return *mutableBox;
|
|
}
|
|
|
|
template <typename T>
|
|
ExtValue genMutableBoxValueImpl(const T &) {
|
|
// NULL() case should not be handled here.
|
|
fir::emitFatalError(getLoc(), "NULL() must be lowered in its context");
|
|
}
|
|
|
|
/// A `NULL()` in a position where a mutable box is expected has the same
|
|
/// semantics as an absent optional box value.
|
|
ExtValue genMutableBoxValueImpl(const Fortran::evaluate::NullPointer &) {
|
|
mlir::Location loc = getLoc();
|
|
auto nullConst = builder.createNullConstant(loc);
|
|
auto noneTy = mlir::NoneType::get(builder.getContext());
|
|
auto polyRefTy = fir::LLVMPointerType::get(noneTy);
|
|
// MutableBoxValue will dereference the box, so create a bogus temporary for
|
|
// the `nullptr`. The LLVM optimizer will garbage collect the temp.
|
|
auto temp =
|
|
builder.createTemporary(loc, polyRefTy, /*shape=*/mlir::ValueRange{});
|
|
auto nullPtr = builder.createConvert(loc, polyRefTy, nullConst);
|
|
builder.create<fir::StoreOp>(loc, nullPtr, temp);
|
|
auto nullBoxTy = builder.getRefType(fir::BoxType::get(noneTy));
|
|
return fir::MutableBoxValue(builder.createConvert(loc, nullBoxTy, temp),
|
|
/*lenParameters=*/mlir::ValueRange{},
|
|
/*mutableProperties=*/{});
|
|
}
|
|
|
|
template <typename T>
|
|
ExtValue
|
|
genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef<T> &funRef) {
|
|
return genRawProcedureRef(funRef, converter.genType(toEvExpr(funRef)));
|
|
}
|
|
|
|
template <typename T>
|
|
ExtValue
|
|
genMutableBoxValueImpl(const Fortran::evaluate::Designator<T> &designator) {
|
|
return std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::SymbolRef &sym) -> ExtValue {
|
|
return symMap.lookupSymbol(*sym).toExtendedValue();
|
|
},
|
|
[&](const Fortran::evaluate::Component &comp) -> ExtValue {
|
|
return genComponent(comp);
|
|
},
|
|
[&](const auto &) -> ExtValue {
|
|
fir::emitFatalError(getLoc(),
|
|
"not an allocatable or pointer designator");
|
|
}},
|
|
designator.u);
|
|
}
|
|
|
|
template <typename T>
|
|
ExtValue genMutableBoxValueImpl(const Fortran::evaluate::Expr<T> &expr) {
|
|
return std::visit([&](const auto &x) { return genMutableBoxValueImpl(x); },
|
|
expr.u);
|
|
}
|
|
|
|
mlir::Location getLoc() { return location; }
|
|
|
|
template <typename A>
|
|
mlir::Value genunbox(const A &expr) {
|
|
ExtValue e = genval(expr);
|
|
if (const fir::UnboxedValue *r = e.getUnboxed())
|
|
return *r;
|
|
fir::emitFatalError(getLoc(), "unboxed expression expected");
|
|
}
|
|
|
|
/// Generate an integral constant of `value`
|
|
template <int KIND>
|
|
mlir::Value genIntegerConstant(mlir::MLIRContext *context,
|
|
std::int64_t value) {
|
|
mlir::Type type =
|
|
converter.genType(Fortran::common::TypeCategory::Integer, KIND);
|
|
return builder.createIntegerConstant(getLoc(), type, value);
|
|
}
|
|
|
|
/// Generate a logical/boolean constant of `value`
|
|
mlir::Value genBoolConstant(bool value) {
|
|
return builder.createBool(getLoc(), value);
|
|
}
|
|
|
|
/// Generate a real constant with a value `value`.
|
|
template <int KIND>
|
|
mlir::Value genRealConstant(mlir::MLIRContext *context,
|
|
const llvm::APFloat &value) {
|
|
mlir::Type fltTy = Fortran::lower::convertReal(context, KIND);
|
|
return builder.createRealConstant(getLoc(), fltTy, value);
|
|
}
|
|
|
|
mlir::Type getSomeKindInteger() { return builder.getIndexType(); }
|
|
|
|
mlir::func::FuncOp getFunction(llvm::StringRef name,
|
|
mlir::FunctionType funTy) {
|
|
if (mlir::func::FuncOp func = builder.getNamedFunction(name))
|
|
return func;
|
|
return builder.createFunction(getLoc(), name, funTy);
|
|
}
|
|
|
|
template <typename OpTy>
|
|
mlir::Value createCompareOp(mlir::arith::CmpIPredicate pred,
|
|
const ExtValue &left, const ExtValue &right) {
|
|
if (const fir::UnboxedValue *lhs = left.getUnboxed())
|
|
if (const fir::UnboxedValue *rhs = right.getUnboxed())
|
|
return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
|
|
fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
|
|
}
|
|
template <typename OpTy, typename A>
|
|
mlir::Value createCompareOp(const A &ex, mlir::arith::CmpIPredicate pred) {
|
|
ExtValue left = genval(ex.left());
|
|
return createCompareOp<OpTy>(pred, left, genval(ex.right()));
|
|
}
|
|
|
|
template <typename OpTy>
|
|
mlir::Value createFltCmpOp(mlir::arith::CmpFPredicate pred,
|
|
const ExtValue &left, const ExtValue &right) {
|
|
if (const fir::UnboxedValue *lhs = left.getUnboxed())
|
|
if (const fir::UnboxedValue *rhs = right.getUnboxed())
|
|
return builder.create<OpTy>(getLoc(), pred, *lhs, *rhs);
|
|
fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
|
|
}
|
|
template <typename OpTy, typename A>
|
|
mlir::Value createFltCmpOp(const A &ex, mlir::arith::CmpFPredicate pred) {
|
|
ExtValue left = genval(ex.left());
|
|
return createFltCmpOp<OpTy>(pred, left, genval(ex.right()));
|
|
}
|
|
|
|
/// Create a call to the runtime to compare two CHARACTER values.
|
|
/// Precondition: This assumes that the two values have `fir.boxchar` type.
|
|
mlir::Value createCharCompare(mlir::arith::CmpIPredicate pred,
|
|
const ExtValue &left, const ExtValue &right) {
|
|
return fir::runtime::genCharCompare(builder, getLoc(), pred, left, right);
|
|
}
|
|
|
|
template <typename A>
|
|
mlir::Value createCharCompare(const A &ex, mlir::arith::CmpIPredicate pred) {
|
|
ExtValue left = genval(ex.left());
|
|
return createCharCompare(pred, left, genval(ex.right()));
|
|
}
|
|
|
|
/// Returns a reference to a symbol or its box/boxChar descriptor if it has
|
|
/// one.
|
|
ExtValue gen(Fortran::semantics::SymbolRef sym) {
|
|
if (Fortran::lower::SymbolBox val = symMap.lookupSymbol(sym))
|
|
return val.match(
|
|
[&](const Fortran::lower::SymbolBox::PointerOrAllocatable &boxAddr) {
|
|
return fir::factory::genMutableBoxRead(builder, getLoc(), boxAddr);
|
|
},
|
|
[&val](auto &) { return val.toExtendedValue(); });
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "unknown symbol: " << sym << "\nmap: " << symMap << '\n');
|
|
fir::emitFatalError(getLoc(), "symbol is not mapped to any IR value");
|
|
}
|
|
|
|
ExtValue genLoad(const ExtValue &exv) {
|
|
return ::genLoad(builder, getLoc(), exv);
|
|
}
|
|
|
|
ExtValue genval(Fortran::semantics::SymbolRef sym) {
|
|
mlir::Location loc = getLoc();
|
|
ExtValue var = gen(sym);
|
|
if (const fir::UnboxedValue *s = var.getUnboxed())
|
|
if (fir::isa_ref_type(s->getType())) {
|
|
// A function with multiple entry points returning different types
|
|
// tags all result variables with one of the largest types to allow
|
|
// them to share the same storage. A reference to a result variable
|
|
// of one of the other types requires conversion to the actual type.
|
|
fir::UnboxedValue addr = *s;
|
|
if (Fortran::semantics::IsFunctionResult(sym)) {
|
|
mlir::Type resultType = converter.genType(*sym);
|
|
if (addr.getType() != resultType)
|
|
addr = builder.createConvert(loc, builder.getRefType(resultType),
|
|
addr);
|
|
}
|
|
return genLoad(addr);
|
|
}
|
|
return var;
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::BOZLiteralConstant &) {
|
|
TODO(getLoc(), "BOZ");
|
|
}
|
|
|
|
/// Return indirection to function designated in ProcedureDesignator.
|
|
/// The type of the function indirection is not guaranteed to match the one
|
|
/// of the ProcedureDesignator due to Fortran implicit typing rules.
|
|
ExtValue genval(const Fortran::evaluate::ProcedureDesignator &proc) {
|
|
mlir::Location loc = getLoc();
|
|
if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
|
|
proc.GetSpecificIntrinsic()) {
|
|
mlir::FunctionType signature =
|
|
Fortran::lower::translateSignature(proc, converter);
|
|
// Intrinsic lowering is based on the generic name, so retrieve it here in
|
|
// case it is different from the specific name. The type of the specific
|
|
// intrinsic is retained in the signature.
|
|
std::string genericName =
|
|
converter.getFoldingContext().intrinsics().GetGenericIntrinsicName(
|
|
intrinsic->name);
|
|
mlir::SymbolRefAttr symbolRefAttr =
|
|
Fortran::lower::getUnrestrictedIntrinsicSymbolRefAttr(
|
|
builder, loc, genericName, signature);
|
|
mlir::Value funcPtr =
|
|
builder.create<fir::AddrOfOp>(loc, signature, symbolRefAttr);
|
|
return funcPtr;
|
|
}
|
|
const Fortran::semantics::Symbol *symbol = proc.GetSymbol();
|
|
assert(symbol && "expected symbol in ProcedureDesignator");
|
|
mlir::Value funcPtr;
|
|
mlir::Value funcPtrResultLength;
|
|
if (Fortran::semantics::IsDummy(*symbol)) {
|
|
Fortran::lower::SymbolBox val = symMap.lookupSymbol(*symbol);
|
|
assert(val && "Dummy procedure not in symbol map");
|
|
funcPtr = val.getAddr();
|
|
if (fir::isCharacterProcedureTuple(funcPtr.getType(),
|
|
/*acceptRawFunc=*/false))
|
|
std::tie(funcPtr, funcPtrResultLength) =
|
|
fir::factory::extractCharacterProcedureTuple(builder, loc, funcPtr);
|
|
} else {
|
|
std::string name = converter.mangleName(*symbol);
|
|
mlir::func::FuncOp func =
|
|
Fortran::lower::getOrDeclareFunction(name, proc, converter);
|
|
funcPtr = builder.create<fir::AddrOfOp>(loc, func.getFunctionType(),
|
|
builder.getSymbolRefAttr(name));
|
|
}
|
|
if (Fortran::lower::mustPassLengthWithDummyProcedure(proc, converter)) {
|
|
// The result length, if available here, must be propagated along the
|
|
// procedure address so that call sites where the result length is assumed
|
|
// can retrieve the length.
|
|
Fortran::evaluate::DynamicType resultType = proc.GetType().value();
|
|
if (const auto &lengthExpr = resultType.GetCharLength()) {
|
|
// The length expression may refer to dummy argument symbols that are
|
|
// meaningless without any actual arguments. Leave the length as
|
|
// unknown in that case, it be resolved on the call site
|
|
// with the actual arguments.
|
|
if (allSymbolsInExprPresentInMap(toEvExpr(*lengthExpr), symMap)) {
|
|
mlir::Value rawLen = fir::getBase(genval(*lengthExpr));
|
|
// F2018 7.4.4.2 point 5.
|
|
funcPtrResultLength =
|
|
fir::factory::genMaxWithZero(builder, getLoc(), rawLen);
|
|
}
|
|
}
|
|
if (!funcPtrResultLength)
|
|
funcPtrResultLength = builder.createIntegerConstant(
|
|
loc, builder.getCharacterLengthType(), -1);
|
|
return fir::CharBoxValue{funcPtr, funcPtrResultLength};
|
|
}
|
|
return funcPtr;
|
|
}
|
|
ExtValue genval(const Fortran::evaluate::NullPointer &) {
|
|
return builder.createNullConstant(getLoc());
|
|
}
|
|
|
|
static bool
|
|
isDerivedTypeWithLenParameters(const Fortran::semantics::Symbol &sym) {
|
|
if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType())
|
|
if (const Fortran::semantics::DerivedTypeSpec *derived =
|
|
declTy->AsDerived())
|
|
return Fortran::semantics::CountLenParameters(*derived) > 0;
|
|
return false;
|
|
}
|
|
|
|
/// Lower structure constructor without a temporary. This can be used in
|
|
/// fir::GloablOp, and assumes that the structure component is a constant.
|
|
ExtValue genStructComponentInInitializer(
|
|
const Fortran::evaluate::StructureConstructor &ctor) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor));
|
|
auto recTy = ty.cast<fir::RecordType>();
|
|
auto fieldTy = fir::FieldType::get(ty.getContext());
|
|
mlir::Value res = builder.create<fir::UndefOp>(loc, recTy);
|
|
|
|
for (const auto &[sym, expr] : ctor.values()) {
|
|
// Parent components need more work because they do not appear in the
|
|
// fir.rec type.
|
|
if (sym->test(Fortran::semantics::Symbol::Flag::ParentComp))
|
|
TODO(loc, "parent component in structure constructor");
|
|
|
|
llvm::StringRef name = toStringRef(sym->name());
|
|
mlir::Type componentTy = recTy.getType(name);
|
|
// FIXME: type parameters must come from the derived-type-spec
|
|
auto field = builder.create<fir::FieldIndexOp>(
|
|
loc, fieldTy, name, ty,
|
|
/*typeParams=*/mlir::ValueRange{} /*TODO*/);
|
|
|
|
if (Fortran::semantics::IsAllocatable(sym))
|
|
TODO(loc, "allocatable component in structure constructor");
|
|
|
|
if (Fortran::semantics::IsPointer(sym)) {
|
|
mlir::Value initialTarget = Fortran::lower::genInitialDataTarget(
|
|
converter, loc, componentTy, expr.value());
|
|
res = builder.create<fir::InsertValueOp>(
|
|
loc, recTy, res, initialTarget,
|
|
builder.getArrayAttr(field.getAttributes()));
|
|
continue;
|
|
}
|
|
|
|
if (isDerivedTypeWithLenParameters(sym))
|
|
TODO(loc, "component with length parameters in structure constructor");
|
|
|
|
if (Fortran::semantics::IsBuiltinCPtr(sym)) {
|
|
// Builtin c_ptr and c_funptr have special handling because initial
|
|
// value are handled for them as an extension.
|
|
mlir::Value addr = fir::getBase(Fortran::lower::genExtAddrInInitializer(
|
|
converter, loc, expr.value()));
|
|
if (addr.getType() == componentTy) {
|
|
// Do nothing. The Ev::Expr was returned as a value that can be
|
|
// inserted directly to the component without an intermediary.
|
|
} else {
|
|
// The Ev::Expr returned is an initializer that is a pointer (e.g.,
|
|
// null) that must be inserted into an intermediate cptr record
|
|
// value's address field, which ought to be an intptr_t on the target.
|
|
assert((fir::isa_ref_type(addr.getType()) ||
|
|
addr.getType().isa<mlir::FunctionType>()) &&
|
|
"expect reference type for address field");
|
|
assert(fir::isa_derived(componentTy) &&
|
|
"expect C_PTR, C_FUNPTR to be a record");
|
|
auto cPtrRecTy = componentTy.cast<fir::RecordType>();
|
|
llvm::StringRef addrFieldName =
|
|
Fortran::lower::builtin::cptrFieldName;
|
|
mlir::Type addrFieldTy = cPtrRecTy.getType(addrFieldName);
|
|
auto addrField = builder.create<fir::FieldIndexOp>(
|
|
loc, fieldTy, addrFieldName, componentTy,
|
|
/*typeParams=*/mlir::ValueRange{});
|
|
mlir::Value castAddr = builder.createConvert(loc, addrFieldTy, addr);
|
|
auto undef = builder.create<fir::UndefOp>(loc, componentTy);
|
|
addr = builder.create<fir::InsertValueOp>(
|
|
loc, componentTy, undef, castAddr,
|
|
builder.getArrayAttr(addrField.getAttributes()));
|
|
}
|
|
res = builder.create<fir::InsertValueOp>(
|
|
loc, recTy, res, addr, builder.getArrayAttr(field.getAttributes()));
|
|
continue;
|
|
}
|
|
|
|
mlir::Value val = fir::getBase(genval(expr.value()));
|
|
assert(!fir::isa_ref_type(val.getType()) && "expecting a constant value");
|
|
mlir::Value castVal = builder.createConvert(loc, componentTy, val);
|
|
res = builder.create<fir::InsertValueOp>(
|
|
loc, recTy, res, castVal,
|
|
builder.getArrayAttr(field.getAttributes()));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// A structure constructor is lowered two ways. In an initializer context,
|
|
/// the entire structure must be constant, so the aggregate value is
|
|
/// constructed inline. This allows it to be the body of a GlobalOp.
|
|
/// Otherwise, the structure constructor is in an expression. In that case, a
|
|
/// temporary object is constructed in the stack frame of the procedure.
|
|
ExtValue genval(const Fortran::evaluate::StructureConstructor &ctor) {
|
|
if (inInitializer)
|
|
return genStructComponentInInitializer(ctor);
|
|
mlir::Location loc = getLoc();
|
|
mlir::Type ty = translateSomeExprToFIRType(converter, toEvExpr(ctor));
|
|
auto recTy = ty.cast<fir::RecordType>();
|
|
auto fieldTy = fir::FieldType::get(ty.getContext());
|
|
mlir::Value res = builder.createTemporary(loc, recTy);
|
|
|
|
for (const auto &value : ctor.values()) {
|
|
const Fortran::semantics::Symbol &sym = *value.first;
|
|
const Fortran::lower::SomeExpr &expr = value.second.value();
|
|
// Parent components need more work because they do not appear in the
|
|
// fir.rec type.
|
|
if (sym.test(Fortran::semantics::Symbol::Flag::ParentComp))
|
|
TODO(loc, "parent component in structure constructor");
|
|
|
|
if (isDerivedTypeWithLenParameters(sym))
|
|
TODO(loc, "component with length parameters in structure constructor");
|
|
|
|
llvm::StringRef name = toStringRef(sym.name());
|
|
// FIXME: type parameters must come from the derived-type-spec
|
|
mlir::Value field = builder.create<fir::FieldIndexOp>(
|
|
loc, fieldTy, name, ty,
|
|
/*typeParams=*/mlir::ValueRange{} /*TODO*/);
|
|
mlir::Type coorTy = builder.getRefType(recTy.getType(name));
|
|
auto coor = builder.create<fir::CoordinateOp>(loc, coorTy,
|
|
fir::getBase(res), field);
|
|
ExtValue to = fir::factory::componentToExtendedValue(builder, loc, coor);
|
|
to.match(
|
|
[&](const fir::UnboxedValue &toPtr) {
|
|
ExtValue value = genval(expr);
|
|
fir::factory::genScalarAssignment(builder, loc, to, value);
|
|
},
|
|
[&](const fir::CharBoxValue &) {
|
|
ExtValue value = genval(expr);
|
|
fir::factory::genScalarAssignment(builder, loc, to, value);
|
|
},
|
|
[&](const fir::ArrayBoxValue &) {
|
|
Fortran::lower::createSomeArrayAssignment(converter, to, expr,
|
|
symMap, stmtCtx);
|
|
},
|
|
[&](const fir::CharArrayBoxValue &) {
|
|
Fortran::lower::createSomeArrayAssignment(converter, to, expr,
|
|
symMap, stmtCtx);
|
|
},
|
|
[&](const fir::BoxValue &toBox) {
|
|
fir::emitFatalError(loc, "derived type components must not be "
|
|
"represented by fir::BoxValue");
|
|
},
|
|
[&](const fir::MutableBoxValue &toBox) {
|
|
if (toBox.isPointer()) {
|
|
Fortran::lower::associateMutableBox(
|
|
converter, loc, toBox, expr, /*lbounds=*/llvm::None, stmtCtx);
|
|
return;
|
|
}
|
|
// For allocatable components, a deep copy is needed.
|
|
TODO(loc, "allocatable components in derived type assignment");
|
|
},
|
|
[&](const fir::ProcBoxValue &toBox) {
|
|
TODO(loc, "procedure pointer component in derived type assignment");
|
|
});
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// Lowering of an <i>ac-do-variable</i>, which is not a Symbol.
|
|
ExtValue genval(const Fortran::evaluate::ImpliedDoIndex &var) {
|
|
return converter.impliedDoBinding(toStringRef(var.name));
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::DescriptorInquiry &desc) {
|
|
ExtValue exv = desc.base().IsSymbol() ? gen(getLastSym(desc.base()))
|
|
: gen(desc.base().GetComponent());
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Location loc = getLoc();
|
|
auto castResult = [&](mlir::Value v) {
|
|
using ResTy = Fortran::evaluate::DescriptorInquiry::Result;
|
|
return builder.createConvert(
|
|
loc, converter.genType(ResTy::category, ResTy::kind), v);
|
|
};
|
|
switch (desc.field()) {
|
|
case Fortran::evaluate::DescriptorInquiry::Field::Len:
|
|
return castResult(fir::factory::readCharLen(builder, loc, exv));
|
|
case Fortran::evaluate::DescriptorInquiry::Field::LowerBound:
|
|
return castResult(fir::factory::readLowerBound(
|
|
builder, loc, exv, desc.dimension(),
|
|
builder.createIntegerConstant(loc, idxTy, 1)));
|
|
case Fortran::evaluate::DescriptorInquiry::Field::Extent:
|
|
return castResult(
|
|
fir::factory::readExtent(builder, loc, exv, desc.dimension()));
|
|
case Fortran::evaluate::DescriptorInquiry::Field::Rank:
|
|
TODO(loc, "rank inquiry on assumed rank");
|
|
case Fortran::evaluate::DescriptorInquiry::Field::Stride:
|
|
// So far the front end does not generate this inquiry.
|
|
TODO(loc, "stride inquiry");
|
|
}
|
|
llvm_unreachable("unknown descriptor inquiry");
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::TypeParamInquiry &) {
|
|
TODO(getLoc(), "type parameter inquiry");
|
|
}
|
|
|
|
mlir::Value extractComplexPart(mlir::Value cplx, bool isImagPart) {
|
|
return fir::factory::Complex{builder, getLoc()}.extractComplexPart(
|
|
cplx, isImagPart);
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::ComplexComponent<KIND> &part) {
|
|
return extractComplexPart(genunbox(part.left()), part.isImaginaryPart);
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Integer, KIND>> &op) {
|
|
mlir::Value input = genunbox(op.left());
|
|
// Like LLVM, integer negation is the binary op "0 - value"
|
|
mlir::Value zero = genIntegerConstant<KIND>(builder.getContext(), 0);
|
|
return builder.create<mlir::arith::SubIOp>(getLoc(), zero, input);
|
|
}
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Real, KIND>> &op) {
|
|
return builder.create<mlir::arith::NegFOp>(getLoc(), genunbox(op.left()));
|
|
}
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Complex, KIND>> &op) {
|
|
return builder.create<fir::NegcOp>(getLoc(), genunbox(op.left()));
|
|
}
|
|
|
|
template <typename OpTy>
|
|
mlir::Value createBinaryOp(const ExtValue &left, const ExtValue &right) {
|
|
assert(fir::isUnboxedValue(left) && fir::isUnboxedValue(right));
|
|
mlir::Value lhs = fir::getBase(left);
|
|
mlir::Value rhs = fir::getBase(right);
|
|
assert(lhs.getType() == rhs.getType() && "types must be the same");
|
|
return builder.create<OpTy>(getLoc(), lhs, rhs);
|
|
}
|
|
|
|
template <typename OpTy, typename A>
|
|
mlir::Value createBinaryOp(const A &ex) {
|
|
ExtValue left = genval(ex.left());
|
|
return createBinaryOp<OpTy>(left, genval(ex.right()));
|
|
}
|
|
|
|
#undef GENBIN
|
|
#define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \
|
|
template <int KIND> \
|
|
ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
|
|
Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \
|
|
return createBinaryOp<GenBinFirOp>(x); \
|
|
}
|
|
|
|
GENBIN(Add, Integer, mlir::arith::AddIOp)
|
|
GENBIN(Add, Real, mlir::arith::AddFOp)
|
|
GENBIN(Add, Complex, fir::AddcOp)
|
|
GENBIN(Subtract, Integer, mlir::arith::SubIOp)
|
|
GENBIN(Subtract, Real, mlir::arith::SubFOp)
|
|
GENBIN(Subtract, Complex, fir::SubcOp)
|
|
GENBIN(Multiply, Integer, mlir::arith::MulIOp)
|
|
GENBIN(Multiply, Real, mlir::arith::MulFOp)
|
|
GENBIN(Multiply, Complex, fir::MulcOp)
|
|
GENBIN(Divide, Integer, mlir::arith::DivSIOp)
|
|
GENBIN(Divide, Real, mlir::arith::DivFOp)
|
|
GENBIN(Divide, Complex, fir::DivcOp)
|
|
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
ExtValue genval(
|
|
const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &op) {
|
|
mlir::Type ty = converter.genType(TC, KIND);
|
|
mlir::Value lhs = genunbox(op.left());
|
|
mlir::Value rhs = genunbox(op.right());
|
|
return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs);
|
|
}
|
|
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
ExtValue genval(
|
|
const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
|
|
&op) {
|
|
mlir::Type ty = converter.genType(TC, KIND);
|
|
mlir::Value lhs = genunbox(op.left());
|
|
mlir::Value rhs = genunbox(op.right());
|
|
return Fortran::lower::genPow(builder, getLoc(), ty, lhs, rhs);
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::ComplexConstructor<KIND> &op) {
|
|
mlir::Value realPartValue = genunbox(op.left());
|
|
return fir::factory::Complex{builder, getLoc()}.createComplex(
|
|
KIND, realPartValue, genunbox(op.right()));
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Concat<KIND> &op) {
|
|
ExtValue lhs = genval(op.left());
|
|
ExtValue rhs = genval(op.right());
|
|
const fir::CharBoxValue *lhsChar = lhs.getCharBox();
|
|
const fir::CharBoxValue *rhsChar = rhs.getCharBox();
|
|
if (lhsChar && rhsChar)
|
|
return fir::factory::CharacterExprHelper{builder, getLoc()}
|
|
.createConcatenate(*lhsChar, *rhsChar);
|
|
TODO(getLoc(), "character array concatenate");
|
|
}
|
|
|
|
/// MIN and MAX operations
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
ExtValue
|
|
genval(const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>>
|
|
&op) {
|
|
mlir::Value lhs = genunbox(op.left());
|
|
mlir::Value rhs = genunbox(op.right());
|
|
switch (op.ordering) {
|
|
case Fortran::evaluate::Ordering::Greater:
|
|
return Fortran::lower::genMax(builder, getLoc(),
|
|
llvm::ArrayRef<mlir::Value>{lhs, rhs});
|
|
case Fortran::evaluate::Ordering::Less:
|
|
return Fortran::lower::genMin(builder, getLoc(),
|
|
llvm::ArrayRef<mlir::Value>{lhs, rhs});
|
|
case Fortran::evaluate::Ordering::Equal:
|
|
llvm_unreachable("Equal is not a valid ordering in this context");
|
|
}
|
|
llvm_unreachable("unknown ordering");
|
|
}
|
|
|
|
// Change the dynamic length information without actually changing the
|
|
// underlying character storage.
|
|
fir::ExtendedValue
|
|
replaceScalarCharacterLength(const fir::ExtendedValue &scalarChar,
|
|
mlir::Value newLenValue) {
|
|
mlir::Location loc = getLoc();
|
|
const fir::CharBoxValue *charBox = scalarChar.getCharBox();
|
|
if (!charBox)
|
|
fir::emitFatalError(loc, "expected scalar character");
|
|
mlir::Value charAddr = charBox->getAddr();
|
|
auto charType =
|
|
fir::unwrapPassByRefType(charAddr.getType()).cast<fir::CharacterType>();
|
|
if (charType.hasConstantLen()) {
|
|
// Erase previous constant length from the base type.
|
|
fir::CharacterType::LenType newLen = fir::CharacterType::unknownLen();
|
|
mlir::Type newCharTy = fir::CharacterType::get(
|
|
builder.getContext(), charType.getFKind(), newLen);
|
|
mlir::Type newType = fir::ReferenceType::get(newCharTy);
|
|
charAddr = builder.createConvert(loc, newType, charAddr);
|
|
return fir::CharBoxValue{charAddr, newLenValue};
|
|
}
|
|
return fir::CharBoxValue{charAddr, newLenValue};
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::SetLength<KIND> &x) {
|
|
mlir::Value newLenValue = genunbox(x.right());
|
|
fir::ExtendedValue lhs = gen(x.left());
|
|
fir::factory::CharacterExprHelper charHelper(builder, getLoc());
|
|
fir::CharBoxValue temp = charHelper.createCharacterTemp(
|
|
charHelper.getCharacterType(fir::getBase(lhs).getType()), newLenValue);
|
|
charHelper.createAssign(temp, lhs);
|
|
return fir::ExtendedValue{temp};
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Integer, KIND>> &op) {
|
|
return createCompareOp<mlir::arith::CmpIOp>(op,
|
|
translateRelational(op.opr));
|
|
}
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Real, KIND>> &op) {
|
|
return createFltCmpOp<mlir::arith::CmpFOp>(
|
|
op, translateFloatRelational(op.opr));
|
|
}
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Complex, KIND>> &op) {
|
|
return createFltCmpOp<fir::CmpcOp>(op, translateFloatRelational(op.opr));
|
|
}
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Character, KIND>> &op) {
|
|
return createCharCompare(op, translateRelational(op.opr));
|
|
}
|
|
|
|
ExtValue
|
|
genval(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &op) {
|
|
return std::visit([&](const auto &x) { return genval(x); }, op.u);
|
|
}
|
|
|
|
template <Fortran::common::TypeCategory TC1, int KIND,
|
|
Fortran::common::TypeCategory TC2>
|
|
ExtValue
|
|
genval(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
|
|
TC2> &convert) {
|
|
mlir::Type ty = converter.genType(TC1, KIND);
|
|
auto fromExpr = genval(convert.left());
|
|
auto loc = getLoc();
|
|
return fromExpr.match(
|
|
[&](const fir::CharBoxValue &boxchar) -> ExtValue {
|
|
if constexpr (TC1 == Fortran::common::TypeCategory::Character &&
|
|
TC2 == TC1) {
|
|
// Use char_convert. Each code point is translated from a
|
|
// narrower/wider encoding to the target encoding. For example, 'A'
|
|
// may be translated from 0x41 : i8 to 0x0041 : i16. The symbol
|
|
// for euro (0x20AC : i16) may be translated from a wide character
|
|
// to "0xE2 0x82 0xAC" : UTF-8.
|
|
mlir::Value bufferSize = boxchar.getLen();
|
|
auto kindMap = builder.getKindMap();
|
|
mlir::Value boxCharAddr = boxchar.getAddr();
|
|
auto fromTy = boxCharAddr.getType();
|
|
if (auto charTy = fromTy.dyn_cast<fir::CharacterType>()) {
|
|
// boxchar is a value, not a variable. Turn it into a temporary.
|
|
// As a value, it ought to have a constant LEN value.
|
|
assert(charTy.hasConstantLen() && "must have constant length");
|
|
mlir::Value tmp = builder.createTemporary(loc, charTy);
|
|
builder.create<fir::StoreOp>(loc, boxCharAddr, tmp);
|
|
boxCharAddr = tmp;
|
|
}
|
|
auto fromBits =
|
|
kindMap.getCharacterBitsize(fir::unwrapRefType(fromTy)
|
|
.cast<fir::CharacterType>()
|
|
.getFKind());
|
|
auto toBits = kindMap.getCharacterBitsize(
|
|
ty.cast<fir::CharacterType>().getFKind());
|
|
if (toBits < fromBits) {
|
|
// Scale by relative ratio to give a buffer of the same length.
|
|
auto ratio = builder.createIntegerConstant(
|
|
loc, bufferSize.getType(), fromBits / toBits);
|
|
bufferSize =
|
|
builder.create<mlir::arith::MulIOp>(loc, bufferSize, ratio);
|
|
}
|
|
auto dest = builder.create<fir::AllocaOp>(
|
|
loc, ty, mlir::ValueRange{bufferSize});
|
|
builder.create<fir::CharConvertOp>(loc, boxCharAddr,
|
|
boxchar.getLen(), dest);
|
|
return fir::CharBoxValue{dest, boxchar.getLen()};
|
|
} else {
|
|
fir::emitFatalError(
|
|
loc, "unsupported evaluate::Convert between CHARACTER type "
|
|
"category and non-CHARACTER category");
|
|
}
|
|
},
|
|
[&](const fir::UnboxedValue &value) -> ExtValue {
|
|
return builder.convertWithSemantics(loc, ty, value);
|
|
},
|
|
[&](auto &) -> ExtValue {
|
|
fir::emitFatalError(loc, "unsupported evaluate::Convert");
|
|
});
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue genval(const Fortran::evaluate::Parentheses<A> &op) {
|
|
ExtValue input = genval(op.left());
|
|
mlir::Value base = fir::getBase(input);
|
|
mlir::Value newBase =
|
|
builder.create<fir::NoReassocOp>(getLoc(), base.getType(), base);
|
|
return fir::substBase(input, newBase);
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Not<KIND> &op) {
|
|
mlir::Value logical = genunbox(op.left());
|
|
mlir::Value one = genBoolConstant(true);
|
|
mlir::Value val =
|
|
builder.createConvert(getLoc(), builder.getI1Type(), logical);
|
|
return builder.create<mlir::arith::XOrIOp>(getLoc(), val, one);
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::LogicalOperation<KIND> &op) {
|
|
mlir::IntegerType i1Type = builder.getI1Type();
|
|
mlir::Value slhs = genunbox(op.left());
|
|
mlir::Value srhs = genunbox(op.right());
|
|
mlir::Value lhs = builder.createConvert(getLoc(), i1Type, slhs);
|
|
mlir::Value rhs = builder.createConvert(getLoc(), i1Type, srhs);
|
|
switch (op.logicalOperator) {
|
|
case Fortran::evaluate::LogicalOperator::And:
|
|
return createBinaryOp<mlir::arith::AndIOp>(lhs, rhs);
|
|
case Fortran::evaluate::LogicalOperator::Or:
|
|
return createBinaryOp<mlir::arith::OrIOp>(lhs, rhs);
|
|
case Fortran::evaluate::LogicalOperator::Eqv:
|
|
return createCompareOp<mlir::arith::CmpIOp>(
|
|
mlir::arith::CmpIPredicate::eq, lhs, rhs);
|
|
case Fortran::evaluate::LogicalOperator::Neqv:
|
|
return createCompareOp<mlir::arith::CmpIOp>(
|
|
mlir::arith::CmpIPredicate::ne, lhs, rhs);
|
|
case Fortran::evaluate::LogicalOperator::Not:
|
|
// lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>.
|
|
llvm_unreachable(".NOT. is not a binary operator");
|
|
}
|
|
llvm_unreachable("unhandled logical operation");
|
|
}
|
|
|
|
/// Convert a scalar literal constant to IR.
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
ExtValue genScalarLit(
|
|
const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>
|
|
&value) {
|
|
if constexpr (TC == Fortran::common::TypeCategory::Integer) {
|
|
return genIntegerConstant<KIND>(builder.getContext(), value.ToInt64());
|
|
} else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
|
|
return genBoolConstant(value.IsTrue());
|
|
} else if constexpr (TC == Fortran::common::TypeCategory::Real) {
|
|
std::string str = value.DumpHexadecimal();
|
|
if constexpr (KIND == 2) {
|
|
auto floatVal = consAPFloat(llvm::APFloatBase::IEEEhalf(), str);
|
|
return genRealConstant<KIND>(builder.getContext(), floatVal);
|
|
} else if constexpr (KIND == 3) {
|
|
auto floatVal = consAPFloat(llvm::APFloatBase::BFloat(), str);
|
|
return genRealConstant<KIND>(builder.getContext(), floatVal);
|
|
} else if constexpr (KIND == 4) {
|
|
auto floatVal = consAPFloat(llvm::APFloatBase::IEEEsingle(), str);
|
|
return genRealConstant<KIND>(builder.getContext(), floatVal);
|
|
} else if constexpr (KIND == 10) {
|
|
auto floatVal =
|
|
consAPFloat(llvm::APFloatBase::x87DoubleExtended(), str);
|
|
return genRealConstant<KIND>(builder.getContext(), floatVal);
|
|
} else if constexpr (KIND == 16) {
|
|
auto floatVal = consAPFloat(llvm::APFloatBase::IEEEquad(), str);
|
|
return genRealConstant<KIND>(builder.getContext(), floatVal);
|
|
} else {
|
|
// convert everything else to double
|
|
auto floatVal = consAPFloat(llvm::APFloatBase::IEEEdouble(), str);
|
|
return genRealConstant<KIND>(builder.getContext(), floatVal);
|
|
}
|
|
} else if constexpr (TC == Fortran::common::TypeCategory::Complex) {
|
|
using TR =
|
|
Fortran::evaluate::Type<Fortran::common::TypeCategory::Real, KIND>;
|
|
Fortran::evaluate::ComplexConstructor<KIND> ctor(
|
|
Fortran::evaluate::Expr<TR>{
|
|
Fortran::evaluate::Constant<TR>{value.REAL()}},
|
|
Fortran::evaluate::Expr<TR>{
|
|
Fortran::evaluate::Constant<TR>{value.AIMAG()}});
|
|
return genunbox(ctor);
|
|
} else /*constexpr*/ {
|
|
llvm_unreachable("unhandled constant");
|
|
}
|
|
}
|
|
|
|
/// Convert string, \p s, to an APFloat value. Recognize and handle Inf and
|
|
/// NaN strings as well. \p s is assumed to not contain any spaces.
|
|
static llvm::APFloat consAPFloat(const llvm::fltSemantics &fsem,
|
|
llvm::StringRef s) {
|
|
assert(!s.contains(' '));
|
|
if (s.compare_insensitive("-inf") == 0)
|
|
return llvm::APFloat::getInf(fsem, /*negative=*/true);
|
|
if (s.compare_insensitive("inf") == 0 || s.compare_insensitive("+inf") == 0)
|
|
return llvm::APFloat::getInf(fsem);
|
|
// TODO: Add support for quiet and signaling NaNs.
|
|
if (s.compare_insensitive("-nan") == 0)
|
|
return llvm::APFloat::getNaN(fsem, /*negative=*/true);
|
|
if (s.compare_insensitive("nan") == 0 || s.compare_insensitive("+nan") == 0)
|
|
return llvm::APFloat::getNaN(fsem);
|
|
return {fsem, s};
|
|
}
|
|
|
|
/// Generate a raw literal value and store it in the rawVals vector.
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
void
|
|
genRawLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>
|
|
&value) {
|
|
mlir::Attribute val;
|
|
assert(inInitializer != nullptr);
|
|
if constexpr (TC == Fortran::common::TypeCategory::Integer) {
|
|
inInitializer->rawType = converter.genType(TC, KIND);
|
|
val = builder.getIntegerAttr(inInitializer->rawType, value.ToInt64());
|
|
} else if constexpr (TC == Fortran::common::TypeCategory::Logical) {
|
|
inInitializer->rawType =
|
|
converter.genType(Fortran::common::TypeCategory::Integer, KIND);
|
|
val = builder.getIntegerAttr(inInitializer->rawType, value.IsTrue());
|
|
} else if constexpr (TC == Fortran::common::TypeCategory::Real) {
|
|
std::string str = value.DumpHexadecimal();
|
|
inInitializer->rawType = converter.genType(TC, KIND);
|
|
auto floatVal =
|
|
consAPFloat(builder.getKindMap().getFloatSemantics(KIND), str);
|
|
val = builder.getFloatAttr(inInitializer->rawType, floatVal);
|
|
} else if constexpr (TC == Fortran::common::TypeCategory::Complex) {
|
|
std::string strReal = value.REAL().DumpHexadecimal();
|
|
std::string strImg = value.AIMAG().DumpHexadecimal();
|
|
inInitializer->rawType = converter.genType(TC, KIND);
|
|
auto realVal =
|
|
consAPFloat(builder.getKindMap().getFloatSemantics(KIND), strReal);
|
|
val = builder.getFloatAttr(inInitializer->rawType, realVal);
|
|
inInitializer->rawVals.push_back(val);
|
|
auto imgVal =
|
|
consAPFloat(builder.getKindMap().getFloatSemantics(KIND), strImg);
|
|
val = builder.getFloatAttr(inInitializer->rawType, imgVal);
|
|
}
|
|
inInitializer->rawVals.push_back(val);
|
|
}
|
|
|
|
/// Convert a scalar literal CHARACTER to IR.
|
|
template <int KIND>
|
|
ExtValue
|
|
genScalarLit(const Fortran::evaluate::Scalar<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Character, KIND>> &value,
|
|
int64_t len) {
|
|
using ET = typename std::decay_t<decltype(value)>::value_type;
|
|
if constexpr (KIND == 1) {
|
|
assert(value.size() == static_cast<std::uint64_t>(len));
|
|
// Outline character constant in ro data if it is not in an initializer.
|
|
if (!inInitializer)
|
|
return fir::factory::createStringLiteral(builder, getLoc(), value);
|
|
// When in an initializer context, construct the literal op itself and do
|
|
// not construct another constant object in rodata.
|
|
fir::StringLitOp stringLit = builder.createStringLitOp(getLoc(), value);
|
|
mlir::Value lenp = builder.createIntegerConstant(
|
|
getLoc(), builder.getCharacterLengthType(), len);
|
|
return fir::CharBoxValue{stringLit.getResult(), lenp};
|
|
}
|
|
fir::CharacterType type =
|
|
fir::CharacterType::get(builder.getContext(), KIND, len);
|
|
auto consLit = [&]() -> fir::StringLitOp {
|
|
mlir::MLIRContext *context = builder.getContext();
|
|
std::int64_t size = static_cast<std::int64_t>(value.size());
|
|
mlir::ShapedType shape = mlir::RankedTensorType::get(
|
|
llvm::ArrayRef<std::int64_t>{size},
|
|
mlir::IntegerType::get(builder.getContext(), sizeof(ET) * 8));
|
|
auto denseAttr = mlir::DenseElementsAttr::get(
|
|
shape, llvm::ArrayRef<ET>{value.data(), value.size()});
|
|
auto denseTag = mlir::StringAttr::get(context, fir::StringLitOp::xlist());
|
|
mlir::NamedAttribute dataAttr(denseTag, denseAttr);
|
|
auto sizeTag = mlir::StringAttr::get(context, fir::StringLitOp::size());
|
|
mlir::NamedAttribute sizeAttr(sizeTag, builder.getI64IntegerAttr(len));
|
|
llvm::SmallVector<mlir::NamedAttribute> attrs = {dataAttr, sizeAttr};
|
|
return builder.create<fir::StringLitOp>(
|
|
getLoc(), llvm::ArrayRef<mlir::Type>{type}, llvm::None, attrs);
|
|
};
|
|
|
|
mlir::Value lenp = builder.createIntegerConstant(
|
|
getLoc(), builder.getCharacterLengthType(), len);
|
|
// When in an initializer context, construct the literal op itself and do
|
|
// not construct another constant object in rodata.
|
|
if (inInitializer)
|
|
return fir::CharBoxValue{consLit().getResult(), lenp};
|
|
|
|
// Otherwise, the string is in a plain old expression so "outline" the value
|
|
// by hashconsing it to a constant literal object.
|
|
|
|
auto size =
|
|
converter.getKindMap().getCharacterBitsize(KIND) / 8 * value.size();
|
|
llvm::StringRef strVal(reinterpret_cast<const char *>(value.c_str()), size);
|
|
std::string globalName = fir::factory::uniqueCGIdent("cl", strVal);
|
|
fir::GlobalOp global = builder.getNamedGlobal(globalName);
|
|
if (!global)
|
|
global = builder.createGlobalConstant(
|
|
getLoc(), type, globalName,
|
|
[&](fir::FirOpBuilder &builder) {
|
|
fir::StringLitOp str = consLit();
|
|
builder.create<fir::HasValueOp>(getLoc(), str);
|
|
},
|
|
builder.createLinkOnceLinkage());
|
|
auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(),
|
|
global.getSymbol());
|
|
return fir::CharBoxValue{addr, lenp};
|
|
}
|
|
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
ExtValue genArrayLit(
|
|
const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
|
|
&con) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
Fortran::evaluate::ConstantSubscript size =
|
|
Fortran::evaluate::GetSize(con.shape());
|
|
fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end());
|
|
mlir::Type eleTy;
|
|
if constexpr (TC == Fortran::common::TypeCategory::Character)
|
|
eleTy = converter.genType(TC, KIND, {con.LEN()});
|
|
else
|
|
eleTy = converter.genType(TC, KIND);
|
|
auto arrayTy = fir::SequenceType::get(shape, eleTy);
|
|
mlir::Value array;
|
|
llvm::SmallVector<mlir::Value> lbounds;
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
if (!inInitializer || !inInitializer->genRawVals) {
|
|
array = builder.create<fir::UndefOp>(loc, arrayTy);
|
|
for (auto [lb, extent] : llvm::zip(con.lbounds(), shape)) {
|
|
lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1));
|
|
extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
|
|
}
|
|
}
|
|
if (size == 0) {
|
|
if constexpr (TC == Fortran::common::TypeCategory::Character) {
|
|
mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN());
|
|
return fir::CharArrayBoxValue{array, len, extents, lbounds};
|
|
} else {
|
|
return fir::ArrayBoxValue{array, extents, lbounds};
|
|
}
|
|
}
|
|
Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds();
|
|
auto createIdx = [&]() {
|
|
llvm::SmallVector<mlir::Attribute> idx;
|
|
for (size_t i = 0; i < subscripts.size(); ++i)
|
|
idx.push_back(
|
|
builder.getIntegerAttr(idxTy, subscripts[i] - con.lbounds()[i]));
|
|
return idx;
|
|
};
|
|
if constexpr (TC == Fortran::common::TypeCategory::Character) {
|
|
assert(array && "array must not be nullptr");
|
|
do {
|
|
mlir::Value elementVal =
|
|
fir::getBase(genScalarLit<KIND>(con.At(subscripts), con.LEN()));
|
|
array = builder.create<fir::InsertValueOp>(
|
|
loc, arrayTy, array, elementVal, builder.getArrayAttr(createIdx()));
|
|
} while (con.IncrementSubscripts(subscripts));
|
|
mlir::Value len = builder.createIntegerConstant(loc, idxTy, con.LEN());
|
|
return fir::CharArrayBoxValue{array, len, extents, lbounds};
|
|
} else {
|
|
llvm::SmallVector<mlir::Attribute> rangeStartIdx;
|
|
uint64_t rangeSize = 0;
|
|
do {
|
|
if (inInitializer && inInitializer->genRawVals) {
|
|
genRawLit<TC, KIND>(con.At(subscripts));
|
|
continue;
|
|
}
|
|
auto getElementVal = [&]() {
|
|
return builder.createConvert(
|
|
loc, eleTy,
|
|
fir::getBase(genScalarLit<TC, KIND>(con.At(subscripts))));
|
|
};
|
|
Fortran::evaluate::ConstantSubscripts nextSubscripts = subscripts;
|
|
bool nextIsSame = con.IncrementSubscripts(nextSubscripts) &&
|
|
con.At(subscripts) == con.At(nextSubscripts);
|
|
if (!rangeSize && !nextIsSame) { // single (non-range) value
|
|
array = builder.create<fir::InsertValueOp>(
|
|
loc, arrayTy, array, getElementVal(),
|
|
builder.getArrayAttr(createIdx()));
|
|
} else if (!rangeSize) { // start a range
|
|
rangeStartIdx = createIdx();
|
|
rangeSize = 1;
|
|
} else if (nextIsSame) { // expand a range
|
|
++rangeSize;
|
|
} else { // end a range
|
|
llvm::SmallVector<int64_t> rangeBounds;
|
|
llvm::SmallVector<mlir::Attribute> idx = createIdx();
|
|
for (size_t i = 0; i < idx.size(); ++i) {
|
|
rangeBounds.push_back(rangeStartIdx[i]
|
|
.cast<mlir::IntegerAttr>()
|
|
.getValue()
|
|
.getSExtValue());
|
|
rangeBounds.push_back(
|
|
idx[i].cast<mlir::IntegerAttr>().getValue().getSExtValue());
|
|
}
|
|
array = builder.create<fir::InsertOnRangeOp>(
|
|
loc, arrayTy, array, getElementVal(),
|
|
builder.getIndexVectorAttr(rangeBounds));
|
|
rangeSize = 0;
|
|
}
|
|
} while (con.IncrementSubscripts(subscripts));
|
|
return fir::ArrayBoxValue{array, extents, lbounds};
|
|
}
|
|
}
|
|
|
|
fir::ExtendedValue genArrayLit(
|
|
const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
Fortran::evaluate::ConstantSubscript size =
|
|
Fortran::evaluate::GetSize(con.shape());
|
|
fir::SequenceType::Shape shape(con.shape().begin(), con.shape().end());
|
|
mlir::Type eleTy = converter.genType(con.GetType().GetDerivedTypeSpec());
|
|
auto arrayTy = fir::SequenceType::get(shape, eleTy);
|
|
mlir::Value array = builder.create<fir::UndefOp>(loc, arrayTy);
|
|
llvm::SmallVector<mlir::Value> lbounds;
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
for (auto [lb, extent] : llvm::zip(con.lbounds(), con.shape())) {
|
|
lbounds.push_back(builder.createIntegerConstant(loc, idxTy, lb - 1));
|
|
extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
|
|
}
|
|
if (size == 0)
|
|
return fir::ArrayBoxValue{array, extents, lbounds};
|
|
Fortran::evaluate::ConstantSubscripts subscripts = con.lbounds();
|
|
do {
|
|
mlir::Value derivedVal = fir::getBase(genval(con.At(subscripts)));
|
|
llvm::SmallVector<mlir::Attribute> idx;
|
|
for (auto [dim, lb] : llvm::zip(subscripts, con.lbounds()))
|
|
idx.push_back(builder.getIntegerAttr(idxTy, dim - lb));
|
|
array = builder.create<fir::InsertValueOp>(
|
|
loc, arrayTy, array, derivedVal, builder.getArrayAttr(idx));
|
|
} while (con.IncrementSubscripts(subscripts));
|
|
return fir::ArrayBoxValue{array, extents, lbounds};
|
|
}
|
|
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
ExtValue
|
|
genval(const Fortran::evaluate::Constant<Fortran::evaluate::Type<TC, KIND>>
|
|
&con) {
|
|
if (con.Rank() > 0)
|
|
return genArrayLit(con);
|
|
std::optional<Fortran::evaluate::Scalar<Fortran::evaluate::Type<TC, KIND>>>
|
|
opt = con.GetScalarValue();
|
|
assert(opt.has_value() && "constant has no value");
|
|
if constexpr (TC == Fortran::common::TypeCategory::Character) {
|
|
return genScalarLit<KIND>(opt.value(), con.LEN());
|
|
} else {
|
|
return genScalarLit<TC, KIND>(opt.value());
|
|
}
|
|
}
|
|
fir::ExtendedValue genval(
|
|
const Fortran::evaluate::Constant<Fortran::evaluate::SomeDerived> &con) {
|
|
if (con.Rank() > 0)
|
|
return genArrayLit(con);
|
|
if (auto ctor = con.GetScalarValue())
|
|
return genval(ctor.value());
|
|
fir::emitFatalError(getLoc(),
|
|
"constant of derived type has no constructor");
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue genval(const Fortran::evaluate::ArrayConstructor<A> &) {
|
|
fir::emitFatalError(getLoc(), "array constructor: should not reach here");
|
|
}
|
|
|
|
ExtValue gen(const Fortran::evaluate::ComplexPart &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto idxTy = builder.getI32Type();
|
|
ExtValue exv = gen(x.complex());
|
|
mlir::Value base = fir::getBase(exv);
|
|
fir::factory::Complex helper{builder, loc};
|
|
mlir::Type eleTy =
|
|
helper.getComplexPartType(fir::dyn_cast_ptrEleTy(base.getType()));
|
|
mlir::Value offset = builder.createIntegerConstant(
|
|
loc, idxTy,
|
|
x.part() == Fortran::evaluate::ComplexPart::Part::RE ? 0 : 1);
|
|
mlir::Value result = builder.create<fir::CoordinateOp>(
|
|
loc, builder.getRefType(eleTy), base, mlir::ValueRange{offset});
|
|
return {result};
|
|
}
|
|
ExtValue genval(const Fortran::evaluate::ComplexPart &x) {
|
|
return genLoad(gen(x));
|
|
}
|
|
|
|
/// Reference to a substring.
|
|
ExtValue gen(const Fortran::evaluate::Substring &s) {
|
|
// Get base string
|
|
auto baseString = std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::DataRef &x) { return gen(x); },
|
|
[&](const Fortran::evaluate::StaticDataObject::Pointer &p)
|
|
-> ExtValue {
|
|
if (std::optional<std::string> str = p->AsString())
|
|
return fir::factory::createStringLiteral(builder, getLoc(),
|
|
*str);
|
|
// TODO: convert StaticDataObject to Constant<T> and use normal
|
|
// constant path. Beware that StaticDataObject data() takes into
|
|
// account build machine endianness.
|
|
TODO(getLoc(),
|
|
"StaticDataObject::Pointer substring with kind > 1");
|
|
},
|
|
},
|
|
s.parent());
|
|
llvm::SmallVector<mlir::Value> bounds;
|
|
mlir::Value lower = genunbox(s.lower());
|
|
bounds.push_back(lower);
|
|
if (Fortran::evaluate::MaybeExtentExpr upperBound = s.upper()) {
|
|
mlir::Value upper = genunbox(*upperBound);
|
|
bounds.push_back(upper);
|
|
}
|
|
fir::factory::CharacterExprHelper charHelper{builder, getLoc()};
|
|
return baseString.match(
|
|
[&](const fir::CharBoxValue &x) -> ExtValue {
|
|
return charHelper.createSubstring(x, bounds);
|
|
},
|
|
[&](const fir::CharArrayBoxValue &) -> ExtValue {
|
|
fir::emitFatalError(
|
|
getLoc(),
|
|
"array substring should be handled in array expression");
|
|
},
|
|
[&](const auto &) -> ExtValue {
|
|
fir::emitFatalError(getLoc(), "substring base is not a CharBox");
|
|
});
|
|
}
|
|
|
|
/// The value of a substring.
|
|
ExtValue genval(const Fortran::evaluate::Substring &ss) {
|
|
// FIXME: why is the value of a substring being lowered the same as the
|
|
// address of a substring?
|
|
return gen(ss);
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::Subscript &subs) {
|
|
if (auto *s = std::get_if<Fortran::evaluate::IndirectSubscriptIntegerExpr>(
|
|
&subs.u)) {
|
|
if (s->value().Rank() > 0)
|
|
fir::emitFatalError(getLoc(), "vector subscript is not scalar");
|
|
return {genval(s->value())};
|
|
}
|
|
fir::emitFatalError(getLoc(), "subscript triple notation is not scalar");
|
|
}
|
|
ExtValue genSubscript(const Fortran::evaluate::Subscript &subs) {
|
|
return genval(subs);
|
|
}
|
|
|
|
ExtValue gen(const Fortran::evaluate::DataRef &dref) {
|
|
return std::visit([&](const auto &x) { return gen(x); }, dref.u);
|
|
}
|
|
ExtValue genval(const Fortran::evaluate::DataRef &dref) {
|
|
return std::visit([&](const auto &x) { return genval(x); }, dref.u);
|
|
}
|
|
|
|
// Helper function to turn the Component structure into a list of nested
|
|
// components, ordered from largest/leftmost to smallest/rightmost:
|
|
// - where only the smallest/rightmost item may be allocatable or a pointer
|
|
// (nested allocatable/pointer components require nested coordinate_of ops)
|
|
// - that does not contain any parent components
|
|
// (the front end places parent components directly in the object)
|
|
// Return the object used as the base coordinate for the component chain.
|
|
static Fortran::evaluate::DataRef const *
|
|
reverseComponents(const Fortran::evaluate::Component &cmpt,
|
|
std::list<const Fortran::evaluate::Component *> &list) {
|
|
if (!getLastSym(cmpt).test(Fortran::semantics::Symbol::Flag::ParentComp))
|
|
list.push_front(&cmpt);
|
|
return std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::Component &x) {
|
|
if (Fortran::semantics::IsAllocatableOrPointer(getLastSym(x)))
|
|
return &cmpt.base();
|
|
return reverseComponents(x, list);
|
|
},
|
|
[&](auto &) { return &cmpt.base(); },
|
|
},
|
|
cmpt.base().u);
|
|
}
|
|
|
|
// Return the coordinate of the component reference
|
|
ExtValue genComponent(const Fortran::evaluate::Component &cmpt) {
|
|
std::list<const Fortran::evaluate::Component *> list;
|
|
const Fortran::evaluate::DataRef *base = reverseComponents(cmpt, list);
|
|
llvm::SmallVector<mlir::Value> coorArgs;
|
|
ExtValue obj = gen(*base);
|
|
mlir::Type ty = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj).getType());
|
|
mlir::Location loc = getLoc();
|
|
auto fldTy = fir::FieldType::get(&converter.getMLIRContext());
|
|
// FIXME: need to thread the LEN type parameters here.
|
|
for (const Fortran::evaluate::Component *field : list) {
|
|
auto recTy = ty.cast<fir::RecordType>();
|
|
const Fortran::semantics::Symbol &sym = getLastSym(*field);
|
|
llvm::StringRef name = toStringRef(sym.name());
|
|
coorArgs.push_back(builder.create<fir::FieldIndexOp>(
|
|
loc, fldTy, name, recTy, fir::getTypeParams(obj)));
|
|
ty = recTy.getType(name);
|
|
}
|
|
ty = builder.getRefType(ty);
|
|
return fir::factory::componentToExtendedValue(
|
|
builder, loc,
|
|
builder.create<fir::CoordinateOp>(loc, ty, fir::getBase(obj),
|
|
coorArgs));
|
|
}
|
|
|
|
ExtValue gen(const Fortran::evaluate::Component &cmpt) {
|
|
// Components may be pointer or allocatable. In the gen() path, the mutable
|
|
// aspect is lost to simplify handling on the client side. To retain the
|
|
// mutable aspect, genMutableBoxValue should be used.
|
|
return genComponent(cmpt).match(
|
|
[&](const fir::MutableBoxValue &mutableBox) {
|
|
return fir::factory::genMutableBoxRead(builder, getLoc(), mutableBox);
|
|
},
|
|
[](auto &box) -> ExtValue { return box; });
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::Component &cmpt) {
|
|
return genLoad(gen(cmpt));
|
|
}
|
|
|
|
// Determine the result type after removing `dims` dimensions from the array
|
|
// type `arrTy`
|
|
mlir::Type genSubType(mlir::Type arrTy, unsigned dims) {
|
|
mlir::Type unwrapTy = fir::dyn_cast_ptrOrBoxEleTy(arrTy);
|
|
assert(unwrapTy && "must be a pointer or box type");
|
|
auto seqTy = unwrapTy.cast<fir::SequenceType>();
|
|
llvm::ArrayRef<int64_t> shape = seqTy.getShape();
|
|
assert(shape.size() > 0 && "removing columns for sequence sans shape");
|
|
assert(dims <= shape.size() && "removing more columns than exist");
|
|
fir::SequenceType::Shape newBnds;
|
|
// follow Fortran semantics and remove columns (from right)
|
|
std::size_t e = shape.size() - dims;
|
|
for (decltype(e) i = 0; i < e; ++i)
|
|
newBnds.push_back(shape[i]);
|
|
if (!newBnds.empty())
|
|
return fir::SequenceType::get(newBnds, seqTy.getEleTy());
|
|
return seqTy.getEleTy();
|
|
}
|
|
|
|
// Generate the code for a Bound value.
|
|
ExtValue genval(const Fortran::semantics::Bound &bound) {
|
|
if (bound.isExplicit()) {
|
|
Fortran::semantics::MaybeSubscriptIntExpr sub = bound.GetExplicit();
|
|
if (sub.has_value())
|
|
return genval(*sub);
|
|
return genIntegerConstant<8>(builder.getContext(), 1);
|
|
}
|
|
TODO(getLoc(), "non explicit semantics::Bound implementation");
|
|
}
|
|
|
|
static bool isSlice(const Fortran::evaluate::ArrayRef &aref) {
|
|
for (const Fortran::evaluate::Subscript &sub : aref.subscript())
|
|
if (std::holds_alternative<Fortran::evaluate::Triplet>(sub.u))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Lower an ArrayRef to a fir.coordinate_of given its lowered base.
|
|
ExtValue genCoordinateOp(const ExtValue &array,
|
|
const Fortran::evaluate::ArrayRef &aref) {
|
|
mlir::Location loc = getLoc();
|
|
// References to array of rank > 1 with non constant shape that are not
|
|
// fir.box must be collapsed into an offset computation in lowering already.
|
|
// The same is needed with dynamic length character arrays of all ranks.
|
|
mlir::Type baseType =
|
|
fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array).getType());
|
|
if ((array.rank() > 1 && fir::hasDynamicSize(baseType)) ||
|
|
fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType)))
|
|
if (!array.getBoxOf<fir::BoxValue>())
|
|
return genOffsetAndCoordinateOp(array, aref);
|
|
// Generate a fir.coordinate_of with zero based array indexes.
|
|
llvm::SmallVector<mlir::Value> args;
|
|
for (const auto &subsc : llvm::enumerate(aref.subscript())) {
|
|
ExtValue subVal = genSubscript(subsc.value());
|
|
assert(fir::isUnboxedValue(subVal) && "subscript must be simple scalar");
|
|
mlir::Value val = fir::getBase(subVal);
|
|
mlir::Type ty = val.getType();
|
|
mlir::Value lb = getLBound(array, subsc.index(), ty);
|
|
args.push_back(builder.create<mlir::arith::SubIOp>(loc, ty, val, lb));
|
|
}
|
|
|
|
mlir::Value base = fir::getBase(array);
|
|
auto seqTy =
|
|
fir::dyn_cast_ptrOrBoxEleTy(base.getType()).cast<fir::SequenceType>();
|
|
assert(args.size() == seqTy.getDimension());
|
|
mlir::Type ty = builder.getRefType(seqTy.getEleTy());
|
|
auto addr = builder.create<fir::CoordinateOp>(loc, ty, base, args);
|
|
return fir::factory::arrayElementToExtendedValue(builder, loc, array, addr);
|
|
}
|
|
|
|
/// Lower an ArrayRef to a fir.coordinate_of using an element offset instead
|
|
/// of array indexes.
|
|
/// This generates offset computation from the indexes and length parameters,
|
|
/// and use the offset to access the element with a fir.coordinate_of. This
|
|
/// must only be used if it is not possible to generate a normal
|
|
/// fir.coordinate_of using array indexes (i.e. when the shape information is
|
|
/// unavailable in the IR).
|
|
ExtValue genOffsetAndCoordinateOp(const ExtValue &array,
|
|
const Fortran::evaluate::ArrayRef &aref) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Value addr = fir::getBase(array);
|
|
mlir::Type arrTy = fir::dyn_cast_ptrEleTy(addr.getType());
|
|
auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
|
|
mlir::Type seqTy = builder.getRefType(builder.getVarLenSeqTy(eleTy));
|
|
mlir::Type refTy = builder.getRefType(eleTy);
|
|
mlir::Value base = builder.createConvert(loc, seqTy, addr);
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
|
|
auto getLB = [&](const auto &arr, unsigned dim) -> mlir::Value {
|
|
return arr.getLBounds().empty() ? one : arr.getLBounds()[dim];
|
|
};
|
|
auto genFullDim = [&](const auto &arr, mlir::Value delta) -> mlir::Value {
|
|
mlir::Value total = zero;
|
|
assert(arr.getExtents().size() == aref.subscript().size());
|
|
delta = builder.createConvert(loc, idxTy, delta);
|
|
unsigned dim = 0;
|
|
for (auto [ext, sub] : llvm::zip(arr.getExtents(), aref.subscript())) {
|
|
ExtValue subVal = genSubscript(sub);
|
|
assert(fir::isUnboxedValue(subVal));
|
|
mlir::Value val =
|
|
builder.createConvert(loc, idxTy, fir::getBase(subVal));
|
|
mlir::Value lb = builder.createConvert(loc, idxTy, getLB(arr, dim));
|
|
mlir::Value diff = builder.create<mlir::arith::SubIOp>(loc, val, lb);
|
|
mlir::Value prod =
|
|
builder.create<mlir::arith::MulIOp>(loc, delta, diff);
|
|
total = builder.create<mlir::arith::AddIOp>(loc, prod, total);
|
|
if (ext)
|
|
delta = builder.create<mlir::arith::MulIOp>(loc, delta, ext);
|
|
++dim;
|
|
}
|
|
mlir::Type origRefTy = refTy;
|
|
if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy)) {
|
|
fir::CharacterType chTy =
|
|
fir::factory::CharacterExprHelper::getCharacterType(refTy);
|
|
if (fir::characterWithDynamicLen(chTy)) {
|
|
mlir::MLIRContext *ctx = builder.getContext();
|
|
fir::KindTy kind =
|
|
fir::factory::CharacterExprHelper::getCharacterKind(chTy);
|
|
fir::CharacterType singleTy =
|
|
fir::CharacterType::getSingleton(ctx, kind);
|
|
refTy = builder.getRefType(singleTy);
|
|
mlir::Type seqRefTy =
|
|
builder.getRefType(builder.getVarLenSeqTy(singleTy));
|
|
base = builder.createConvert(loc, seqRefTy, base);
|
|
}
|
|
}
|
|
auto coor = builder.create<fir::CoordinateOp>(
|
|
loc, refTy, base, llvm::ArrayRef<mlir::Value>{total});
|
|
// Convert to expected, original type after address arithmetic.
|
|
return builder.createConvert(loc, origRefTy, coor);
|
|
};
|
|
return array.match(
|
|
[&](const fir::ArrayBoxValue &arr) -> ExtValue {
|
|
// FIXME: this check can be removed when slicing is implemented
|
|
if (isSlice(aref))
|
|
fir::emitFatalError(
|
|
getLoc(),
|
|
"slice should be handled in array expression context");
|
|
return genFullDim(arr, one);
|
|
},
|
|
[&](const fir::CharArrayBoxValue &arr) -> ExtValue {
|
|
mlir::Value delta = arr.getLen();
|
|
// If the length is known in the type, fir.coordinate_of will
|
|
// already take the length into account.
|
|
if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr))
|
|
delta = one;
|
|
return fir::CharBoxValue(genFullDim(arr, delta), arr.getLen());
|
|
},
|
|
[&](const fir::BoxValue &arr) -> ExtValue {
|
|
// CoordinateOp for BoxValue is not generated here. The dimensions
|
|
// must be kept in the fir.coordinate_op so that potential fir.box
|
|
// strides can be applied by codegen.
|
|
fir::emitFatalError(
|
|
loc, "internal: BoxValue in dim-collapsed fir.coordinate_of");
|
|
},
|
|
[&](const auto &) -> ExtValue {
|
|
fir::emitFatalError(loc, "internal: array processing failed");
|
|
});
|
|
}
|
|
|
|
/// Lower an ArrayRef to a fir.array_coor.
|
|
ExtValue genArrayCoorOp(const ExtValue &exv,
|
|
const Fortran::evaluate::ArrayRef &aref) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Value addr = fir::getBase(exv);
|
|
mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
|
|
mlir::Type eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
|
|
mlir::Type refTy = builder.getRefType(eleTy);
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
llvm::SmallVector<mlir::Value> arrayCoorArgs;
|
|
// The ArrayRef is expected to be scalar here, arrays are handled in array
|
|
// expression lowering. So no vector subscript or triplet is expected here.
|
|
for (const auto &sub : aref.subscript()) {
|
|
ExtValue subVal = genSubscript(sub);
|
|
assert(fir::isUnboxedValue(subVal));
|
|
arrayCoorArgs.push_back(
|
|
builder.createConvert(loc, idxTy, fir::getBase(subVal)));
|
|
}
|
|
mlir::Value shape = builder.createShape(loc, exv);
|
|
mlir::Value elementAddr = builder.create<fir::ArrayCoorOp>(
|
|
loc, refTy, addr, shape, /*slice=*/mlir::Value{}, arrayCoorArgs,
|
|
fir::getTypeParams(exv));
|
|
return fir::factory::arrayElementToExtendedValue(builder, loc, exv,
|
|
elementAddr);
|
|
}
|
|
|
|
/// Return the coordinate of the array reference.
|
|
ExtValue gen(const Fortran::evaluate::ArrayRef &aref) {
|
|
ExtValue base = aref.base().IsSymbol() ? gen(getFirstSym(aref.base()))
|
|
: gen(aref.base().GetComponent());
|
|
// Check for command-line override to use array_coor op.
|
|
if (generateArrayCoordinate)
|
|
return genArrayCoorOp(base, aref);
|
|
// Otherwise, use coordinate_of op.
|
|
return genCoordinateOp(base, aref);
|
|
}
|
|
|
|
/// Return lower bounds of \p box in dimension \p dim. The returned value
|
|
/// has type \ty.
|
|
mlir::Value getLBound(const ExtValue &box, unsigned dim, mlir::Type ty) {
|
|
assert(box.rank() > 0 && "must be an array");
|
|
mlir::Location loc = getLoc();
|
|
mlir::Value one = builder.createIntegerConstant(loc, ty, 1);
|
|
mlir::Value lb = fir::factory::readLowerBound(builder, loc, box, dim, one);
|
|
return builder.createConvert(loc, ty, lb);
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::ArrayRef &aref) {
|
|
return genLoad(gen(aref));
|
|
}
|
|
|
|
ExtValue gen(const Fortran::evaluate::CoarrayRef &coref) {
|
|
return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap}
|
|
.genAddr(coref);
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::CoarrayRef &coref) {
|
|
return Fortran::lower::CoarrayExprHelper{converter, getLoc(), symMap}
|
|
.genValue(coref);
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue gen(const Fortran::evaluate::Designator<A> &des) {
|
|
return std::visit([&](const auto &x) { return gen(x); }, des.u);
|
|
}
|
|
template <typename A>
|
|
ExtValue genval(const Fortran::evaluate::Designator<A> &des) {
|
|
return std::visit([&](const auto &x) { return genval(x); }, des.u);
|
|
}
|
|
|
|
mlir::Type genType(const Fortran::evaluate::DynamicType &dt) {
|
|
if (dt.category() != Fortran::common::TypeCategory::Derived)
|
|
return converter.genType(dt.category(), dt.kind());
|
|
return converter.genType(dt.GetDerivedTypeSpec());
|
|
}
|
|
|
|
/// Lower a function reference
|
|
template <typename A>
|
|
ExtValue genFunctionRef(const Fortran::evaluate::FunctionRef<A> &funcRef) {
|
|
if (!funcRef.GetType().has_value())
|
|
fir::emitFatalError(getLoc(), "a function must have a type");
|
|
mlir::Type resTy = genType(*funcRef.GetType());
|
|
return genProcedureRef(funcRef, {resTy});
|
|
}
|
|
|
|
/// Lower function call `funcRef` and return a reference to the resultant
|
|
/// value. This is required for lowering expressions such as `f1(f2(v))`.
|
|
template <typename A>
|
|
ExtValue gen(const Fortran::evaluate::FunctionRef<A> &funcRef) {
|
|
ExtValue retVal = genFunctionRef(funcRef);
|
|
mlir::Type resultType = converter.genType(toEvExpr(funcRef));
|
|
return placeScalarValueInMemory(builder, getLoc(), retVal, resultType);
|
|
}
|
|
|
|
/// Helper to lower intrinsic arguments for inquiry intrinsic.
|
|
ExtValue
|
|
lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr &expr) {
|
|
if (Fortran::evaluate::IsAllocatableOrPointerObject(
|
|
expr, converter.getFoldingContext()))
|
|
return genMutableBoxValue(expr);
|
|
/// Do not create temps for array sections whose properties only need to be
|
|
/// inquired: create a descriptor that will be inquired.
|
|
if (Fortran::evaluate::IsVariable(expr) && isArray(expr) &&
|
|
!Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr))
|
|
return lowerIntrinsicArgumentAsBox(expr);
|
|
return gen(expr);
|
|
}
|
|
|
|
/// Helper to lower intrinsic arguments to a fir::BoxValue.
|
|
/// It preserves all the non default lower bounds/non deferred length
|
|
/// parameter information.
|
|
ExtValue lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr &expr) {
|
|
mlir::Location loc = getLoc();
|
|
ExtValue exv = genBoxArg(expr);
|
|
mlir::Value box = builder.createBox(loc, exv);
|
|
return fir::BoxValue(
|
|
box, fir::factory::getNonDefaultLowerBounds(builder, loc, exv),
|
|
fir::factory::getNonDeferredLenParams(exv));
|
|
}
|
|
|
|
/// Generate a call to a Fortran intrinsic or intrinsic module procedure.
|
|
ExtValue genIntrinsicRef(
|
|
const Fortran::evaluate::ProcedureRef &procRef,
|
|
llvm::Optional<mlir::Type> resultType,
|
|
llvm::Optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic =
|
|
llvm::None) {
|
|
llvm::SmallVector<ExtValue> operands;
|
|
|
|
std::string name =
|
|
intrinsic ? intrinsic->name
|
|
: procRef.proc().GetSymbol()->GetUltimate().name().ToString();
|
|
mlir::Location loc = getLoc();
|
|
if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
|
|
procRef, *intrinsic, converter)) {
|
|
using ExvAndPresence = std::pair<ExtValue, llvm::Optional<mlir::Value>>;
|
|
llvm::SmallVector<ExvAndPresence, 4> operands;
|
|
auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
|
|
ExtValue optionalArg = lowerIntrinsicArgumentAsInquired(expr);
|
|
mlir::Value isPresent =
|
|
genActualIsPresentTest(builder, loc, optionalArg);
|
|
operands.emplace_back(optionalArg, isPresent);
|
|
};
|
|
auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) {
|
|
operands.emplace_back(genval(expr), llvm::None);
|
|
};
|
|
Fortran::lower::prepareCustomIntrinsicArgument(
|
|
procRef, *intrinsic, resultType, prepareOptionalArg, prepareOtherArg,
|
|
converter);
|
|
|
|
auto getArgument = [&](std::size_t i) -> ExtValue {
|
|
if (fir::conformsWithPassByRef(
|
|
fir::getBase(operands[i].first).getType()))
|
|
return genLoad(operands[i].first);
|
|
return operands[i].first;
|
|
};
|
|
auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> {
|
|
return operands[i].second;
|
|
};
|
|
return Fortran::lower::lowerCustomIntrinsic(
|
|
builder, loc, name, resultType, isPresent, getArgument,
|
|
operands.size(), stmtCtx);
|
|
}
|
|
|
|
const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering =
|
|
Fortran::lower::getIntrinsicArgumentLowering(name);
|
|
for (const auto &arg : llvm::enumerate(procRef.arguments())) {
|
|
auto *expr =
|
|
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
|
|
if (!expr) {
|
|
// Absent optional.
|
|
operands.emplace_back(Fortran::lower::getAbsentIntrinsicArgument());
|
|
continue;
|
|
}
|
|
if (!argLowering) {
|
|
// No argument lowering instruction, lower by value.
|
|
operands.emplace_back(genval(*expr));
|
|
continue;
|
|
}
|
|
// Ad-hoc argument lowering handling.
|
|
Fortran::lower::ArgLoweringRule argRules =
|
|
Fortran::lower::lowerIntrinsicArgumentAs(*argLowering, arg.index());
|
|
if (argRules.handleDynamicOptional &&
|
|
Fortran::evaluate::MayBePassedAsAbsentOptional(
|
|
*expr, converter.getFoldingContext())) {
|
|
ExtValue optional = lowerIntrinsicArgumentAsInquired(*expr);
|
|
mlir::Value isPresent = genActualIsPresentTest(builder, loc, optional);
|
|
switch (argRules.lowerAs) {
|
|
case Fortran::lower::LowerIntrinsicArgAs::Value:
|
|
operands.emplace_back(
|
|
genOptionalValue(builder, loc, optional, isPresent));
|
|
continue;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Addr:
|
|
operands.emplace_back(
|
|
genOptionalAddr(builder, loc, optional, isPresent));
|
|
continue;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Box:
|
|
operands.emplace_back(
|
|
genOptionalBox(builder, loc, optional, isPresent));
|
|
continue;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Inquired:
|
|
operands.emplace_back(optional);
|
|
continue;
|
|
}
|
|
llvm_unreachable("bad switch");
|
|
}
|
|
switch (argRules.lowerAs) {
|
|
case Fortran::lower::LowerIntrinsicArgAs::Value:
|
|
operands.emplace_back(genval(*expr));
|
|
continue;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Addr:
|
|
operands.emplace_back(gen(*expr));
|
|
continue;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Box:
|
|
operands.emplace_back(lowerIntrinsicArgumentAsBox(*expr));
|
|
continue;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Inquired:
|
|
operands.emplace_back(lowerIntrinsicArgumentAsInquired(*expr));
|
|
continue;
|
|
}
|
|
llvm_unreachable("bad switch");
|
|
}
|
|
// Let the intrinsic library lower the intrinsic procedure call
|
|
return Fortran::lower::genIntrinsicCall(builder, getLoc(), name, resultType,
|
|
operands, stmtCtx);
|
|
}
|
|
|
|
/// helper to detect statement functions
|
|
static bool
|
|
isStatementFunctionCall(const Fortran::evaluate::ProcedureRef &procRef) {
|
|
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
|
|
if (const auto *details =
|
|
symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
|
|
return details->stmtFunction().has_value();
|
|
return false;
|
|
}
|
|
|
|
/// Generate Statement function calls
|
|
ExtValue genStmtFunctionRef(const Fortran::evaluate::ProcedureRef &procRef) {
|
|
const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
|
|
assert(symbol && "expected symbol in ProcedureRef of statement functions");
|
|
const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>();
|
|
|
|
// Statement functions have their own scope, we just need to associate
|
|
// the dummy symbols to argument expressions. They are no
|
|
// optional/alternate return arguments. Statement functions cannot be
|
|
// recursive (directly or indirectly) so it is safe to add dummy symbols to
|
|
// the local map here.
|
|
symMap.pushScope();
|
|
for (auto [arg, bind] :
|
|
llvm::zip(details.dummyArgs(), procRef.arguments())) {
|
|
assert(arg && "alternate return in statement function");
|
|
assert(bind && "optional argument in statement function");
|
|
const auto *expr = bind->UnwrapExpr();
|
|
// TODO: assumed type in statement function, that surprisingly seems
|
|
// allowed, probably because nobody thought of restricting this usage.
|
|
// gfortran/ifort compiles this.
|
|
assert(expr && "assumed type used as statement function argument");
|
|
// As per Fortran 2018 C1580, statement function arguments can only be
|
|
// scalars, so just pass the box with the address. The only care is to
|
|
// to use the dummy character explicit length if any instead of the
|
|
// actual argument length (that can be bigger).
|
|
if (const Fortran::semantics::DeclTypeSpec *type = arg->GetType())
|
|
if (type->category() == Fortran::semantics::DeclTypeSpec::Character)
|
|
if (const Fortran::semantics::MaybeIntExpr &lenExpr =
|
|
type->characterTypeSpec().length().GetExplicit()) {
|
|
mlir::Value len = fir::getBase(genval(*lenExpr));
|
|
// F2018 7.4.4.2 point 5.
|
|
len = fir::factory::genMaxWithZero(builder, getLoc(), len);
|
|
symMap.addSymbol(*arg,
|
|
replaceScalarCharacterLength(gen(*expr), len));
|
|
continue;
|
|
}
|
|
symMap.addSymbol(*arg, gen(*expr));
|
|
}
|
|
|
|
// Explicitly map statement function host associated symbols to their
|
|
// parent scope lowered symbol box.
|
|
for (const Fortran::semantics::SymbolRef &sym :
|
|
Fortran::evaluate::CollectSymbols(*details.stmtFunction()))
|
|
if (const auto *details =
|
|
sym->detailsIf<Fortran::semantics::HostAssocDetails>())
|
|
if (!symMap.lookupSymbol(*sym))
|
|
symMap.addSymbol(*sym, gen(details->symbol()));
|
|
|
|
ExtValue result = genval(details.stmtFunction().value());
|
|
LLVM_DEBUG(llvm::dbgs() << "stmt-function: " << result << '\n');
|
|
symMap.popScope();
|
|
return result;
|
|
}
|
|
|
|
/// Helper to package a Value and its properties into an ExtendedValue.
|
|
static ExtValue toExtendedValue(mlir::Location loc, mlir::Value base,
|
|
llvm::ArrayRef<mlir::Value> extents,
|
|
llvm::ArrayRef<mlir::Value> lengths) {
|
|
mlir::Type type = base.getType();
|
|
if (type.isa<fir::BoxType>())
|
|
return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents);
|
|
type = fir::unwrapRefType(type);
|
|
if (type.isa<fir::BoxType>())
|
|
return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {});
|
|
if (auto seqTy = type.dyn_cast<fir::SequenceType>()) {
|
|
if (seqTy.getDimension() != extents.size())
|
|
fir::emitFatalError(loc, "incorrect number of extents for array");
|
|
if (seqTy.getEleTy().isa<fir::CharacterType>()) {
|
|
if (lengths.empty())
|
|
fir::emitFatalError(loc, "missing length for character");
|
|
assert(lengths.size() == 1);
|
|
return fir::CharArrayBoxValue(base, lengths[0], extents);
|
|
}
|
|
return fir::ArrayBoxValue(base, extents);
|
|
}
|
|
if (type.isa<fir::CharacterType>()) {
|
|
if (lengths.empty())
|
|
fir::emitFatalError(loc, "missing length for character");
|
|
assert(lengths.size() == 1);
|
|
return fir::CharBoxValue(base, lengths[0]);
|
|
}
|
|
return base;
|
|
}
|
|
|
|
// Find the argument that corresponds to the host associations.
|
|
// Verify some assumptions about how the signature was built here.
|
|
[[maybe_unused]] static unsigned
|
|
findHostAssocTuplePos(mlir::func::FuncOp fn) {
|
|
// Scan the argument list from last to first as the host associations are
|
|
// appended for now.
|
|
for (unsigned i = fn.getNumArguments(); i > 0; --i)
|
|
if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) {
|
|
// Host assoc tuple must be last argument (for now).
|
|
assert(i == fn.getNumArguments() && "tuple must be last");
|
|
return i - 1;
|
|
}
|
|
llvm_unreachable("anyFuncArgsHaveAttr failed");
|
|
}
|
|
|
|
/// Create a contiguous temporary array with the same shape,
|
|
/// length parameters and type as mold. It is up to the caller to deallocate
|
|
/// the temporary.
|
|
ExtValue genArrayTempFromMold(const ExtValue &mold,
|
|
llvm::StringRef tempName) {
|
|
mlir::Type type = fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold).getType());
|
|
assert(type && "expected descriptor or memory type");
|
|
mlir::Location loc = getLoc();
|
|
llvm::SmallVector<mlir::Value> extents =
|
|
fir::factory::getExtents(loc, builder, mold);
|
|
llvm::SmallVector<mlir::Value> allocMemTypeParams =
|
|
fir::getTypeParams(mold);
|
|
mlir::Value charLen;
|
|
mlir::Type elementType = fir::unwrapSequenceType(type);
|
|
if (auto charType = elementType.dyn_cast<fir::CharacterType>()) {
|
|
charLen = allocMemTypeParams.empty()
|
|
? fir::factory::readCharLen(builder, loc, mold)
|
|
: allocMemTypeParams[0];
|
|
if (charType.hasDynamicLen() && allocMemTypeParams.empty())
|
|
allocMemTypeParams.push_back(charLen);
|
|
} else if (fir::hasDynamicSize(elementType)) {
|
|
TODO(loc, "creating temporary for derived type with length parameters");
|
|
}
|
|
|
|
mlir::Value temp = builder.create<fir::AllocMemOp>(
|
|
loc, type, tempName, allocMemTypeParams, extents);
|
|
if (fir::unwrapSequenceType(type).isa<fir::CharacterType>())
|
|
return fir::CharArrayBoxValue{temp, charLen, extents};
|
|
return fir::ArrayBoxValue{temp, extents};
|
|
}
|
|
|
|
/// Copy \p source array into \p dest array. Both arrays must be
|
|
/// conforming, but neither array must be contiguous.
|
|
void genArrayCopy(ExtValue dest, ExtValue source) {
|
|
return createSomeArrayAssignment(converter, dest, source, symMap, stmtCtx);
|
|
}
|
|
|
|
/// Lower a non-elemental procedure reference and read allocatable and pointer
|
|
/// results into normal values.
|
|
ExtValue genProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
|
|
llvm::Optional<mlir::Type> resultType) {
|
|
ExtValue res = genRawProcedureRef(procRef, resultType);
|
|
// In most contexts, pointers and allocatable do not appear as allocatable
|
|
// or pointer variable on the caller side (see 8.5.3 note 1 for
|
|
// allocatables). The few context where this can happen must call
|
|
// genRawProcedureRef directly.
|
|
if (const auto *box = res.getBoxOf<fir::MutableBoxValue>())
|
|
return fir::factory::genMutableBoxRead(builder, getLoc(), *box);
|
|
return res;
|
|
}
|
|
|
|
/// Lower a type(C_PTR/C_FUNPTR) argument with VALUE attribute into a
|
|
/// reference. A C pointer can correspond to a Fortran dummy argument of type
|
|
/// C_PTR with the VALUE attribute. (see 18.3.6 note 3).
|
|
static mlir::Value
|
|
genRecordCPtrValueArg(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Value rec, mlir::Type ty) {
|
|
assert(fir::isa_derived(ty));
|
|
auto recTy = ty.dyn_cast<fir::RecordType>();
|
|
assert(recTy.getTypeList().size() == 1);
|
|
auto fieldName = recTy.getTypeList()[0].first;
|
|
mlir::Type fieldTy = recTy.getTypeList()[0].second;
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
auto fieldIndexType = fir::FieldType::get(ty.getContext());
|
|
mlir::Value field =
|
|
builder.create<fir::FieldIndexOp>(loc, fieldIndexType, fieldName, recTy,
|
|
/*typeParams=*/mlir::ValueRange{});
|
|
mlir::Value cAddr = builder.create<fir::CoordinateOp>(
|
|
loc, builder.getRefType(fieldTy), rec, field);
|
|
mlir::Value val = builder.create<fir::LoadOp>(loc, cAddr);
|
|
return builder.createConvert(loc, builder.getRefType(fieldTy), val);
|
|
}
|
|
|
|
/// Given a call site for which the arguments were already lowered, generate
|
|
/// the call and return the result. This function deals with explicit result
|
|
/// allocation and lowering if needed. It also deals with passing the host
|
|
/// link to internal procedures.
|
|
ExtValue genCallOpAndResult(Fortran::lower::CallerInterface &caller,
|
|
mlir::FunctionType callSiteType,
|
|
llvm::Optional<mlir::Type> resultType) {
|
|
mlir::Location loc = getLoc();
|
|
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
|
|
// Handle cases where caller must allocate the result or a fir.box for it.
|
|
bool mustPopSymMap = false;
|
|
if (caller.mustMapInterfaceSymbols()) {
|
|
symMap.pushScope();
|
|
mustPopSymMap = true;
|
|
Fortran::lower::mapCallInterfaceSymbols(converter, caller, symMap);
|
|
}
|
|
// If this is an indirect call, retrieve the function address. Also retrieve
|
|
// the result length if this is a character function (note that this length
|
|
// will be used only if there is no explicit length in the local interface).
|
|
mlir::Value funcPointer;
|
|
mlir::Value charFuncPointerLength;
|
|
if (const Fortran::semantics::Symbol *sym =
|
|
caller.getIfIndirectCallSymbol()) {
|
|
funcPointer = symMap.lookupSymbol(*sym).getAddr();
|
|
if (!funcPointer)
|
|
fir::emitFatalError(loc, "failed to find indirect call symbol address");
|
|
if (fir::isCharacterProcedureTuple(funcPointer.getType(),
|
|
/*acceptRawFunc=*/false))
|
|
std::tie(funcPointer, charFuncPointerLength) =
|
|
fir::factory::extractCharacterProcedureTuple(builder, loc,
|
|
funcPointer);
|
|
}
|
|
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
|
|
mlir::Value convertExpr = builder.createConvert(
|
|
loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx)));
|
|
return fir::factory::genMaxWithZero(builder, loc, convertExpr);
|
|
};
|
|
llvm::SmallVector<mlir::Value> resultLengths;
|
|
auto allocatedResult = [&]() -> llvm::Optional<ExtValue> {
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
llvm::SmallVector<mlir::Value> lengths;
|
|
if (!caller.callerAllocateResult())
|
|
return {};
|
|
mlir::Type type = caller.getResultStorageType();
|
|
if (type.isa<fir::SequenceType>())
|
|
caller.walkResultExtents([&](const Fortran::lower::SomeExpr &e) {
|
|
extents.emplace_back(lowerSpecExpr(e));
|
|
});
|
|
caller.walkResultLengths([&](const Fortran::lower::SomeExpr &e) {
|
|
lengths.emplace_back(lowerSpecExpr(e));
|
|
});
|
|
|
|
// Result length parameters should not be provided to box storage
|
|
// allocation and save_results, but they are still useful information to
|
|
// keep in the ExtendedValue if non-deferred.
|
|
if (!type.isa<fir::BoxType>()) {
|
|
if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) {
|
|
// Calling an assumed length function. This is only possible if this
|
|
// is a call to a character dummy procedure.
|
|
if (!charFuncPointerLength)
|
|
fir::emitFatalError(loc, "failed to retrieve character function "
|
|
"length while calling it");
|
|
lengths.push_back(charFuncPointerLength);
|
|
}
|
|
resultLengths = lengths;
|
|
}
|
|
|
|
if (!extents.empty() || !lengths.empty()) {
|
|
auto *bldr = &converter.getFirOpBuilder();
|
|
auto stackSaveFn = fir::factory::getLlvmStackSave(builder);
|
|
auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName());
|
|
mlir::Value sp =
|
|
bldr->create<fir::CallOp>(
|
|
loc, stackSaveFn.getFunctionType().getResults(),
|
|
stackSaveSymbol, mlir::ValueRange{})
|
|
.getResult(0);
|
|
stmtCtx.attachCleanup([bldr, loc, sp]() {
|
|
auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr);
|
|
auto stackRestoreSymbol =
|
|
bldr->getSymbolRefAttr(stackRestoreFn.getName());
|
|
bldr->create<fir::CallOp>(
|
|
loc, stackRestoreFn.getFunctionType().getResults(),
|
|
stackRestoreSymbol, mlir::ValueRange{sp});
|
|
});
|
|
}
|
|
mlir::Value temp =
|
|
builder.createTemporary(loc, type, ".result", extents, resultLengths);
|
|
return toExtendedValue(loc, temp, extents, lengths);
|
|
}();
|
|
|
|
if (mustPopSymMap)
|
|
symMap.popScope();
|
|
|
|
// Place allocated result or prepare the fir.save_result arguments.
|
|
mlir::Value arrayResultShape;
|
|
if (allocatedResult) {
|
|
if (std::optional<Fortran::lower::CallInterface<
|
|
Fortran::lower::CallerInterface>::PassedEntity>
|
|
resultArg = caller.getPassedResult()) {
|
|
if (resultArg->passBy == PassBy::AddressAndLength)
|
|
caller.placeAddressAndLengthInput(*resultArg,
|
|
fir::getBase(*allocatedResult),
|
|
fir::getLen(*allocatedResult));
|
|
else if (resultArg->passBy == PassBy::BaseAddress)
|
|
caller.placeInput(*resultArg, fir::getBase(*allocatedResult));
|
|
else
|
|
fir::emitFatalError(
|
|
loc, "only expect character scalar result to be passed by ref");
|
|
} else {
|
|
assert(caller.mustSaveResult());
|
|
arrayResultShape = allocatedResult->match(
|
|
[&](const fir::CharArrayBoxValue &) {
|
|
return builder.createShape(loc, *allocatedResult);
|
|
},
|
|
[&](const fir::ArrayBoxValue &) {
|
|
return builder.createShape(loc, *allocatedResult);
|
|
},
|
|
[&](const auto &) { return mlir::Value{}; });
|
|
}
|
|
}
|
|
|
|
// In older Fortran, procedure argument types are inferred. This may lead
|
|
// different view of what the function signature is in different locations.
|
|
// Casts are inserted as needed below to accommodate this.
|
|
|
|
// The mlir::func::FuncOp type prevails, unless it has a different number of
|
|
// arguments which can happen in legal program if it was passed as a dummy
|
|
// procedure argument earlier with no further type information.
|
|
mlir::SymbolRefAttr funcSymbolAttr;
|
|
bool addHostAssociations = false;
|
|
if (!funcPointer) {
|
|
mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType();
|
|
mlir::SymbolRefAttr symbolAttr =
|
|
builder.getSymbolRefAttr(caller.getMangledName());
|
|
if (callSiteType.getNumResults() == funcOpType.getNumResults() &&
|
|
callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() &&
|
|
fir::anyFuncArgsHaveAttr(caller.getFuncOp(),
|
|
fir::getHostAssocAttrName())) {
|
|
// The number of arguments is off by one, and we're lowering a function
|
|
// with host associations. Modify call to include host associations
|
|
// argument by appending the value at the end of the operands.
|
|
assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) ==
|
|
converter.hostAssocTupleValue().getType());
|
|
addHostAssociations = true;
|
|
}
|
|
if (!addHostAssociations &&
|
|
(callSiteType.getNumResults() != funcOpType.getNumResults() ||
|
|
callSiteType.getNumInputs() != funcOpType.getNumInputs())) {
|
|
// Deal with argument number mismatch by making a function pointer so
|
|
// that function type cast can be inserted. Do not emit a warning here
|
|
// because this can happen in legal program if the function is not
|
|
// defined here and it was first passed as an argument without any more
|
|
// information.
|
|
funcPointer =
|
|
builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
|
|
} else if (callSiteType.getResults() != funcOpType.getResults()) {
|
|
// Implicit interface result type mismatch are not standard Fortran, but
|
|
// some compilers are not complaining about it. The front end is not
|
|
// protecting lowering from this currently. Support this with a
|
|
// discouraging warning.
|
|
LLVM_DEBUG(mlir::emitWarning(
|
|
loc, "a return type mismatch is not standard compliant and may "
|
|
"lead to undefined behavior."));
|
|
// Cast the actual function to the current caller implicit type because
|
|
// that is the behavior we would get if we could not see the definition.
|
|
funcPointer =
|
|
builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
|
|
} else {
|
|
funcSymbolAttr = symbolAttr;
|
|
}
|
|
}
|
|
|
|
mlir::FunctionType funcType =
|
|
funcPointer ? callSiteType : caller.getFuncOp().getFunctionType();
|
|
llvm::SmallVector<mlir::Value> operands;
|
|
// First operand of indirect call is the function pointer. Cast it to
|
|
// required function type for the call to handle procedures that have a
|
|
// compatible interface in Fortran, but that have different signatures in
|
|
// FIR.
|
|
if (funcPointer) {
|
|
operands.push_back(
|
|
funcPointer.getType().isa<fir::BoxProcType>()
|
|
? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer)
|
|
: builder.createConvert(loc, funcType, funcPointer));
|
|
}
|
|
|
|
// Deal with potential mismatches in arguments types. Passing an array to a
|
|
// scalar argument should for instance be tolerated here.
|
|
bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface();
|
|
for (auto [fst, snd] :
|
|
llvm::zip(caller.getInputs(), funcType.getInputs())) {
|
|
// When passing arguments to a procedure that can be called by implicit
|
|
// interface, allow any character actual arguments to be passed to dummy
|
|
// arguments of any type and vice versa.
|
|
mlir::Value cast;
|
|
auto *context = builder.getContext();
|
|
if (snd.isa<fir::BoxProcType>() &&
|
|
fst.getType().isa<mlir::FunctionType>()) {
|
|
auto funcTy = mlir::FunctionType::get(context, llvm::None, llvm::None);
|
|
auto boxProcTy = builder.getBoxProcType(funcTy);
|
|
if (mlir::Value host = argumentHostAssocs(converter, fst)) {
|
|
cast = builder.create<fir::EmboxProcOp>(
|
|
loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host});
|
|
} else {
|
|
cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst);
|
|
}
|
|
} else {
|
|
mlir::Type fromTy = fir::unwrapRefType(fst.getType());
|
|
if (fir::isa_builtin_cptr_type(fromTy) &&
|
|
Fortran::lower::isCPtrArgByValueType(snd)) {
|
|
cast = genRecordCPtrValueArg(converter, fst, fromTy);
|
|
} else if (fir::isa_derived(snd)) {
|
|
// FIXME: This seems like a serious bug elsewhere in lowering. Paper
|
|
// over the problem for now.
|
|
TODO(loc, "derived type argument passed by value");
|
|
} else {
|
|
cast = builder.convertWithSemantics(loc, snd, fst,
|
|
callingImplicitInterface);
|
|
}
|
|
}
|
|
operands.push_back(cast);
|
|
}
|
|
|
|
// Add host associations as necessary.
|
|
if (addHostAssociations)
|
|
operands.push_back(converter.hostAssocTupleValue());
|
|
|
|
auto call = builder.create<fir::CallOp>(loc, funcType.getResults(),
|
|
funcSymbolAttr, operands);
|
|
|
|
if (caller.mustSaveResult())
|
|
builder.create<fir::SaveResultOp>(loc, call.getResult(0),
|
|
fir::getBase(allocatedResult.value()),
|
|
arrayResultShape, resultLengths);
|
|
|
|
if (allocatedResult) {
|
|
allocatedResult->match(
|
|
[&](const fir::MutableBoxValue &box) {
|
|
if (box.isAllocatable()) {
|
|
// 9.7.3.2 point 4. Finalize allocatables.
|
|
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
|
|
stmtCtx.attachCleanup([bldr, loc, box]() {
|
|
fir::factory::genFinalization(*bldr, loc, box);
|
|
});
|
|
}
|
|
},
|
|
[](const auto &) {});
|
|
return *allocatedResult;
|
|
}
|
|
|
|
if (!resultType)
|
|
return mlir::Value{}; // subroutine call
|
|
// For now, Fortran return values are implemented with a single MLIR
|
|
// function return value.
|
|
assert(call.getNumResults() == 1 &&
|
|
"Expected exactly one result in FUNCTION call");
|
|
return call.getResult(0);
|
|
}
|
|
|
|
/// Like genExtAddr, but ensure the address returned is a temporary even if \p
|
|
/// expr is variable inside parentheses.
|
|
ExtValue genTempExtAddr(const Fortran::lower::SomeExpr &expr) {
|
|
// In general, genExtAddr might not create a temp for variable inside
|
|
// parentheses to avoid creating array temporary in sub-expressions. It only
|
|
// ensures the sub-expression is not re-associated with other parts of the
|
|
// expression. In the call semantics, there is a difference between expr and
|
|
// variable (see R1524). For expressions, a variable storage must not be
|
|
// argument associated since it could be modified inside the call, or the
|
|
// variable could also be modified by other means during the call.
|
|
if (!isParenthesizedVariable(expr))
|
|
return genExtAddr(expr);
|
|
if (expr.Rank() > 0)
|
|
return asArray(expr);
|
|
mlir::Location loc = getLoc();
|
|
return genExtValue(expr).match(
|
|
[&](const fir::CharBoxValue &boxChar) -> ExtValue {
|
|
return fir::factory::CharacterExprHelper{builder, loc}.createTempFrom(
|
|
boxChar);
|
|
},
|
|
[&](const fir::UnboxedValue &v) -> ExtValue {
|
|
mlir::Type type = v.getType();
|
|
mlir::Value value = v;
|
|
if (fir::isa_ref_type(type))
|
|
value = builder.create<fir::LoadOp>(loc, value);
|
|
mlir::Value temp = builder.createTemporary(loc, value.getType());
|
|
builder.create<fir::StoreOp>(loc, value, temp);
|
|
return temp;
|
|
},
|
|
[&](const fir::BoxValue &x) -> ExtValue {
|
|
// Derived type scalar that may be polymorphic.
|
|
assert(!x.hasRank() && x.isDerived());
|
|
if (x.isDerivedWithLenParameters())
|
|
fir::emitFatalError(
|
|
loc, "making temps for derived type with length parameters");
|
|
// TODO: polymorphic aspects should be kept but for now the temp
|
|
// created always has the declared type.
|
|
mlir::Value var =
|
|
fir::getBase(fir::factory::readBoxValue(builder, loc, x));
|
|
auto value = builder.create<fir::LoadOp>(loc, var);
|
|
mlir::Value temp = builder.createTemporary(loc, value.getType());
|
|
builder.create<fir::StoreOp>(loc, value, temp);
|
|
return temp;
|
|
},
|
|
[&](const auto &) -> ExtValue {
|
|
fir::emitFatalError(loc, "expr is not a scalar value");
|
|
});
|
|
}
|
|
|
|
/// Helper structure to track potential copy-in of non contiguous variable
|
|
/// argument into a contiguous temp. It is used to deallocate the temp that
|
|
/// may have been created as well as to the copy-out from the temp to the
|
|
/// variable after the call.
|
|
struct CopyOutPair {
|
|
ExtValue var;
|
|
ExtValue temp;
|
|
// Flag to indicate if the argument may have been modified by the
|
|
// callee, in which case it must be copied-out to the variable.
|
|
bool argMayBeModifiedByCall;
|
|
// Optional boolean value that, if present and false, prevents
|
|
// the copy-out and temp deallocation.
|
|
llvm::Optional<mlir::Value> restrictCopyAndFreeAtRuntime;
|
|
};
|
|
using CopyOutPairs = llvm::SmallVector<CopyOutPair, 4>;
|
|
|
|
/// Helper to read any fir::BoxValue into other fir::ExtendedValue categories
|
|
/// not based on fir.box.
|
|
/// This will lose any non contiguous stride information and dynamic type and
|
|
/// should only be called if \p exv is known to be contiguous or if its base
|
|
/// address will be replaced by a contiguous one. If \p exv is not a
|
|
/// fir::BoxValue, this is a no-op.
|
|
ExtValue readIfBoxValue(const ExtValue &exv) {
|
|
if (const auto *box = exv.getBoxOf<fir::BoxValue>())
|
|
return fir::factory::readBoxValue(builder, getLoc(), *box);
|
|
return exv;
|
|
}
|
|
|
|
/// Generate a contiguous temp to pass \p actualArg as argument \p arg. The
|
|
/// creation of the temp and copy-in can be made conditional at runtime by
|
|
/// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case
|
|
/// the temp and copy will only be made if the value is true at runtime).
|
|
ExtValue genCopyIn(const ExtValue &actualArg,
|
|
const Fortran::lower::CallerInterface::PassedEntity &arg,
|
|
CopyOutPairs ©OutPairs,
|
|
llvm::Optional<mlir::Value> restrictCopyAtRuntime,
|
|
bool byValue) {
|
|
const bool doCopyOut = !byValue && arg.mayBeModifiedByCall();
|
|
llvm::StringRef tempName = byValue ? ".copy" : ".copyinout";
|
|
if (!restrictCopyAtRuntime) {
|
|
ExtValue temp = genArrayTempFromMold(actualArg, tempName);
|
|
if (arg.mayBeReadByCall())
|
|
genArrayCopy(temp, actualArg);
|
|
copyOutPairs.emplace_back(
|
|
CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime});
|
|
return temp;
|
|
}
|
|
// Otherwise, need to be careful to only copy-in if allowed at runtime.
|
|
mlir::Location loc = getLoc();
|
|
auto addrType = fir::HeapType::get(
|
|
fir::unwrapPassByRefType(fir::getBase(actualArg).getType()));
|
|
mlir::Value addr =
|
|
builder
|
|
.genIfOp(loc, {addrType}, *restrictCopyAtRuntime,
|
|
/*withElseRegion=*/true)
|
|
.genThen([&]() {
|
|
auto temp = genArrayTempFromMold(actualArg, tempName);
|
|
if (arg.mayBeReadByCall())
|
|
genArrayCopy(temp, actualArg);
|
|
builder.create<fir::ResultOp>(loc, fir::getBase(temp));
|
|
})
|
|
.genElse([&]() {
|
|
auto nullPtr = builder.createNullConstant(loc, addrType);
|
|
builder.create<fir::ResultOp>(loc, nullPtr);
|
|
})
|
|
.getResults()[0];
|
|
// Associate the temp address with actualArg lengths and extents.
|
|
fir::ExtendedValue temp = fir::substBase(readIfBoxValue(actualArg), addr);
|
|
copyOutPairs.emplace_back(
|
|
CopyOutPair{actualArg, temp, doCopyOut, restrictCopyAtRuntime});
|
|
return temp;
|
|
}
|
|
|
|
/// Generate copy-out if needed and free the temporary for an argument that
|
|
/// has been copied-in into a contiguous temp.
|
|
void genCopyOut(const CopyOutPair ©OutPair) {
|
|
mlir::Location loc = getLoc();
|
|
if (!copyOutPair.restrictCopyAndFreeAtRuntime) {
|
|
if (copyOutPair.argMayBeModifiedByCall)
|
|
genArrayCopy(copyOutPair.var, copyOutPair.temp);
|
|
builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp));
|
|
return;
|
|
}
|
|
builder.genIfThen(loc, *copyOutPair.restrictCopyAndFreeAtRuntime)
|
|
.genThen([&]() {
|
|
if (copyOutPair.argMayBeModifiedByCall)
|
|
genArrayCopy(copyOutPair.var, copyOutPair.temp);
|
|
builder.create<fir::FreeMemOp>(loc, fir::getBase(copyOutPair.temp));
|
|
})
|
|
.end();
|
|
}
|
|
|
|
/// Lower a designator to a variable that may be absent at runtime into an
|
|
/// ExtendedValue where all the properties (base address, shape and length
|
|
/// parameters) can be safely read (set to zero if not present). It also
|
|
/// returns a boolean mlir::Value telling if the variable is present at
|
|
/// runtime.
|
|
/// This is useful to later be able to do conditional copy-in/copy-out
|
|
/// or to retrieve the base address without having to deal with the case
|
|
/// where the actual may be an absent fir.box.
|
|
std::pair<ExtValue, mlir::Value>
|
|
prepareActualThatMayBeAbsent(const Fortran::lower::SomeExpr &expr) {
|
|
mlir::Location loc = getLoc();
|
|
if (Fortran::evaluate::IsAllocatableOrPointerObject(
|
|
expr, converter.getFoldingContext())) {
|
|
// Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated,
|
|
// it is as if the argument was absent. The main care here is to
|
|
// not do a copy-in/copy-out because the temp address, even though
|
|
// pointing to a null size storage, would not be a nullptr and
|
|
// therefore the argument would not be considered absent on the
|
|
// callee side. Note: if wholeSymbol is optional, it cannot be
|
|
// absent as per 15.5.2.12 point 7. and 8. We rely on this to
|
|
// un-conditionally read the allocatable/pointer descriptor here.
|
|
fir::MutableBoxValue mutableBox = genMutableBoxValue(expr);
|
|
mlir::Value isPresent = fir::factory::genIsAllocatedOrAssociatedTest(
|
|
builder, loc, mutableBox);
|
|
fir::ExtendedValue actualArg =
|
|
fir::factory::genMutableBoxRead(builder, loc, mutableBox);
|
|
return {actualArg, isPresent};
|
|
}
|
|
// Absent descriptor cannot be read. To avoid any issue in
|
|
// copy-in/copy-out, and when retrieving the address/length
|
|
// create an descriptor pointing to a null address here if the
|
|
// fir.box is absent.
|
|
ExtValue actualArg = gen(expr);
|
|
mlir::Value actualArgBase = fir::getBase(actualArg);
|
|
mlir::Value isPresent = builder.create<fir::IsPresentOp>(
|
|
loc, builder.getI1Type(), actualArgBase);
|
|
if (!actualArgBase.getType().isa<fir::BoxType>())
|
|
return {actualArg, isPresent};
|
|
ExtValue safeToReadBox =
|
|
absentBoxToUnallocatedBox(builder, loc, actualArg, isPresent);
|
|
return {safeToReadBox, isPresent};
|
|
}
|
|
|
|
/// Create a temp on the stack for scalar actual arguments that may be absent
|
|
/// at runtime, but must be passed via a temp if they are presents.
|
|
fir::ExtendedValue
|
|
createScalarTempForArgThatMayBeAbsent(ExtValue actualArg,
|
|
mlir::Value isPresent) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Type type = fir::unwrapRefType(fir::getBase(actualArg).getType());
|
|
if (fir::isDerivedWithLenParameters(actualArg))
|
|
TODO(loc, "parametrized derived type optional scalar argument copy-in");
|
|
if (const fir::CharBoxValue *charBox = actualArg.getCharBox()) {
|
|
mlir::Value len = charBox->getLen();
|
|
mlir::Value zero = builder.createIntegerConstant(loc, len.getType(), 0);
|
|
len = builder.create<mlir::arith::SelectOp>(loc, isPresent, len, zero);
|
|
mlir::Value temp = builder.createTemporary(
|
|
loc, type, /*name=*/{},
|
|
/*shape=*/{}, mlir::ValueRange{len},
|
|
llvm::ArrayRef<mlir::NamedAttribute>{
|
|
Fortran::lower::getAdaptToByRefAttr(builder)});
|
|
return fir::CharBoxValue{temp, len};
|
|
}
|
|
assert((fir::isa_trivial(type) || type.isa<fir::RecordType>()) &&
|
|
"must be simple scalar");
|
|
return builder.createTemporary(
|
|
loc, type,
|
|
llvm::ArrayRef<mlir::NamedAttribute>{
|
|
Fortran::lower::getAdaptToByRefAttr(builder)});
|
|
}
|
|
|
|
template <typename A>
|
|
bool isCharacterType(const A &exp) {
|
|
if (auto type = exp.GetType())
|
|
return type->category() == Fortran::common::TypeCategory::Character;
|
|
return false;
|
|
}
|
|
|
|
/// Lower an actual argument that must be passed via an address.
|
|
/// This generates of the copy-in/copy-out if the actual is not contiguous, or
|
|
/// the creation of the temp if the actual is a variable and \p byValue is
|
|
/// true. It handles the cases where the actual may be absent, and all of the
|
|
/// copying has to be conditional at runtime.
|
|
ExtValue prepareActualToBaseAddressLike(
|
|
const Fortran::lower::SomeExpr &expr,
|
|
const Fortran::lower::CallerInterface::PassedEntity &arg,
|
|
CopyOutPairs ©OutPairs, bool byValue) {
|
|
mlir::Location loc = getLoc();
|
|
const bool isArray = expr.Rank() > 0;
|
|
const bool actualArgIsVariable = Fortran::evaluate::IsVariable(expr);
|
|
// It must be possible to modify VALUE arguments on the callee side, even
|
|
// if the actual argument is a literal or named constant. Hence, the
|
|
// address of static storage must not be passed in that case, and a copy
|
|
// must be made even if this is not a variable.
|
|
// Note: isArray should be used here, but genBoxArg already creates copies
|
|
// for it, so do not duplicate the copy until genBoxArg behavior is changed.
|
|
const bool isStaticConstantByValue =
|
|
byValue && Fortran::evaluate::IsActuallyConstant(expr) &&
|
|
(isCharacterType(expr));
|
|
const bool variableNeedsCopy =
|
|
actualArgIsVariable &&
|
|
(byValue || (isArray && !Fortran::evaluate::IsSimplyContiguous(
|
|
expr, converter.getFoldingContext())));
|
|
const bool needsCopy = isStaticConstantByValue || variableNeedsCopy;
|
|
auto argAddr = [&]() -> ExtValue {
|
|
if (!actualArgIsVariable && !needsCopy)
|
|
// Actual argument is not a variable. Make sure a variable address is
|
|
// not passed.
|
|
return genTempExtAddr(expr);
|
|
ExtValue baseAddr;
|
|
if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional(
|
|
expr, converter.getFoldingContext())) {
|
|
auto [actualArgBind, isPresent] = prepareActualThatMayBeAbsent(expr);
|
|
const ExtValue &actualArg = actualArgBind;
|
|
if (!needsCopy)
|
|
return actualArg;
|
|
|
|
if (isArray)
|
|
return genCopyIn(actualArg, arg, copyOutPairs, isPresent, byValue);
|
|
// Scalars, create a temp, and use it conditionally at runtime if
|
|
// the argument is present.
|
|
ExtValue temp =
|
|
createScalarTempForArgThatMayBeAbsent(actualArg, isPresent);
|
|
mlir::Type tempAddrTy = fir::getBase(temp).getType();
|
|
mlir::Value selectAddr =
|
|
builder
|
|
.genIfOp(loc, {tempAddrTy}, isPresent,
|
|
/*withElseRegion=*/true)
|
|
.genThen([&]() {
|
|
fir::factory::genScalarAssignment(builder, loc, temp,
|
|
actualArg);
|
|
builder.create<fir::ResultOp>(loc, fir::getBase(temp));
|
|
})
|
|
.genElse([&]() {
|
|
mlir::Value absent =
|
|
builder.create<fir::AbsentOp>(loc, tempAddrTy);
|
|
builder.create<fir::ResultOp>(loc, absent);
|
|
})
|
|
.getResults()[0];
|
|
return fir::substBase(temp, selectAddr);
|
|
}
|
|
// Actual cannot be absent, the actual argument can safely be
|
|
// copied-in/copied-out without any care if needed.
|
|
if (isArray) {
|
|
ExtValue box = genBoxArg(expr);
|
|
if (needsCopy)
|
|
return genCopyIn(box, arg, copyOutPairs,
|
|
/*restrictCopyAtRuntime=*/llvm::None, byValue);
|
|
// Contiguous: just use the box we created above!
|
|
// This gets "unboxed" below, if needed.
|
|
return box;
|
|
}
|
|
// Actual argument is a non-optional, non-pointer, non-allocatable
|
|
// scalar.
|
|
ExtValue actualArg = genExtAddr(expr);
|
|
if (needsCopy)
|
|
return createInMemoryScalarCopy(builder, loc, actualArg);
|
|
return actualArg;
|
|
}();
|
|
// Scalar and contiguous expressions may be lowered to a fir.box,
|
|
// either to account for potential polymorphism, or because lowering
|
|
// did not account for some contiguity hints.
|
|
// Here, polymorphism does not matter (an entity of the declared type
|
|
// is passed, not one of the dynamic type), and the expr is known to
|
|
// be simply contiguous, so it is safe to unbox it and pass the
|
|
// address without making a copy.
|
|
return readIfBoxValue(argAddr);
|
|
}
|
|
|
|
/// Lower a non-elemental procedure reference.
|
|
ExtValue genRawProcedureRef(const Fortran::evaluate::ProcedureRef &procRef,
|
|
llvm::Optional<mlir::Type> resultType) {
|
|
mlir::Location loc = getLoc();
|
|
if (isElementalProcWithArrayArgs(procRef))
|
|
fir::emitFatalError(loc, "trying to lower elemental procedure with array "
|
|
"arguments as normal procedure");
|
|
|
|
if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
|
|
procRef.proc().GetSpecificIntrinsic())
|
|
return genIntrinsicRef(procRef, resultType, *intrinsic);
|
|
|
|
if (isIntrinsicModuleProcRef(procRef))
|
|
return genIntrinsicRef(procRef, resultType);
|
|
|
|
if (isStatementFunctionCall(procRef))
|
|
return genStmtFunctionRef(procRef);
|
|
|
|
Fortran::lower::CallerInterface caller(procRef, converter);
|
|
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
|
|
|
|
llvm::SmallVector<fir::MutableBoxValue> mutableModifiedByCall;
|
|
// List of <var, temp> where temp must be copied into var after the call.
|
|
CopyOutPairs copyOutPairs;
|
|
|
|
mlir::FunctionType callSiteType = caller.genFunctionType();
|
|
|
|
// Lower the actual arguments and map the lowered values to the dummy
|
|
// arguments.
|
|
for (const Fortran::lower::CallInterface<
|
|
Fortran::lower::CallerInterface>::PassedEntity &arg :
|
|
caller.getPassedArguments()) {
|
|
const auto *actual = arg.entity;
|
|
mlir::Type argTy = callSiteType.getInput(arg.firArgument);
|
|
if (!actual) {
|
|
// Optional dummy argument for which there is no actual argument.
|
|
caller.placeInput(arg, builder.create<fir::AbsentOp>(loc, argTy));
|
|
continue;
|
|
}
|
|
const auto *expr = actual->UnwrapExpr();
|
|
if (!expr)
|
|
TODO(loc, "assumed type actual argument");
|
|
|
|
if (arg.passBy == PassBy::Value) {
|
|
ExtValue argVal = genval(*expr);
|
|
if (!fir::isUnboxedValue(argVal))
|
|
fir::emitFatalError(
|
|
loc, "internal error: passing non trivial value by value");
|
|
caller.placeInput(arg, fir::getBase(argVal));
|
|
continue;
|
|
}
|
|
|
|
if (arg.passBy == PassBy::MutableBox) {
|
|
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
|
|
*expr)) {
|
|
// If expr is NULL(), the mutableBox created must be a deallocated
|
|
// pointer with the dummy argument characteristics (see table 16.5
|
|
// in Fortran 2018 standard).
|
|
// No length parameters are set for the created box because any non
|
|
// deferred type parameters of the dummy will be evaluated on the
|
|
// callee side, and it is illegal to use NULL without a MOLD if any
|
|
// dummy length parameters are assumed.
|
|
mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy);
|
|
assert(boxTy && boxTy.isa<fir::BoxType>() &&
|
|
"must be a fir.box type");
|
|
mlir::Value boxStorage = builder.createTemporary(loc, boxTy);
|
|
mlir::Value nullBox = fir::factory::createUnallocatedBox(
|
|
builder, loc, boxTy, /*nonDeferredParams=*/{});
|
|
builder.create<fir::StoreOp>(loc, nullBox, boxStorage);
|
|
caller.placeInput(arg, boxStorage);
|
|
continue;
|
|
}
|
|
if (fir::isPointerType(argTy) &&
|
|
!Fortran::evaluate::IsObjectPointer(
|
|
*expr, converter.getFoldingContext())) {
|
|
// Passing a non POINTER actual argument to a POINTER dummy argument.
|
|
// Create a pointer of the dummy argument type and assign the actual
|
|
// argument to it.
|
|
mlir::Value irBox =
|
|
builder.createTemporary(loc, fir::unwrapRefType(argTy));
|
|
// Non deferred parameters will be evaluated on the callee side.
|
|
fir::MutableBoxValue pointer(irBox,
|
|
/*nonDeferredParams=*/mlir::ValueRange{},
|
|
/*mutableProperties=*/{});
|
|
Fortran::lower::associateMutableBox(converter, loc, pointer, *expr,
|
|
/*lbounds=*/llvm::None, stmtCtx);
|
|
caller.placeInput(arg, irBox);
|
|
continue;
|
|
}
|
|
// Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE.
|
|
fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
|
|
mlir::Value irBox =
|
|
fir::factory::getMutableIRBox(builder, loc, mutableBox);
|
|
caller.placeInput(arg, irBox);
|
|
if (arg.mayBeModifiedByCall())
|
|
mutableModifiedByCall.emplace_back(std::move(mutableBox));
|
|
continue;
|
|
}
|
|
if (arg.passBy == PassBy::BaseAddress || arg.passBy == PassBy::BoxChar ||
|
|
arg.passBy == PassBy::BaseAddressValueAttribute ||
|
|
arg.passBy == PassBy::CharBoxValueAttribute) {
|
|
const bool byValue = arg.passBy == PassBy::BaseAddressValueAttribute ||
|
|
arg.passBy == PassBy::CharBoxValueAttribute;
|
|
ExtValue argAddr =
|
|
prepareActualToBaseAddressLike(*expr, arg, copyOutPairs, byValue);
|
|
if (arg.passBy == PassBy::BaseAddress ||
|
|
arg.passBy == PassBy::BaseAddressValueAttribute) {
|
|
caller.placeInput(arg, fir::getBase(argAddr));
|
|
} else {
|
|
assert(arg.passBy == PassBy::BoxChar ||
|
|
arg.passBy == PassBy::CharBoxValueAttribute);
|
|
auto helper = fir::factory::CharacterExprHelper{builder, loc};
|
|
auto boxChar = argAddr.match(
|
|
[&](const fir::CharBoxValue &x) { return helper.createEmbox(x); },
|
|
[&](const fir::CharArrayBoxValue &x) {
|
|
return helper.createEmbox(x);
|
|
},
|
|
[&](const auto &x) -> mlir::Value {
|
|
// Fortran allows an actual argument of a completely different
|
|
// type to be passed to a procedure expecting a CHARACTER in the
|
|
// dummy argument position. When this happens, the data pointer
|
|
// argument is simply assumed to point to CHARACTER data and the
|
|
// LEN argument used is garbage. Simulate this behavior by
|
|
// free-casting the base address to be a !fir.char reference and
|
|
// setting the LEN argument to undefined. What could go wrong?
|
|
auto dataPtr = fir::getBase(x);
|
|
assert(!dataPtr.getType().template isa<fir::BoxType>());
|
|
return builder.convertWithSemantics(
|
|
loc, argTy, dataPtr,
|
|
/*allowCharacterConversion=*/true);
|
|
});
|
|
caller.placeInput(arg, boxChar);
|
|
}
|
|
} else if (arg.passBy == PassBy::Box) {
|
|
// Before lowering to an address, handle the allocatable/pointer actual
|
|
// argument to optional fir.box dummy. It is legal to pass
|
|
// unallocated/disassociated entity to an optional. In this case, an
|
|
// absent fir.box must be created instead of a fir.box with a null value
|
|
// (Fortran 2018 15.5.2.12 point 1).
|
|
if (arg.isOptional() && Fortran::evaluate::IsAllocatableOrPointerObject(
|
|
*expr, converter.getFoldingContext())) {
|
|
// Note that passing an absent allocatable to a non-allocatable
|
|
// optional dummy argument is illegal (15.5.2.12 point 3 (8)). So
|
|
// nothing has to be done to generate an absent argument in this case,
|
|
// and it is OK to unconditionally read the mutable box here.
|
|
fir::MutableBoxValue mutableBox = genMutableBoxValue(*expr);
|
|
mlir::Value isAllocated =
|
|
fir::factory::genIsAllocatedOrAssociatedTest(builder, loc,
|
|
mutableBox);
|
|
auto absent = builder.create<fir::AbsentOp>(loc, argTy);
|
|
/// For now, assume it is not OK to pass the allocatable/pointer
|
|
/// descriptor to a non pointer/allocatable dummy. That is a strict
|
|
/// interpretation of 18.3.6 point 4 that stipulates the descriptor
|
|
/// has the dummy attributes in BIND(C) contexts.
|
|
mlir::Value box = builder.createBox(
|
|
loc, fir::factory::genMutableBoxRead(builder, loc, mutableBox));
|
|
// Need the box types to be exactly similar for the selectOp.
|
|
mlir::Value convertedBox = builder.createConvert(loc, argTy, box);
|
|
caller.placeInput(arg, builder.create<mlir::arith::SelectOp>(
|
|
loc, isAllocated, convertedBox, absent));
|
|
} else {
|
|
// Make sure a variable address is only passed if the expression is
|
|
// actually a variable.
|
|
mlir::Value box =
|
|
Fortran::evaluate::IsVariable(*expr)
|
|
? builder.createBox(loc, genBoxArg(*expr))
|
|
: builder.createBox(getLoc(), genTempExtAddr(*expr));
|
|
caller.placeInput(arg, box);
|
|
}
|
|
} else if (arg.passBy == PassBy::AddressAndLength) {
|
|
ExtValue argRef = genExtAddr(*expr);
|
|
caller.placeAddressAndLengthInput(arg, fir::getBase(argRef),
|
|
fir::getLen(argRef));
|
|
} else if (arg.passBy == PassBy::CharProcTuple) {
|
|
ExtValue argRef = genExtAddr(*expr);
|
|
mlir::Value tuple = createBoxProcCharTuple(
|
|
converter, argTy, fir::getBase(argRef), fir::getLen(argRef));
|
|
caller.placeInput(arg, tuple);
|
|
} else {
|
|
TODO(loc, "pass by value in non elemental function call");
|
|
}
|
|
}
|
|
|
|
ExtValue result = genCallOpAndResult(caller, callSiteType, resultType);
|
|
|
|
// Sync pointers and allocatables that may have been modified during the
|
|
// call.
|
|
for (const auto &mutableBox : mutableModifiedByCall)
|
|
fir::factory::syncMutableBoxFromIRBox(builder, loc, mutableBox);
|
|
// Handle case where result was passed as argument
|
|
|
|
// Copy-out temps that were created for non contiguous variable arguments if
|
|
// needed.
|
|
for (const auto ©OutPair : copyOutPairs)
|
|
genCopyOut(copyOutPair);
|
|
|
|
return result;
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue genval(const Fortran::evaluate::FunctionRef<A> &funcRef) {
|
|
ExtValue result = genFunctionRef(funcRef);
|
|
if (result.rank() == 0 && fir::isa_ref_type(fir::getBase(result).getType()))
|
|
return genLoad(result);
|
|
return result;
|
|
}
|
|
|
|
ExtValue genval(const Fortran::evaluate::ProcedureRef &procRef) {
|
|
llvm::Optional<mlir::Type> resTy;
|
|
if (procRef.hasAlternateReturns())
|
|
resTy = builder.getIndexType();
|
|
return genProcedureRef(procRef, resTy);
|
|
}
|
|
|
|
template <typename A>
|
|
bool isScalar(const A &x) {
|
|
return x.Rank() == 0;
|
|
}
|
|
|
|
/// Helper to detect Transformational function reference.
|
|
template <typename T>
|
|
bool isTransformationalRef(const T &) {
|
|
return false;
|
|
}
|
|
template <typename T>
|
|
bool isTransformationalRef(const Fortran::evaluate::FunctionRef<T> &funcRef) {
|
|
return !funcRef.IsElemental() && funcRef.Rank();
|
|
}
|
|
template <typename T>
|
|
bool isTransformationalRef(Fortran::evaluate::Expr<T> expr) {
|
|
return std::visit([&](const auto &e) { return isTransformationalRef(e); },
|
|
expr.u);
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue asArray(const A &x) {
|
|
return Fortran::lower::createSomeArrayTempValue(converter, toEvExpr(x),
|
|
symMap, stmtCtx);
|
|
}
|
|
|
|
/// Lower an array value as an argument. This argument can be passed as a box
|
|
/// value, so it may be possible to avoid making a temporary.
|
|
template <typename A>
|
|
ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x) {
|
|
return std::visit([&](const auto &e) { return asArrayArg(e, x); }, x.u);
|
|
}
|
|
template <typename A, typename B>
|
|
ExtValue asArrayArg(const Fortran::evaluate::Expr<A> &x, const B &y) {
|
|
return std::visit([&](const auto &e) { return asArrayArg(e, y); }, x.u);
|
|
}
|
|
template <typename A, typename B>
|
|
ExtValue asArrayArg(const Fortran::evaluate::Designator<A> &, const B &x) {
|
|
// Designator is being passed as an argument to a procedure. Lower the
|
|
// expression to a boxed value.
|
|
auto someExpr = toEvExpr(x);
|
|
return Fortran::lower::createBoxValue(getLoc(), converter, someExpr, symMap,
|
|
stmtCtx);
|
|
}
|
|
template <typename A, typename B>
|
|
ExtValue asArrayArg(const A &, const B &x) {
|
|
// If the expression to pass as an argument is not a designator, then create
|
|
// an array temp.
|
|
return asArray(x);
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue gen(const Fortran::evaluate::Expr<A> &x) {
|
|
// Whole array symbols or components, and results of transformational
|
|
// functions already have a storage and the scalar expression lowering path
|
|
// is used to not create a new temporary storage.
|
|
if (isScalar(x) ||
|
|
Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x) ||
|
|
(isTransformationalRef(x) && !isOptimizableTranspose(x, converter)))
|
|
return std::visit([&](const auto &e) { return genref(e); }, x.u);
|
|
if (useBoxArg)
|
|
return asArrayArg(x);
|
|
return asArray(x);
|
|
}
|
|
template <typename A>
|
|
ExtValue genval(const Fortran::evaluate::Expr<A> &x) {
|
|
if (isScalar(x) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x) ||
|
|
inInitializer)
|
|
return std::visit([&](const auto &e) { return genval(e); }, x.u);
|
|
return asArray(x);
|
|
}
|
|
|
|
template <int KIND>
|
|
ExtValue genval(const Fortran::evaluate::Expr<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Logical, KIND>> &exp) {
|
|
return std::visit([&](const auto &e) { return genval(e); }, exp.u);
|
|
}
|
|
|
|
using RefSet =
|
|
std::tuple<Fortran::evaluate::ComplexPart, Fortran::evaluate::Substring,
|
|
Fortran::evaluate::DataRef, Fortran::evaluate::Component,
|
|
Fortran::evaluate::ArrayRef, Fortran::evaluate::CoarrayRef,
|
|
Fortran::semantics::SymbolRef>;
|
|
template <typename A>
|
|
static constexpr bool inRefSet = Fortran::common::HasMember<A, RefSet>;
|
|
|
|
template <typename A, typename = std::enable_if_t<inRefSet<A>>>
|
|
ExtValue genref(const A &a) {
|
|
return gen(a);
|
|
}
|
|
template <typename A>
|
|
ExtValue genref(const A &a) {
|
|
if (inInitializer) {
|
|
// Initialization expressions can never allocate memory.
|
|
return genval(a);
|
|
}
|
|
mlir::Type storageType = converter.genType(toEvExpr(a));
|
|
return placeScalarValueInMemory(builder, getLoc(), genval(a), storageType);
|
|
}
|
|
|
|
template <typename A, template <typename> typename T,
|
|
typename B = std::decay_t<T<A>>,
|
|
std::enable_if_t<
|
|
std::is_same_v<B, Fortran::evaluate::Expr<A>> ||
|
|
std::is_same_v<B, Fortran::evaluate::Designator<A>> ||
|
|
std::is_same_v<B, Fortran::evaluate::FunctionRef<A>>,
|
|
bool> = true>
|
|
ExtValue genref(const T<A> &x) {
|
|
return gen(x);
|
|
}
|
|
|
|
private:
|
|
mlir::Location location;
|
|
Fortran::lower::AbstractConverter &converter;
|
|
fir::FirOpBuilder &builder;
|
|
Fortran::lower::StatementContext &stmtCtx;
|
|
Fortran::lower::SymMap &symMap;
|
|
InitializerData *inInitializer = nullptr;
|
|
bool useBoxArg = false; // expression lowered as argument
|
|
};
|
|
} // namespace
|
|
|
|
// Helper for changing the semantics in a given context. Preserves the current
|
|
// semantics which is resumed when the "push" goes out of scope.
|
|
#define PushSemantics(PushVal) \
|
|
[[maybe_unused]] auto pushSemanticsLocalVariable##__LINE__ = \
|
|
Fortran::common::ScopedSet(semant, PushVal);
|
|
|
|
static bool isAdjustedArrayElementType(mlir::Type t) {
|
|
return fir::isa_char(t) || fir::isa_derived(t) || t.isa<fir::SequenceType>();
|
|
}
|
|
static bool elementTypeWasAdjusted(mlir::Type t) {
|
|
if (auto ty = t.dyn_cast<fir::ReferenceType>())
|
|
return isAdjustedArrayElementType(ty.getEleTy());
|
|
return false;
|
|
}
|
|
static mlir::Type adjustedArrayElementType(mlir::Type t) {
|
|
return isAdjustedArrayElementType(t) ? fir::ReferenceType::get(t) : t;
|
|
}
|
|
|
|
/// Helper to generate calls to scalar user defined assignment procedures.
|
|
static void genScalarUserDefinedAssignmentCall(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
mlir::func::FuncOp func,
|
|
const fir::ExtendedValue &lhs,
|
|
const fir::ExtendedValue &rhs) {
|
|
auto prepareUserDefinedArg =
|
|
[](fir::FirOpBuilder &builder, mlir::Location loc,
|
|
const fir::ExtendedValue &value, mlir::Type argType) -> mlir::Value {
|
|
if (argType.isa<fir::BoxCharType>()) {
|
|
const fir::CharBoxValue *charBox = value.getCharBox();
|
|
assert(charBox && "argument type mismatch in elemental user assignment");
|
|
return fir::factory::CharacterExprHelper{builder, loc}.createEmbox(
|
|
*charBox);
|
|
}
|
|
if (argType.isa<fir::BoxType>()) {
|
|
mlir::Value box = builder.createBox(loc, value);
|
|
return builder.createConvert(loc, argType, box);
|
|
}
|
|
// Simple pass by address.
|
|
mlir::Type argBaseType = fir::unwrapRefType(argType);
|
|
assert(!fir::hasDynamicSize(argBaseType));
|
|
mlir::Value from = fir::getBase(value);
|
|
if (argBaseType != fir::unwrapRefType(from.getType())) {
|
|
// With logicals, it is possible that from is i1 here.
|
|
if (fir::isa_ref_type(from.getType()))
|
|
from = builder.create<fir::LoadOp>(loc, from);
|
|
from = builder.createConvert(loc, argBaseType, from);
|
|
}
|
|
if (!fir::isa_ref_type(from.getType())) {
|
|
mlir::Value temp = builder.createTemporary(loc, argBaseType);
|
|
builder.create<fir::StoreOp>(loc, from, temp);
|
|
from = temp;
|
|
}
|
|
return builder.createConvert(loc, argType, from);
|
|
};
|
|
assert(func.getNumArguments() == 2);
|
|
mlir::Type lhsType = func.getFunctionType().getInput(0);
|
|
mlir::Type rhsType = func.getFunctionType().getInput(1);
|
|
mlir::Value lhsArg = prepareUserDefinedArg(builder, loc, lhs, lhsType);
|
|
mlir::Value rhsArg = prepareUserDefinedArg(builder, loc, rhs, rhsType);
|
|
builder.create<fir::CallOp>(loc, func, mlir::ValueRange{lhsArg, rhsArg});
|
|
}
|
|
|
|
/// Convert the result of a fir.array_modify to an ExtendedValue given the
|
|
/// related fir.array_load.
|
|
static fir::ExtendedValue arrayModifyToExv(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
fir::ArrayLoadOp load,
|
|
mlir::Value elementAddr) {
|
|
mlir::Type eleTy = fir::unwrapPassByRefType(elementAddr.getType());
|
|
if (fir::isa_char(eleTy)) {
|
|
auto len = fir::factory::CharacterExprHelper{builder, loc}.getLength(
|
|
load.getMemref());
|
|
if (!len) {
|
|
assert(load.getTypeparams().size() == 1 &&
|
|
"length must be in array_load");
|
|
len = load.getTypeparams()[0];
|
|
}
|
|
return fir::CharBoxValue{elementAddr, len};
|
|
}
|
|
return elementAddr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Lowering of scalar expressions in an explicit iteration space context.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Shared code for creating a copy of a derived type element. This function is
|
|
// called from a continuation.
|
|
inline static fir::ArrayAmendOp
|
|
createDerivedArrayAmend(mlir::Location loc, fir::ArrayLoadOp destLoad,
|
|
fir::FirOpBuilder &builder, fir::ArrayAccessOp destAcc,
|
|
const fir::ExtendedValue &elementExv, mlir::Type eleTy,
|
|
mlir::Value innerArg) {
|
|
if (destLoad.getTypeparams().empty()) {
|
|
fir::factory::genRecordAssignment(builder, loc, destAcc, elementExv);
|
|
} else {
|
|
auto boxTy = fir::BoxType::get(eleTy);
|
|
auto toBox = builder.create<fir::EmboxOp>(loc, boxTy, destAcc.getResult(),
|
|
mlir::Value{}, mlir::Value{},
|
|
destLoad.getTypeparams());
|
|
auto fromBox = builder.create<fir::EmboxOp>(
|
|
loc, boxTy, fir::getBase(elementExv), mlir::Value{}, mlir::Value{},
|
|
destLoad.getTypeparams());
|
|
fir::factory::genRecordAssignment(builder, loc, fir::BoxValue(toBox),
|
|
fir::BoxValue(fromBox));
|
|
}
|
|
return builder.create<fir::ArrayAmendOp>(loc, innerArg.getType(), innerArg,
|
|
destAcc);
|
|
}
|
|
|
|
inline static fir::ArrayAmendOp
|
|
createCharArrayAmend(mlir::Location loc, fir::FirOpBuilder &builder,
|
|
fir::ArrayAccessOp dstOp, mlir::Value &dstLen,
|
|
const fir::ExtendedValue &srcExv, mlir::Value innerArg,
|
|
llvm::ArrayRef<mlir::Value> bounds) {
|
|
fir::CharBoxValue dstChar(dstOp, dstLen);
|
|
fir::factory::CharacterExprHelper helper{builder, loc};
|
|
if (!bounds.empty()) {
|
|
dstChar = helper.createSubstring(dstChar, bounds);
|
|
fir::factory::genCharacterCopy(fir::getBase(srcExv), fir::getLen(srcExv),
|
|
dstChar.getAddr(), dstChar.getLen(), builder,
|
|
loc);
|
|
// Update the LEN to the substring's LEN.
|
|
dstLen = dstChar.getLen();
|
|
}
|
|
// For a CHARACTER, we generate the element assignment loops inline.
|
|
helper.createAssign(fir::ExtendedValue{dstChar}, srcExv);
|
|
// Mark this array element as amended.
|
|
mlir::Type ty = innerArg.getType();
|
|
auto amend = builder.create<fir::ArrayAmendOp>(loc, ty, innerArg, dstOp);
|
|
return amend;
|
|
}
|
|
|
|
/// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting
|
|
/// the actual extents and lengths. This is only to allow their propagation as
|
|
/// ExtendedValue without triggering verifier failures when propagating
|
|
/// character/arrays as unboxed values. Only the base of the resulting
|
|
/// ExtendedValue should be used, it is undefined to use the length or extents
|
|
/// of the extended value returned,
|
|
inline static fir::ExtendedValue
|
|
convertToArrayBoxValue(mlir::Location loc, fir::FirOpBuilder &builder,
|
|
mlir::Value val, mlir::Value len) {
|
|
mlir::Type ty = fir::unwrapRefType(val.getType());
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
auto seqTy = ty.cast<fir::SequenceType>();
|
|
auto undef = builder.create<fir::UndefOp>(loc, idxTy);
|
|
llvm::SmallVector<mlir::Value> extents(seqTy.getDimension(), undef);
|
|
if (fir::isa_char(seqTy.getEleTy()))
|
|
return fir::CharArrayBoxValue(val, len ? len : undef, extents);
|
|
return fir::ArrayBoxValue(val, extents);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Lowering of array expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class ArrayExprLowering {
|
|
using ExtValue = fir::ExtendedValue;
|
|
|
|
/// Structure to keep track of lowered array operands in the
|
|
/// array expression. Useful to later deduce the shape of the
|
|
/// array expression.
|
|
struct ArrayOperand {
|
|
/// Array base (can be a fir.box).
|
|
mlir::Value memref;
|
|
/// ShapeOp, ShapeShiftOp or ShiftOp
|
|
mlir::Value shape;
|
|
/// SliceOp
|
|
mlir::Value slice;
|
|
/// Can this operand be absent ?
|
|
bool mayBeAbsent = false;
|
|
};
|
|
|
|
using ImplicitSubscripts = Fortran::lower::details::ImplicitSubscripts;
|
|
using PathComponent = Fortran::lower::PathComponent;
|
|
|
|
/// Active iteration space.
|
|
using IterationSpace = Fortran::lower::IterationSpace;
|
|
using IterSpace = const Fortran::lower::IterationSpace &;
|
|
|
|
/// Current continuation. Function that will generate IR for a single
|
|
/// iteration of the pending iterative loop structure.
|
|
using CC = Fortran::lower::GenerateElementalArrayFunc;
|
|
|
|
/// Projection continuation. Function that will project one iteration space
|
|
/// into another.
|
|
using PC = std::function<IterationSpace(IterSpace)>;
|
|
using ArrayBaseTy =
|
|
std::variant<std::monostate, const Fortran::evaluate::ArrayRef *,
|
|
const Fortran::evaluate::DataRef *>;
|
|
using ComponentPath = Fortran::lower::ComponentPath;
|
|
|
|
public:
|
|
//===--------------------------------------------------------------------===//
|
|
// Regular array assignment
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Entry point for array assignments. Both the left-hand and right-hand sides
|
|
/// can either be ExtendedValue or evaluate::Expr.
|
|
template <typename TL, typename TR>
|
|
static void lowerArrayAssignment(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const TL &lhs, const TR &rhs) {
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::CopyInCopyOut);
|
|
ael.lowerArrayAssignment(lhs, rhs);
|
|
}
|
|
|
|
template <typename TL, typename TR>
|
|
void lowerArrayAssignment(const TL &lhs, const TR &rhs) {
|
|
mlir::Location loc = getLoc();
|
|
/// Here the target subspace is not necessarily contiguous. The ArrayUpdate
|
|
/// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad
|
|
/// in `destination`.
|
|
PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
|
|
ccStoreToDest = genarr(lhs);
|
|
determineShapeOfDest(lhs);
|
|
semant = ConstituentSemantics::RefTransparent;
|
|
ExtValue exv = lowerArrayExpression(rhs);
|
|
if (explicitSpaceIsActive()) {
|
|
explicitSpace->finalizeContext();
|
|
builder.create<fir::ResultOp>(loc, fir::getBase(exv));
|
|
} else {
|
|
builder.create<fir::ArrayMergeStoreOp>(
|
|
loc, destination, fir::getBase(exv), destination.getMemref(),
|
|
destination.getSlice(), destination.getTypeparams());
|
|
}
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// WHERE array assignment, FORALL assignment, and FORALL+WHERE array
|
|
// assignment
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Entry point for array assignment when the iteration space is explicitly
|
|
/// defined (Fortran's FORALL) with or without masks, and/or the implied
|
|
/// iteration space involves masks (Fortran's WHERE). Both contexts (explicit
|
|
/// space and implicit space with masks) may be present.
|
|
static void lowerAnyMaskedArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
|
|
Fortran::lower::ExplicitIterSpace &explicitSpace,
|
|
Fortran::lower::ImplicitIterSpace &implicitSpace) {
|
|
if (explicitSpace.isActive() && lhs.Rank() == 0) {
|
|
// Scalar assignment expression in a FORALL context.
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::RefTransparent,
|
|
&explicitSpace, &implicitSpace);
|
|
ael.lowerScalarAssignment(lhs, rhs);
|
|
return;
|
|
}
|
|
// Array assignment expression in a FORALL and/or WHERE context.
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::CopyInCopyOut, &explicitSpace,
|
|
&implicitSpace);
|
|
ael.lowerArrayAssignment(lhs, rhs);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Array assignment to array of pointer box values.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Entry point for assignment to pointer in an array of pointers.
|
|
static void lowerArrayOfPointerAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
|
|
Fortran::lower::ExplicitIterSpace &explicitSpace,
|
|
Fortran::lower::ImplicitIterSpace &implicitSpace,
|
|
const llvm::SmallVector<mlir::Value> &lbounds,
|
|
llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) {
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::CopyInCopyOut, &explicitSpace,
|
|
&implicitSpace);
|
|
ael.lowerArrayOfPointerAssignment(lhs, rhs, lbounds, ubounds);
|
|
}
|
|
|
|
/// Scalar pointer assignment in an explicit iteration space.
|
|
///
|
|
/// Pointers may be bound to targets in a FORALL context. This is a scalar
|
|
/// assignment in the sense there is never an implied iteration space, even if
|
|
/// the pointer is to a target with non-zero rank. Since the pointer
|
|
/// assignment must appear in a FORALL construct, correctness may require that
|
|
/// the array of pointers follow copy-in/copy-out semantics. The pointer
|
|
/// assignment may include a bounds-spec (lower bounds), a bounds-remapping
|
|
/// (lower and upper bounds), or neither.
|
|
void lowerArrayOfPointerAssignment(
|
|
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
|
|
const llvm::SmallVector<mlir::Value> &lbounds,
|
|
llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds) {
|
|
setPointerAssignmentBounds(lbounds, ubounds);
|
|
if (rhs.Rank() == 0 ||
|
|
(Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs) &&
|
|
Fortran::evaluate::IsAllocatableOrPointerObject(
|
|
rhs, converter.getFoldingContext()))) {
|
|
lowerScalarAssignment(lhs, rhs);
|
|
return;
|
|
}
|
|
TODO(getLoc(),
|
|
"auto boxing of a ranked expression on RHS for pointer assignment");
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Array assignment to allocatable array
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Entry point for assignment to allocatable array.
|
|
static void lowerAllocatableArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
|
|
Fortran::lower::ExplicitIterSpace &explicitSpace,
|
|
Fortran::lower::ImplicitIterSpace &implicitSpace) {
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::CopyInCopyOut, &explicitSpace,
|
|
&implicitSpace);
|
|
ael.lowerAllocatableArrayAssignment(lhs, rhs);
|
|
}
|
|
|
|
/// Lower an assignment to allocatable array, where the LHS array
|
|
/// is represented with \p lhs extended value produced in different
|
|
/// branches created in genReallocIfNeeded(). The RHS lowering
|
|
/// is provided via \p rhsCC continuation.
|
|
void lowerAllocatableArrayAssignment(ExtValue lhs, CC rhsCC) {
|
|
mlir::Location loc = getLoc();
|
|
// Check if the initial destShape is null, which means
|
|
// it has not been computed from rhs (e.g. rhs is scalar).
|
|
bool destShapeIsEmpty = destShape.empty();
|
|
// Create ArrayLoad for the mutable box and save it into `destination`.
|
|
PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut);
|
|
ccStoreToDest = genarr(lhs);
|
|
// destShape is either non-null on entry to this function,
|
|
// or has been just set by lhs lowering.
|
|
assert(!destShape.empty() && "destShape must have been set.");
|
|
// Finish lowering the loop nest.
|
|
assert(destination && "destination must have been set");
|
|
ExtValue exv = lowerArrayExpression(rhsCC, destination.getType());
|
|
if (!explicitSpaceIsActive())
|
|
builder.create<fir::ArrayMergeStoreOp>(
|
|
loc, destination, fir::getBase(exv), destination.getMemref(),
|
|
destination.getSlice(), destination.getTypeparams());
|
|
// destShape may originally be null, if rhs did not define a shape.
|
|
// In this case the destShape is computed from lhs, and we may have
|
|
// multiple different lhs values for different branches created
|
|
// in genReallocIfNeeded(). We cannot reuse destShape computed
|
|
// in different branches, so we have to reset it,
|
|
// so that it is recomputed for the next branch FIR generation.
|
|
if (destShapeIsEmpty)
|
|
destShape.clear();
|
|
}
|
|
|
|
/// Assignment to allocatable array.
|
|
///
|
|
/// The semantics are reverse that of a "regular" array assignment. The rhs
|
|
/// defines the iteration space of the computation and the lhs is
|
|
/// resized/reallocated to fit if necessary.
|
|
void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr &lhs,
|
|
const Fortran::lower::SomeExpr &rhs) {
|
|
// With assignment to allocatable, we want to lower the rhs first and use
|
|
// its shape to determine if we need to reallocate, etc.
|
|
mlir::Location loc = getLoc();
|
|
// FIXME: If the lhs is in an explicit iteration space, the assignment may
|
|
// be to an array of allocatable arrays rather than a single allocatable
|
|
// array.
|
|
fir::MutableBoxValue mutableBox =
|
|
Fortran::lower::createMutableBox(loc, converter, lhs, symMap);
|
|
if (rhs.Rank() > 0)
|
|
determineShapeOfDest(rhs);
|
|
auto rhsCC = [&]() {
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
return genarr(rhs);
|
|
}();
|
|
|
|
llvm::SmallVector<mlir::Value> lengthParams;
|
|
// Currently no safe way to gather length from rhs (at least for
|
|
// character, it cannot be taken from array_loads since it may be
|
|
// changed by concatenations).
|
|
if ((mutableBox.isCharacter() && !mutableBox.hasNonDeferredLenParams()) ||
|
|
mutableBox.isDerivedWithLenParameters())
|
|
TODO(loc, "gather rhs LEN parameters in assignment to allocatable");
|
|
|
|
// The allocatable must take lower bounds from the expr if it is
|
|
// reallocated and the right hand side is not a scalar.
|
|
const bool takeLboundsIfRealloc = rhs.Rank() > 0;
|
|
llvm::SmallVector<mlir::Value> lbounds;
|
|
// When the reallocated LHS takes its lower bounds from the RHS,
|
|
// they will be non default only if the RHS is a whole array
|
|
// variable. Otherwise, lbounds is left empty and default lower bounds
|
|
// will be used.
|
|
if (takeLboundsIfRealloc &&
|
|
Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs)) {
|
|
assert(arrayOperands.size() == 1 &&
|
|
"lbounds can only come from one array");
|
|
auto lbs = fir::factory::getOrigins(arrayOperands[0].shape);
|
|
lbounds.append(lbs.begin(), lbs.end());
|
|
}
|
|
auto assignToStorage = [&](fir::ExtendedValue newLhs) {
|
|
// The lambda will be called repeatedly by genReallocIfNeeded().
|
|
lowerAllocatableArrayAssignment(newLhs, rhsCC);
|
|
};
|
|
fir::factory::MutableBoxReallocation realloc =
|
|
fir::factory::genReallocIfNeeded(builder, loc, mutableBox, destShape,
|
|
lengthParams, assignToStorage);
|
|
if (explicitSpaceIsActive()) {
|
|
explicitSpace->finalizeContext();
|
|
builder.create<fir::ResultOp>(loc, fir::getBase(realloc.newValue));
|
|
}
|
|
fir::factory::finalizeRealloc(builder, loc, mutableBox, lbounds,
|
|
takeLboundsIfRealloc, realloc);
|
|
}
|
|
|
|
/// Entry point for when an array expression appears in a context where the
|
|
/// result must be boxed. (BoxValue semantics.)
|
|
static ExtValue
|
|
lowerBoxedArrayExpression(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &expr) {
|
|
ArrayExprLowering ael{converter, stmtCtx, symMap,
|
|
ConstituentSemantics::BoxValue};
|
|
return ael.lowerBoxedArrayExpr(expr);
|
|
}
|
|
|
|
ExtValue lowerBoxedArrayExpr(const Fortran::lower::SomeExpr &exp) {
|
|
PushSemantics(ConstituentSemantics::BoxValue);
|
|
return std::visit(
|
|
[&](const auto &e) {
|
|
auto f = genarr(e);
|
|
ExtValue exv = f(IterationSpace{});
|
|
if (fir::getBase(exv).getType().template isa<fir::BoxType>())
|
|
return exv;
|
|
fir::emitFatalError(getLoc(), "array must be emboxed");
|
|
},
|
|
exp.u);
|
|
}
|
|
|
|
/// Entry point into lowering an expression with rank. This entry point is for
|
|
/// lowering a rhs expression, for example. (RefTransparent semantics.)
|
|
static ExtValue
|
|
lowerNewArrayExpression(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &expr) {
|
|
ArrayExprLowering ael{converter, stmtCtx, symMap};
|
|
ael.determineShapeOfDest(expr);
|
|
ExtValue loopRes = ael.lowerArrayExpression(expr);
|
|
fir::ArrayLoadOp dest = ael.destination;
|
|
mlir::Value tempRes = dest.getMemref();
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
builder.create<fir::ArrayMergeStoreOp>(loc, dest, fir::getBase(loopRes),
|
|
tempRes, dest.getSlice(),
|
|
dest.getTypeparams());
|
|
|
|
auto arrTy =
|
|
fir::dyn_cast_ptrEleTy(tempRes.getType()).cast<fir::SequenceType>();
|
|
if (auto charTy =
|
|
arrTy.getEleTy().template dyn_cast<fir::CharacterType>()) {
|
|
if (fir::characterWithDynamicLen(charTy))
|
|
TODO(loc, "CHARACTER does not have constant LEN");
|
|
mlir::Value len = builder.createIntegerConstant(
|
|
loc, builder.getCharacterLengthType(), charTy.getLen());
|
|
return fir::CharArrayBoxValue(tempRes, len, dest.getExtents());
|
|
}
|
|
return fir::ArrayBoxValue(tempRes, dest.getExtents());
|
|
}
|
|
|
|
static void lowerLazyArrayExpression(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader) {
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap);
|
|
ael.lowerLazyArrayExpression(expr, raggedHeader);
|
|
}
|
|
|
|
/// Lower the expression \p expr into a buffer that is created on demand. The
|
|
/// variable containing the pointer to the buffer is \p var and the variable
|
|
/// containing the shape of the buffer is \p shapeBuffer.
|
|
void lowerLazyArrayExpression(const Fortran::lower::SomeExpr &expr,
|
|
mlir::Value header) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::TupleType hdrTy = fir::factory::getRaggedArrayHeaderType(builder);
|
|
mlir::IntegerType i32Ty = builder.getIntegerType(32);
|
|
|
|
// Once the loop extents have been computed, which may require being inside
|
|
// some explicit loops, lazily allocate the expression on the heap. The
|
|
// following continuation creates the buffer as needed.
|
|
ccPrelude = [=](llvm::ArrayRef<mlir::Value> shape) {
|
|
mlir::IntegerType i64Ty = builder.getIntegerType(64);
|
|
mlir::Value byteSize = builder.createIntegerConstant(loc, i64Ty, 1);
|
|
fir::runtime::genRaggedArrayAllocate(
|
|
loc, builder, header, /*asHeaders=*/false, byteSize, shape);
|
|
};
|
|
|
|
// Create a dummy array_load before the loop. We're storing to a lazy
|
|
// temporary, so there will be no conflict and no copy-in. TODO: skip this
|
|
// as there isn't any necessity for it.
|
|
ccLoadDest = [=](llvm::ArrayRef<mlir::Value> shape) -> fir::ArrayLoadOp {
|
|
mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
|
|
auto var = builder.create<fir::CoordinateOp>(
|
|
loc, builder.getRefType(hdrTy.getType(1)), header, one);
|
|
auto load = builder.create<fir::LoadOp>(loc, var);
|
|
mlir::Type eleTy =
|
|
fir::unwrapSequenceType(fir::unwrapRefType(load.getType()));
|
|
auto seqTy = fir::SequenceType::get(eleTy, shape.size());
|
|
mlir::Value castTo =
|
|
builder.createConvert(loc, fir::HeapType::get(seqTy), load);
|
|
mlir::Value shapeOp = builder.genShape(loc, shape);
|
|
return builder.create<fir::ArrayLoadOp>(
|
|
loc, seqTy, castTo, shapeOp, /*slice=*/mlir::Value{}, llvm::None);
|
|
};
|
|
// Custom lowering of the element store to deal with the extra indirection
|
|
// to the lazy allocated buffer.
|
|
ccStoreToDest = [=](IterSpace iters) {
|
|
mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
|
|
auto var = builder.create<fir::CoordinateOp>(
|
|
loc, builder.getRefType(hdrTy.getType(1)), header, one);
|
|
auto load = builder.create<fir::LoadOp>(loc, var);
|
|
mlir::Type eleTy =
|
|
fir::unwrapSequenceType(fir::unwrapRefType(load.getType()));
|
|
auto seqTy = fir::SequenceType::get(eleTy, iters.iterVec().size());
|
|
auto toTy = fir::HeapType::get(seqTy);
|
|
mlir::Value castTo = builder.createConvert(loc, toTy, load);
|
|
mlir::Value shape = builder.genShape(loc, genIterationShape());
|
|
llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
|
|
loc, builder, castTo.getType(), shape, iters.iterVec());
|
|
auto eleAddr = builder.create<fir::ArrayCoorOp>(
|
|
loc, builder.getRefType(eleTy), castTo, shape,
|
|
/*slice=*/mlir::Value{}, indices, destination.getTypeparams());
|
|
mlir::Value eleVal =
|
|
builder.createConvert(loc, eleTy, iters.getElement());
|
|
builder.create<fir::StoreOp>(loc, eleVal, eleAddr);
|
|
return iters.innerArgument();
|
|
};
|
|
|
|
// Lower the array expression now. Clean-up any temps that may have
|
|
// been generated when lowering `expr` right after the lowered value
|
|
// was stored to the ragged array temporary. The local temps will not
|
|
// be needed afterwards.
|
|
stmtCtx.pushScope();
|
|
[[maybe_unused]] ExtValue loopRes = lowerArrayExpression(expr);
|
|
stmtCtx.finalizeAndPop();
|
|
assert(fir::getBase(loopRes));
|
|
}
|
|
|
|
static void
|
|
lowerElementalUserAssignment(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::lower::ExplicitIterSpace &explicitSpace,
|
|
Fortran::lower::ImplicitIterSpace &implicitSpace,
|
|
const Fortran::evaluate::ProcedureRef &procRef) {
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::CustomCopyInCopyOut,
|
|
&explicitSpace, &implicitSpace);
|
|
assert(procRef.arguments().size() == 2);
|
|
const auto *lhs = procRef.arguments()[0].value().UnwrapExpr();
|
|
const auto *rhs = procRef.arguments()[1].value().UnwrapExpr();
|
|
assert(lhs && rhs &&
|
|
"user defined assignment arguments must be expressions");
|
|
mlir::func::FuncOp func =
|
|
Fortran::lower::CallerInterface(procRef, converter).getFuncOp();
|
|
ael.lowerElementalUserAssignment(func, *lhs, *rhs);
|
|
}
|
|
|
|
void lowerElementalUserAssignment(mlir::func::FuncOp userAssignment,
|
|
const Fortran::lower::SomeExpr &lhs,
|
|
const Fortran::lower::SomeExpr &rhs) {
|
|
mlir::Location loc = getLoc();
|
|
PushSemantics(ConstituentSemantics::CustomCopyInCopyOut);
|
|
auto genArrayModify = genarr(lhs);
|
|
ccStoreToDest = [=](IterSpace iters) -> ExtValue {
|
|
auto modifiedArray = genArrayModify(iters);
|
|
auto arrayModify = mlir::dyn_cast_or_null<fir::ArrayModifyOp>(
|
|
fir::getBase(modifiedArray).getDefiningOp());
|
|
assert(arrayModify && "must be created by ArrayModifyOp");
|
|
fir::ExtendedValue lhs =
|
|
arrayModifyToExv(builder, loc, destination, arrayModify.getResult(0));
|
|
genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, lhs,
|
|
iters.elementExv());
|
|
return modifiedArray;
|
|
};
|
|
determineShapeOfDest(lhs);
|
|
semant = ConstituentSemantics::RefTransparent;
|
|
auto exv = lowerArrayExpression(rhs);
|
|
if (explicitSpaceIsActive()) {
|
|
explicitSpace->finalizeContext();
|
|
builder.create<fir::ResultOp>(loc, fir::getBase(exv));
|
|
} else {
|
|
builder.create<fir::ArrayMergeStoreOp>(
|
|
loc, destination, fir::getBase(exv), destination.getMemref(),
|
|
destination.getSlice(), destination.getTypeparams());
|
|
}
|
|
}
|
|
|
|
/// Lower an elemental subroutine call with at least one array argument.
|
|
/// An elemental subroutine is an exception and does not have copy-in/copy-out
|
|
/// semantics. See 15.8.3.
|
|
/// Do NOT use this for user defined assignments.
|
|
static void
|
|
lowerElementalSubroutine(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::lower::SomeExpr &call) {
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::RefTransparent);
|
|
ael.lowerElementalSubroutine(call);
|
|
}
|
|
|
|
// TODO: See the comment in genarr(const Fortran::lower::Parentheses<T>&).
|
|
// This is skipping generation of copy-in/copy-out code for analysis that is
|
|
// required when arguments are in parentheses.
|
|
void lowerElementalSubroutine(const Fortran::lower::SomeExpr &call) {
|
|
auto f = genarr(call);
|
|
llvm::SmallVector<mlir::Value> shape = genIterationShape();
|
|
auto [iterSpace, insPt] = genImplicitLoops(shape, /*innerArg=*/{});
|
|
f(iterSpace);
|
|
finalizeElementCtx();
|
|
builder.restoreInsertionPoint(insPt);
|
|
}
|
|
|
|
ExtValue lowerScalarAssignment(const Fortran::lower::SomeExpr &lhs,
|
|
const Fortran::lower::SomeExpr &rhs) {
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
// 1) Lower the rhs expression with array_fetch op(s).
|
|
IterationSpace iters;
|
|
iters.setElement(genarr(rhs)(iters));
|
|
// 2) Lower the lhs expression to an array_update.
|
|
semant = ConstituentSemantics::ProjectedCopyInCopyOut;
|
|
auto lexv = genarr(lhs)(iters);
|
|
// 3) Finalize the inner context.
|
|
explicitSpace->finalizeContext();
|
|
// 4) Thread the array value updated forward. Note: the lhs might be
|
|
// ill-formed (performing scalar assignment in an array context),
|
|
// in which case there is no array to thread.
|
|
auto loc = getLoc();
|
|
auto createResult = [&](auto op) {
|
|
mlir::Value oldInnerArg = op.getSequence();
|
|
std::size_t offset = explicitSpace->argPosition(oldInnerArg);
|
|
explicitSpace->setInnerArg(offset, fir::getBase(lexv));
|
|
finalizeElementCtx();
|
|
builder.create<fir::ResultOp>(loc, fir::getBase(lexv));
|
|
};
|
|
if (mlir::Operation *defOp = fir::getBase(lexv).getDefiningOp()) {
|
|
llvm::TypeSwitch<mlir::Operation *>(defOp)
|
|
.Case([&](fir::ArrayUpdateOp op) { createResult(op); })
|
|
.Case([&](fir::ArrayAmendOp op) { createResult(op); })
|
|
.Case([&](fir::ArrayModifyOp op) { createResult(op); })
|
|
.Default([&](mlir::Operation *) { finalizeElementCtx(); });
|
|
} else {
|
|
// `lhs` isn't from a `fir.array_load`, so there is no array modifications
|
|
// to thread through the iteration space.
|
|
finalizeElementCtx();
|
|
}
|
|
return lexv;
|
|
}
|
|
|
|
static ExtValue lowerScalarUserAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::lower::ExplicitIterSpace &explicitIterSpace,
|
|
mlir::func::FuncOp userAssignmentFunction,
|
|
const Fortran::lower::SomeExpr &lhs,
|
|
const Fortran::lower::SomeExpr &rhs) {
|
|
Fortran::lower::ImplicitIterSpace implicit;
|
|
ArrayExprLowering ael(converter, stmtCtx, symMap,
|
|
ConstituentSemantics::RefTransparent,
|
|
&explicitIterSpace, &implicit);
|
|
return ael.lowerScalarUserAssignment(userAssignmentFunction, lhs, rhs);
|
|
}
|
|
|
|
ExtValue lowerScalarUserAssignment(mlir::func::FuncOp userAssignment,
|
|
const Fortran::lower::SomeExpr &lhs,
|
|
const Fortran::lower::SomeExpr &rhs) {
|
|
mlir::Location loc = getLoc();
|
|
if (rhs.Rank() > 0)
|
|
TODO(loc, "user-defined elemental assigment from expression with rank");
|
|
// 1) Lower the rhs expression with array_fetch op(s).
|
|
IterationSpace iters;
|
|
iters.setElement(genarr(rhs)(iters));
|
|
fir::ExtendedValue elementalExv = iters.elementExv();
|
|
// 2) Lower the lhs expression to an array_modify.
|
|
semant = ConstituentSemantics::CustomCopyInCopyOut;
|
|
auto lexv = genarr(lhs)(iters);
|
|
bool isIllFormedLHS = false;
|
|
// 3) Insert the call
|
|
if (auto modifyOp = mlir::dyn_cast<fir::ArrayModifyOp>(
|
|
fir::getBase(lexv).getDefiningOp())) {
|
|
mlir::Value oldInnerArg = modifyOp.getSequence();
|
|
std::size_t offset = explicitSpace->argPosition(oldInnerArg);
|
|
explicitSpace->setInnerArg(offset, fir::getBase(lexv));
|
|
fir::ExtendedValue exv =
|
|
arrayModifyToExv(builder, loc, explicitSpace->getLhsLoad(0).value(),
|
|
modifyOp.getResult(0));
|
|
genScalarUserDefinedAssignmentCall(builder, loc, userAssignment, exv,
|
|
elementalExv);
|
|
} else {
|
|
// LHS is ill formed, it is a scalar with no references to FORALL
|
|
// subscripts, so there is actually no array assignment here. The user
|
|
// code is probably bad, but still insert user assignment call since it
|
|
// was not rejected by semantics (a warning was emitted).
|
|
isIllFormedLHS = true;
|
|
genScalarUserDefinedAssignmentCall(builder, getLoc(), userAssignment,
|
|
lexv, elementalExv);
|
|
}
|
|
// 4) Finalize the inner context.
|
|
explicitSpace->finalizeContext();
|
|
// 5). Thread the array value updated forward.
|
|
if (!isIllFormedLHS) {
|
|
finalizeElementCtx();
|
|
builder.create<fir::ResultOp>(getLoc(), fir::getBase(lexv));
|
|
}
|
|
return lexv;
|
|
}
|
|
|
|
private:
|
|
void determineShapeOfDest(const fir::ExtendedValue &lhs) {
|
|
destShape = fir::factory::getExtents(getLoc(), builder, lhs);
|
|
}
|
|
|
|
void determineShapeOfDest(const Fortran::lower::SomeExpr &lhs) {
|
|
if (!destShape.empty())
|
|
return;
|
|
if (explicitSpaceIsActive() && determineShapeWithSlice(lhs))
|
|
return;
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
mlir::Location loc = getLoc();
|
|
if (std::optional<Fortran::evaluate::ConstantSubscripts> constantShape =
|
|
Fortran::evaluate::GetConstantExtents(converter.getFoldingContext(),
|
|
lhs))
|
|
for (Fortran::common::ConstantSubscript extent : *constantShape)
|
|
destShape.push_back(builder.createIntegerConstant(loc, idxTy, extent));
|
|
}
|
|
|
|
bool genShapeFromDataRef(const Fortran::semantics::Symbol &x) {
|
|
return false;
|
|
}
|
|
bool genShapeFromDataRef(const Fortran::evaluate::CoarrayRef &) {
|
|
TODO(getLoc(), "coarray ref");
|
|
return false;
|
|
}
|
|
bool genShapeFromDataRef(const Fortran::evaluate::Component &x) {
|
|
return x.base().Rank() > 0 ? genShapeFromDataRef(x.base()) : false;
|
|
}
|
|
bool genShapeFromDataRef(const Fortran::evaluate::ArrayRef &x) {
|
|
if (x.Rank() == 0)
|
|
return false;
|
|
if (x.base().Rank() > 0)
|
|
if (genShapeFromDataRef(x.base()))
|
|
return true;
|
|
// x has rank and x.base did not produce a shape.
|
|
ExtValue exv = x.base().IsSymbol() ? asScalarRef(getFirstSym(x.base()))
|
|
: asScalarRef(x.base().GetComponent());
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
llvm::SmallVector<mlir::Value> definedShape =
|
|
fir::factory::getExtents(loc, builder, exv);
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
for (auto ss : llvm::enumerate(x.subscript())) {
|
|
std::visit(Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::Triplet &trip) {
|
|
// For a subscript of triple notation, we compute the
|
|
// range of this dimension of the iteration space.
|
|
auto lo = [&]() {
|
|
if (auto optLo = trip.lower())
|
|
return fir::getBase(asScalar(*optLo));
|
|
return getLBound(exv, ss.index(), one);
|
|
}();
|
|
auto hi = [&]() {
|
|
if (auto optHi = trip.upper())
|
|
return fir::getBase(asScalar(*optHi));
|
|
return getUBound(exv, ss.index(), one);
|
|
}();
|
|
auto step = builder.createConvert(
|
|
loc, idxTy, fir::getBase(asScalar(trip.stride())));
|
|
auto extent = builder.genExtentFromTriplet(loc, lo, hi,
|
|
step, idxTy);
|
|
destShape.push_back(extent);
|
|
},
|
|
[&](auto) {}},
|
|
ss.value().u);
|
|
}
|
|
return true;
|
|
}
|
|
bool genShapeFromDataRef(const Fortran::evaluate::NamedEntity &x) {
|
|
if (x.IsSymbol())
|
|
return genShapeFromDataRef(getFirstSym(x));
|
|
return genShapeFromDataRef(x.GetComponent());
|
|
}
|
|
bool genShapeFromDataRef(const Fortran::evaluate::DataRef &x) {
|
|
return std::visit([&](const auto &v) { return genShapeFromDataRef(v); },
|
|
x.u);
|
|
}
|
|
|
|
/// When in an explicit space, the ranked component must be evaluated to
|
|
/// determine the actual number of iterations when slicing triples are
|
|
/// present. Lower these expressions here.
|
|
bool determineShapeWithSlice(const Fortran::lower::SomeExpr &lhs) {
|
|
LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(
|
|
llvm::dbgs() << "determine shape of:\n", lhs));
|
|
// FIXME: We may not want to use ExtractDataRef here since it doesn't deal
|
|
// with substrings, etc.
|
|
std::optional<Fortran::evaluate::DataRef> dref =
|
|
Fortran::evaluate::ExtractDataRef(lhs);
|
|
return dref.has_value() ? genShapeFromDataRef(*dref) : false;
|
|
}
|
|
|
|
/// CHARACTER and derived type elements are treated as memory references. The
|
|
/// numeric types are treated as values.
|
|
static mlir::Type adjustedArraySubtype(mlir::Type ty,
|
|
mlir::ValueRange indices) {
|
|
mlir::Type pathTy = fir::applyPathToType(ty, indices);
|
|
assert(pathTy && "indices failed to apply to type");
|
|
return adjustedArrayElementType(pathTy);
|
|
}
|
|
|
|
/// Lower rhs of an array expression.
|
|
ExtValue lowerArrayExpression(const Fortran::lower::SomeExpr &exp) {
|
|
mlir::Type resTy = converter.genType(exp);
|
|
return std::visit(
|
|
[&](const auto &e) { return lowerArrayExpression(genarr(e), resTy); },
|
|
exp.u);
|
|
}
|
|
ExtValue lowerArrayExpression(const ExtValue &exv) {
|
|
assert(!explicitSpace);
|
|
mlir::Type resTy = fir::unwrapPassByRefType(fir::getBase(exv).getType());
|
|
return lowerArrayExpression(genarr(exv), resTy);
|
|
}
|
|
|
|
void populateBounds(llvm::SmallVectorImpl<mlir::Value> &bounds,
|
|
const Fortran::evaluate::Substring *substring) {
|
|
if (!substring)
|
|
return;
|
|
bounds.push_back(fir::getBase(asScalar(substring->lower())));
|
|
if (auto upper = substring->upper())
|
|
bounds.push_back(fir::getBase(asScalar(*upper)));
|
|
}
|
|
|
|
/// Convert the original value, \p origVal, to type \p eleTy. When in a
|
|
/// pointer assignment context, generate an appropriate `fir.rebox` for
|
|
/// dealing with any bounds parameters on the pointer assignment.
|
|
mlir::Value convertElementForUpdate(mlir::Location loc, mlir::Type eleTy,
|
|
mlir::Value origVal) {
|
|
if (auto origEleTy = fir::dyn_cast_ptrEleTy(origVal.getType()))
|
|
if (origEleTy.isa<fir::BoxType>()) {
|
|
// If origVal is a box variable, load it so it is in the value domain.
|
|
origVal = builder.create<fir::LoadOp>(loc, origVal);
|
|
}
|
|
if (origVal.getType().isa<fir::BoxType>() && !eleTy.isa<fir::BoxType>()) {
|
|
if (isPointerAssignment())
|
|
TODO(loc, "lhs of pointer assignment returned unexpected value");
|
|
TODO(loc, "invalid box conversion in elemental computation");
|
|
}
|
|
if (isPointerAssignment() && eleTy.isa<fir::BoxType>() &&
|
|
!origVal.getType().isa<fir::BoxType>()) {
|
|
// This is a pointer assignment and the rhs is a raw reference to a TARGET
|
|
// in memory. Embox the reference so it can be stored to the boxed
|
|
// POINTER variable.
|
|
assert(fir::isa_ref_type(origVal.getType()));
|
|
if (auto eleTy = fir::dyn_cast_ptrEleTy(origVal.getType());
|
|
fir::hasDynamicSize(eleTy))
|
|
TODO(loc, "TARGET of pointer assignment with runtime size/shape");
|
|
auto memrefTy = fir::boxMemRefType(eleTy.cast<fir::BoxType>());
|
|
auto castTo = builder.createConvert(loc, memrefTy, origVal);
|
|
origVal = builder.create<fir::EmboxOp>(loc, eleTy, castTo);
|
|
}
|
|
mlir::Value val = builder.createConvert(loc, eleTy, origVal);
|
|
if (isBoundsSpec()) {
|
|
auto lbs = lbounds.value();
|
|
if (lbs.size() > 0) {
|
|
// Rebox the value with user-specified shift.
|
|
auto shiftTy = fir::ShiftType::get(eleTy.getContext(), lbs.size());
|
|
mlir::Value shiftOp = builder.create<fir::ShiftOp>(loc, shiftTy, lbs);
|
|
val = builder.create<fir::ReboxOp>(loc, eleTy, val, shiftOp,
|
|
mlir::Value{});
|
|
}
|
|
} else if (isBoundsRemap()) {
|
|
auto lbs = lbounds.value();
|
|
if (lbs.size() > 0) {
|
|
// Rebox the value with user-specified shift and shape.
|
|
auto shapeShiftArgs = flatZip(lbs, ubounds.value());
|
|
auto shapeTy = fir::ShapeShiftType::get(eleTy.getContext(), lbs.size());
|
|
mlir::Value shapeShift =
|
|
builder.create<fir::ShapeShiftOp>(loc, shapeTy, shapeShiftArgs);
|
|
val = builder.create<fir::ReboxOp>(loc, eleTy, val, shapeShift,
|
|
mlir::Value{});
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/// Default store to destination implementation.
|
|
/// This implements the default case, which is to assign the value in
|
|
/// `iters.element` into the destination array, `iters.innerArgument`. Handles
|
|
/// by value and by reference assignment.
|
|
CC defaultStoreToDestination(const Fortran::evaluate::Substring *substring) {
|
|
return [=](IterSpace iterSpace) -> ExtValue {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Value innerArg = iterSpace.innerArgument();
|
|
fir::ExtendedValue exv = iterSpace.elementExv();
|
|
mlir::Type arrTy = innerArg.getType();
|
|
mlir::Type eleTy = fir::applyPathToType(arrTy, iterSpace.iterVec());
|
|
if (isAdjustedArrayElementType(eleTy)) {
|
|
// The elemental update is in the memref domain. Under this semantics,
|
|
// we must always copy the computed new element from its location in
|
|
// memory into the destination array.
|
|
mlir::Type resRefTy = builder.getRefType(eleTy);
|
|
// Get a reference to the array element to be amended.
|
|
auto arrayOp = builder.create<fir::ArrayAccessOp>(
|
|
loc, resRefTy, innerArg, iterSpace.iterVec(),
|
|
fir::factory::getTypeParams(loc, builder, destination));
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
llvm::SmallVector<mlir::Value> substringBounds;
|
|
populateBounds(substringBounds, substring);
|
|
mlir::Value dstLen = fir::factory::genLenOfCharacter(
|
|
builder, loc, destination, iterSpace.iterVec(), substringBounds);
|
|
fir::ArrayAmendOp amend = createCharArrayAmend(
|
|
loc, builder, arrayOp, dstLen, exv, innerArg, substringBounds);
|
|
return abstractArrayExtValue(amend, dstLen);
|
|
}
|
|
if (fir::isa_derived(eleTy)) {
|
|
fir::ArrayAmendOp amend = createDerivedArrayAmend(
|
|
loc, destination, builder, arrayOp, exv, eleTy, innerArg);
|
|
return abstractArrayExtValue(amend /*FIXME: typeparams?*/);
|
|
}
|
|
assert(eleTy.isa<fir::SequenceType>() && "must be an array");
|
|
TODO(loc, "array (as element) assignment");
|
|
}
|
|
// By value semantics. The element is being assigned by value.
|
|
auto ele = convertElementForUpdate(loc, eleTy, fir::getBase(exv));
|
|
auto update = builder.create<fir::ArrayUpdateOp>(
|
|
loc, arrTy, innerArg, ele, iterSpace.iterVec(),
|
|
destination.getTypeparams());
|
|
return abstractArrayExtValue(update);
|
|
};
|
|
}
|
|
|
|
/// For an elemental array expression.
|
|
/// 1. Lower the scalars and array loads.
|
|
/// 2. Create the iteration space.
|
|
/// 3. Create the element-by-element computation in the loop.
|
|
/// 4. Return the resulting array value.
|
|
/// If no destination was set in the array context, a temporary of
|
|
/// \p resultTy will be created to hold the evaluated expression.
|
|
/// Otherwise, \p resultTy is ignored and the expression is evaluated
|
|
/// in the destination. \p f is a continuation built from an
|
|
/// evaluate::Expr or an ExtendedValue.
|
|
ExtValue lowerArrayExpression(CC f, mlir::Type resultTy) {
|
|
mlir::Location loc = getLoc();
|
|
auto [iterSpace, insPt] = genIterSpace(resultTy);
|
|
auto exv = f(iterSpace);
|
|
iterSpace.setElement(std::move(exv));
|
|
auto lambda = ccStoreToDest
|
|
? *ccStoreToDest
|
|
: defaultStoreToDestination(/*substring=*/nullptr);
|
|
mlir::Value updVal = fir::getBase(lambda(iterSpace));
|
|
finalizeElementCtx();
|
|
builder.create<fir::ResultOp>(loc, updVal);
|
|
builder.restoreInsertionPoint(insPt);
|
|
return abstractArrayExtValue(iterSpace.outerResult());
|
|
}
|
|
|
|
/// Compute the shape of a slice.
|
|
llvm::SmallVector<mlir::Value> computeSliceShape(mlir::Value slice) {
|
|
llvm::SmallVector<mlir::Value> slicedShape;
|
|
auto slOp = mlir::cast<fir::SliceOp>(slice.getDefiningOp());
|
|
mlir::Operation::operand_range triples = slOp.getTriples();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Location loc = getLoc();
|
|
for (unsigned i = 0, end = triples.size(); i < end; i += 3) {
|
|
if (!mlir::isa_and_nonnull<fir::UndefOp>(
|
|
triples[i + 1].getDefiningOp())) {
|
|
// (..., lb:ub:step, ...) case: extent = max((ub-lb+step)/step, 0)
|
|
// See Fortran 2018 9.5.3.3.2 section for more details.
|
|
mlir::Value res = builder.genExtentFromTriplet(
|
|
loc, triples[i], triples[i + 1], triples[i + 2], idxTy);
|
|
slicedShape.emplace_back(res);
|
|
} else {
|
|
// do nothing. `..., i, ...` case, so dimension is dropped.
|
|
}
|
|
}
|
|
return slicedShape;
|
|
}
|
|
|
|
/// Get the shape from an ArrayOperand. The shape of the array is adjusted if
|
|
/// the array was sliced.
|
|
llvm::SmallVector<mlir::Value> getShape(ArrayOperand array) {
|
|
if (array.slice)
|
|
return computeSliceShape(array.slice);
|
|
if (array.memref.getType().isa<fir::BoxType>())
|
|
return fir::factory::readExtents(builder, getLoc(),
|
|
fir::BoxValue{array.memref});
|
|
return fir::factory::getExtents(array.shape);
|
|
}
|
|
|
|
/// Get the shape from an ArrayLoad.
|
|
llvm::SmallVector<mlir::Value> getShape(fir::ArrayLoadOp arrayLoad) {
|
|
return getShape(ArrayOperand{arrayLoad.getMemref(), arrayLoad.getShape(),
|
|
arrayLoad.getSlice()});
|
|
}
|
|
|
|
/// Returns the first array operand that may not be absent. If all
|
|
/// array operands may be absent, return the first one.
|
|
const ArrayOperand &getInducingShapeArrayOperand() const {
|
|
assert(!arrayOperands.empty());
|
|
for (const ArrayOperand &op : arrayOperands)
|
|
if (!op.mayBeAbsent)
|
|
return op;
|
|
// If all arrays operand appears in optional position, then none of them
|
|
// is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
|
|
// first operands.
|
|
// TODO: There is an opportunity to add a runtime check here that
|
|
// this array is present as required.
|
|
return arrayOperands[0];
|
|
}
|
|
|
|
/// Generate the shape of the iteration space over the array expression. The
|
|
/// iteration space may be implicit, explicit, or both. If it is implied it is
|
|
/// based on the destination and operand array loads, or an optional
|
|
/// Fortran::evaluate::Shape from the front end. If the shape is explicit,
|
|
/// this returns any implicit shape component, if it exists.
|
|
llvm::SmallVector<mlir::Value> genIterationShape() {
|
|
// Use the precomputed destination shape.
|
|
if (!destShape.empty())
|
|
return destShape;
|
|
// Otherwise, use the destination's shape.
|
|
if (destination)
|
|
return getShape(destination);
|
|
// Otherwise, use the first ArrayLoad operand shape.
|
|
if (!arrayOperands.empty())
|
|
return getShape(getInducingShapeArrayOperand());
|
|
fir::emitFatalError(getLoc(),
|
|
"failed to compute the array expression shape");
|
|
}
|
|
|
|
bool explicitSpaceIsActive() const {
|
|
return explicitSpace && explicitSpace->isActive();
|
|
}
|
|
|
|
bool implicitSpaceHasMasks() const {
|
|
return implicitSpace && !implicitSpace->empty();
|
|
}
|
|
|
|
CC genMaskAccess(mlir::Value tmp, mlir::Value shape) {
|
|
mlir::Location loc = getLoc();
|
|
return [=, builder = &converter.getFirOpBuilder()](IterSpace iters) {
|
|
mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(tmp.getType());
|
|
auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
|
|
mlir::Type eleRefTy = builder->getRefType(eleTy);
|
|
mlir::IntegerType i1Ty = builder->getI1Type();
|
|
// Adjust indices for any shift of the origin of the array.
|
|
llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
|
|
loc, *builder, tmp.getType(), shape, iters.iterVec());
|
|
auto addr =
|
|
builder->create<fir::ArrayCoorOp>(loc, eleRefTy, tmp, shape,
|
|
/*slice=*/mlir::Value{}, indices,
|
|
/*typeParams=*/llvm::None);
|
|
auto load = builder->create<fir::LoadOp>(loc, addr);
|
|
return builder->createConvert(loc, i1Ty, load);
|
|
};
|
|
}
|
|
|
|
/// Construct the incremental instantiations of the ragged array structure.
|
|
/// Rebind the lazy buffer variable, etc. as we go.
|
|
template <bool withAllocation = false>
|
|
mlir::Value prepareRaggedArrays(Fortran::lower::FrontEndExpr expr) {
|
|
assert(explicitSpaceIsActive());
|
|
mlir::Location loc = getLoc();
|
|
mlir::TupleType raggedTy = fir::factory::getRaggedArrayHeaderType(builder);
|
|
llvm::SmallVector<llvm::SmallVector<fir::DoLoopOp>> loopStack =
|
|
explicitSpace->getLoopStack();
|
|
const std::size_t depth = loopStack.size();
|
|
mlir::IntegerType i64Ty = builder.getIntegerType(64);
|
|
[[maybe_unused]] mlir::Value byteSize =
|
|
builder.createIntegerConstant(loc, i64Ty, 1);
|
|
mlir::Value header = implicitSpace->lookupMaskHeader(expr);
|
|
for (std::remove_const_t<decltype(depth)> i = 0; i < depth; ++i) {
|
|
auto insPt = builder.saveInsertionPoint();
|
|
if (i < depth - 1)
|
|
builder.setInsertionPoint(loopStack[i + 1][0]);
|
|
|
|
// Compute and gather the extents.
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
for (auto doLoop : loopStack[i])
|
|
extents.push_back(builder.genExtentFromTriplet(
|
|
loc, doLoop.getLowerBound(), doLoop.getUpperBound(),
|
|
doLoop.getStep(), i64Ty));
|
|
if constexpr (withAllocation) {
|
|
fir::runtime::genRaggedArrayAllocate(
|
|
loc, builder, header, /*asHeader=*/true, byteSize, extents);
|
|
}
|
|
|
|
// Compute the dynamic position into the header.
|
|
llvm::SmallVector<mlir::Value> offsets;
|
|
for (auto doLoop : loopStack[i]) {
|
|
auto m = builder.create<mlir::arith::SubIOp>(
|
|
loc, doLoop.getInductionVar(), doLoop.getLowerBound());
|
|
auto n = builder.create<mlir::arith::DivSIOp>(loc, m, doLoop.getStep());
|
|
mlir::Value one = builder.createIntegerConstant(loc, n.getType(), 1);
|
|
offsets.push_back(builder.create<mlir::arith::AddIOp>(loc, n, one));
|
|
}
|
|
mlir::IntegerType i32Ty = builder.getIntegerType(32);
|
|
mlir::Value uno = builder.createIntegerConstant(loc, i32Ty, 1);
|
|
mlir::Type coorTy = builder.getRefType(raggedTy.getType(1));
|
|
auto hdOff = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno);
|
|
auto toTy = fir::SequenceType::get(raggedTy, offsets.size());
|
|
mlir::Type toRefTy = builder.getRefType(toTy);
|
|
auto ldHdr = builder.create<fir::LoadOp>(loc, hdOff);
|
|
mlir::Value hdArr = builder.createConvert(loc, toRefTy, ldHdr);
|
|
auto shapeOp = builder.genShape(loc, extents);
|
|
header = builder.create<fir::ArrayCoorOp>(
|
|
loc, builder.getRefType(raggedTy), hdArr, shapeOp,
|
|
/*slice=*/mlir::Value{}, offsets,
|
|
/*typeparams=*/mlir::ValueRange{});
|
|
auto hdrVar = builder.create<fir::CoordinateOp>(loc, coorTy, header, uno);
|
|
auto inVar = builder.create<fir::LoadOp>(loc, hdrVar);
|
|
mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2);
|
|
mlir::Type coorTy2 = builder.getRefType(raggedTy.getType(2));
|
|
auto hdrSh = builder.create<fir::CoordinateOp>(loc, coorTy2, header, two);
|
|
auto shapePtr = builder.create<fir::LoadOp>(loc, hdrSh);
|
|
// Replace the binding.
|
|
implicitSpace->rebind(expr, genMaskAccess(inVar, shapePtr));
|
|
if (i < depth - 1)
|
|
builder.restoreInsertionPoint(insPt);
|
|
}
|
|
return header;
|
|
}
|
|
|
|
/// Lower mask expressions with implied iteration spaces from the variants of
|
|
/// WHERE syntax. Since it is legal for mask expressions to have side-effects
|
|
/// and modify values that will be used for the lhs, rhs, or both of
|
|
/// subsequent assignments, the mask must be evaluated before the assignment
|
|
/// is processed.
|
|
/// Mask expressions are array expressions too.
|
|
void genMasks() {
|
|
// Lower the mask expressions, if any.
|
|
if (implicitSpaceHasMasks()) {
|
|
mlir::Location loc = getLoc();
|
|
// Mask expressions are array expressions too.
|
|
for (const auto *e : implicitSpace->getExprs())
|
|
if (e && !implicitSpace->isLowered(e)) {
|
|
if (mlir::Value var = implicitSpace->lookupMaskVariable(e)) {
|
|
// Allocate the mask buffer lazily.
|
|
assert(explicitSpaceIsActive());
|
|
mlir::Value header =
|
|
prepareRaggedArrays</*withAllocations=*/true>(e);
|
|
Fortran::lower::createLazyArrayTempValue(converter, *e, header,
|
|
symMap, stmtCtx);
|
|
// Close the explicit loops.
|
|
builder.create<fir::ResultOp>(loc, explicitSpace->getInnerArgs());
|
|
builder.setInsertionPointAfter(explicitSpace->getOuterLoop());
|
|
// Open a new copy of the explicit loop nest.
|
|
explicitSpace->genLoopNest();
|
|
continue;
|
|
}
|
|
fir::ExtendedValue tmp = Fortran::lower::createSomeArrayTempValue(
|
|
converter, *e, symMap, stmtCtx);
|
|
mlir::Value shape = builder.createShape(loc, tmp);
|
|
implicitSpace->bind(e, genMaskAccess(fir::getBase(tmp), shape));
|
|
}
|
|
|
|
// Set buffer from the header.
|
|
for (const auto *e : implicitSpace->getExprs()) {
|
|
if (!e)
|
|
continue;
|
|
if (implicitSpace->lookupMaskVariable(e)) {
|
|
// Index into the ragged buffer to retrieve cached results.
|
|
const int rank = e->Rank();
|
|
assert(destShape.empty() ||
|
|
static_cast<std::size_t>(rank) == destShape.size());
|
|
mlir::Value header = prepareRaggedArrays(e);
|
|
mlir::TupleType raggedTy =
|
|
fir::factory::getRaggedArrayHeaderType(builder);
|
|
mlir::IntegerType i32Ty = builder.getIntegerType(32);
|
|
mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
|
|
auto coor1 = builder.create<fir::CoordinateOp>(
|
|
loc, builder.getRefType(raggedTy.getType(1)), header, one);
|
|
auto db = builder.create<fir::LoadOp>(loc, coor1);
|
|
mlir::Type eleTy =
|
|
fir::unwrapSequenceType(fir::unwrapRefType(db.getType()));
|
|
mlir::Type buffTy =
|
|
builder.getRefType(fir::SequenceType::get(eleTy, rank));
|
|
// Address of ragged buffer data.
|
|
mlir::Value buff = builder.createConvert(loc, buffTy, db);
|
|
|
|
mlir::Value two = builder.createIntegerConstant(loc, i32Ty, 2);
|
|
auto coor2 = builder.create<fir::CoordinateOp>(
|
|
loc, builder.getRefType(raggedTy.getType(2)), header, two);
|
|
auto shBuff = builder.create<fir::LoadOp>(loc, coor2);
|
|
mlir::IntegerType i64Ty = builder.getIntegerType(64);
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
for (std::remove_const_t<decltype(rank)> i = 0; i < rank; ++i) {
|
|
mlir::Value off = builder.createIntegerConstant(loc, i32Ty, i);
|
|
auto coor = builder.create<fir::CoordinateOp>(
|
|
loc, builder.getRefType(i64Ty), shBuff, off);
|
|
auto ldExt = builder.create<fir::LoadOp>(loc, coor);
|
|
extents.push_back(builder.createConvert(loc, idxTy, ldExt));
|
|
}
|
|
if (destShape.empty())
|
|
destShape = extents;
|
|
// Construct shape of buffer.
|
|
mlir::Value shapeOp = builder.genShape(loc, extents);
|
|
|
|
// Replace binding with the local result.
|
|
implicitSpace->rebind(e, genMaskAccess(buff, shapeOp));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: should take multiple inner arguments.
|
|
std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
|
|
genImplicitLoops(mlir::ValueRange shape, mlir::Value innerArg) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
|
|
llvm::SmallVector<mlir::Value> loopUppers;
|
|
|
|
// Convert any implied shape to closed interval form. The fir.do_loop will
|
|
// run from 0 to `extent - 1` inclusive.
|
|
for (auto extent : shape)
|
|
loopUppers.push_back(
|
|
builder.create<mlir::arith::SubIOp>(loc, extent, one));
|
|
|
|
// Iteration space is created with outermost columns, innermost rows
|
|
llvm::SmallVector<fir::DoLoopOp> loops;
|
|
|
|
const std::size_t loopDepth = loopUppers.size();
|
|
llvm::SmallVector<mlir::Value> ivars;
|
|
|
|
for (auto i : llvm::enumerate(llvm::reverse(loopUppers))) {
|
|
if (i.index() > 0) {
|
|
assert(!loops.empty());
|
|
builder.setInsertionPointToStart(loops.back().getBody());
|
|
}
|
|
fir::DoLoopOp loop;
|
|
if (innerArg) {
|
|
loop = builder.create<fir::DoLoopOp>(
|
|
loc, zero, i.value(), one, isUnordered(),
|
|
/*finalCount=*/false, mlir::ValueRange{innerArg});
|
|
innerArg = loop.getRegionIterArgs().front();
|
|
if (explicitSpaceIsActive())
|
|
explicitSpace->setInnerArg(0, innerArg);
|
|
} else {
|
|
loop = builder.create<fir::DoLoopOp>(loc, zero, i.value(), one,
|
|
isUnordered(),
|
|
/*finalCount=*/false);
|
|
}
|
|
ivars.push_back(loop.getInductionVar());
|
|
loops.push_back(loop);
|
|
}
|
|
|
|
if (innerArg)
|
|
for (std::remove_const_t<decltype(loopDepth)> i = 0; i + 1 < loopDepth;
|
|
++i) {
|
|
builder.setInsertionPointToEnd(loops[i].getBody());
|
|
builder.create<fir::ResultOp>(loc, loops[i + 1].getResult(0));
|
|
}
|
|
|
|
// Move insertion point to the start of the innermost loop in the nest.
|
|
builder.setInsertionPointToStart(loops.back().getBody());
|
|
// Set `afterLoopNest` to just after the entire loop nest.
|
|
auto currPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointAfter(loops[0]);
|
|
auto afterLoopNest = builder.saveInsertionPoint();
|
|
builder.restoreInsertionPoint(currPt);
|
|
|
|
// Put the implicit loop variables in row to column order to match FIR's
|
|
// Ops. (The loops were constructed from outermost column to innermost
|
|
// row.)
|
|
mlir::Value outerRes = loops[0].getResult(0);
|
|
return {IterationSpace(innerArg, outerRes, llvm::reverse(ivars)),
|
|
afterLoopNest};
|
|
}
|
|
|
|
/// Build the iteration space into which the array expression will be lowered.
|
|
/// The resultType is used to create a temporary, if needed.
|
|
std::pair<IterationSpace, mlir::OpBuilder::InsertPoint>
|
|
genIterSpace(mlir::Type resultType) {
|
|
mlir::Location loc = getLoc();
|
|
llvm::SmallVector<mlir::Value> shape = genIterationShape();
|
|
if (!destination) {
|
|
// Allocate storage for the result if it is not already provided.
|
|
destination = createAndLoadSomeArrayTemp(resultType, shape);
|
|
}
|
|
|
|
// Generate the lazy mask allocation, if one was given.
|
|
if (ccPrelude)
|
|
(*ccPrelude)(shape);
|
|
|
|
// Now handle the implicit loops.
|
|
mlir::Value inner = explicitSpaceIsActive()
|
|
? explicitSpace->getInnerArgs().front()
|
|
: destination.getResult();
|
|
auto [iters, afterLoopNest] = genImplicitLoops(shape, inner);
|
|
mlir::Value innerArg = iters.innerArgument();
|
|
|
|
// Generate the mask conditional structure, if there are masks. Unlike the
|
|
// explicit masks, which are interleaved, these mask expression appear in
|
|
// the innermost loop.
|
|
if (implicitSpaceHasMasks()) {
|
|
// Recover the cached condition from the mask buffer.
|
|
auto genCond = [&](Fortran::lower::FrontEndExpr e, IterSpace iters) {
|
|
return implicitSpace->getBoundClosure(e)(iters);
|
|
};
|
|
|
|
// Handle the negated conditions in topological order of the WHERE
|
|
// clauses. See 10.2.3.2p4 as to why this control structure is produced.
|
|
for (llvm::SmallVector<Fortran::lower::FrontEndExpr> maskExprs :
|
|
implicitSpace->getMasks()) {
|
|
const std::size_t size = maskExprs.size() - 1;
|
|
auto genFalseBlock = [&](const auto *e, auto &&cond) {
|
|
auto ifOp = builder.create<fir::IfOp>(
|
|
loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
|
|
/*withElseRegion=*/true);
|
|
builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
builder.create<fir::ResultOp>(loc, innerArg);
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
};
|
|
auto genTrueBlock = [&](const auto *e, auto &&cond) {
|
|
auto ifOp = builder.create<fir::IfOp>(
|
|
loc, mlir::TypeRange{innerArg.getType()}, fir::getBase(cond),
|
|
/*withElseRegion=*/true);
|
|
builder.create<fir::ResultOp>(loc, ifOp.getResult(0));
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
builder.create<fir::ResultOp>(loc, innerArg);
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
};
|
|
for (std::remove_const_t<decltype(size)> i = 0; i < size; ++i)
|
|
if (const auto *e = maskExprs[i])
|
|
genFalseBlock(e, genCond(e, iters));
|
|
|
|
// The last condition is either non-negated or unconditionally negated.
|
|
if (const auto *e = maskExprs[size])
|
|
genTrueBlock(e, genCond(e, iters));
|
|
}
|
|
}
|
|
|
|
// We're ready to lower the body (an assignment statement) for this context
|
|
// of loop nests at this point.
|
|
return {iters, afterLoopNest};
|
|
}
|
|
|
|
fir::ArrayLoadOp
|
|
createAndLoadSomeArrayTemp(mlir::Type type,
|
|
llvm::ArrayRef<mlir::Value> shape) {
|
|
if (ccLoadDest)
|
|
return (*ccLoadDest)(shape);
|
|
auto seqTy = type.dyn_cast<fir::SequenceType>();
|
|
assert(seqTy && "must be an array");
|
|
mlir::Location loc = getLoc();
|
|
// TODO: Need to thread the LEN parameters here. For character, they may
|
|
// differ from the operands length (e.g concatenation). So the array loads
|
|
// type parameters are not enough.
|
|
if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>())
|
|
if (charTy.hasDynamicLen())
|
|
TODO(loc, "character array expression temp with dynamic length");
|
|
if (auto recTy = seqTy.getEleTy().dyn_cast<fir::RecordType>())
|
|
if (recTy.getNumLenParams() > 0)
|
|
TODO(loc, "derived type array expression temp with LEN parameters");
|
|
if (mlir::Type eleTy = fir::unwrapSequenceType(type);
|
|
fir::isRecordWithAllocatableMember(eleTy))
|
|
TODO(loc, "creating an array temp where the element type has "
|
|
"allocatable members");
|
|
mlir::Value temp = !seqTy.hasDynamicExtents()
|
|
? builder.create<fir::AllocMemOp>(loc, type)
|
|
: builder.create<fir::AllocMemOp>(
|
|
loc, type, ".array.expr", llvm::None, shape);
|
|
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
|
|
stmtCtx.attachCleanup(
|
|
[bldr, loc, temp]() { bldr->create<fir::FreeMemOp>(loc, temp); });
|
|
mlir::Value shapeOp = genShapeOp(shape);
|
|
return builder.create<fir::ArrayLoadOp>(loc, seqTy, temp, shapeOp,
|
|
/*slice=*/mlir::Value{},
|
|
llvm::None);
|
|
}
|
|
|
|
static fir::ShapeOp genShapeOp(mlir::Location loc, fir::FirOpBuilder &builder,
|
|
llvm::ArrayRef<mlir::Value> shape) {
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
llvm::SmallVector<mlir::Value> idxShape;
|
|
for (auto s : shape)
|
|
idxShape.push_back(builder.createConvert(loc, idxTy, s));
|
|
auto shapeTy = fir::ShapeType::get(builder.getContext(), idxShape.size());
|
|
return builder.create<fir::ShapeOp>(loc, shapeTy, idxShape);
|
|
}
|
|
|
|
fir::ShapeOp genShapeOp(llvm::ArrayRef<mlir::Value> shape) {
|
|
return genShapeOp(getLoc(), builder, shape);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Expression traversal and lowering.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Lower the expression, \p x, in a scalar context.
|
|
template <typename A>
|
|
ExtValue asScalar(const A &x) {
|
|
return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.genval(x);
|
|
}
|
|
|
|
/// Lower the expression, \p x, in a scalar context. If this is an explicit
|
|
/// space, the expression may be scalar and refer to an array. We want to
|
|
/// raise the array access to array operations in FIR to analyze potential
|
|
/// conflicts even when the result is a scalar element.
|
|
template <typename A>
|
|
ExtValue asScalarArray(const A &x) {
|
|
return explicitSpaceIsActive() && !isPointerAssignment()
|
|
? genarr(x)(IterationSpace{})
|
|
: asScalar(x);
|
|
}
|
|
|
|
/// Lower the expression in a scalar context to a memory reference.
|
|
template <typename A>
|
|
ExtValue asScalarRef(const A &x) {
|
|
return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}.gen(x);
|
|
}
|
|
|
|
/// Lower an expression without dereferencing any indirection that may be
|
|
/// a nullptr (because this is an absent optional or unallocated/disassociated
|
|
/// descriptor). The returned expression cannot be addressed directly, it is
|
|
/// meant to inquire about its status before addressing the related entity.
|
|
template <typename A>
|
|
ExtValue asInquired(const A &x) {
|
|
return ScalarExprLowering{getLoc(), converter, symMap, stmtCtx}
|
|
.lowerIntrinsicArgumentAsInquired(x);
|
|
}
|
|
|
|
/// Some temporaries are allocated on an element-by-element basis during the
|
|
/// array expression evaluation. Collect the cleanups here so the resources
|
|
/// can be freed before the next loop iteration, avoiding memory leaks. etc.
|
|
Fortran::lower::StatementContext &getElementCtx() {
|
|
if (!elementCtx) {
|
|
stmtCtx.pushScope();
|
|
elementCtx = true;
|
|
}
|
|
return stmtCtx;
|
|
}
|
|
|
|
/// If there were temporaries created for this element evaluation, finalize
|
|
/// and deallocate the resources now. This should be done just prior the the
|
|
/// fir::ResultOp at the end of the innermost loop.
|
|
void finalizeElementCtx() {
|
|
if (elementCtx) {
|
|
stmtCtx.finalizeAndPop();
|
|
elementCtx = false;
|
|
}
|
|
}
|
|
|
|
/// Lower an elemental function array argument. This ensures array
|
|
/// sub-expressions that are not variables and must be passed by address
|
|
/// are lowered by value and placed in memory.
|
|
template <typename A>
|
|
CC genElementalArgument(const A &x) {
|
|
// Ensure the returned element is in memory if this is what was requested.
|
|
if ((semant == ConstituentSemantics::RefOpaque ||
|
|
semant == ConstituentSemantics::DataAddr ||
|
|
semant == ConstituentSemantics::ByValueArg)) {
|
|
if (!Fortran::evaluate::IsVariable(x)) {
|
|
PushSemantics(ConstituentSemantics::DataValue);
|
|
CC cc = genarr(x);
|
|
mlir::Location loc = getLoc();
|
|
if (isParenthesizedVariable(x)) {
|
|
// Parenthesised variables are lowered to a reference to the variable
|
|
// storage. When passing it as an argument, a copy must be passed.
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
return createInMemoryScalarCopy(builder, loc, cc(iters));
|
|
};
|
|
}
|
|
mlir::Type storageType =
|
|
fir::unwrapSequenceType(converter.genType(toEvExpr(x)));
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
return placeScalarValueInMemory(builder, loc, cc(iters), storageType);
|
|
};
|
|
}
|
|
}
|
|
return genarr(x);
|
|
}
|
|
|
|
// A reference to a Fortran elemental intrinsic or intrinsic module procedure.
|
|
CC genElementalIntrinsicProcRef(
|
|
const Fortran::evaluate::ProcedureRef &procRef,
|
|
llvm::Optional<mlir::Type> retTy,
|
|
llvm::Optional<const Fortran::evaluate::SpecificIntrinsic> intrinsic =
|
|
llvm::None) {
|
|
|
|
llvm::SmallVector<CC> operands;
|
|
std::string name =
|
|
intrinsic ? intrinsic->name
|
|
: procRef.proc().GetSymbol()->GetUltimate().name().ToString();
|
|
const Fortran::lower::IntrinsicArgumentLoweringRules *argLowering =
|
|
Fortran::lower::getIntrinsicArgumentLowering(name);
|
|
mlir::Location loc = getLoc();
|
|
if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
|
|
procRef, *intrinsic, converter)) {
|
|
using CcPairT = std::pair<CC, llvm::Optional<mlir::Value>>;
|
|
llvm::SmallVector<CcPairT> operands;
|
|
auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
|
|
if (expr.Rank() == 0) {
|
|
ExtValue optionalArg = this->asInquired(expr);
|
|
mlir::Value isPresent =
|
|
genActualIsPresentTest(builder, loc, optionalArg);
|
|
operands.emplace_back(
|
|
[=](IterSpace iters) -> ExtValue {
|
|
return genLoad(builder, loc, optionalArg);
|
|
},
|
|
isPresent);
|
|
} else {
|
|
auto [cc, isPresent, _] = this->genOptionalArrayFetch(expr);
|
|
operands.emplace_back(cc, isPresent);
|
|
}
|
|
};
|
|
auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr) {
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
operands.emplace_back(genElementalArgument(expr), llvm::None);
|
|
};
|
|
Fortran::lower::prepareCustomIntrinsicArgument(
|
|
procRef, *intrinsic, retTy, prepareOptionalArg, prepareOtherArg,
|
|
converter);
|
|
|
|
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
auto getArgument = [&](std::size_t i) -> ExtValue {
|
|
return operands[i].first(iters);
|
|
};
|
|
auto isPresent = [&](std::size_t i) -> llvm::Optional<mlir::Value> {
|
|
return operands[i].second;
|
|
};
|
|
return Fortran::lower::lowerCustomIntrinsic(
|
|
*bldr, loc, name, retTy, isPresent, getArgument, operands.size(),
|
|
getElementCtx());
|
|
};
|
|
}
|
|
/// Otherwise, pre-lower arguments and use intrinsic lowering utility.
|
|
for (const auto &arg : llvm::enumerate(procRef.arguments())) {
|
|
const auto *expr =
|
|
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
|
|
if (!expr) {
|
|
// Absent optional.
|
|
operands.emplace_back([=](IterSpace) { return mlir::Value{}; });
|
|
} else if (!argLowering) {
|
|
// No argument lowering instruction, lower by value.
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} else {
|
|
// Ad-hoc argument lowering handling.
|
|
Fortran::lower::ArgLoweringRule argRules =
|
|
Fortran::lower::lowerIntrinsicArgumentAs(*argLowering, arg.index());
|
|
if (argRules.handleDynamicOptional &&
|
|
Fortran::evaluate::MayBePassedAsAbsentOptional(
|
|
*expr, converter.getFoldingContext())) {
|
|
// Currently, there is not elemental intrinsic that requires lowering
|
|
// a potentially absent argument to something else than a value (apart
|
|
// from character MAX/MIN that are handled elsewhere.)
|
|
if (argRules.lowerAs != Fortran::lower::LowerIntrinsicArgAs::Value)
|
|
TODO(loc, "non trivial optional elemental intrinsic array "
|
|
"argument");
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
operands.emplace_back(genarrForwardOptionalArgumentToCall(*expr));
|
|
continue;
|
|
}
|
|
switch (argRules.lowerAs) {
|
|
case Fortran::lower::LowerIntrinsicArgAs::Value: {
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} break;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Addr: {
|
|
// Note: assume does not have Fortran VALUE attribute semantics.
|
|
PushSemantics(ConstituentSemantics::RefOpaque);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} break;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Box: {
|
|
PushSemantics(ConstituentSemantics::RefOpaque);
|
|
auto lambda = genElementalArgument(*expr);
|
|
operands.emplace_back([=](IterSpace iters) {
|
|
return builder.createBox(loc, lambda(iters));
|
|
});
|
|
} break;
|
|
case Fortran::lower::LowerIntrinsicArgAs::Inquired:
|
|
TODO(loc, "intrinsic function with inquired argument");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Let the intrinsic library lower the intrinsic procedure call
|
|
return [=](IterSpace iters) {
|
|
llvm::SmallVector<ExtValue> args;
|
|
for (const auto &cc : operands)
|
|
args.push_back(cc(iters));
|
|
return Fortran::lower::genIntrinsicCall(builder, loc, name, retTy, args,
|
|
getElementCtx());
|
|
};
|
|
}
|
|
|
|
/// Lower a procedure reference to a user-defined elemental procedure.
|
|
CC genElementalUserDefinedProcRef(
|
|
const Fortran::evaluate::ProcedureRef &procRef,
|
|
llvm::Optional<mlir::Type> retTy) {
|
|
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
|
|
|
|
// 10.1.4 p5. Impure elemental procedures must be called in element order.
|
|
if (const Fortran::semantics::Symbol *procSym = procRef.proc().GetSymbol())
|
|
if (!Fortran::semantics::IsPureProcedure(*procSym))
|
|
setUnordered(false);
|
|
|
|
Fortran::lower::CallerInterface caller(procRef, converter);
|
|
llvm::SmallVector<CC> operands;
|
|
operands.reserve(caller.getPassedArguments().size());
|
|
mlir::Location loc = getLoc();
|
|
mlir::FunctionType callSiteType = caller.genFunctionType();
|
|
for (const Fortran::lower::CallInterface<
|
|
Fortran::lower::CallerInterface>::PassedEntity &arg :
|
|
caller.getPassedArguments()) {
|
|
// 15.8.3 p1. Elemental procedure with intent(out)/intent(inout)
|
|
// arguments must be called in element order.
|
|
if (arg.mayBeModifiedByCall())
|
|
setUnordered(false);
|
|
const auto *actual = arg.entity;
|
|
mlir::Type argTy = callSiteType.getInput(arg.firArgument);
|
|
if (!actual) {
|
|
// Optional dummy argument for which there is no actual argument.
|
|
auto absent = builder.create<fir::AbsentOp>(loc, argTy);
|
|
operands.emplace_back([=](IterSpace) { return absent; });
|
|
continue;
|
|
}
|
|
const auto *expr = actual->UnwrapExpr();
|
|
if (!expr)
|
|
TODO(loc, "assumed type actual argument");
|
|
|
|
LLVM_DEBUG(expr->AsFortran(llvm::dbgs()
|
|
<< "argument: " << arg.firArgument << " = [")
|
|
<< "]\n");
|
|
if (arg.isOptional() && Fortran::evaluate::MayBePassedAsAbsentOptional(
|
|
*expr, converter.getFoldingContext()))
|
|
TODO(loc,
|
|
"passing dynamically optional argument to elemental procedures");
|
|
switch (arg.passBy) {
|
|
case PassBy::Value: {
|
|
// True pass-by-value semantics.
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} break;
|
|
case PassBy::BaseAddressValueAttribute: {
|
|
// VALUE attribute or pass-by-reference to a copy semantics. (byval*)
|
|
if (isArray(*expr)) {
|
|
PushSemantics(ConstituentSemantics::ByValueArg);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} else {
|
|
// Store scalar value in a temp to fulfill VALUE attribute.
|
|
mlir::Value val = fir::getBase(asScalar(*expr));
|
|
mlir::Value temp = builder.createTemporary(
|
|
loc, val.getType(),
|
|
llvm::ArrayRef<mlir::NamedAttribute>{
|
|
Fortran::lower::getAdaptToByRefAttr(builder)});
|
|
builder.create<fir::StoreOp>(loc, val, temp);
|
|
operands.emplace_back(
|
|
[=](IterSpace iters) -> ExtValue { return temp; });
|
|
}
|
|
} break;
|
|
case PassBy::BaseAddress: {
|
|
if (isArray(*expr)) {
|
|
PushSemantics(ConstituentSemantics::RefOpaque);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} else {
|
|
ExtValue exv = asScalarRef(*expr);
|
|
operands.emplace_back([=](IterSpace iters) { return exv; });
|
|
}
|
|
} break;
|
|
case PassBy::CharBoxValueAttribute: {
|
|
if (isArray(*expr)) {
|
|
PushSemantics(ConstituentSemantics::DataValue);
|
|
auto lambda = genElementalArgument(*expr);
|
|
operands.emplace_back([=](IterSpace iters) {
|
|
return fir::factory::CharacterExprHelper{builder, loc}
|
|
.createTempFrom(lambda(iters));
|
|
});
|
|
} else {
|
|
fir::factory::CharacterExprHelper helper(builder, loc);
|
|
fir::CharBoxValue argVal = helper.createTempFrom(asScalarRef(*expr));
|
|
operands.emplace_back(
|
|
[=](IterSpace iters) -> ExtValue { return argVal; });
|
|
}
|
|
} break;
|
|
case PassBy::BoxChar: {
|
|
PushSemantics(ConstituentSemantics::RefOpaque);
|
|
operands.emplace_back(genElementalArgument(*expr));
|
|
} break;
|
|
case PassBy::AddressAndLength:
|
|
// PassBy::AddressAndLength is only used for character results. Results
|
|
// are not handled here.
|
|
fir::emitFatalError(
|
|
loc, "unexpected PassBy::AddressAndLength in elemental call");
|
|
break;
|
|
case PassBy::CharProcTuple: {
|
|
ExtValue argRef = asScalarRef(*expr);
|
|
mlir::Value tuple = createBoxProcCharTuple(
|
|
converter, argTy, fir::getBase(argRef), fir::getLen(argRef));
|
|
operands.emplace_back(
|
|
[=](IterSpace iters) -> ExtValue { return tuple; });
|
|
} break;
|
|
case PassBy::Box:
|
|
case PassBy::MutableBox:
|
|
// See C15100 and C15101
|
|
fir::emitFatalError(loc, "cannot be POINTER, ALLOCATABLE");
|
|
}
|
|
}
|
|
|
|
if (caller.getIfIndirectCallSymbol())
|
|
fir::emitFatalError(loc, "cannot be indirect call");
|
|
|
|
// The lambda is mutable so that `caller` copy can be modified inside it.
|
|
return
|
|
[=, caller = std::move(caller)](IterSpace iters) mutable -> ExtValue {
|
|
for (const auto &[cc, argIface] :
|
|
llvm::zip(operands, caller.getPassedArguments())) {
|
|
auto exv = cc(iters);
|
|
auto arg = exv.match(
|
|
[&](const fir::CharBoxValue &cb) -> mlir::Value {
|
|
return fir::factory::CharacterExprHelper{builder, loc}
|
|
.createEmbox(cb);
|
|
},
|
|
[&](const auto &) { return fir::getBase(exv); });
|
|
caller.placeInput(argIface, arg);
|
|
}
|
|
return ScalarExprLowering{loc, converter, symMap, getElementCtx()}
|
|
.genCallOpAndResult(caller, callSiteType, retTy);
|
|
};
|
|
}
|
|
|
|
/// Lower TRANSPOSE call without using runtime TRANSPOSE.
|
|
/// Return continuation for generating the TRANSPOSE result.
|
|
/// The continuation just swaps the iteration space before
|
|
/// invoking continuation for the argument.
|
|
CC genTransposeProcRef(const Fortran::evaluate::ProcedureRef &procRef) {
|
|
assert(procRef.arguments().size() == 1 &&
|
|
"TRANSPOSE must have one argument.");
|
|
const auto *argExpr = procRef.arguments()[0].value().UnwrapExpr();
|
|
assert(argExpr);
|
|
|
|
llvm::SmallVector<mlir::Value> savedDestShape = destShape;
|
|
assert((destShape.empty() || destShape.size() == 2) &&
|
|
"TRANSPOSE destination must have rank 2.");
|
|
|
|
if (!savedDestShape.empty())
|
|
std::swap(destShape[0], destShape[1]);
|
|
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
llvm::SmallVector<CC> operands{genElementalArgument(*argExpr)};
|
|
|
|
if (!savedDestShape.empty()) {
|
|
// If destShape was set before transpose lowering, then
|
|
// restore it. Otherwise, ...
|
|
destShape = savedDestShape;
|
|
} else if (!destShape.empty()) {
|
|
// ... if destShape has been set from the argument lowering,
|
|
// then reverse it.
|
|
assert(destShape.size() == 2 &&
|
|
"TRANSPOSE destination must have rank 2.");
|
|
std::swap(destShape[0], destShape[1]);
|
|
}
|
|
|
|
return [=](IterSpace iters) {
|
|
assert(iters.iterVec().size() == 2 &&
|
|
"TRANSPOSE expects 2D iterations space.");
|
|
IterationSpace newIters(iters, {iters.iterValue(1), iters.iterValue(0)});
|
|
return operands.front()(newIters);
|
|
};
|
|
}
|
|
|
|
/// Generate a procedure reference. This code is shared for both functions and
|
|
/// subroutines, the difference being reflected by `retTy`.
|
|
CC genProcRef(const Fortran::evaluate::ProcedureRef &procRef,
|
|
llvm::Optional<mlir::Type> retTy) {
|
|
mlir::Location loc = getLoc();
|
|
|
|
if (isOptimizableTranspose(procRef, converter))
|
|
return genTransposeProcRef(procRef);
|
|
|
|
if (procRef.IsElemental()) {
|
|
if (const Fortran::evaluate::SpecificIntrinsic *intrin =
|
|
procRef.proc().GetSpecificIntrinsic()) {
|
|
// All elemental intrinsic functions are pure and cannot modify their
|
|
// arguments. The only elemental subroutine, MVBITS has an Intent(inout)
|
|
// argument. So for this last one, loops must be in element order
|
|
// according to 15.8.3 p1.
|
|
if (!retTy)
|
|
setUnordered(false);
|
|
|
|
// Elemental intrinsic call.
|
|
// The intrinsic procedure is called once per element of the array.
|
|
return genElementalIntrinsicProcRef(procRef, retTy, *intrin);
|
|
}
|
|
if (isIntrinsicModuleProcRef(procRef))
|
|
return genElementalIntrinsicProcRef(procRef, retTy);
|
|
if (ScalarExprLowering::isStatementFunctionCall(procRef))
|
|
fir::emitFatalError(loc, "statement function cannot be elemental");
|
|
|
|
// Elemental call.
|
|
// The procedure is called once per element of the array argument(s).
|
|
return genElementalUserDefinedProcRef(procRef, retTy);
|
|
}
|
|
|
|
// Transformational call.
|
|
// The procedure is called once and produces a value of rank > 0.
|
|
if (const Fortran::evaluate::SpecificIntrinsic *intrinsic =
|
|
procRef.proc().GetSpecificIntrinsic()) {
|
|
if (explicitSpaceIsActive() && procRef.Rank() == 0) {
|
|
// Elide any implicit loop iters.
|
|
return [=, &procRef](IterSpace) {
|
|
return ScalarExprLowering{loc, converter, symMap, stmtCtx}
|
|
.genIntrinsicRef(procRef, retTy, *intrinsic);
|
|
};
|
|
}
|
|
return genarr(
|
|
ScalarExprLowering{loc, converter, symMap, stmtCtx}.genIntrinsicRef(
|
|
procRef, retTy, *intrinsic));
|
|
}
|
|
|
|
const bool isPtrAssn = isPointerAssignment();
|
|
if (explicitSpaceIsActive() && procRef.Rank() == 0) {
|
|
// Elide any implicit loop iters.
|
|
return [=, &procRef](IterSpace) {
|
|
ScalarExprLowering sel(loc, converter, symMap, stmtCtx);
|
|
return isPtrAssn ? sel.genRawProcedureRef(procRef, retTy)
|
|
: sel.genProcedureRef(procRef, retTy);
|
|
};
|
|
}
|
|
// In the default case, the call can be hoisted out of the loop nest. Apply
|
|
// the iterations to the result, which may be an array value.
|
|
ScalarExprLowering sel(loc, converter, symMap, stmtCtx);
|
|
auto exv = isPtrAssn ? sel.genRawProcedureRef(procRef, retTy)
|
|
: sel.genProcedureRef(procRef, retTy);
|
|
return genarr(exv);
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::ProcedureDesignator &) {
|
|
TODO(getLoc(), "procedure designator");
|
|
}
|
|
CC genarr(const Fortran::evaluate::ProcedureRef &x) {
|
|
if (x.hasAlternateReturns())
|
|
fir::emitFatalError(getLoc(),
|
|
"array procedure reference with alt-return");
|
|
return genProcRef(x, llvm::None);
|
|
}
|
|
template <typename A>
|
|
CC genScalarAndForwardValue(const A &x) {
|
|
ExtValue result = asScalar(x);
|
|
return [=](IterSpace) { return result; };
|
|
}
|
|
template <typename A, typename = std::enable_if_t<Fortran::common::HasMember<
|
|
A, Fortran::evaluate::TypelessExpression>>>
|
|
CC genarr(const A &x) {
|
|
return genScalarAndForwardValue(x);
|
|
}
|
|
|
|
template <typename A>
|
|
CC genarr(const Fortran::evaluate::Expr<A> &x) {
|
|
LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(llvm::dbgs(), x));
|
|
if (isArray(x) || (explicitSpaceIsActive() && isLeftHandSide()) ||
|
|
isElementalProcWithArrayArgs(x))
|
|
return std::visit([&](const auto &e) { return genarr(e); }, x.u);
|
|
if (explicitSpaceIsActive()) {
|
|
assert(!isArray(x) && !isLeftHandSide());
|
|
auto cc = std::visit([&](const auto &e) { return genarr(e); }, x.u);
|
|
auto result = cc(IterationSpace{});
|
|
return [=](IterSpace) { return result; };
|
|
}
|
|
return genScalarAndForwardValue(x);
|
|
}
|
|
|
|
// Converting a value of memory bound type requires creating a temp and
|
|
// copying the value.
|
|
static ExtValue convertAdjustedType(fir::FirOpBuilder &builder,
|
|
mlir::Location loc, mlir::Type toType,
|
|
const ExtValue &exv) {
|
|
return exv.match(
|
|
[&](const fir::CharBoxValue &cb) -> ExtValue {
|
|
mlir::Value len = cb.getLen();
|
|
auto mem =
|
|
builder.create<fir::AllocaOp>(loc, toType, mlir::ValueRange{len});
|
|
fir::CharBoxValue result(mem, len);
|
|
fir::factory::CharacterExprHelper{builder, loc}.createAssign(
|
|
ExtValue{result}, exv);
|
|
return result;
|
|
},
|
|
[&](const auto &) -> ExtValue {
|
|
fir::emitFatalError(loc, "convert on adjusted extended value");
|
|
});
|
|
}
|
|
template <Fortran::common::TypeCategory TC1, int KIND,
|
|
Fortran::common::TypeCategory TC2>
|
|
CC genarr(const Fortran::evaluate::Convert<Fortran::evaluate::Type<TC1, KIND>,
|
|
TC2> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto lambda = genarr(x.left());
|
|
mlir::Type ty = converter.genType(TC1, KIND);
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
auto exv = lambda(iters);
|
|
mlir::Value val = fir::getBase(exv);
|
|
auto valTy = val.getType();
|
|
if (elementTypeWasAdjusted(valTy) &&
|
|
!(fir::isa_ref_type(valTy) && fir::isa_integer(ty)))
|
|
return convertAdjustedType(builder, loc, ty, exv);
|
|
return builder.createConvert(loc, ty, val);
|
|
};
|
|
}
|
|
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::ComplexComponent<KIND> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto lambda = genarr(x.left());
|
|
bool isImagPart = x.isImaginaryPart;
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value lhs = fir::getBase(lambda(iters));
|
|
return fir::factory::Complex{builder, loc}.extractComplexPart(lhs,
|
|
isImagPart);
|
|
};
|
|
}
|
|
|
|
template <typename T>
|
|
CC genarr(const Fortran::evaluate::Parentheses<T> &x) {
|
|
mlir::Location loc = getLoc();
|
|
if (isReferentiallyOpaque()) {
|
|
// Context is a call argument in, for example, an elemental procedure
|
|
// call. TODO: all array arguments should use array_load, array_access,
|
|
// array_amend, and INTENT(OUT), INTENT(INOUT) arguments should have
|
|
// array_merge_store ops.
|
|
TODO(loc, "parentheses on argument in elemental call");
|
|
}
|
|
auto f = genarr(x.left());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
auto val = f(iters);
|
|
mlir::Value base = fir::getBase(val);
|
|
auto newBase =
|
|
builder.create<fir::NoReassocOp>(loc, base.getType(), base);
|
|
return fir::substBase(val, newBase);
|
|
};
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Integer, KIND>> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto f = genarr(x.left());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value val = fir::getBase(f(iters));
|
|
mlir::Type ty =
|
|
converter.genType(Fortran::common::TypeCategory::Integer, KIND);
|
|
mlir::Value zero = builder.createIntegerConstant(loc, ty, 0);
|
|
return builder.create<mlir::arith::SubIOp>(loc, zero, val);
|
|
};
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Real, KIND>> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto f = genarr(x.left());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
return builder.create<mlir::arith::NegFOp>(loc, fir::getBase(f(iters)));
|
|
};
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Negate<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Complex, KIND>> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto f = genarr(x.left());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
return builder.create<fir::NegcOp>(loc, fir::getBase(f(iters)));
|
|
};
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Binary elemental ops
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
template <typename OP, typename A>
|
|
CC createBinaryOp(const A &evEx) {
|
|
mlir::Location loc = getLoc();
|
|
auto lambda = genarr(evEx.left());
|
|
auto rf = genarr(evEx.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value left = fir::getBase(lambda(iters));
|
|
mlir::Value right = fir::getBase(rf(iters));
|
|
return builder.create<OP>(loc, left, right);
|
|
};
|
|
}
|
|
|
|
#undef GENBIN
|
|
#define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \
|
|
template <int KIND> \
|
|
CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
|
|
Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \
|
|
return createBinaryOp<GenBinFirOp>(x); \
|
|
}
|
|
|
|
GENBIN(Add, Integer, mlir::arith::AddIOp)
|
|
GENBIN(Add, Real, mlir::arith::AddFOp)
|
|
GENBIN(Add, Complex, fir::AddcOp)
|
|
GENBIN(Subtract, Integer, mlir::arith::SubIOp)
|
|
GENBIN(Subtract, Real, mlir::arith::SubFOp)
|
|
GENBIN(Subtract, Complex, fir::SubcOp)
|
|
GENBIN(Multiply, Integer, mlir::arith::MulIOp)
|
|
GENBIN(Multiply, Real, mlir::arith::MulFOp)
|
|
GENBIN(Multiply, Complex, fir::MulcOp)
|
|
GENBIN(Divide, Integer, mlir::arith::DivSIOp)
|
|
GENBIN(Divide, Real, mlir::arith::DivFOp)
|
|
GENBIN(Divide, Complex, fir::DivcOp)
|
|
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
CC genarr(
|
|
const Fortran::evaluate::Power<Fortran::evaluate::Type<TC, KIND>> &x) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Type ty = converter.genType(TC, KIND);
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value lhs = fir::getBase(lf(iters));
|
|
mlir::Value rhs = fir::getBase(rf(iters));
|
|
return Fortran::lower::genPow(builder, loc, ty, lhs, rhs);
|
|
};
|
|
}
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
CC genarr(
|
|
const Fortran::evaluate::Extremum<Fortran::evaluate::Type<TC, KIND>> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
switch (x.ordering) {
|
|
case Fortran::evaluate::Ordering::Greater:
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value lhs = fir::getBase(lf(iters));
|
|
mlir::Value rhs = fir::getBase(rf(iters));
|
|
return Fortran::lower::genMax(builder, loc,
|
|
llvm::ArrayRef<mlir::Value>{lhs, rhs});
|
|
};
|
|
case Fortran::evaluate::Ordering::Less:
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value lhs = fir::getBase(lf(iters));
|
|
mlir::Value rhs = fir::getBase(rf(iters));
|
|
return Fortran::lower::genMin(builder, loc,
|
|
llvm::ArrayRef<mlir::Value>{lhs, rhs});
|
|
};
|
|
case Fortran::evaluate::Ordering::Equal:
|
|
llvm_unreachable("Equal is not a valid ordering in this context");
|
|
}
|
|
llvm_unreachable("unknown ordering");
|
|
}
|
|
template <Fortran::common::TypeCategory TC, int KIND>
|
|
CC genarr(
|
|
const Fortran::evaluate::RealToIntPower<Fortran::evaluate::Type<TC, KIND>>
|
|
&x) {
|
|
mlir::Location loc = getLoc();
|
|
auto ty = converter.genType(TC, KIND);
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) {
|
|
mlir::Value lhs = fir::getBase(lf(iters));
|
|
mlir::Value rhs = fir::getBase(rf(iters));
|
|
return Fortran::lower::genPow(builder, loc, ty, lhs, rhs);
|
|
};
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::ComplexConstructor<KIND> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value lhs = fir::getBase(lf(iters));
|
|
mlir::Value rhs = fir::getBase(rf(iters));
|
|
return fir::factory::Complex{builder, loc}.createComplex(KIND, lhs, rhs);
|
|
};
|
|
}
|
|
|
|
/// Fortran's concatenation operator `//`.
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Concat<KIND> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
auto lhs = lf(iters);
|
|
auto rhs = rf(iters);
|
|
const fir::CharBoxValue *lchr = lhs.getCharBox();
|
|
const fir::CharBoxValue *rchr = rhs.getCharBox();
|
|
if (lchr && rchr) {
|
|
return fir::factory::CharacterExprHelper{builder, loc}
|
|
.createConcatenate(*lchr, *rchr);
|
|
}
|
|
TODO(loc, "concat on unexpected extended values");
|
|
return mlir::Value{};
|
|
};
|
|
}
|
|
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::SetLength<KIND> &x) {
|
|
auto lf = genarr(x.left());
|
|
mlir::Value rhs = fir::getBase(asScalar(x.right()));
|
|
fir::CharBoxValue temp =
|
|
fir::factory::CharacterExprHelper(builder, getLoc())
|
|
.createCharacterTemp(
|
|
fir::CharacterType::getUnknownLen(builder.getContext(), KIND),
|
|
rhs);
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
fir::factory::CharacterExprHelper(builder, getLoc())
|
|
.createAssign(temp, lf(iters));
|
|
return temp;
|
|
};
|
|
}
|
|
|
|
template <typename A>
|
|
CC genarr(const Fortran::evaluate::Constant<A> &x) {
|
|
if (x.Rank() == 0)
|
|
return genScalarAndForwardValue(x);
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Type arrTy = converter.genType(toEvExpr(x));
|
|
std::string globalName = Fortran::lower::mangle::mangleArrayLiteral(x);
|
|
fir::GlobalOp global = builder.getNamedGlobal(globalName);
|
|
if (!global) {
|
|
mlir::Type symTy = arrTy;
|
|
mlir::Type eleTy = symTy.cast<fir::SequenceType>().getEleTy();
|
|
// If we have a rank-1 array of integer, real, or logical, then we can
|
|
// create a global array with the dense attribute.
|
|
//
|
|
// The mlir tensor type can only handle integer, real, or logical. It
|
|
// does not currently support nested structures which is required for
|
|
// complex.
|
|
//
|
|
// Also, we currently handle just rank-1 since tensor type assumes
|
|
// row major array ordering. We will need to reorder the dimensions
|
|
// in the tensor type to support Fortran's column major array ordering.
|
|
// How to create this tensor type is to be determined.
|
|
if (x.Rank() == 1 &&
|
|
eleTy.isa<fir::LogicalType, mlir::IntegerType, mlir::FloatType>())
|
|
global = Fortran::lower::createDenseGlobal(
|
|
loc, arrTy, globalName, builder.createInternalLinkage(), true,
|
|
toEvExpr(x), converter);
|
|
// Note: If call to createDenseGlobal() returns 0, then call
|
|
// createGlobalConstant() below.
|
|
if (!global)
|
|
global = builder.createGlobalConstant(
|
|
loc, arrTy, globalName,
|
|
[&](fir::FirOpBuilder &builder) {
|
|
Fortran::lower::StatementContext stmtCtx(
|
|
/*cleanupProhibited=*/true);
|
|
fir::ExtendedValue result =
|
|
Fortran::lower::createSomeInitializerExpression(
|
|
loc, converter, toEvExpr(x), symMap, stmtCtx);
|
|
mlir::Value castTo =
|
|
builder.createConvert(loc, arrTy, fir::getBase(result));
|
|
builder.create<fir::HasValueOp>(loc, castTo);
|
|
},
|
|
builder.createInternalLinkage());
|
|
}
|
|
auto addr = builder.create<fir::AddrOfOp>(getLoc(), global.resultType(),
|
|
global.getSymbol());
|
|
auto seqTy = global.getType().cast<fir::SequenceType>();
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
for (auto extent : seqTy.getShape())
|
|
extents.push_back(builder.createIntegerConstant(loc, idxTy, extent));
|
|
if (auto charTy = seqTy.getEleTy().dyn_cast<fir::CharacterType>()) {
|
|
mlir::Value len = builder.createIntegerConstant(loc, builder.getI64Type(),
|
|
charTy.getLen());
|
|
return genarr(fir::CharArrayBoxValue{addr, len, extents});
|
|
}
|
|
return genarr(fir::ArrayBoxValue{addr, extents});
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// A vector subscript expression may be wrapped with a cast to INTEGER*8.
|
|
// Get rid of it here so the vector can be loaded. Add it back when
|
|
// generating the elemental evaluation (inside the loop nest).
|
|
|
|
static Fortran::lower::SomeExpr
|
|
ignoreEvConvert(const Fortran::evaluate::Expr<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Integer, 8>> &x) {
|
|
return std::visit([&](const auto &v) { return ignoreEvConvert(v); }, x.u);
|
|
}
|
|
template <Fortran::common::TypeCategory FROM>
|
|
static Fortran::lower::SomeExpr ignoreEvConvert(
|
|
const Fortran::evaluate::Convert<
|
|
Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, 8>,
|
|
FROM> &x) {
|
|
return toEvExpr(x.left());
|
|
}
|
|
template <typename A>
|
|
static Fortran::lower::SomeExpr ignoreEvConvert(const A &x) {
|
|
return toEvExpr(x);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Get the `Se::Symbol*` for the subscript expression, `x`. This symbol can
|
|
// be used to determine the lbound, ubound of the vector.
|
|
|
|
template <typename A>
|
|
static const Fortran::semantics::Symbol *
|
|
extractSubscriptSymbol(const Fortran::evaluate::Expr<A> &x) {
|
|
return std::visit([&](const auto &v) { return extractSubscriptSymbol(v); },
|
|
x.u);
|
|
}
|
|
template <typename A>
|
|
static const Fortran::semantics::Symbol *
|
|
extractSubscriptSymbol(const Fortran::evaluate::Designator<A> &x) {
|
|
return Fortran::evaluate::UnwrapWholeSymbolDataRef(x);
|
|
}
|
|
template <typename A>
|
|
static const Fortran::semantics::Symbol *extractSubscriptSymbol(const A &x) {
|
|
return nullptr;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Get the declared lower bound value of the array `x` in dimension `dim`.
|
|
/// The argument `one` must be an ssa-value for the constant 1.
|
|
mlir::Value getLBound(const ExtValue &x, unsigned dim, mlir::Value one) {
|
|
return fir::factory::readLowerBound(builder, getLoc(), x, dim, one);
|
|
}
|
|
|
|
/// Get the declared upper bound value of the array `x` in dimension `dim`.
|
|
/// The argument `one` must be an ssa-value for the constant 1.
|
|
mlir::Value getUBound(const ExtValue &x, unsigned dim, mlir::Value one) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Value lb = getLBound(x, dim, one);
|
|
mlir::Value extent = fir::factory::readExtent(builder, loc, x, dim);
|
|
auto add = builder.create<mlir::arith::AddIOp>(loc, lb, extent);
|
|
return builder.create<mlir::arith::SubIOp>(loc, add, one);
|
|
}
|
|
|
|
/// Return the extent of the boxed array `x` in dimesion `dim`.
|
|
mlir::Value getExtent(const ExtValue &x, unsigned dim) {
|
|
return fir::factory::readExtent(builder, getLoc(), x, dim);
|
|
}
|
|
|
|
template <typename A>
|
|
ExtValue genArrayBase(const A &base) {
|
|
ScalarExprLowering sel{getLoc(), converter, symMap, stmtCtx};
|
|
return base.IsSymbol() ? sel.gen(getFirstSym(base))
|
|
: sel.gen(base.GetComponent());
|
|
}
|
|
|
|
template <typename A>
|
|
bool hasEvArrayRef(const A &x) {
|
|
struct HasEvArrayRefHelper
|
|
: public Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper> {
|
|
HasEvArrayRefHelper()
|
|
: Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>(*this) {}
|
|
using Fortran::evaluate::AnyTraverse<HasEvArrayRefHelper>::operator();
|
|
bool operator()(const Fortran::evaluate::ArrayRef &) const {
|
|
return true;
|
|
}
|
|
} helper;
|
|
return helper(x);
|
|
}
|
|
|
|
CC genVectorSubscriptArrayFetch(const Fortran::lower::SomeExpr &expr,
|
|
std::size_t dim) {
|
|
PushSemantics(ConstituentSemantics::RefTransparent);
|
|
auto saved = Fortran::common::ScopedSet(explicitSpace, nullptr);
|
|
llvm::SmallVector<mlir::Value> savedDestShape = destShape;
|
|
destShape.clear();
|
|
auto result = genarr(expr);
|
|
if (destShape.empty())
|
|
TODO(getLoc(), "expected vector to have an extent");
|
|
assert(destShape.size() == 1 && "vector has rank > 1");
|
|
if (destShape[0] != savedDestShape[dim]) {
|
|
// Not the same, so choose the smaller value.
|
|
mlir::Location loc = getLoc();
|
|
auto cmp = builder.create<mlir::arith::CmpIOp>(
|
|
loc, mlir::arith::CmpIPredicate::sgt, destShape[0],
|
|
savedDestShape[dim]);
|
|
auto sel = builder.create<mlir::arith::SelectOp>(
|
|
loc, cmp, savedDestShape[dim], destShape[0]);
|
|
savedDestShape[dim] = sel;
|
|
destShape = savedDestShape;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Generate an access by vector subscript using the index in the iteration
|
|
/// vector at `dim`.
|
|
mlir::Value genAccessByVector(mlir::Location loc, CC genArrFetch,
|
|
IterSpace iters, std::size_t dim) {
|
|
IterationSpace vecIters(iters,
|
|
llvm::ArrayRef<mlir::Value>{iters.iterValue(dim)});
|
|
fir::ExtendedValue fetch = genArrFetch(vecIters);
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
return builder.createConvert(loc, idxTy, fir::getBase(fetch));
|
|
}
|
|
|
|
/// When we have an array reference, the expressions specified in each
|
|
/// dimension may be slice operations (e.g. `i:j:k`), vectors, or simple
|
|
/// (loop-invarianet) scalar expressions. This returns the base entity, the
|
|
/// resulting type, and a continuation to adjust the default iteration space.
|
|
void genSliceIndices(ComponentPath &cmptData, const ExtValue &arrayExv,
|
|
const Fortran::evaluate::ArrayRef &x, bool atBase) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
llvm::SmallVector<mlir::Value> &trips = cmptData.trips;
|
|
LLVM_DEBUG(llvm::dbgs() << "array: " << arrayExv << '\n');
|
|
auto &pc = cmptData.pc;
|
|
const bool useTripsForSlice = !explicitSpaceIsActive();
|
|
const bool createDestShape = destShape.empty();
|
|
bool useSlice = false;
|
|
std::size_t shapeIndex = 0;
|
|
for (auto sub : llvm::enumerate(x.subscript())) {
|
|
const std::size_t subsIndex = sub.index();
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::Triplet &t) {
|
|
mlir::Value lowerBound;
|
|
if (auto optLo = t.lower())
|
|
lowerBound = fir::getBase(asScalarArray(*optLo));
|
|
else
|
|
lowerBound = getLBound(arrayExv, subsIndex, one);
|
|
lowerBound = builder.createConvert(loc, idxTy, lowerBound);
|
|
mlir::Value stride = fir::getBase(asScalarArray(t.stride()));
|
|
stride = builder.createConvert(loc, idxTy, stride);
|
|
if (useTripsForSlice || createDestShape) {
|
|
// Generate a slice operation for the triplet. The first and
|
|
// second position of the triplet may be omitted, and the
|
|
// declared lbound and/or ubound expression values,
|
|
// respectively, should be used instead.
|
|
trips.push_back(lowerBound);
|
|
mlir::Value upperBound;
|
|
if (auto optUp = t.upper())
|
|
upperBound = fir::getBase(asScalarArray(*optUp));
|
|
else
|
|
upperBound = getUBound(arrayExv, subsIndex, one);
|
|
upperBound = builder.createConvert(loc, idxTy, upperBound);
|
|
trips.push_back(upperBound);
|
|
trips.push_back(stride);
|
|
if (createDestShape) {
|
|
auto extent = builder.genExtentFromTriplet(
|
|
loc, lowerBound, upperBound, stride, idxTy);
|
|
destShape.push_back(extent);
|
|
}
|
|
useSlice = true;
|
|
}
|
|
if (!useTripsForSlice) {
|
|
auto currentPC = pc;
|
|
pc = [=](IterSpace iters) {
|
|
IterationSpace newIters = currentPC(iters);
|
|
mlir::Value impliedIter = newIters.iterValue(subsIndex);
|
|
// FIXME: must use the lower bound of this component.
|
|
auto arrLowerBound =
|
|
atBase ? getLBound(arrayExv, subsIndex, one) : one;
|
|
auto initial = builder.create<mlir::arith::SubIOp>(
|
|
loc, lowerBound, arrLowerBound);
|
|
auto prod = builder.create<mlir::arith::MulIOp>(
|
|
loc, impliedIter, stride);
|
|
auto result =
|
|
builder.create<mlir::arith::AddIOp>(loc, initial, prod);
|
|
newIters.setIndexValue(subsIndex, result);
|
|
return newIters;
|
|
};
|
|
}
|
|
shapeIndex++;
|
|
},
|
|
[&](const Fortran::evaluate::IndirectSubscriptIntegerExpr &ie) {
|
|
const auto &e = ie.value(); // dereference
|
|
if (isArray(e)) {
|
|
// This is a vector subscript. Use the index values as read
|
|
// from a vector to determine the temporary array value.
|
|
// Note: 9.5.3.3.3(3) specifies undefined behavior for
|
|
// multiple updates to any specific array element through a
|
|
// vector subscript with replicated values.
|
|
assert(!isBoxValue() &&
|
|
"fir.box cannot be created with vector subscripts");
|
|
// TODO: Avoid creating a new evaluate::Expr here
|
|
auto arrExpr = ignoreEvConvert(e);
|
|
if (createDestShape) {
|
|
destShape.push_back(fir::factory::getExtentAtDimension(
|
|
loc, builder, arrayExv, subsIndex));
|
|
}
|
|
auto genArrFetch =
|
|
genVectorSubscriptArrayFetch(arrExpr, shapeIndex);
|
|
auto currentPC = pc;
|
|
pc = [=](IterSpace iters) {
|
|
IterationSpace newIters = currentPC(iters);
|
|
auto val = genAccessByVector(loc, genArrFetch, newIters,
|
|
subsIndex);
|
|
// Value read from vector subscript array and normalized
|
|
// using the base array's lower bound value.
|
|
mlir::Value lb = fir::factory::readLowerBound(
|
|
builder, loc, arrayExv, subsIndex, one);
|
|
auto origin = builder.create<mlir::arith::SubIOp>(
|
|
loc, idxTy, val, lb);
|
|
newIters.setIndexValue(subsIndex, origin);
|
|
return newIters;
|
|
};
|
|
if (useTripsForSlice) {
|
|
LLVM_ATTRIBUTE_UNUSED auto vectorSubscriptShape =
|
|
getShape(arrayOperands.back());
|
|
auto undef = builder.create<fir::UndefOp>(loc, idxTy);
|
|
trips.push_back(undef);
|
|
trips.push_back(undef);
|
|
trips.push_back(undef);
|
|
}
|
|
shapeIndex++;
|
|
} else {
|
|
// This is a regular scalar subscript.
|
|
if (useTripsForSlice) {
|
|
// A regular scalar index, which does not yield an array
|
|
// section. Use a degenerate slice operation
|
|
// `(e:undef:undef)` in this dimension as a placeholder.
|
|
// This does not necessarily change the rank of the original
|
|
// array, so the iteration space must also be extended to
|
|
// include this expression in this dimension to adjust to
|
|
// the array's declared rank.
|
|
mlir::Value v = fir::getBase(asScalarArray(e));
|
|
trips.push_back(v);
|
|
auto undef = builder.create<fir::UndefOp>(loc, idxTy);
|
|
trips.push_back(undef);
|
|
trips.push_back(undef);
|
|
auto currentPC = pc;
|
|
// Cast `e` to index type.
|
|
mlir::Value iv = builder.createConvert(loc, idxTy, v);
|
|
// Normalize `e` by subtracting the declared lbound.
|
|
mlir::Value lb = fir::factory::readLowerBound(
|
|
builder, loc, arrayExv, subsIndex, one);
|
|
mlir::Value ivAdj =
|
|
builder.create<mlir::arith::SubIOp>(loc, idxTy, iv, lb);
|
|
// Add lbound adjusted value of `e` to the iteration vector
|
|
// (except when creating a box because the iteration vector
|
|
// is empty).
|
|
if (!isBoxValue())
|
|
pc = [=](IterSpace iters) {
|
|
IterationSpace newIters = currentPC(iters);
|
|
newIters.insertIndexValue(subsIndex, ivAdj);
|
|
return newIters;
|
|
};
|
|
} else {
|
|
auto currentPC = pc;
|
|
mlir::Value newValue = fir::getBase(asScalarArray(e));
|
|
mlir::Value result =
|
|
builder.createConvert(loc, idxTy, newValue);
|
|
mlir::Value lb = fir::factory::readLowerBound(
|
|
builder, loc, arrayExv, subsIndex, one);
|
|
result = builder.create<mlir::arith::SubIOp>(loc, idxTy,
|
|
result, lb);
|
|
pc = [=](IterSpace iters) {
|
|
IterationSpace newIters = currentPC(iters);
|
|
newIters.insertIndexValue(subsIndex, result);
|
|
return newIters;
|
|
};
|
|
}
|
|
}
|
|
}},
|
|
sub.value().u);
|
|
}
|
|
if (!useSlice)
|
|
trips.clear();
|
|
}
|
|
|
|
static mlir::Type unwrapBoxEleTy(mlir::Type ty) {
|
|
if (auto boxTy = ty.dyn_cast<fir::BoxType>())
|
|
return fir::unwrapRefType(boxTy.getEleTy());
|
|
return ty;
|
|
}
|
|
|
|
llvm::SmallVector<mlir::Value> getShape(mlir::Type ty) {
|
|
llvm::SmallVector<mlir::Value> result;
|
|
ty = unwrapBoxEleTy(ty);
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
for (auto extent : ty.cast<fir::SequenceType>().getShape()) {
|
|
auto v = extent == fir::SequenceType::getUnknownExtent()
|
|
? builder.create<fir::UndefOp>(loc, idxTy).getResult()
|
|
: builder.createIntegerConstant(loc, idxTy, extent);
|
|
result.push_back(v);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
CC genarr(const Fortran::semantics::SymbolRef &sym,
|
|
ComponentPath &components) {
|
|
return genarr(sym.get(), components);
|
|
}
|
|
|
|
ExtValue abstractArrayExtValue(mlir::Value val, mlir::Value len = {}) {
|
|
return convertToArrayBoxValue(getLoc(), builder, val, len);
|
|
}
|
|
|
|
CC genarr(const ExtValue &extMemref) {
|
|
ComponentPath dummy(/*isImplicit=*/true);
|
|
return genarr(extMemref, dummy);
|
|
}
|
|
|
|
// If the slice values are given then use them. Otherwise, generate triples
|
|
// that cover the entire shape specified by \p shapeVal.
|
|
inline llvm::SmallVector<mlir::Value>
|
|
padSlice(llvm::ArrayRef<mlir::Value> triples, mlir::Value shapeVal) {
|
|
llvm::SmallVector<mlir::Value> result;
|
|
mlir::Location loc = getLoc();
|
|
if (triples.size()) {
|
|
result.assign(triples.begin(), triples.end());
|
|
} else {
|
|
auto one = builder.createIntegerConstant(loc, builder.getIndexType(), 1);
|
|
if (!shapeVal) {
|
|
TODO(loc, "shape must be recovered from box");
|
|
} else if (auto shapeOp = mlir::dyn_cast_or_null<fir::ShapeOp>(
|
|
shapeVal.getDefiningOp())) {
|
|
for (auto ext : shapeOp.getExtents()) {
|
|
result.push_back(one);
|
|
result.push_back(ext);
|
|
result.push_back(one);
|
|
}
|
|
} else if (auto shapeShift = mlir::dyn_cast_or_null<fir::ShapeShiftOp>(
|
|
shapeVal.getDefiningOp())) {
|
|
for (auto [lb, ext] :
|
|
llvm::zip(shapeShift.getOrigins(), shapeShift.getExtents())) {
|
|
result.push_back(lb);
|
|
result.push_back(ext);
|
|
result.push_back(one);
|
|
}
|
|
} else {
|
|
TODO(loc, "shape must be recovered from box");
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Base case of generating an array reference,
|
|
CC genarr(const ExtValue &extMemref, ComponentPath &components) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Value memref = fir::getBase(extMemref);
|
|
mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(memref.getType());
|
|
assert(arrTy.isa<fir::SequenceType>() && "memory ref must be an array");
|
|
mlir::Value shape = builder.createShape(loc, extMemref);
|
|
mlir::Value slice;
|
|
if (components.isSlice()) {
|
|
if (isBoxValue() && components.substring) {
|
|
// Append the substring operator to emboxing Op as it will become an
|
|
// interior adjustment (add offset, adjust LEN) to the CHARACTER value
|
|
// being referenced in the descriptor.
|
|
llvm::SmallVector<mlir::Value> substringBounds;
|
|
populateBounds(substringBounds, components.substring);
|
|
// Convert to (offset, size)
|
|
mlir::Type iTy = substringBounds[0].getType();
|
|
if (substringBounds.size() != 2) {
|
|
fir::CharacterType charTy =
|
|
fir::factory::CharacterExprHelper::getCharType(arrTy);
|
|
if (charTy.hasConstantLen()) {
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
fir::CharacterType::LenType charLen = charTy.getLen();
|
|
mlir::Value lenValue =
|
|
builder.createIntegerConstant(loc, idxTy, charLen);
|
|
substringBounds.push_back(lenValue);
|
|
} else {
|
|
llvm::SmallVector<mlir::Value> typeparams =
|
|
fir::getTypeParams(extMemref);
|
|
substringBounds.push_back(typeparams.back());
|
|
}
|
|
}
|
|
// Convert the lower bound to 0-based substring.
|
|
mlir::Value one =
|
|
builder.createIntegerConstant(loc, substringBounds[0].getType(), 1);
|
|
substringBounds[0] =
|
|
builder.create<mlir::arith::SubIOp>(loc, substringBounds[0], one);
|
|
// Convert the upper bound to a length.
|
|
mlir::Value cast = builder.createConvert(loc, iTy, substringBounds[1]);
|
|
mlir::Value zero = builder.createIntegerConstant(loc, iTy, 0);
|
|
auto size =
|
|
builder.create<mlir::arith::SubIOp>(loc, cast, substringBounds[0]);
|
|
auto cmp = builder.create<mlir::arith::CmpIOp>(
|
|
loc, mlir::arith::CmpIPredicate::sgt, size, zero);
|
|
// size = MAX(upper - (lower - 1), 0)
|
|
substringBounds[1] =
|
|
builder.create<mlir::arith::SelectOp>(loc, cmp, size, zero);
|
|
slice = builder.create<fir::SliceOp>(
|
|
loc, padSlice(components.trips, shape), components.suffixComponents,
|
|
substringBounds);
|
|
} else {
|
|
slice = builder.createSlice(loc, extMemref, components.trips,
|
|
components.suffixComponents);
|
|
}
|
|
if (components.hasComponents()) {
|
|
auto seqTy = arrTy.cast<fir::SequenceType>();
|
|
mlir::Type eleTy =
|
|
fir::applyPathToType(seqTy.getEleTy(), components.suffixComponents);
|
|
if (!eleTy)
|
|
fir::emitFatalError(loc, "slicing path is ill-formed");
|
|
if (auto realTy = eleTy.dyn_cast<fir::RealType>())
|
|
eleTy = Fortran::lower::convertReal(realTy.getContext(),
|
|
realTy.getFKind());
|
|
|
|
// create the type of the projected array.
|
|
arrTy = fir::SequenceType::get(seqTy.getShape(), eleTy);
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "type of array projection from component slicing: "
|
|
<< eleTy << ", " << arrTy << '\n');
|
|
}
|
|
}
|
|
arrayOperands.push_back(ArrayOperand{memref, shape, slice});
|
|
if (destShape.empty())
|
|
destShape = getShape(arrayOperands.back());
|
|
if (isBoxValue()) {
|
|
// Semantics are a reference to a boxed array.
|
|
// This case just requires that an embox operation be created to box the
|
|
// value. The value of the box is forwarded in the continuation.
|
|
mlir::Type reduceTy = reduceRank(arrTy, slice);
|
|
auto boxTy = fir::BoxType::get(reduceTy);
|
|
if (components.substring) {
|
|
// Adjust char length to substring size.
|
|
fir::CharacterType charTy =
|
|
fir::factory::CharacterExprHelper::getCharType(reduceTy);
|
|
auto seqTy = reduceTy.cast<fir::SequenceType>();
|
|
// TODO: Use a constant for fir.char LEN if we can compute it.
|
|
boxTy = fir::BoxType::get(
|
|
fir::SequenceType::get(fir::CharacterType::getUnknownLen(
|
|
builder.getContext(), charTy.getFKind()),
|
|
seqTy.getDimension()));
|
|
}
|
|
mlir::Value embox =
|
|
memref.getType().isa<fir::BoxType>()
|
|
? builder.create<fir::ReboxOp>(loc, boxTy, memref, shape, slice)
|
|
.getResult()
|
|
: builder
|
|
.create<fir::EmboxOp>(loc, boxTy, memref, shape, slice,
|
|
fir::getTypeParams(extMemref))
|
|
.getResult();
|
|
return [=](IterSpace) -> ExtValue { return fir::BoxValue(embox); };
|
|
}
|
|
auto eleTy = arrTy.cast<fir::SequenceType>().getEleTy();
|
|
if (isReferentiallyOpaque()) {
|
|
// Semantics are an opaque reference to an array.
|
|
// This case forwards a continuation that will generate the address
|
|
// arithmetic to the array element. This does not have copy-in/copy-out
|
|
// semantics. No attempt to copy the array value will be made during the
|
|
// interpretation of the Fortran statement.
|
|
mlir::Type refEleTy = builder.getRefType(eleTy);
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
// ArrayCoorOp does not expect zero based indices.
|
|
llvm::SmallVector<mlir::Value> indices = fir::factory::originateIndices(
|
|
loc, builder, memref.getType(), shape, iters.iterVec());
|
|
mlir::Value coor = builder.create<fir::ArrayCoorOp>(
|
|
loc, refEleTy, memref, shape, slice, indices,
|
|
fir::getTypeParams(extMemref));
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
llvm::SmallVector<mlir::Value> substringBounds;
|
|
populateBounds(substringBounds, components.substring);
|
|
if (!substringBounds.empty()) {
|
|
mlir::Value dstLen = fir::factory::genLenOfCharacter(
|
|
builder, loc, arrTy.cast<fir::SequenceType>(), memref,
|
|
fir::getTypeParams(extMemref), iters.iterVec(),
|
|
substringBounds);
|
|
fir::CharBoxValue dstChar(coor, dstLen);
|
|
return fir::factory::CharacterExprHelper{builder, loc}
|
|
.createSubstring(dstChar, substringBounds);
|
|
}
|
|
}
|
|
return fir::factory::arraySectionElementToExtendedValue(
|
|
builder, loc, extMemref, coor, slice);
|
|
};
|
|
}
|
|
auto arrLoad = builder.create<fir::ArrayLoadOp>(
|
|
loc, arrTy, memref, shape, slice, fir::getTypeParams(extMemref));
|
|
mlir::Value arrLd = arrLoad.getResult();
|
|
if (isProjectedCopyInCopyOut()) {
|
|
// Semantics are projected copy-in copy-out.
|
|
// The backing store of the destination of an array expression may be
|
|
// partially modified. These updates are recorded in FIR by forwarding a
|
|
// continuation that generates an `array_update` Op. The destination is
|
|
// always loaded at the beginning of the statement and merged at the
|
|
// end.
|
|
destination = arrLoad;
|
|
auto lambda = ccStoreToDest
|
|
? *ccStoreToDest
|
|
: defaultStoreToDestination(components.substring);
|
|
return [=](IterSpace iters) -> ExtValue { return lambda(iters); };
|
|
}
|
|
if (isCustomCopyInCopyOut()) {
|
|
// Create an array_modify to get the LHS element address and indicate
|
|
// the assignment, the actual assignment must be implemented in
|
|
// ccStoreToDest.
|
|
destination = arrLoad;
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value innerArg = iters.innerArgument();
|
|
mlir::Type resTy = innerArg.getType();
|
|
mlir::Type eleTy = fir::applyPathToType(resTy, iters.iterVec());
|
|
mlir::Type refEleTy =
|
|
fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy);
|
|
auto arrModify = builder.create<fir::ArrayModifyOp>(
|
|
loc, mlir::TypeRange{refEleTy, resTy}, innerArg, iters.iterVec(),
|
|
destination.getTypeparams());
|
|
return abstractArrayExtValue(arrModify.getResult(1));
|
|
};
|
|
}
|
|
if (isCopyInCopyOut()) {
|
|
// Semantics are copy-in copy-out.
|
|
// The continuation simply forwards the result of the `array_load` Op,
|
|
// which is the value of the array as it was when loaded. All data
|
|
// references with rank > 0 in an array expression typically have
|
|
// copy-in copy-out semantics.
|
|
return [=](IterSpace) -> ExtValue { return arrLd; };
|
|
}
|
|
llvm::SmallVector<mlir::Value> arrLdTypeParams =
|
|
fir::factory::getTypeParams(loc, builder, arrLoad);
|
|
if (isValueAttribute()) {
|
|
// Semantics are value attribute.
|
|
// Here the continuation will `array_fetch` a value from an array and
|
|
// then store that value in a temporary. One can thus imitate pass by
|
|
// value even when the call is pass by reference.
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value base;
|
|
mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
|
|
if (isAdjustedArrayElementType(eleTy)) {
|
|
mlir::Type eleRefTy = builder.getRefType(eleTy);
|
|
base = builder.create<fir::ArrayAccessOp>(
|
|
loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
|
|
} else {
|
|
base = builder.create<fir::ArrayFetchOp>(
|
|
loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
|
|
}
|
|
mlir::Value temp = builder.createTemporary(
|
|
loc, base.getType(),
|
|
llvm::ArrayRef<mlir::NamedAttribute>{
|
|
Fortran::lower::getAdaptToByRefAttr(builder)});
|
|
builder.create<fir::StoreOp>(loc, base, temp);
|
|
return fir::factory::arraySectionElementToExtendedValue(
|
|
builder, loc, extMemref, temp, slice);
|
|
};
|
|
}
|
|
// In the default case, the array reference forwards an `array_fetch` or
|
|
// `array_access` Op in the continuation.
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Type eleTy = fir::applyPathToType(arrTy, iters.iterVec());
|
|
if (isAdjustedArrayElementType(eleTy)) {
|
|
mlir::Type eleRefTy = builder.getRefType(eleTy);
|
|
mlir::Value arrayOp = builder.create<fir::ArrayAccessOp>(
|
|
loc, eleRefTy, arrLd, iters.iterVec(), arrLdTypeParams);
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
llvm::SmallVector<mlir::Value> substringBounds;
|
|
populateBounds(substringBounds, components.substring);
|
|
if (!substringBounds.empty()) {
|
|
mlir::Value dstLen = fir::factory::genLenOfCharacter(
|
|
builder, loc, arrLoad, iters.iterVec(), substringBounds);
|
|
fir::CharBoxValue dstChar(arrayOp, dstLen);
|
|
return fir::factory::CharacterExprHelper{builder, loc}
|
|
.createSubstring(dstChar, substringBounds);
|
|
}
|
|
}
|
|
return fir::factory::arraySectionElementToExtendedValue(
|
|
builder, loc, extMemref, arrayOp, slice);
|
|
}
|
|
auto arrFetch = builder.create<fir::ArrayFetchOp>(
|
|
loc, eleTy, arrLd, iters.iterVec(), arrLdTypeParams);
|
|
return fir::factory::arraySectionElementToExtendedValue(
|
|
builder, loc, extMemref, arrFetch, slice);
|
|
};
|
|
}
|
|
|
|
std::tuple<CC, mlir::Value, mlir::Type>
|
|
genOptionalArrayFetch(const Fortran::lower::SomeExpr &expr) {
|
|
assert(expr.Rank() > 0 && "expr must be an array");
|
|
mlir::Location loc = getLoc();
|
|
ExtValue optionalArg = asInquired(expr);
|
|
mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
|
|
// Generate an array load and access to an array that may be an absent
|
|
// optional or an unallocated optional.
|
|
mlir::Value base = getBase(optionalArg);
|
|
const bool hasOptionalAttr =
|
|
fir::valueHasFirAttribute(base, fir::getOptionalAttrName());
|
|
mlir::Type baseType = fir::unwrapRefType(base.getType());
|
|
const bool isBox = baseType.isa<fir::BoxType>();
|
|
const bool isAllocOrPtr = Fortran::evaluate::IsAllocatableOrPointerObject(
|
|
expr, converter.getFoldingContext());
|
|
mlir::Type arrType = fir::unwrapPassByRefType(baseType);
|
|
mlir::Type eleType = fir::unwrapSequenceType(arrType);
|
|
ExtValue exv = optionalArg;
|
|
if (hasOptionalAttr && isBox && !isAllocOrPtr) {
|
|
// Elemental argument cannot be allocatable or pointers (C15100).
|
|
// Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and
|
|
// Pointer optional arrays cannot be absent. The only kind of entities
|
|
// that can get here are optional assumed shape and polymorphic entities.
|
|
exv = absentBoxToUnallocatedBox(builder, loc, exv, isPresent);
|
|
}
|
|
// All the properties can be read from any fir.box but the read values may
|
|
// be undefined and should only be used inside a fir.if (canBeRead) region.
|
|
if (const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>())
|
|
exv = fir::factory::genMutableBoxRead(builder, loc, *mutableBox);
|
|
|
|
mlir::Value memref = fir::getBase(exv);
|
|
mlir::Value shape = builder.createShape(loc, exv);
|
|
mlir::Value noSlice;
|
|
auto arrLoad = builder.create<fir::ArrayLoadOp>(
|
|
loc, arrType, memref, shape, noSlice, fir::getTypeParams(exv));
|
|
mlir::Operation::operand_range arrLdTypeParams = arrLoad.getTypeparams();
|
|
mlir::Value arrLd = arrLoad.getResult();
|
|
// Mark the load to tell later passes it is unsafe to use this array_load
|
|
// shape unconditionally.
|
|
arrLoad->setAttr(fir::getOptionalAttrName(), builder.getUnitAttr());
|
|
|
|
// Place the array as optional on the arrayOperands stack so that its
|
|
// shape will only be used as a fallback to induce the implicit loop nest
|
|
// (that is if there is no non optional array arguments).
|
|
arrayOperands.push_back(
|
|
ArrayOperand{memref, shape, noSlice, /*mayBeAbsent=*/true});
|
|
|
|
// By value semantics.
|
|
auto cc = [=](IterSpace iters) -> ExtValue {
|
|
auto arrFetch = builder.create<fir::ArrayFetchOp>(
|
|
loc, eleType, arrLd, iters.iterVec(), arrLdTypeParams);
|
|
return fir::factory::arraySectionElementToExtendedValue(
|
|
builder, loc, exv, arrFetch, noSlice);
|
|
};
|
|
return {cc, isPresent, eleType};
|
|
}
|
|
|
|
/// Generate a continuation to pass \p expr to an OPTIONAL argument of an
|
|
/// elemental procedure. This is meant to handle the cases where \p expr might
|
|
/// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an
|
|
/// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can
|
|
/// directly be called instead.
|
|
CC genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr &expr) {
|
|
mlir::Location loc = getLoc();
|
|
// Only by-value numerical and logical so far.
|
|
if (semant != ConstituentSemantics::RefTransparent)
|
|
TODO(loc, "optional arguments in user defined elemental procedures");
|
|
|
|
// Handle scalar argument case (the if-then-else is generated outside of the
|
|
// implicit loop nest).
|
|
if (expr.Rank() == 0) {
|
|
ExtValue optionalArg = asInquired(expr);
|
|
mlir::Value isPresent = genActualIsPresentTest(builder, loc, optionalArg);
|
|
mlir::Value elementValue =
|
|
fir::getBase(genOptionalValue(builder, loc, optionalArg, isPresent));
|
|
return [=](IterSpace iters) -> ExtValue { return elementValue; };
|
|
}
|
|
|
|
CC cc;
|
|
mlir::Value isPresent;
|
|
mlir::Type eleType;
|
|
std::tie(cc, isPresent, eleType) = genOptionalArrayFetch(expr);
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value elementValue =
|
|
builder
|
|
.genIfOp(loc, {eleType}, isPresent,
|
|
/*withElseRegion=*/true)
|
|
.genThen([&]() {
|
|
builder.create<fir::ResultOp>(loc, fir::getBase(cc(iters)));
|
|
})
|
|
.genElse([&]() {
|
|
mlir::Value zero =
|
|
fir::factory::createZeroValue(builder, loc, eleType);
|
|
builder.create<fir::ResultOp>(loc, zero);
|
|
})
|
|
.getResults()[0];
|
|
return elementValue;
|
|
};
|
|
}
|
|
|
|
/// Reduce the rank of a array to be boxed based on the slice's operands.
|
|
static mlir::Type reduceRank(mlir::Type arrTy, mlir::Value slice) {
|
|
if (slice) {
|
|
auto slOp = mlir::dyn_cast<fir::SliceOp>(slice.getDefiningOp());
|
|
assert(slOp && "expected slice op");
|
|
auto seqTy = arrTy.dyn_cast<fir::SequenceType>();
|
|
assert(seqTy && "expected array type");
|
|
mlir::Operation::operand_range triples = slOp.getTriples();
|
|
fir::SequenceType::Shape shape;
|
|
// reduce the rank for each invariant dimension
|
|
for (unsigned i = 1, end = triples.size(); i < end; i += 3) {
|
|
if (auto extent = fir::factory::getExtentFromTriplet(
|
|
triples[i - 1], triples[i], triples[i + 1]))
|
|
shape.push_back(*extent);
|
|
else if (!mlir::isa_and_nonnull<fir::UndefOp>(
|
|
triples[i].getDefiningOp()))
|
|
shape.push_back(fir::SequenceType::getUnknownExtent());
|
|
}
|
|
return fir::SequenceType::get(shape, seqTy.getEleTy());
|
|
}
|
|
// not sliced, so no change in rank
|
|
return arrTy;
|
|
}
|
|
|
|
/// Example: <code>array%RE</code>
|
|
CC genarr(const Fortran::evaluate::ComplexPart &x,
|
|
ComponentPath &components) {
|
|
components.reversePath.push_back(&x);
|
|
return genarr(x.complex(), components);
|
|
}
|
|
|
|
template <typename A>
|
|
CC genSlicePath(const A &x, ComponentPath &components) {
|
|
return genarr(x, components);
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::StaticDataObject::Pointer &,
|
|
ComponentPath &components) {
|
|
fir::emitFatalError(getLoc(), "substring of static array object");
|
|
}
|
|
|
|
/// Substrings (see 9.4.1)
|
|
CC genarr(const Fortran::evaluate::Substring &x, ComponentPath &components) {
|
|
components.substring = &x;
|
|
return std::visit([&](const auto &v) { return genarr(v, components); },
|
|
x.parent());
|
|
}
|
|
|
|
template <typename T>
|
|
CC genarr(const Fortran::evaluate::FunctionRef<T> &funRef) {
|
|
// Note that it's possible that the function being called returns either an
|
|
// array or a scalar. In the first case, use the element type of the array.
|
|
return genProcRef(
|
|
funRef, fir::unwrapSequenceType(converter.genType(toEvExpr(funRef))));
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Array construction
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Target agnostic computation of the size of an element in the array.
|
|
/// Returns the size in bytes with type `index` or a null Value if the element
|
|
/// size is not constant.
|
|
mlir::Value computeElementSize(const ExtValue &exv, mlir::Type eleTy,
|
|
mlir::Type resTy) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value multiplier = builder.createIntegerConstant(loc, idxTy, 1);
|
|
if (fir::hasDynamicSize(eleTy)) {
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
// Array of char with dynamic LEN parameter. Downcast to an array
|
|
// of singleton char, and scale by the len type parameter from
|
|
// `exv`.
|
|
exv.match(
|
|
[&](const fir::CharBoxValue &cb) { multiplier = cb.getLen(); },
|
|
[&](const fir::CharArrayBoxValue &cb) { multiplier = cb.getLen(); },
|
|
[&](const fir::BoxValue &box) {
|
|
multiplier = fir::factory::CharacterExprHelper(builder, loc)
|
|
.readLengthFromBox(box.getAddr());
|
|
},
|
|
[&](const fir::MutableBoxValue &box) {
|
|
multiplier = fir::factory::CharacterExprHelper(builder, loc)
|
|
.readLengthFromBox(box.getAddr());
|
|
},
|
|
[&](const auto &) {
|
|
fir::emitFatalError(loc,
|
|
"array constructor element has unknown size");
|
|
});
|
|
fir::CharacterType newEleTy = fir::CharacterType::getSingleton(
|
|
eleTy.getContext(), charTy.getFKind());
|
|
if (auto seqTy = resTy.dyn_cast<fir::SequenceType>()) {
|
|
assert(eleTy == seqTy.getEleTy());
|
|
resTy = fir::SequenceType::get(seqTy.getShape(), newEleTy);
|
|
}
|
|
eleTy = newEleTy;
|
|
} else {
|
|
TODO(loc, "dynamic sized type");
|
|
}
|
|
}
|
|
mlir::Type eleRefTy = builder.getRefType(eleTy);
|
|
mlir::Type resRefTy = builder.getRefType(resTy);
|
|
mlir::Value nullPtr = builder.createNullConstant(loc, resRefTy);
|
|
auto offset = builder.create<fir::CoordinateOp>(
|
|
loc, eleRefTy, nullPtr, mlir::ValueRange{multiplier});
|
|
return builder.createConvert(loc, idxTy, offset);
|
|
}
|
|
|
|
/// Get the function signature of the LLVM memcpy intrinsic.
|
|
mlir::FunctionType memcpyType() {
|
|
return fir::factory::getLlvmMemcpy(builder).getFunctionType();
|
|
}
|
|
|
|
/// Create a call to the LLVM memcpy intrinsic.
|
|
void createCallMemcpy(llvm::ArrayRef<mlir::Value> args) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::func::FuncOp memcpyFunc = fir::factory::getLlvmMemcpy(builder);
|
|
mlir::SymbolRefAttr funcSymAttr =
|
|
builder.getSymbolRefAttr(memcpyFunc.getName());
|
|
mlir::FunctionType funcTy = memcpyFunc.getFunctionType();
|
|
builder.create<fir::CallOp>(loc, funcTy.getResults(), funcSymAttr, args);
|
|
}
|
|
|
|
// Construct code to check for a buffer overrun and realloc the buffer when
|
|
// space is depleted. This is done between each item in the ac-value-list.
|
|
mlir::Value growBuffer(mlir::Value mem, mlir::Value needed,
|
|
mlir::Value bufferSize, mlir::Value buffSize,
|
|
mlir::Value eleSz) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::func::FuncOp reallocFunc = fir::factory::getRealloc(builder);
|
|
auto cond = builder.create<mlir::arith::CmpIOp>(
|
|
loc, mlir::arith::CmpIPredicate::sle, bufferSize, needed);
|
|
auto ifOp = builder.create<fir::IfOp>(loc, mem.getType(), cond,
|
|
/*withElseRegion=*/true);
|
|
auto insPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
// Not enough space, resize the buffer.
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value two = builder.createIntegerConstant(loc, idxTy, 2);
|
|
auto newSz = builder.create<mlir::arith::MulIOp>(loc, needed, two);
|
|
builder.create<fir::StoreOp>(loc, newSz, buffSize);
|
|
mlir::Value byteSz = builder.create<mlir::arith::MulIOp>(loc, newSz, eleSz);
|
|
mlir::SymbolRefAttr funcSymAttr =
|
|
builder.getSymbolRefAttr(reallocFunc.getName());
|
|
mlir::FunctionType funcTy = reallocFunc.getFunctionType();
|
|
auto newMem = builder.create<fir::CallOp>(
|
|
loc, funcTy.getResults(), funcSymAttr,
|
|
llvm::ArrayRef<mlir::Value>{
|
|
builder.createConvert(loc, funcTy.getInputs()[0], mem),
|
|
builder.createConvert(loc, funcTy.getInputs()[1], byteSz)});
|
|
mlir::Value castNewMem =
|
|
builder.createConvert(loc, mem.getType(), newMem.getResult(0));
|
|
builder.create<fir::ResultOp>(loc, castNewMem);
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
// Otherwise, just forward the buffer.
|
|
builder.create<fir::ResultOp>(loc, mem);
|
|
builder.restoreInsertionPoint(insPt);
|
|
return ifOp.getResult(0);
|
|
}
|
|
|
|
/// Copy the next value (or vector of values) into the array being
|
|
/// constructed.
|
|
mlir::Value copyNextArrayCtorSection(const ExtValue &exv, mlir::Value buffPos,
|
|
mlir::Value buffSize, mlir::Value mem,
|
|
mlir::Value eleSz, mlir::Type eleTy,
|
|
mlir::Type eleRefTy, mlir::Type resTy) {
|
|
mlir::Location loc = getLoc();
|
|
auto off = builder.create<fir::LoadOp>(loc, buffPos);
|
|
auto limit = builder.create<fir::LoadOp>(loc, buffSize);
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
|
|
if (fir::isRecordWithAllocatableMember(eleTy))
|
|
TODO(loc, "deep copy on allocatable members");
|
|
|
|
if (!eleSz) {
|
|
// Compute the element size at runtime.
|
|
assert(fir::hasDynamicSize(eleTy));
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
auto charBytes =
|
|
builder.getKindMap().getCharacterBitsize(charTy.getFKind()) / 8;
|
|
mlir::Value bytes =
|
|
builder.createIntegerConstant(loc, idxTy, charBytes);
|
|
mlir::Value length = fir::getLen(exv);
|
|
if (!length)
|
|
fir::emitFatalError(loc, "result is not boxed character");
|
|
eleSz = builder.create<mlir::arith::MulIOp>(loc, bytes, length);
|
|
} else {
|
|
TODO(loc, "PDT size");
|
|
// Will call the PDT's size function with the type parameters.
|
|
}
|
|
}
|
|
|
|
// Compute the coordinate using `fir.coordinate_of`, or, if the type has
|
|
// dynamic size, generating the pointer arithmetic.
|
|
auto computeCoordinate = [&](mlir::Value buff, mlir::Value off) {
|
|
mlir::Type refTy = eleRefTy;
|
|
if (fir::hasDynamicSize(eleTy)) {
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
// Scale a simple pointer using dynamic length and offset values.
|
|
auto chTy = fir::CharacterType::getSingleton(charTy.getContext(),
|
|
charTy.getFKind());
|
|
refTy = builder.getRefType(chTy);
|
|
mlir::Type toTy = builder.getRefType(builder.getVarLenSeqTy(chTy));
|
|
buff = builder.createConvert(loc, toTy, buff);
|
|
off = builder.create<mlir::arith::MulIOp>(loc, off, eleSz);
|
|
} else {
|
|
TODO(loc, "PDT offset");
|
|
}
|
|
}
|
|
auto coor = builder.create<fir::CoordinateOp>(loc, refTy, buff,
|
|
mlir::ValueRange{off});
|
|
return builder.createConvert(loc, eleRefTy, coor);
|
|
};
|
|
|
|
// Lambda to lower an abstract array box value.
|
|
auto doAbstractArray = [&](const auto &v) {
|
|
// Compute the array size.
|
|
mlir::Value arrSz = one;
|
|
for (auto ext : v.getExtents())
|
|
arrSz = builder.create<mlir::arith::MulIOp>(loc, arrSz, ext);
|
|
|
|
// Grow the buffer as needed.
|
|
auto endOff = builder.create<mlir::arith::AddIOp>(loc, off, arrSz);
|
|
mem = growBuffer(mem, endOff, limit, buffSize, eleSz);
|
|
|
|
// Copy the elements to the buffer.
|
|
mlir::Value byteSz =
|
|
builder.create<mlir::arith::MulIOp>(loc, arrSz, eleSz);
|
|
auto buff = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
|
|
mlir::Value buffi = computeCoordinate(buff, off);
|
|
llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
|
|
builder, loc, memcpyType(), buffi, v.getAddr(), byteSz,
|
|
/*volatile=*/builder.createBool(loc, false));
|
|
createCallMemcpy(args);
|
|
|
|
// Save the incremented buffer position.
|
|
builder.create<fir::StoreOp>(loc, endOff, buffPos);
|
|
};
|
|
|
|
// Copy a trivial scalar value into the buffer.
|
|
auto doTrivialScalar = [&](const ExtValue &v, mlir::Value len = {}) {
|
|
// Increment the buffer position.
|
|
auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);
|
|
|
|
// Grow the buffer as needed.
|
|
mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);
|
|
|
|
// Store the element in the buffer.
|
|
mlir::Value buff =
|
|
builder.createConvert(loc, fir::HeapType::get(resTy), mem);
|
|
auto buffi = builder.create<fir::CoordinateOp>(loc, eleRefTy, buff,
|
|
mlir::ValueRange{off});
|
|
fir::factory::genScalarAssignment(
|
|
builder, loc,
|
|
[&]() -> ExtValue {
|
|
if (len)
|
|
return fir::CharBoxValue(buffi, len);
|
|
return buffi;
|
|
}(),
|
|
v);
|
|
builder.create<fir::StoreOp>(loc, plusOne, buffPos);
|
|
};
|
|
|
|
// Copy the value.
|
|
exv.match(
|
|
[&](mlir::Value) { doTrivialScalar(exv); },
|
|
[&](const fir::CharBoxValue &v) {
|
|
auto buffer = v.getBuffer();
|
|
if (fir::isa_char(buffer.getType())) {
|
|
doTrivialScalar(exv, eleSz);
|
|
} else {
|
|
// Increment the buffer position.
|
|
auto plusOne = builder.create<mlir::arith::AddIOp>(loc, off, one);
|
|
|
|
// Grow the buffer as needed.
|
|
mem = growBuffer(mem, plusOne, limit, buffSize, eleSz);
|
|
|
|
// Store the element in the buffer.
|
|
mlir::Value buff =
|
|
builder.createConvert(loc, fir::HeapType::get(resTy), mem);
|
|
mlir::Value buffi = computeCoordinate(buff, off);
|
|
llvm::SmallVector<mlir::Value> args = fir::runtime::createArguments(
|
|
builder, loc, memcpyType(), buffi, v.getAddr(), eleSz,
|
|
/*volatile=*/builder.createBool(loc, false));
|
|
createCallMemcpy(args);
|
|
|
|
builder.create<fir::StoreOp>(loc, plusOne, buffPos);
|
|
}
|
|
},
|
|
[&](const fir::ArrayBoxValue &v) { doAbstractArray(v); },
|
|
[&](const fir::CharArrayBoxValue &v) { doAbstractArray(v); },
|
|
[&](const auto &) {
|
|
TODO(loc, "unhandled array constructor expression");
|
|
});
|
|
return mem;
|
|
}
|
|
|
|
// Lower the expr cases in an ac-value-list.
|
|
template <typename A>
|
|
std::pair<ExtValue, bool>
|
|
genArrayCtorInitializer(const Fortran::evaluate::Expr<A> &x, mlir::Type,
|
|
mlir::Value, mlir::Value, mlir::Value,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
if (isArray(x))
|
|
return {lowerNewArrayExpression(converter, symMap, stmtCtx, toEvExpr(x)),
|
|
/*needCopy=*/true};
|
|
return {asScalar(x), /*needCopy=*/true};
|
|
}
|
|
|
|
// Lower an ac-implied-do in an ac-value-list.
|
|
template <typename A>
|
|
std::pair<ExtValue, bool>
|
|
genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo<A> &x,
|
|
mlir::Type resTy, mlir::Value mem,
|
|
mlir::Value buffPos, mlir::Value buffSize,
|
|
Fortran::lower::StatementContext &) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value lo =
|
|
builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.lower())));
|
|
mlir::Value up =
|
|
builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.upper())));
|
|
mlir::Value step =
|
|
builder.createConvert(loc, idxTy, fir::getBase(asScalar(x.stride())));
|
|
auto seqTy = resTy.template cast<fir::SequenceType>();
|
|
mlir::Type eleTy = fir::unwrapSequenceType(seqTy);
|
|
auto loop =
|
|
builder.create<fir::DoLoopOp>(loc, lo, up, step, /*unordered=*/false,
|
|
/*finalCount=*/false, mem);
|
|
// create a new binding for x.name(), to ac-do-variable, to the iteration
|
|
// value.
|
|
symMap.pushImpliedDoBinding(toStringRef(x.name()), loop.getInductionVar());
|
|
auto insPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointToStart(loop.getBody());
|
|
// Thread mem inside the loop via loop argument.
|
|
mem = loop.getRegionIterArgs()[0];
|
|
|
|
mlir::Type eleRefTy = builder.getRefType(eleTy);
|
|
|
|
// Any temps created in the loop body must be freed inside the loop body.
|
|
stmtCtx.pushScope();
|
|
llvm::Optional<mlir::Value> charLen;
|
|
for (const Fortran::evaluate::ArrayConstructorValue<A> &acv : x.values()) {
|
|
auto [exv, copyNeeded] = std::visit(
|
|
[&](const auto &v) {
|
|
return genArrayCtorInitializer(v, resTy, mem, buffPos, buffSize,
|
|
stmtCtx);
|
|
},
|
|
acv.u);
|
|
mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
|
|
mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
|
|
eleSz, eleTy, eleRefTy, resTy)
|
|
: fir::getBase(exv);
|
|
if (fir::isa_char(seqTy.getEleTy()) && !charLen) {
|
|
charLen = builder.createTemporary(loc, builder.getI64Type());
|
|
mlir::Value castLen =
|
|
builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
|
|
builder.create<fir::StoreOp>(loc, castLen, charLen.value());
|
|
}
|
|
}
|
|
stmtCtx.finalizeAndPop();
|
|
|
|
builder.create<fir::ResultOp>(loc, mem);
|
|
builder.restoreInsertionPoint(insPt);
|
|
mem = loop.getResult(0);
|
|
symMap.popImpliedDoBinding();
|
|
llvm::SmallVector<mlir::Value> extents = {
|
|
builder.create<fir::LoadOp>(loc, buffPos).getResult()};
|
|
|
|
// Convert to extended value.
|
|
if (fir::isa_char(seqTy.getEleTy())) {
|
|
auto len = builder.create<fir::LoadOp>(loc, charLen.value());
|
|
return {fir::CharArrayBoxValue{mem, len, extents}, /*needCopy=*/false};
|
|
}
|
|
return {fir::ArrayBoxValue{mem, extents}, /*needCopy=*/false};
|
|
}
|
|
|
|
// To simplify the handling and interaction between the various cases, array
|
|
// constructors are always lowered to the incremental construction code
|
|
// pattern, even if the extent of the array value is constant. After the
|
|
// MemToReg pass and constant folding, the optimizer should be able to
|
|
// determine that all the buffer overrun tests are false when the
|
|
// incremental construction wasn't actually required.
|
|
template <typename A>
|
|
CC genarr(const Fortran::evaluate::ArrayConstructor<A> &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto evExpr = toEvExpr(x);
|
|
mlir::Type resTy = translateSomeExprToFIRType(converter, evExpr);
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
auto seqTy = resTy.template cast<fir::SequenceType>();
|
|
mlir::Type eleTy = fir::unwrapSequenceType(resTy);
|
|
mlir::Value buffSize = builder.createTemporary(loc, idxTy, ".buff.size");
|
|
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
|
|
mlir::Value buffPos = builder.createTemporary(loc, idxTy, ".buff.pos");
|
|
builder.create<fir::StoreOp>(loc, zero, buffPos);
|
|
// Allocate space for the array to be constructed.
|
|
mlir::Value mem;
|
|
if (fir::hasDynamicSize(resTy)) {
|
|
if (fir::hasDynamicSize(eleTy)) {
|
|
// The size of each element may depend on a general expression. Defer
|
|
// creating the buffer until after the expression is evaluated.
|
|
mem = builder.createNullConstant(loc, builder.getRefType(eleTy));
|
|
builder.create<fir::StoreOp>(loc, zero, buffSize);
|
|
} else {
|
|
mlir::Value initBuffSz =
|
|
builder.createIntegerConstant(loc, idxTy, clInitialBufferSize);
|
|
mem = builder.create<fir::AllocMemOp>(
|
|
loc, eleTy, /*typeparams=*/llvm::None, initBuffSz);
|
|
builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
|
|
}
|
|
} else {
|
|
mem = builder.create<fir::AllocMemOp>(loc, resTy);
|
|
int64_t buffSz = 1;
|
|
for (auto extent : seqTy.getShape())
|
|
buffSz *= extent;
|
|
mlir::Value initBuffSz =
|
|
builder.createIntegerConstant(loc, idxTy, buffSz);
|
|
builder.create<fir::StoreOp>(loc, initBuffSz, buffSize);
|
|
}
|
|
// Compute size of element
|
|
mlir::Type eleRefTy = builder.getRefType(eleTy);
|
|
|
|
// Populate the buffer with the elements, growing as necessary.
|
|
llvm::Optional<mlir::Value> charLen;
|
|
for (const auto &expr : x) {
|
|
auto [exv, copyNeeded] = std::visit(
|
|
[&](const auto &e) {
|
|
return genArrayCtorInitializer(e, resTy, mem, buffPos, buffSize,
|
|
stmtCtx);
|
|
},
|
|
expr.u);
|
|
mlir::Value eleSz = computeElementSize(exv, eleTy, resTy);
|
|
mem = copyNeeded ? copyNextArrayCtorSection(exv, buffPos, buffSize, mem,
|
|
eleSz, eleTy, eleRefTy, resTy)
|
|
: fir::getBase(exv);
|
|
if (fir::isa_char(seqTy.getEleTy()) && !charLen) {
|
|
charLen = builder.createTemporary(loc, builder.getI64Type());
|
|
mlir::Value castLen =
|
|
builder.createConvert(loc, builder.getI64Type(), fir::getLen(exv));
|
|
builder.create<fir::StoreOp>(loc, castLen, charLen.value());
|
|
}
|
|
}
|
|
mem = builder.createConvert(loc, fir::HeapType::get(resTy), mem);
|
|
llvm::SmallVector<mlir::Value> extents = {
|
|
builder.create<fir::LoadOp>(loc, buffPos)};
|
|
|
|
// Cleanup the temporary.
|
|
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
|
|
stmtCtx.attachCleanup(
|
|
[bldr, loc, mem]() { bldr->create<fir::FreeMemOp>(loc, mem); });
|
|
|
|
// Return the continuation.
|
|
if (fir::isa_char(seqTy.getEleTy())) {
|
|
if (charLen) {
|
|
auto len = builder.create<fir::LoadOp>(loc, *charLen);
|
|
return genarr(fir::CharArrayBoxValue{mem, len, extents});
|
|
}
|
|
return genarr(fir::CharArrayBoxValue{mem, zero, extents});
|
|
}
|
|
return genarr(fir::ArrayBoxValue{mem, extents});
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::ImpliedDoIndex &) {
|
|
fir::emitFatalError(getLoc(), "implied do index cannot have rank > 0");
|
|
}
|
|
CC genarr(const Fortran::evaluate::TypeParamInquiry &x) {
|
|
TODO(getLoc(), "array expr type parameter inquiry");
|
|
return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
|
|
}
|
|
CC genarr(const Fortran::evaluate::DescriptorInquiry &x) {
|
|
TODO(getLoc(), "array expr descriptor inquiry");
|
|
return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
|
|
}
|
|
CC genarr(const Fortran::evaluate::StructureConstructor &x) {
|
|
TODO(getLoc(), "structure constructor");
|
|
return [](IterSpace iters) -> ExtValue { return mlir::Value{}; };
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// LOCICAL operators (.NOT., .AND., .EQV., etc.)
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Not<KIND> &x) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IntegerType i1Ty = builder.getI1Type();
|
|
auto lambda = genarr(x.left());
|
|
mlir::Value truth = builder.createBool(loc, true);
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value logical = fir::getBase(lambda(iters));
|
|
mlir::Value val = builder.createConvert(loc, i1Ty, logical);
|
|
return builder.create<mlir::arith::XOrIOp>(loc, val, truth);
|
|
};
|
|
}
|
|
template <typename OP, typename A>
|
|
CC createBinaryBoolOp(const A &x) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IntegerType i1Ty = builder.getI1Type();
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value left = fir::getBase(lf(iters));
|
|
mlir::Value right = fir::getBase(rf(iters));
|
|
mlir::Value lhs = builder.createConvert(loc, i1Ty, left);
|
|
mlir::Value rhs = builder.createConvert(loc, i1Ty, right);
|
|
return builder.create<OP>(loc, lhs, rhs);
|
|
};
|
|
}
|
|
template <typename OP, typename A>
|
|
CC createCompareBoolOp(mlir::arith::CmpIPredicate pred, const A &x) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::IntegerType i1Ty = builder.getI1Type();
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value left = fir::getBase(lf(iters));
|
|
mlir::Value right = fir::getBase(rf(iters));
|
|
mlir::Value lhs = builder.createConvert(loc, i1Ty, left);
|
|
mlir::Value rhs = builder.createConvert(loc, i1Ty, right);
|
|
return builder.create<OP>(loc, pred, lhs, rhs);
|
|
};
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::LogicalOperation<KIND> &x) {
|
|
switch (x.logicalOperator) {
|
|
case Fortran::evaluate::LogicalOperator::And:
|
|
return createBinaryBoolOp<mlir::arith::AndIOp>(x);
|
|
case Fortran::evaluate::LogicalOperator::Or:
|
|
return createBinaryBoolOp<mlir::arith::OrIOp>(x);
|
|
case Fortran::evaluate::LogicalOperator::Eqv:
|
|
return createCompareBoolOp<mlir::arith::CmpIOp>(
|
|
mlir::arith::CmpIPredicate::eq, x);
|
|
case Fortran::evaluate::LogicalOperator::Neqv:
|
|
return createCompareBoolOp<mlir::arith::CmpIOp>(
|
|
mlir::arith::CmpIPredicate::ne, x);
|
|
case Fortran::evaluate::LogicalOperator::Not:
|
|
llvm_unreachable(".NOT. handled elsewhere");
|
|
}
|
|
llvm_unreachable("unhandled case");
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Relational operators (<, <=, ==, etc.)
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
template <typename OP, typename PRED, typename A>
|
|
CC createCompareOp(PRED pred, const A &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
mlir::Value lhs = fir::getBase(lf(iters));
|
|
mlir::Value rhs = fir::getBase(rf(iters));
|
|
return builder.create<OP>(loc, pred, lhs, rhs);
|
|
};
|
|
}
|
|
template <typename A>
|
|
CC createCompareCharOp(mlir::arith::CmpIPredicate pred, const A &x) {
|
|
mlir::Location loc = getLoc();
|
|
auto lf = genarr(x.left());
|
|
auto rf = genarr(x.right());
|
|
return [=](IterSpace iters) -> ExtValue {
|
|
auto lhs = lf(iters);
|
|
auto rhs = rf(iters);
|
|
return fir::runtime::genCharCompare(builder, loc, pred, lhs, rhs);
|
|
};
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Integer, KIND>> &x) {
|
|
return createCompareOp<mlir::arith::CmpIOp>(translateRelational(x.opr), x);
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Character, KIND>> &x) {
|
|
return createCompareCharOp(translateRelational(x.opr), x);
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Real, KIND>> &x) {
|
|
return createCompareOp<mlir::arith::CmpFOp>(translateFloatRelational(x.opr),
|
|
x);
|
|
}
|
|
template <int KIND>
|
|
CC genarr(const Fortran::evaluate::Relational<Fortran::evaluate::Type<
|
|
Fortran::common::TypeCategory::Complex, KIND>> &x) {
|
|
return createCompareOp<fir::CmpcOp>(translateFloatRelational(x.opr), x);
|
|
}
|
|
CC genarr(
|
|
const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &r) {
|
|
return std::visit([&](const auto &x) { return genarr(x); }, r.u);
|
|
}
|
|
|
|
template <typename A>
|
|
CC genarr(const Fortran::evaluate::Designator<A> &des) {
|
|
ComponentPath components(des.Rank() > 0);
|
|
return std::visit([&](const auto &x) { return genarr(x, components); },
|
|
des.u);
|
|
}
|
|
|
|
/// Is the path component rank > 0?
|
|
static bool ranked(const PathComponent &x) {
|
|
return std::visit(Fortran::common::visitors{
|
|
[](const ImplicitSubscripts &) { return false; },
|
|
[](const auto *v) { return v->Rank() > 0; }},
|
|
x);
|
|
}
|
|
|
|
void extendComponent(Fortran::lower::ComponentPath &component,
|
|
mlir::Type coorTy, mlir::ValueRange vals) {
|
|
auto *bldr = &converter.getFirOpBuilder();
|
|
llvm::SmallVector<mlir::Value> offsets(vals.begin(), vals.end());
|
|
auto currentFunc = component.getExtendCoorRef();
|
|
auto loc = getLoc();
|
|
auto newCoorRef = [bldr, coorTy, offsets, currentFunc,
|
|
loc](mlir::Value val) -> mlir::Value {
|
|
return bldr->create<fir::CoordinateOp>(loc, bldr->getRefType(coorTy),
|
|
currentFunc(val), offsets);
|
|
};
|
|
component.extendCoorRef = newCoorRef;
|
|
}
|
|
|
|
//===-------------------------------------------------------------------===//
|
|
// Array data references in an explicit iteration space.
|
|
//
|
|
// Use the base array that was loaded before the loop nest.
|
|
//===-------------------------------------------------------------------===//
|
|
|
|
/// Lower the path (`revPath`, in reverse) to be appended to an array_fetch or
|
|
/// array_update op. \p ty is the initial type of the array
|
|
/// (reference). Returns the type of the element after application of the
|
|
/// path in \p components.
|
|
///
|
|
/// TODO: This needs to deal with array's with initial bounds other than 1.
|
|
/// TODO: Thread type parameters correctly.
|
|
mlir::Type lowerPath(const ExtValue &arrayExv, ComponentPath &components) {
|
|
mlir::Location loc = getLoc();
|
|
mlir::Type ty = fir::getBase(arrayExv).getType();
|
|
auto &revPath = components.reversePath;
|
|
ty = fir::unwrapPassByRefType(ty);
|
|
bool prefix = true;
|
|
bool deref = false;
|
|
auto addComponentList = [&](mlir::Type ty, mlir::ValueRange vals) {
|
|
if (deref) {
|
|
extendComponent(components, ty, vals);
|
|
} else if (prefix) {
|
|
for (auto v : vals)
|
|
components.prefixComponents.push_back(v);
|
|
} else {
|
|
for (auto v : vals)
|
|
components.suffixComponents.push_back(v);
|
|
}
|
|
};
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
bool atBase = true;
|
|
auto saveSemant = semant;
|
|
if (isProjectedCopyInCopyOut())
|
|
semant = ConstituentSemantics::RefTransparent;
|
|
unsigned index = 0;
|
|
for (const auto &v : llvm::reverse(revPath)) {
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const ImplicitSubscripts &) {
|
|
prefix = false;
|
|
ty = fir::unwrapSequenceType(ty);
|
|
},
|
|
[&](const Fortran::evaluate::ComplexPart *x) {
|
|
assert(!prefix && "complex part must be at end");
|
|
mlir::Value offset = builder.createIntegerConstant(
|
|
loc, builder.getI32Type(),
|
|
x->part() == Fortran::evaluate::ComplexPart::Part::RE ? 0
|
|
: 1);
|
|
components.suffixComponents.push_back(offset);
|
|
ty = fir::applyPathToType(ty, mlir::ValueRange{offset});
|
|
},
|
|
[&](const Fortran::evaluate::ArrayRef *x) {
|
|
if (Fortran::lower::isRankedArrayAccess(*x)) {
|
|
genSliceIndices(components, arrayExv, *x, atBase);
|
|
ty = fir::unwrapSeqOrBoxedSeqType(ty);
|
|
} else {
|
|
// Array access where the expressions are scalar and cannot
|
|
// depend upon the implied iteration space.
|
|
unsigned ssIndex = 0u;
|
|
llvm::SmallVector<mlir::Value> componentsToAdd;
|
|
for (const auto &ss : x->subscript()) {
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::evaluate::
|
|
IndirectSubscriptIntegerExpr &ie) {
|
|
const auto &e = ie.value();
|
|
if (isArray(e))
|
|
fir::emitFatalError(
|
|
loc,
|
|
"multiple components along single path "
|
|
"generating array subexpressions");
|
|
// Lower scalar index expression, append it to
|
|
// subs.
|
|
mlir::Value subscriptVal =
|
|
fir::getBase(asScalarArray(e));
|
|
// arrayExv is the base array. It needs to reflect
|
|
// the current array component instead.
|
|
// FIXME: must use lower bound of this component,
|
|
// not just the constant 1.
|
|
mlir::Value lb =
|
|
atBase ? fir::factory::readLowerBound(
|
|
builder, loc, arrayExv, ssIndex,
|
|
one)
|
|
: one;
|
|
mlir::Value val = builder.createConvert(
|
|
loc, idxTy, subscriptVal);
|
|
mlir::Value ivAdj =
|
|
builder.create<mlir::arith::SubIOp>(
|
|
loc, idxTy, val, lb);
|
|
componentsToAdd.push_back(
|
|
builder.createConvert(loc, idxTy, ivAdj));
|
|
},
|
|
[&](const auto &) {
|
|
fir::emitFatalError(
|
|
loc, "multiple components along single path "
|
|
"generating array subexpressions");
|
|
}},
|
|
ss.u);
|
|
ssIndex++;
|
|
}
|
|
ty = fir::unwrapSeqOrBoxedSeqType(ty);
|
|
addComponentList(ty, componentsToAdd);
|
|
}
|
|
},
|
|
[&](const Fortran::evaluate::Component *x) {
|
|
auto fieldTy = fir::FieldType::get(builder.getContext());
|
|
llvm::StringRef name = toStringRef(getLastSym(*x).name());
|
|
if (auto recTy = ty.dyn_cast<fir::RecordType>()) {
|
|
ty = recTy.getType(name);
|
|
auto fld = builder.create<fir::FieldIndexOp>(
|
|
loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv));
|
|
addComponentList(ty, {fld});
|
|
if (index != revPath.size() - 1 || !isPointerAssignment()) {
|
|
// Need an intermediate dereference if the boxed value
|
|
// appears in the middle of the component path or if it is
|
|
// on the right and this is not a pointer assignment.
|
|
if (auto boxTy = ty.dyn_cast<fir::BoxType>()) {
|
|
auto currentFunc = components.getExtendCoorRef();
|
|
auto loc = getLoc();
|
|
auto *bldr = &converter.getFirOpBuilder();
|
|
auto newCoorRef = [=](mlir::Value val) -> mlir::Value {
|
|
return bldr->create<fir::LoadOp>(loc, currentFunc(val));
|
|
};
|
|
components.extendCoorRef = newCoorRef;
|
|
deref = true;
|
|
}
|
|
}
|
|
} else if (auto boxTy = ty.dyn_cast<fir::BoxType>()) {
|
|
ty = fir::unwrapRefType(boxTy.getEleTy());
|
|
auto recTy = ty.cast<fir::RecordType>();
|
|
ty = recTy.getType(name);
|
|
auto fld = builder.create<fir::FieldIndexOp>(
|
|
loc, fieldTy, name, recTy, fir::getTypeParams(arrayExv));
|
|
extendComponent(components, ty, {fld});
|
|
} else {
|
|
TODO(loc, "other component type");
|
|
}
|
|
}},
|
|
v);
|
|
atBase = false;
|
|
++index;
|
|
}
|
|
semant = saveSemant;
|
|
ty = fir::unwrapSequenceType(ty);
|
|
components.applied = true;
|
|
return ty;
|
|
}
|
|
|
|
llvm::SmallVector<mlir::Value> genSubstringBounds(ComponentPath &components) {
|
|
llvm::SmallVector<mlir::Value> result;
|
|
if (components.substring)
|
|
populateBounds(result, components.substring);
|
|
return result;
|
|
}
|
|
|
|
CC applyPathToArrayLoad(fir::ArrayLoadOp load, ComponentPath &components) {
|
|
mlir::Location loc = getLoc();
|
|
auto revPath = components.reversePath;
|
|
fir::ExtendedValue arrayExv =
|
|
arrayLoadExtValue(builder, loc, load, {}, load);
|
|
mlir::Type eleTy = lowerPath(arrayExv, components);
|
|
auto currentPC = components.pc;
|
|
auto pc = [=, prefix = components.prefixComponents,
|
|
suffix = components.suffixComponents](IterSpace iters) {
|
|
// Add path prefix and suffix.
|
|
return IterationSpace(currentPC(iters), prefix, suffix);
|
|
};
|
|
components.resetPC();
|
|
llvm::SmallVector<mlir::Value> substringBounds =
|
|
genSubstringBounds(components);
|
|
if (isProjectedCopyInCopyOut()) {
|
|
destination = load;
|
|
auto lambda = [=, esp = this->explicitSpace](IterSpace iters) mutable {
|
|
mlir::Value innerArg = esp->findArgumentOfLoad(load);
|
|
if (isAdjustedArrayElementType(eleTy)) {
|
|
mlir::Type eleRefTy = builder.getRefType(eleTy);
|
|
auto arrayOp = builder.create<fir::ArrayAccessOp>(
|
|
loc, eleRefTy, innerArg, iters.iterVec(),
|
|
fir::factory::getTypeParams(loc, builder, load));
|
|
if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
|
|
mlir::Value dstLen = fir::factory::genLenOfCharacter(
|
|
builder, loc, load, iters.iterVec(), substringBounds);
|
|
fir::ArrayAmendOp amend = createCharArrayAmend(
|
|
loc, builder, arrayOp, dstLen, iters.elementExv(), innerArg,
|
|
substringBounds);
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend,
|
|
dstLen);
|
|
}
|
|
if (fir::isa_derived(eleTy)) {
|
|
fir::ArrayAmendOp amend =
|
|
createDerivedArrayAmend(loc, load, builder, arrayOp,
|
|
iters.elementExv(), eleTy, innerArg);
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(),
|
|
amend);
|
|
}
|
|
assert(eleTy.isa<fir::SequenceType>());
|
|
TODO(loc, "array (as element) assignment");
|
|
}
|
|
if (components.hasExtendCoorRef()) {
|
|
auto eleBoxTy =
|
|
fir::applyPathToType(innerArg.getType(), iters.iterVec());
|
|
assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>());
|
|
auto arrayOp = builder.create<fir::ArrayAccessOp>(
|
|
loc, builder.getRefType(eleBoxTy), innerArg, iters.iterVec(),
|
|
fir::factory::getTypeParams(loc, builder, load));
|
|
mlir::Value addr = components.getExtendCoorRef()(arrayOp);
|
|
components.resetExtendCoorRef();
|
|
// When the lhs is a boxed value and the context is not a pointer
|
|
// assignment, then insert the dereference of the box before any
|
|
// conversion and store.
|
|
if (!isPointerAssignment()) {
|
|
if (auto boxTy = eleTy.dyn_cast<fir::BoxType>()) {
|
|
eleTy = fir::boxMemRefType(boxTy);
|
|
addr = builder.create<fir::BoxAddrOp>(loc, eleTy, addr);
|
|
eleTy = fir::unwrapRefType(eleTy);
|
|
}
|
|
}
|
|
auto ele = convertElementForUpdate(loc, eleTy, iters.getElement());
|
|
builder.create<fir::StoreOp>(loc, ele, addr);
|
|
auto amend = builder.create<fir::ArrayAmendOp>(
|
|
loc, innerArg.getType(), innerArg, arrayOp);
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(), amend);
|
|
}
|
|
auto ele = convertElementForUpdate(loc, eleTy, iters.getElement());
|
|
auto update = builder.create<fir::ArrayUpdateOp>(
|
|
loc, innerArg.getType(), innerArg, ele, iters.iterVec(),
|
|
fir::factory::getTypeParams(loc, builder, load));
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(), update);
|
|
};
|
|
return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
|
|
}
|
|
if (isCustomCopyInCopyOut()) {
|
|
// Create an array_modify to get the LHS element address and indicate
|
|
// the assignment, and create the call to the user defined assignment.
|
|
destination = load;
|
|
auto lambda = [=](IterSpace iters) mutable {
|
|
mlir::Value innerArg = explicitSpace->findArgumentOfLoad(load);
|
|
mlir::Type refEleTy =
|
|
fir::isa_ref_type(eleTy) ? eleTy : builder.getRefType(eleTy);
|
|
auto arrModify = builder.create<fir::ArrayModifyOp>(
|
|
loc, mlir::TypeRange{refEleTy, innerArg.getType()}, innerArg,
|
|
iters.iterVec(), load.getTypeparams());
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(),
|
|
arrModify.getResult(1));
|
|
};
|
|
return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
|
|
}
|
|
auto lambda = [=, semant = this->semant](IterSpace iters) mutable {
|
|
if (semant == ConstituentSemantics::RefOpaque ||
|
|
isAdjustedArrayElementType(eleTy)) {
|
|
mlir::Type resTy = builder.getRefType(eleTy);
|
|
// Use array element reference semantics.
|
|
auto access = builder.create<fir::ArrayAccessOp>(
|
|
loc, resTy, load, iters.iterVec(),
|
|
fir::factory::getTypeParams(loc, builder, load));
|
|
mlir::Value newBase = access;
|
|
if (fir::isa_char(eleTy)) {
|
|
mlir::Value dstLen = fir::factory::genLenOfCharacter(
|
|
builder, loc, load, iters.iterVec(), substringBounds);
|
|
if (!substringBounds.empty()) {
|
|
fir::CharBoxValue charDst{access, dstLen};
|
|
fir::factory::CharacterExprHelper helper{builder, loc};
|
|
charDst = helper.createSubstring(charDst, substringBounds);
|
|
newBase = charDst.getAddr();
|
|
}
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase,
|
|
dstLen);
|
|
}
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(), newBase);
|
|
}
|
|
if (components.hasExtendCoorRef()) {
|
|
auto eleBoxTy = fir::applyPathToType(load.getType(), iters.iterVec());
|
|
assert(eleBoxTy && eleBoxTy.isa<fir::BoxType>());
|
|
auto access = builder.create<fir::ArrayAccessOp>(
|
|
loc, builder.getRefType(eleBoxTy), load, iters.iterVec(),
|
|
fir::factory::getTypeParams(loc, builder, load));
|
|
mlir::Value addr = components.getExtendCoorRef()(access);
|
|
components.resetExtendCoorRef();
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(), addr);
|
|
}
|
|
if (isPointerAssignment()) {
|
|
auto eleTy = fir::applyPathToType(load.getType(), iters.iterVec());
|
|
if (!eleTy.isa<fir::BoxType>()) {
|
|
// Rhs is a regular expression that will need to be boxed before
|
|
// assigning to the boxed variable.
|
|
auto typeParams = fir::factory::getTypeParams(loc, builder, load);
|
|
auto access = builder.create<fir::ArrayAccessOp>(
|
|
loc, builder.getRefType(eleTy), load, iters.iterVec(),
|
|
typeParams);
|
|
auto addr = components.getExtendCoorRef()(access);
|
|
components.resetExtendCoorRef();
|
|
auto ptrEleTy = fir::PointerType::get(eleTy);
|
|
auto ptrAddr = builder.createConvert(loc, ptrEleTy, addr);
|
|
auto boxTy = fir::BoxType::get(ptrEleTy);
|
|
// FIXME: The typeparams to the load may be different than those of
|
|
// the subobject.
|
|
if (components.hasExtendCoorRef())
|
|
TODO(loc, "need to adjust typeparameter(s) to reflect the final "
|
|
"component");
|
|
mlir::Value embox =
|
|
builder.create<fir::EmboxOp>(loc, boxTy, ptrAddr,
|
|
/*shape=*/mlir::Value{},
|
|
/*slice=*/mlir::Value{}, typeParams);
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(), embox);
|
|
}
|
|
}
|
|
auto fetch = builder.create<fir::ArrayFetchOp>(
|
|
loc, eleTy, load, iters.iterVec(), load.getTypeparams());
|
|
return arrayLoadExtValue(builder, loc, load, iters.iterVec(), fetch);
|
|
};
|
|
return [=](IterSpace iters) mutable { return lambda(pc(iters)); };
|
|
}
|
|
|
|
template <typename A>
|
|
CC genImplicitArrayAccess(const A &x, ComponentPath &components) {
|
|
components.reversePath.push_back(ImplicitSubscripts{});
|
|
ExtValue exv = asScalarRef(x);
|
|
lowerPath(exv, components);
|
|
auto lambda = genarr(exv, components);
|
|
return [=](IterSpace iters) { return lambda(components.pc(iters)); };
|
|
}
|
|
CC genImplicitArrayAccess(const Fortran::evaluate::NamedEntity &x,
|
|
ComponentPath &components) {
|
|
if (x.IsSymbol())
|
|
return genImplicitArrayAccess(getFirstSym(x), components);
|
|
return genImplicitArrayAccess(x.GetComponent(), components);
|
|
}
|
|
|
|
template <typename A>
|
|
CC genAsScalar(const A &x) {
|
|
mlir::Location loc = getLoc();
|
|
if (isProjectedCopyInCopyOut()) {
|
|
return [=, &x, builder = &converter.getFirOpBuilder()](
|
|
IterSpace iters) -> ExtValue {
|
|
ExtValue exv = asScalarRef(x);
|
|
mlir::Value addr = fir::getBase(exv);
|
|
mlir::Type eleTy = fir::unwrapRefType(addr.getType());
|
|
if (isAdjustedArrayElementType(eleTy)) {
|
|
if (fir::isa_char(eleTy)) {
|
|
fir::factory::CharacterExprHelper{*builder, loc}.createAssign(
|
|
exv, iters.elementExv());
|
|
} else if (fir::isa_derived(eleTy)) {
|
|
TODO(loc, "assignment of derived type");
|
|
} else {
|
|
fir::emitFatalError(loc, "array type not expected in scalar");
|
|
}
|
|
} else {
|
|
auto eleVal = convertElementForUpdate(loc, eleTy, iters.getElement());
|
|
builder->create<fir::StoreOp>(loc, eleVal, addr);
|
|
}
|
|
return exv;
|
|
};
|
|
}
|
|
return [=, &x](IterSpace) { return asScalar(x); };
|
|
}
|
|
|
|
bool tailIsPointerInPointerAssignment(const Fortran::semantics::Symbol &x,
|
|
ComponentPath &components) {
|
|
return isPointerAssignment() && Fortran::semantics::IsPointer(x) &&
|
|
!components.hasComponents();
|
|
}
|
|
bool tailIsPointerInPointerAssignment(const Fortran::evaluate::Component &x,
|
|
ComponentPath &components) {
|
|
return tailIsPointerInPointerAssignment(getLastSym(x), components);
|
|
}
|
|
|
|
CC genarr(const Fortran::semantics::Symbol &x, ComponentPath &components) {
|
|
if (explicitSpaceIsActive()) {
|
|
if (x.Rank() > 0 && !tailIsPointerInPointerAssignment(x, components))
|
|
components.reversePath.push_back(ImplicitSubscripts{});
|
|
if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x))
|
|
return applyPathToArrayLoad(load, components);
|
|
} else {
|
|
return genImplicitArrayAccess(x, components);
|
|
}
|
|
if (pathIsEmpty(components))
|
|
return components.substring ? genAsScalar(*components.substring)
|
|
: genAsScalar(x);
|
|
mlir::Location loc = getLoc();
|
|
return [=](IterSpace) -> ExtValue {
|
|
fir::emitFatalError(loc, "reached symbol with path");
|
|
};
|
|
}
|
|
|
|
/// Lower a component path with or without rank.
|
|
/// Example: <code>array%baz%qux%waldo</code>
|
|
CC genarr(const Fortran::evaluate::Component &x, ComponentPath &components) {
|
|
if (explicitSpaceIsActive()) {
|
|
if (x.base().Rank() == 0 && x.Rank() > 0 &&
|
|
!tailIsPointerInPointerAssignment(x, components))
|
|
components.reversePath.push_back(ImplicitSubscripts{});
|
|
if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x))
|
|
return applyPathToArrayLoad(load, components);
|
|
} else {
|
|
if (x.base().Rank() == 0)
|
|
return genImplicitArrayAccess(x, components);
|
|
}
|
|
bool atEnd = pathIsEmpty(components);
|
|
if (!getLastSym(x).test(Fortran::semantics::Symbol::Flag::ParentComp))
|
|
// Skip parent components; their components are placed directly in the
|
|
// object.
|
|
components.reversePath.push_back(&x);
|
|
auto result = genarr(x.base(), components);
|
|
if (components.applied)
|
|
return result;
|
|
if (atEnd)
|
|
return genAsScalar(x);
|
|
mlir::Location loc = getLoc();
|
|
return [=](IterSpace) -> ExtValue {
|
|
fir::emitFatalError(loc, "reached component with path");
|
|
};
|
|
}
|
|
|
|
/// Array reference with subscripts. If this has rank > 0, this is a form
|
|
/// of an array section (slice).
|
|
///
|
|
/// There are two "slicing" primitives that may be applied on a dimension by
|
|
/// dimension basis: (1) triple notation and (2) vector addressing. Since
|
|
/// dimensions can be selectively sliced, some dimensions may contain
|
|
/// regular scalar expressions and those dimensions do not participate in
|
|
/// the array expression evaluation.
|
|
CC genarr(const Fortran::evaluate::ArrayRef &x, ComponentPath &components) {
|
|
if (explicitSpaceIsActive()) {
|
|
if (Fortran::lower::isRankedArrayAccess(x))
|
|
components.reversePath.push_back(ImplicitSubscripts{});
|
|
if (fir::ArrayLoadOp load = explicitSpace->findBinding(&x)) {
|
|
components.reversePath.push_back(&x);
|
|
return applyPathToArrayLoad(load, components);
|
|
}
|
|
} else {
|
|
if (Fortran::lower::isRankedArrayAccess(x)) {
|
|
components.reversePath.push_back(&x);
|
|
return genImplicitArrayAccess(x.base(), components);
|
|
}
|
|
}
|
|
bool atEnd = pathIsEmpty(components);
|
|
components.reversePath.push_back(&x);
|
|
auto result = genarr(x.base(), components);
|
|
if (components.applied)
|
|
return result;
|
|
mlir::Location loc = getLoc();
|
|
if (atEnd) {
|
|
if (x.Rank() == 0)
|
|
return genAsScalar(x);
|
|
fir::emitFatalError(loc, "expected scalar");
|
|
}
|
|
return [=](IterSpace) -> ExtValue {
|
|
fir::emitFatalError(loc, "reached arrayref with path");
|
|
};
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::CoarrayRef &x, ComponentPath &components) {
|
|
TODO(getLoc(), "coarray reference");
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::NamedEntity &x,
|
|
ComponentPath &components) {
|
|
return x.IsSymbol() ? genarr(getFirstSym(x), components)
|
|
: genarr(x.GetComponent(), components);
|
|
}
|
|
|
|
CC genarr(const Fortran::evaluate::DataRef &x, ComponentPath &components) {
|
|
return std::visit([&](const auto &v) { return genarr(v, components); },
|
|
x.u);
|
|
}
|
|
|
|
bool pathIsEmpty(const ComponentPath &components) {
|
|
return components.reversePath.empty();
|
|
}
|
|
|
|
explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::lower::SymMap &symMap)
|
|
: converter{converter}, builder{converter.getFirOpBuilder()},
|
|
stmtCtx{stmtCtx}, symMap{symMap} {}
|
|
|
|
explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::lower::SymMap &symMap,
|
|
ConstituentSemantics sem)
|
|
: converter{converter}, builder{converter.getFirOpBuilder()},
|
|
stmtCtx{stmtCtx}, symMap{symMap}, semant{sem} {}
|
|
|
|
explicit ArrayExprLowering(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::lower::SymMap &symMap,
|
|
ConstituentSemantics sem,
|
|
Fortran::lower::ExplicitIterSpace *expSpace,
|
|
Fortran::lower::ImplicitIterSpace *impSpace)
|
|
: converter{converter}, builder{converter.getFirOpBuilder()},
|
|
stmtCtx{stmtCtx}, symMap{symMap},
|
|
explicitSpace((expSpace && expSpace->isActive()) ? expSpace : nullptr),
|
|
implicitSpace((impSpace && !impSpace->empty()) ? impSpace : nullptr),
|
|
semant{sem} {
|
|
// Generate any mask expressions, as necessary. This is the compute step
|
|
// that creates the effective masks. See 10.2.3.2 in particular.
|
|
genMasks();
|
|
}
|
|
|
|
mlir::Location getLoc() { return converter.getCurrentLocation(); }
|
|
|
|
/// Array appears in a lhs context such that it is assigned after the rhs is
|
|
/// fully evaluated.
|
|
inline bool isCopyInCopyOut() {
|
|
return semant == ConstituentSemantics::CopyInCopyOut;
|
|
}
|
|
|
|
/// Array appears in a lhs (or temp) context such that a projected,
|
|
/// discontiguous subspace of the array is assigned after the rhs is fully
|
|
/// evaluated. That is, the rhs array value is merged into a section of the
|
|
/// lhs array.
|
|
inline bool isProjectedCopyInCopyOut() {
|
|
return semant == ConstituentSemantics::ProjectedCopyInCopyOut;
|
|
}
|
|
|
|
// ???: Do we still need this?
|
|
inline bool isCustomCopyInCopyOut() {
|
|
return semant == ConstituentSemantics::CustomCopyInCopyOut;
|
|
}
|
|
|
|
/// Are we lowering in a left-hand side context?
|
|
inline bool isLeftHandSide() {
|
|
return isCopyInCopyOut() || isProjectedCopyInCopyOut() ||
|
|
isCustomCopyInCopyOut();
|
|
}
|
|
|
|
/// Array appears in a context where it must be boxed.
|
|
inline bool isBoxValue() { return semant == ConstituentSemantics::BoxValue; }
|
|
|
|
/// Array appears in a context where differences in the memory reference can
|
|
/// be observable in the computational results. For example, an array
|
|
/// element is passed to an impure procedure.
|
|
inline bool isReferentiallyOpaque() {
|
|
return semant == ConstituentSemantics::RefOpaque;
|
|
}
|
|
|
|
/// Array appears in a context where it is passed as a VALUE argument.
|
|
inline bool isValueAttribute() {
|
|
return semant == ConstituentSemantics::ByValueArg;
|
|
}
|
|
|
|
/// Can the loops over the expression be unordered?
|
|
inline bool isUnordered() const { return unordered; }
|
|
|
|
void setUnordered(bool b) { unordered = b; }
|
|
|
|
inline bool isPointerAssignment() const { return lbounds.has_value(); }
|
|
|
|
inline bool isBoundsSpec() const {
|
|
return isPointerAssignment() && !ubounds.has_value();
|
|
}
|
|
|
|
inline bool isBoundsRemap() const {
|
|
return isPointerAssignment() && ubounds.has_value();
|
|
}
|
|
|
|
void setPointerAssignmentBounds(
|
|
const llvm::SmallVector<mlir::Value> &lbs,
|
|
llvm::Optional<llvm::SmallVector<mlir::Value>> ubs) {
|
|
lbounds = lbs;
|
|
ubounds = ubs;
|
|
}
|
|
|
|
Fortran::lower::AbstractConverter &converter;
|
|
fir::FirOpBuilder &builder;
|
|
Fortran::lower::StatementContext &stmtCtx;
|
|
bool elementCtx = false;
|
|
Fortran::lower::SymMap &symMap;
|
|
/// The continuation to generate code to update the destination.
|
|
llvm::Optional<CC> ccStoreToDest;
|
|
llvm::Optional<std::function<void(llvm::ArrayRef<mlir::Value>)>> ccPrelude;
|
|
llvm::Optional<std::function<fir::ArrayLoadOp(llvm::ArrayRef<mlir::Value>)>>
|
|
ccLoadDest;
|
|
/// The destination is the loaded array into which the results will be
|
|
/// merged.
|
|
fir::ArrayLoadOp destination;
|
|
/// The shape of the destination.
|
|
llvm::SmallVector<mlir::Value> destShape;
|
|
/// List of arrays in the expression that have been loaded.
|
|
llvm::SmallVector<ArrayOperand> arrayOperands;
|
|
/// If there is a user-defined iteration space, explicitShape will hold the
|
|
/// information from the front end.
|
|
Fortran::lower::ExplicitIterSpace *explicitSpace = nullptr;
|
|
Fortran::lower::ImplicitIterSpace *implicitSpace = nullptr;
|
|
ConstituentSemantics semant = ConstituentSemantics::RefTransparent;
|
|
/// `lbounds`, `ubounds` are used in POINTER value assignments, which may only
|
|
/// occur in an explicit iteration space.
|
|
llvm::Optional<llvm::SmallVector<mlir::Value>> lbounds;
|
|
llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds;
|
|
// Can the array expression be evaluated in any order?
|
|
// Will be set to false if any of the expression parts prevent this.
|
|
bool unordered = true;
|
|
};
|
|
} // namespace
|
|
|
|
fir::ExtendedValue Fortran::lower::createSomeExtendedExpression(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
|
|
return ScalarExprLowering{loc, converter, symMap, stmtCtx}.genval(expr);
|
|
}
|
|
|
|
fir::GlobalOp Fortran::lower::createDenseGlobal(
|
|
mlir::Location loc, mlir::Type symTy, llvm::StringRef globalName,
|
|
mlir::StringAttr linkage, bool isConst,
|
|
const Fortran::lower::SomeExpr &expr,
|
|
Fortran::lower::AbstractConverter &converter) {
|
|
|
|
Fortran::lower::StatementContext stmtCtx(/*prohibited=*/true);
|
|
Fortran::lower::SymMap emptyMap;
|
|
InitializerData initData(/*genRawVals=*/true);
|
|
ScalarExprLowering sel(loc, converter, emptyMap, stmtCtx,
|
|
/*initializer=*/&initData);
|
|
sel.genval(expr);
|
|
|
|
size_t sz = initData.rawVals.size();
|
|
llvm::ArrayRef<mlir::Attribute> ar = {initData.rawVals.data(), sz};
|
|
|
|
mlir::RankedTensorType tensorTy;
|
|
auto &builder = converter.getFirOpBuilder();
|
|
mlir::Type iTy = initData.rawType;
|
|
if (!iTy)
|
|
return 0; // array extent is probably 0 in this case, so just return 0.
|
|
tensorTy = mlir::RankedTensorType::get(sz, iTy);
|
|
auto init = mlir::DenseElementsAttr::get(tensorTy, ar);
|
|
return builder.createGlobal(loc, symTy, globalName, linkage, init, isConst);
|
|
}
|
|
|
|
fir::ExtendedValue Fortran::lower::createSomeInitializerExpression(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "expr: ") << '\n');
|
|
InitializerData initData; // needed for initializations
|
|
return ScalarExprLowering{loc, converter, symMap, stmtCtx,
|
|
/*initializer=*/&initData}
|
|
.genval(expr);
|
|
}
|
|
|
|
fir::ExtendedValue Fortran::lower::createSomeExtendedAddress(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
|
|
return ScalarExprLowering(loc, converter, symMap, stmtCtx).gen(expr);
|
|
}
|
|
|
|
fir::ExtendedValue Fortran::lower::createInitializerAddress(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "address: ") << '\n');
|
|
InitializerData init;
|
|
return ScalarExprLowering(loc, converter, symMap, stmtCtx, &init).gen(expr);
|
|
}
|
|
|
|
void Fortran::lower::createSomeArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
|
|
rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
|
|
ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
|
|
}
|
|
|
|
void Fortran::lower::createSomeArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs,
|
|
const Fortran::lower::SomeExpr &rhs, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n';
|
|
rhs.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
|
|
ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
|
|
}
|
|
void Fortran::lower::createSomeArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter, const fir::ExtendedValue &lhs,
|
|
const fir::ExtendedValue &rhs, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs << '\n';
|
|
llvm::dbgs() << "assign expression: " << rhs << '\n';);
|
|
ArrayExprLowering::lowerArrayAssignment(converter, symMap, stmtCtx, lhs, rhs);
|
|
}
|
|
|
|
void Fortran::lower::createAnyMaskedArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
|
|
Fortran::lower::ExplicitIterSpace &explicitSpace,
|
|
Fortran::lower::ImplicitIterSpace &implicitSpace,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
|
|
rhs.AsFortran(llvm::dbgs() << "assign expression: ")
|
|
<< " given the explicit iteration space:\n"
|
|
<< explicitSpace << "\n and implied mask conditions:\n"
|
|
<< implicitSpace << '\n';);
|
|
ArrayExprLowering::lowerAnyMaskedArrayAssignment(
|
|
converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace);
|
|
}
|
|
|
|
void Fortran::lower::createAllocatableArrayAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
|
|
Fortran::lower::ExplicitIterSpace &explicitSpace,
|
|
Fortran::lower::ImplicitIterSpace &implicitSpace,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining array: ") << '\n';
|
|
rhs.AsFortran(llvm::dbgs() << "assign expression: ")
|
|
<< " given the explicit iteration space:\n"
|
|
<< explicitSpace << "\n and implied mask conditions:\n"
|
|
<< implicitSpace << '\n';);
|
|
ArrayExprLowering::lowerAllocatableArrayAssignment(
|
|
converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace);
|
|
}
|
|
|
|
void Fortran::lower::createArrayOfPointerAssignment(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs,
|
|
Fortran::lower::ExplicitIterSpace &explicitSpace,
|
|
Fortran::lower::ImplicitIterSpace &implicitSpace,
|
|
const llvm::SmallVector<mlir::Value> &lbounds,
|
|
llvm::Optional<llvm::SmallVector<mlir::Value>> ubounds,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(lhs.AsFortran(llvm::dbgs() << "defining pointer: ") << '\n';
|
|
rhs.AsFortran(llvm::dbgs() << "assign expression: ")
|
|
<< " given the explicit iteration space:\n"
|
|
<< explicitSpace << "\n and implied mask conditions:\n"
|
|
<< implicitSpace << '\n';);
|
|
assert(explicitSpace.isActive() && "must be in FORALL construct");
|
|
ArrayExprLowering::lowerArrayOfPointerAssignment(
|
|
converter, symMap, stmtCtx, lhs, rhs, explicitSpace, implicitSpace,
|
|
lbounds, ubounds);
|
|
}
|
|
|
|
fir::ExtendedValue Fortran::lower::createSomeArrayTempValue(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n');
|
|
return ArrayExprLowering::lowerNewArrayExpression(converter, symMap, stmtCtx,
|
|
expr);
|
|
}
|
|
|
|
void Fortran::lower::createLazyArrayTempValue(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, mlir::Value raggedHeader,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "array value: ") << '\n');
|
|
ArrayExprLowering::lowerLazyArrayExpression(converter, symMap, stmtCtx, expr,
|
|
raggedHeader);
|
|
}
|
|
|
|
fir::ExtendedValue
|
|
Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
LLVM_DEBUG(expr.AsFortran(llvm::dbgs() << "box designator: ") << '\n');
|
|
return ArrayExprLowering::lowerBoxedArrayExpression(converter, symMap,
|
|
stmtCtx, expr);
|
|
}
|
|
|
|
fir::MutableBoxValue Fortran::lower::createMutableBox(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap) {
|
|
// MutableBox lowering StatementContext does not need to be propagated
|
|
// to the caller because the result value is a variable, not a temporary
|
|
// expression. The StatementContext clean-up can occur before using the
|
|
// resulting MutableBoxValue. Variables of all other types are handled in the
|
|
// bridge.
|
|
Fortran::lower::StatementContext dummyStmtCtx;
|
|
return ScalarExprLowering{loc, converter, symMap, dummyStmtCtx}
|
|
.genMutableBoxValue(expr);
|
|
}
|
|
|
|
fir::ExtendedValue Fortran::lower::createBoxValue(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::lower::SomeExpr &expr, Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
if (expr.Rank() > 0 && Fortran::evaluate::IsVariable(expr) &&
|
|
!Fortran::evaluate::HasVectorSubscript(expr))
|
|
return Fortran::lower::createSomeArrayBox(converter, expr, symMap, stmtCtx);
|
|
fir::ExtendedValue addr = Fortran::lower::createSomeExtendedAddress(
|
|
loc, converter, expr, symMap, stmtCtx);
|
|
return fir::BoxValue(converter.getFirOpBuilder().createBox(loc, addr));
|
|
}
|
|
|
|
mlir::Value Fortran::lower::createSubroutineCall(
|
|
AbstractConverter &converter, const evaluate::ProcedureRef &call,
|
|
ExplicitIterSpace &explicitIterSpace, ImplicitIterSpace &implicitIterSpace,
|
|
SymMap &symMap, StatementContext &stmtCtx, bool isUserDefAssignment) {
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
|
|
if (isUserDefAssignment) {
|
|
assert(call.arguments().size() == 2);
|
|
const auto *lhs = call.arguments()[0].value().UnwrapExpr();
|
|
const auto *rhs = call.arguments()[1].value().UnwrapExpr();
|
|
assert(lhs && rhs &&
|
|
"user defined assignment arguments must be expressions");
|
|
if (call.IsElemental() && lhs->Rank() > 0) {
|
|
// Elemental user defined assignment has special requirements to deal with
|
|
// LHS/RHS overlaps. See 10.2.1.5 p2.
|
|
ArrayExprLowering::lowerElementalUserAssignment(
|
|
converter, symMap, stmtCtx, explicitIterSpace, implicitIterSpace,
|
|
call);
|
|
} else if (explicitIterSpace.isActive() && lhs->Rank() == 0) {
|
|
// Scalar defined assignment (elemental or not) in a FORALL context.
|
|
mlir::func::FuncOp func =
|
|
Fortran::lower::CallerInterface(call, converter).getFuncOp();
|
|
ArrayExprLowering::lowerScalarUserAssignment(
|
|
converter, symMap, stmtCtx, explicitIterSpace, func, *lhs, *rhs);
|
|
} else if (explicitIterSpace.isActive()) {
|
|
// TODO: need to array fetch/modify sub-arrays?
|
|
TODO(loc, "non elemental user defined array assignment inside FORALL");
|
|
} else {
|
|
if (!implicitIterSpace.empty())
|
|
fir::emitFatalError(
|
|
loc,
|
|
"C1032: user defined assignment inside WHERE must be elemental");
|
|
// Non elemental user defined assignment outside of FORALL and WHERE.
|
|
// FIXME: The non elemental user defined assignment case with array
|
|
// arguments must be take into account potential overlap. So far the front
|
|
// end does not add parentheses around the RHS argument in the call as it
|
|
// should according to 15.4.3.4.3 p2.
|
|
Fortran::lower::createSomeExtendedExpression(
|
|
loc, converter, toEvExpr(call), symMap, stmtCtx);
|
|
}
|
|
return {};
|
|
}
|
|
|
|
assert(implicitIterSpace.empty() && !explicitIterSpace.isActive() &&
|
|
"subroutine calls are not allowed inside WHERE and FORALL");
|
|
|
|
if (isElementalProcWithArrayArgs(call)) {
|
|
ArrayExprLowering::lowerElementalSubroutine(converter, symMap, stmtCtx,
|
|
toEvExpr(call));
|
|
return {};
|
|
}
|
|
// Simple subroutine call, with potential alternate return.
|
|
auto res = Fortran::lower::createSomeExtendedExpression(
|
|
loc, converter, toEvExpr(call), symMap, stmtCtx);
|
|
return fir::getBase(res);
|
|
}
|
|
|
|
template <typename A>
|
|
fir::ArrayLoadOp genArrayLoad(mlir::Location loc,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
fir::FirOpBuilder &builder, const A *x,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
auto exv = ScalarExprLowering{loc, converter, symMap, stmtCtx}.gen(*x);
|
|
mlir::Value addr = fir::getBase(exv);
|
|
mlir::Value shapeOp = builder.createShape(loc, exv);
|
|
mlir::Type arrTy = fir::dyn_cast_ptrOrBoxEleTy(addr.getType());
|
|
return builder.create<fir::ArrayLoadOp>(loc, arrTy, addr, shapeOp,
|
|
/*slice=*/mlir::Value{},
|
|
fir::getTypeParams(exv));
|
|
}
|
|
template <>
|
|
fir::ArrayLoadOp
|
|
genArrayLoad(mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
fir::FirOpBuilder &builder, const Fortran::evaluate::ArrayRef *x,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
if (x->base().IsSymbol())
|
|
return genArrayLoad(loc, converter, builder, &getLastSym(x->base()), symMap,
|
|
stmtCtx);
|
|
return genArrayLoad(loc, converter, builder, &x->base().GetComponent(),
|
|
symMap, stmtCtx);
|
|
}
|
|
|
|
void Fortran::lower::createArrayLoads(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::ExplicitIterSpace &esp, Fortran::lower::SymMap &symMap) {
|
|
std::size_t counter = esp.getCounter();
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
Fortran::lower::StatementContext &stmtCtx = esp.stmtContext();
|
|
// Gen the fir.array_load ops.
|
|
auto genLoad = [&](const auto *x) -> fir::ArrayLoadOp {
|
|
return genArrayLoad(loc, converter, builder, x, symMap, stmtCtx);
|
|
};
|
|
if (esp.lhsBases[counter]) {
|
|
auto &base = *esp.lhsBases[counter];
|
|
auto load = std::visit(genLoad, base);
|
|
esp.initialArgs.push_back(load);
|
|
esp.resetInnerArgs();
|
|
esp.bindLoad(base, load);
|
|
}
|
|
for (const auto &base : esp.rhsBases[counter])
|
|
esp.bindLoad(base, std::visit(genLoad, base));
|
|
}
|
|
|
|
void Fortran::lower::createArrayMergeStores(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::ExplicitIterSpace &esp) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
builder.setInsertionPointAfter(esp.getOuterLoop());
|
|
// Gen the fir.array_merge_store ops for all LHS arrays.
|
|
for (auto i : llvm::enumerate(esp.getOuterLoop().getResults()))
|
|
if (llvm::Optional<fir::ArrayLoadOp> ldOpt = esp.getLhsLoad(i.index())) {
|
|
fir::ArrayLoadOp load = *ldOpt;
|
|
builder.create<fir::ArrayMergeStoreOp>(loc, load, i.value(),
|
|
load.getMemref(), load.getSlice(),
|
|
load.getTypeparams());
|
|
}
|
|
if (esp.loopCleanup) {
|
|
(*esp.loopCleanup)(builder);
|
|
esp.loopCleanup = llvm::None;
|
|
}
|
|
esp.initialArgs.clear();
|
|
esp.innerArgs.clear();
|
|
esp.outerLoop = llvm::None;
|
|
esp.resetBindings();
|
|
esp.incrementCounter();
|
|
}
|