mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-26 16:26:05 +00:00

Reverts llvm/llvm-project#115579 This introduced a breakage: https://lab.llvm.org/buildbot/#/builders/46/builds/7928
124 lines
4.8 KiB
C++
124 lines
4.8 KiB
C++
//===- ConstraintManager.cpp - Constraints on symbolic values. ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defined the interface to manage constraints on symbolic values.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
ConstraintManager::~ConstraintManager() = default;
|
|
|
|
static DefinedSVal getLocFromSymbol(const ProgramStateRef &State,
|
|
SymbolRef Sym) {
|
|
const MemRegion *R =
|
|
State->getStateManager().getRegionManager().getSymbolicRegion(Sym);
|
|
return loc::MemRegionVal(R);
|
|
}
|
|
|
|
ConditionTruthVal ConstraintManager::checkNull(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
QualType Ty = Sym->getType();
|
|
DefinedSVal V = Loc::isLocType(Ty) ? getLocFromSymbol(State, Sym)
|
|
: nonloc::SymbolVal(Sym);
|
|
const ProgramStatePair &P = assumeDual(State, V);
|
|
if (P.first && !P.second)
|
|
return ConditionTruthVal(false);
|
|
if (!P.first && P.second)
|
|
return ConditionTruthVal(true);
|
|
return {};
|
|
}
|
|
|
|
template <typename AssumeFunction>
|
|
ConstraintManager::ProgramStatePair
|
|
ConstraintManager::assumeDualImpl(ProgramStateRef &State,
|
|
AssumeFunction &Assume) {
|
|
if (LLVM_UNLIKELY(State->isPosteriorlyOverconstrained()))
|
|
return {State, State};
|
|
|
|
// Assume functions might recurse (see `reAssume` or `tryRearrange`). During
|
|
// the recursion the State might not change anymore, that means we reached a
|
|
// fixpoint.
|
|
// We avoid infinite recursion of assume calls by checking already visited
|
|
// States on the stack of assume function calls.
|
|
const ProgramState *RawSt = State.get();
|
|
if (LLVM_UNLIKELY(AssumeStack.contains(RawSt)))
|
|
return {State, State};
|
|
AssumeStack.push(RawSt);
|
|
auto AssumeStackBuilder =
|
|
llvm::make_scope_exit([this]() { AssumeStack.pop(); });
|
|
|
|
ProgramStateRef StTrue = Assume(true);
|
|
|
|
if (!StTrue) {
|
|
ProgramStateRef StFalse = Assume(false);
|
|
if (LLVM_UNLIKELY(!StFalse)) { // both infeasible
|
|
ProgramStateRef StInfeasible = State->cloneAsPosteriorlyOverconstrained();
|
|
assert(StInfeasible->isPosteriorlyOverconstrained());
|
|
// Checkers might rely on the API contract that both returned states
|
|
// cannot be null. Thus, we return StInfeasible for both branches because
|
|
// it might happen that a Checker uncoditionally uses one of them if the
|
|
// other is a nullptr. This may also happen with the non-dual and
|
|
// adjacent `assume(true)` and `assume(false)` calls. By implementing
|
|
// assume in therms of assumeDual, we can keep our API contract there as
|
|
// well.
|
|
return ProgramStatePair(StInfeasible, StInfeasible);
|
|
}
|
|
return ProgramStatePair(nullptr, StFalse);
|
|
}
|
|
|
|
ProgramStateRef StFalse = Assume(false);
|
|
if (!StFalse) {
|
|
return ProgramStatePair(StTrue, nullptr);
|
|
}
|
|
|
|
return ProgramStatePair(StTrue, StFalse);
|
|
}
|
|
|
|
ConstraintManager::ProgramStatePair
|
|
ConstraintManager::assumeDual(ProgramStateRef State, DefinedSVal Cond) {
|
|
auto AssumeFun = [&, Cond](bool Assumption) {
|
|
return assumeInternal(State, Cond, Assumption);
|
|
};
|
|
return assumeDualImpl(State, AssumeFun);
|
|
}
|
|
|
|
ConstraintManager::ProgramStatePair
|
|
ConstraintManager::assumeInclusiveRangeDual(ProgramStateRef State, NonLoc Value,
|
|
const llvm::APSInt &From,
|
|
const llvm::APSInt &To) {
|
|
auto AssumeFun = [&](bool Assumption) {
|
|
return assumeInclusiveRangeInternal(State, Value, From, To, Assumption);
|
|
};
|
|
return assumeDualImpl(State, AssumeFun);
|
|
}
|
|
|
|
ProgramStateRef ConstraintManager::assume(ProgramStateRef State,
|
|
DefinedSVal Cond, bool Assumption) {
|
|
ConstraintManager::ProgramStatePair R = assumeDual(State, Cond);
|
|
return Assumption ? R.first : R.second;
|
|
}
|
|
|
|
ProgramStateRef
|
|
ConstraintManager::assumeInclusiveRange(ProgramStateRef State, NonLoc Value,
|
|
const llvm::APSInt &From,
|
|
const llvm::APSInt &To, bool InBound) {
|
|
ConstraintManager::ProgramStatePair R =
|
|
assumeInclusiveRangeDual(State, Value, From, To);
|
|
return InBound ? R.first : R.second;
|
|
}
|