llvm-project/clang/CodeGen/CodeGenFunction.cpp
Chris Lattner 23b7eb677d Finally bite the bullet and make the major change: split the clang namespace
out of the llvm namespace.  This makes the clang namespace be a sibling of
llvm instead of being a child.

The good thing about this is that it makes many things unambiguous.  The
bad things is that many things in the llvm namespace (notably data structures
like smallvector) now require an llvm:: qualifier.  IMO, libsystem and libsupport
should be split out of llvm into their own namespace in the future, which will fix
this issue.

llvm-svn: 39659
2007-06-15 23:05:46 +00:00

198 lines
6.6 KiB
C++

//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This coordinates the per-function state used while generating code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/AST.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Analysis/Verifier.h"
using namespace clang;
using namespace CodeGen;
CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
: CGM(cgm), Target(CGM.getContext().Target) {}
ASTContext &CodeGenFunction::getContext() const {
return CGM.getContext();
}
llvm::BasicBlock *CodeGenFunction::getBasicBlockForLabel(const LabelStmt *S) {
llvm::BasicBlock *&BB = LabelMap[S];
if (BB) return BB;
// Create, but don't insert, the new block.
return BB = new llvm::BasicBlock(S->getName());
}
/// ConvertType - Convert the specified type to its LLVM form.
const llvm::Type *CodeGenFunction::ConvertType(QualType T, SourceLocation Loc) {
// FIXME: Cache these, move the CodeGenModule, expand, etc.
const clang::Type &Ty = *T.getCanonicalType();
switch (Ty.getTypeClass()) {
case Type::Builtin: {
switch (cast<BuiltinType>(Ty).getKind()) {
case BuiltinType::Void:
// LLVM void type can only be used as the result of a function call. Just
// map to the same as char.
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
return llvm::IntegerType::get(Target.getCharWidth(Loc));
case BuiltinType::Bool:
// FIXME: This is very strange. We want scalars to be i1, but in memory
// they can be i1 or i32. Should the codegen handle this issue?
return llvm::Type::Int1Ty;
case BuiltinType::Short:
case BuiltinType::UShort:
return llvm::IntegerType::get(Target.getShortWidth(Loc));
case BuiltinType::Int:
case BuiltinType::UInt:
return llvm::IntegerType::get(Target.getIntWidth(Loc));
case BuiltinType::Long:
case BuiltinType::ULong:
return llvm::IntegerType::get(Target.getLongWidth(Loc));
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return llvm::IntegerType::get(Target.getLongLongWidth(Loc));
case BuiltinType::Float: return llvm::Type::FloatTy;
case BuiltinType::Double: return llvm::Type::DoubleTy;
case BuiltinType::LongDouble:
case BuiltinType::FloatComplex:
case BuiltinType::DoubleComplex:
case BuiltinType::LongDoubleComplex:
;
}
break;
}
case Type::Pointer: {
const PointerType &P = cast<PointerType>(Ty);
return llvm::PointerType::get(ConvertType(P.getPointeeType(), Loc));
}
case Type::Reference: {
const ReferenceType &R = cast<ReferenceType>(Ty);
return llvm::PointerType::get(ConvertType(R.getReferenceeType(), Loc));
}
case Type::Array: {
const ArrayType &A = cast<ArrayType>(Ty);
assert(A.getSizeModifier() == ArrayType::Normal &&
A.getIndexTypeQualifier() == 0 &&
"FIXME: We only handle trivial array types so far!");
// FIXME: are there any promotions etc here?
RValue Size = EmitExpr(A.getSize());
assert(Size.isScalar() && isa<llvm::ConstantInt>(Size.getVal()) &&
"FIXME: Only handle fixed-size arrays so far");
const llvm::Type *EltTy = ConvertType(A.getElementType(), Loc);
return llvm::ArrayType::get(EltTy,
cast<llvm::ConstantInt>(Size.getVal())->getZExtValue());
}
case Type::FunctionNoProto:
case Type::FunctionProto: {
const FunctionType &FP = cast<FunctionType>(Ty);
const llvm::Type *ResultType;
if (FP.getResultType()->isVoidType())
ResultType = llvm::Type::VoidTy; // Result of function uses llvm void.
else
ResultType = ConvertType(FP.getResultType(), Loc);
// FIXME: Convert argument types.
bool isVarArg;
std::vector<const llvm::Type*> ArgTys;
if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(&FP)) {
DecodeArgumentTypes(*FTP, ArgTys, Loc);
isVarArg = FTP->isVariadic();
} else {
isVarArg = true;
}
return llvm::FunctionType::get(ResultType, ArgTys, isVarArg, 0);
}
case Type::TypeName:
case Type::Tagged:
break;
}
// FIXME: implement.
return llvm::OpaqueType::get();
}
void CodeGenFunction::DecodeArgumentTypes(const FunctionTypeProto &FTP,
std::vector<const llvm::Type*> &
ArgTys, SourceLocation Loc) {
for (unsigned i = 0, e = FTP.getNumArgs(); i != e; ++i) {
const llvm::Type *Ty = ConvertType(FTP.getArgType(i), Loc);
if (Ty->isFirstClassType())
ArgTys.push_back(Ty);
else
ArgTys.push_back(llvm::PointerType::get(Ty));
}
}
void CodeGenFunction::GenerateCode(const FunctionDecl *FD) {
LLVMIntTy = ConvertType(getContext().IntTy, FD->getLocation());
LLVMPointerWidth = Target.getPointerWidth(FD->getLocation());
const llvm::FunctionType *Ty =
cast<llvm::FunctionType>(ConvertType(FD->getType(), FD->getLocation()));
// FIXME: param attributes for sext/zext etc.
CurFuncDecl = FD;
CurFn = new llvm::Function(Ty, llvm::Function::ExternalLinkage,
FD->getName(), &CGM.getModule());
llvm::BasicBlock *EntryBB = new llvm::BasicBlock("entry", CurFn);
Builder.SetInsertPoint(EntryBB);
// Create a marker to make it easy to insert allocas into the entryblock
// later.
llvm::Value *Undef = llvm::UndefValue::get(llvm::Type::Int32Ty);
AllocaInsertPt = Builder.CreateBitCast(Undef,llvm::Type::Int32Ty, "allocapt");
// Emit allocs for param decls.
llvm::Function::arg_iterator AI = CurFn->arg_begin();
for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i, ++AI) {
assert(AI != CurFn->arg_end() && "Argument mismatch!");
EmitParmDecl(*FD->getParamDecl(i), AI);
}
// Emit the function body.
EmitStmt(FD->getBody());
// Emit a return for code that falls off the end.
// FIXME: if this is C++ main, this should return 0.
if (Ty->getReturnType() == llvm::Type::VoidTy)
Builder.CreateRetVoid();
else
Builder.CreateRet(llvm::UndefValue::get(Ty->getReturnType()));
// Verify that the function is well formed.
assert(!verifyFunction(*CurFn));
}