llvm-project/mlir/lib/IR/Dominance.cpp
Matthias Springer 2d424765f4
[mlir][IR][NFC] DominanceInfo: Share same impl for block/op dominance (#115587)
The `properlyDominates` implementations for blocks and ops are very
similar. This commit replaces them with a single implementation that
operates on block iterators. That implementation can be used to
implement both `properlyDominates` variants.

Before:
```c++
template <bool IsPostDom>
bool DominanceInfoBase<IsPostDom>::properlyDominatesImpl(Block *a,
                                                         Block *b) const;
template <bool IsPostDom>
bool DominanceInfoBase<IsPostDom>::properlyDominatesImpl(
    Operation *a, Operation *b, bool enclosingOpOk) const;
```

After:
```c++
template <bool IsPostDom>
bool DominanceInfoBase<IsPostDom>::properlyDominatesImpl(
    Block *aBlock, Block::iterator aIt, Block *bBlock, Block::iterator bIt,
    bool enclosingOk) const;
```

Note: A subsequent commit will add a new public `properlyDominates`
overload that accepts block iterators. That functionality can then be
used to find a valid insertion point at which a range of values is
defined (by utilizing post dominance).
2025-01-04 09:12:03 +01:00

365 lines
13 KiB
C++

//===- Dominance.cpp - Dominator analysis for CFGs ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of dominance related classes and instantiations of extern
// templates.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/RegionKindInterface.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/GenericDomTreeConstruction.h"
using namespace mlir;
using namespace mlir::detail;
template class llvm::DominatorTreeBase<Block, /*IsPostDom=*/false>;
template class llvm::DominatorTreeBase<Block, /*IsPostDom=*/true>;
template class llvm::DomTreeNodeBase<Block>;
//===----------------------------------------------------------------------===//
// DominanceInfoBase
//===----------------------------------------------------------------------===//
template <bool IsPostDom>
DominanceInfoBase<IsPostDom>::~DominanceInfoBase() {
for (auto entry : dominanceInfos)
delete entry.second.getPointer();
}
template <bool IsPostDom>
void DominanceInfoBase<IsPostDom>::invalidate() {
for (auto entry : dominanceInfos)
delete entry.second.getPointer();
dominanceInfos.clear();
}
template <bool IsPostDom>
void DominanceInfoBase<IsPostDom>::invalidate(Region *region) {
auto it = dominanceInfos.find(region);
if (it != dominanceInfos.end()) {
delete it->second.getPointer();
dominanceInfos.erase(it);
}
}
/// Return the dom tree and "hasSSADominance" bit for the given region. The
/// DomTree will be null for single-block regions. This lazily constructs the
/// DomTree on demand when needsDomTree=true.
template <bool IsPostDom>
auto DominanceInfoBase<IsPostDom>::getDominanceInfo(Region *region,
bool needsDomTree) const
-> llvm::PointerIntPair<DomTree *, 1, bool> {
// Check to see if we already have this information.
auto itAndInserted = dominanceInfos.insert({region, {nullptr, true}});
auto &entry = itAndInserted.first->second;
// This method builds on knowledge that multi-block regions always have
// SSADominance. Graph regions are only allowed to be single-block regions,
// but of course single-block regions may also have SSA dominance.
if (!itAndInserted.second) {
// We do have it, so we know the 'hasSSADominance' bit is correct, but we
// may not have constructed a DominatorTree yet. If we need it, build it.
if (needsDomTree && !entry.getPointer() && !region->hasOneBlock()) {
auto *domTree = new DomTree();
domTree->recalculate(*region);
entry.setPointer(domTree);
}
return entry;
}
// Nope, lazily construct it. Create a DomTree if this is a multi-block
// region.
if (!region->hasOneBlock()) {
auto *domTree = new DomTree();
domTree->recalculate(*region);
entry.setPointer(domTree);
// Multiblock regions always have SSA dominance, leave `second` set to true.
return entry;
}
// Single block regions have a more complicated predicate.
if (Operation *parentOp = region->getParentOp()) {
if (!parentOp->isRegistered()) { // We don't know about unregistered ops.
entry.setInt(false);
} else if (auto regionKindItf = dyn_cast<RegionKindInterface>(parentOp)) {
// Registered ops can opt-out of SSA dominance with
// RegionKindInterface.
entry.setInt(regionKindItf.hasSSADominance(region->getRegionNumber()));
}
}
return entry;
}
/// Return the ancestor block enclosing the specified block. This returns null
/// if we reach the top of the hierarchy.
static Block *getAncestorBlock(Block *block) {
if (Operation *ancestorOp = block->getParentOp())
return ancestorOp->getBlock();
return nullptr;
}
/// Walks up the list of containers of the given block and calls the
/// user-defined traversal function for every pair of a region and block that
/// could be found during traversal. If the user-defined function returns true
/// for a given pair, traverseAncestors will return the current block. Nullptr
/// otherwise.
template <typename FuncT>
static Block *traverseAncestors(Block *block, const FuncT &func) {
do {
// Invoke the user-defined traversal function for each block.
if (func(block))
return block;
} while ((block = getAncestorBlock(block)));
return nullptr;
}
/// Tries to update the given block references to live in the same region by
/// exploring the relationship of both blocks with respect to their regions.
static bool tryGetBlocksInSameRegion(Block *&a, Block *&b) {
// If both block do not live in the same region, we will have to check their
// parent operations.
Region *aRegion = a->getParent();
Region *bRegion = b->getParent();
if (aRegion == bRegion)
return true;
// Iterate over all ancestors of `a`, counting the depth of `a`. If one of
// `a`s ancestors are in the same region as `b`, then we stop early because we
// found our NCA.
size_t aRegionDepth = 0;
if (Block *aResult = traverseAncestors(a, [&](Block *block) {
++aRegionDepth;
return block->getParent() == bRegion;
})) {
a = aResult;
return true;
}
// Iterate over all ancestors of `b`, counting the depth of `b`. If one of
// `b`s ancestors are in the same region as `a`, then we stop early because
// we found our NCA.
size_t bRegionDepth = 0;
if (Block *bResult = traverseAncestors(b, [&](Block *block) {
++bRegionDepth;
return block->getParent() == aRegion;
})) {
b = bResult;
return true;
}
// Otherwise we found two blocks that are siblings at some level. Walk the
// deepest one up until we reach the top or find an NCA.
while (true) {
if (aRegionDepth > bRegionDepth) {
a = getAncestorBlock(a);
--aRegionDepth;
} else if (aRegionDepth < bRegionDepth) {
b = getAncestorBlock(b);
--bRegionDepth;
} else {
break;
}
}
// If we found something with the same level, then we can march both up at the
// same time from here on out.
while (a) {
// If they are at the same level, and have the same parent region then we
// succeeded.
if (a->getParent() == b->getParent())
return true;
a = getAncestorBlock(a);
b = getAncestorBlock(b);
}
// They don't share an NCA, perhaps they are in different modules or
// something.
return false;
}
template <bool IsPostDom>
Block *
DominanceInfoBase<IsPostDom>::findNearestCommonDominator(Block *a,
Block *b) const {
// If either a or b are null, then conservatively return nullptr.
if (!a || !b)
return nullptr;
// If they are the same block, then we are done.
if (a == b)
return a;
// Try to find blocks that are in the same region.
if (!tryGetBlocksInSameRegion(a, b))
return nullptr;
// If the common ancestor in a common region is the same block, then return
// it.
if (a == b)
return a;
// Otherwise, there must be multiple blocks in the region, check the
// DomTree.
return getDomTree(a->getParent()).findNearestCommonDominator(a, b);
}
/// Returns the given block iterator if it lies within the region region.
/// Otherwise, otherwise finds the ancestor of the given block iterator that
/// lies within the given region. Returns and "empty" iterator if the latter
/// fails.
///
/// Note: This is a variant of Region::findAncestorOpInRegion that operates on
/// block iterators instead of ops.
static std::pair<Block *, Block::iterator>
findAncestorIteratorInRegion(Region *r, Block *b, Block::iterator it) {
// Case 1: The iterator lies within the region region.
if (b->getParent() == r)
return std::make_pair(b, it);
// Otherwise: Find ancestor iterator. Bail if we run out of parent ops.
Operation *parentOp = b->getParentOp();
if (!parentOp)
return std::make_pair(static_cast<Block *>(nullptr), Block::iterator());
Operation *op = r->findAncestorOpInRegion(*parentOp);
if (!op)
return std::make_pair(static_cast<Block *>(nullptr), Block::iterator());
return std::make_pair(op->getBlock(), op->getIterator());
}
/// Given two iterators into the same block, return "true" if `a` is before `b.
/// Note: This is a variant of Operation::isBeforeInBlock that operates on
/// block iterators instead of ops.
static bool isBeforeInBlock(Block *block, Block::iterator a,
Block::iterator b) {
if (a == b)
return false;
if (a == block->end())
return false;
if (b == block->end())
return true;
return a->isBeforeInBlock(&*b);
}
template <bool IsPostDom>
bool DominanceInfoBase<IsPostDom>::properlyDominatesImpl(
Block *aBlock, Block::iterator aIt, Block *bBlock, Block::iterator bIt,
bool enclosingOk) const {
assert(aBlock && bBlock && "expected non-null blocks");
// A block iterator (post)dominates, but does not properly (post)dominate,
// itself unless this is a graph region.
if (aBlock == bBlock && aIt == bIt)
return !hasSSADominance(aBlock);
// If the iterators are in different regions, then normalize one into the
// other.
Region *aRegion = aBlock->getParent();
if (aRegion != bBlock->getParent()) {
// Scoot up b's region tree until we find a location in A's region that
// encloses it. If this fails, then we know there is no (post)dom relation.
if (!aRegion) {
bBlock = nullptr;
bIt = Block::iterator();
} else {
std::tie(bBlock, bIt) =
findAncestorIteratorInRegion(aRegion, bBlock, bIt);
}
if (!bBlock)
return false;
assert(bBlock->getParent() == aRegion && "expected block in regionA");
// If 'a' encloses 'b', then we consider it to (post)dominate.
if (aBlock == bBlock && aIt == bIt && enclosingOk)
return true;
}
// Ok, they are in the same region now.
if (aBlock == bBlock) {
// Dominance changes based on the region type. In a region with SSA
// dominance, uses inside the same block must follow defs. In other
// regions kinds, uses and defs can come in any order inside a block.
if (!hasSSADominance(aBlock))
return true;
if constexpr (IsPostDom) {
return isBeforeInBlock(aBlock, bIt, aIt);
} else {
return isBeforeInBlock(aBlock, aIt, bIt);
}
}
// If the blocks are different, use DomTree to resolve the query.
return getDomTree(aRegion).properlyDominates(aBlock, bBlock);
}
/// Return true if the specified block is reachable from the entry block of
/// its region.
template <bool IsPostDom>
bool DominanceInfoBase<IsPostDom>::isReachableFromEntry(Block *a) const {
// If this is the first block in its region, then it is obviously reachable.
Region *region = a->getParent();
if (&region->front() == a)
return true;
// Otherwise this is some block in a multi-block region. Check DomTree.
return getDomTree(region).isReachableFromEntry(a);
}
template class detail::DominanceInfoBase</*IsPostDom=*/true>;
template class detail::DominanceInfoBase</*IsPostDom=*/false>;
//===----------------------------------------------------------------------===//
// DominanceInfo
//===----------------------------------------------------------------------===//
bool DominanceInfo::properlyDominates(Operation *a, Operation *b,
bool enclosingOpOk) const {
return super::properlyDominatesImpl(a->getBlock(), a->getIterator(),
b->getBlock(), b->getIterator(),
enclosingOpOk);
}
bool DominanceInfo::properlyDominates(Block *a, Block *b) const {
return super::properlyDominatesImpl(a, a->begin(), b, b->begin(),
/*enclosingOk=*/true);
}
/// Return true if the `a` value properly dominates operation `b`, i.e if the
/// operation that defines `a` properlyDominates `b` and the operation that
/// defines `a` does not contain `b`.
bool DominanceInfo::properlyDominates(Value a, Operation *b) const {
// block arguments properly dominate all operations in their own block, so
// we use a dominates check here, not a properlyDominates check.
if (auto blockArg = dyn_cast<BlockArgument>(a))
return dominates(blockArg.getOwner(), b->getBlock());
// `a` properlyDominates `b` if the operation defining `a` properlyDominates
// `b`, but `a` does not itself enclose `b` in one of its regions.
return properlyDominates(a.getDefiningOp(), b, /*enclosingOpOk=*/false);
}
//===----------------------------------------------------------------------===//
// PostDominanceInfo
//===----------------------------------------------------------------------===//
bool PostDominanceInfo::properlyPostDominates(Operation *a, Operation *b,
bool enclosingOpOk) const {
return super::properlyDominatesImpl(a->getBlock(), a->getIterator(),
b->getBlock(), b->getIterator(),
enclosingOpOk);
}
bool PostDominanceInfo::properlyPostDominates(Block *a, Block *b) const {
return super::properlyDominatesImpl(a, a->end(), b, b->end(),
/*enclosingOk=*/true);
}