llvm-project/llvm/lib/CodeGen/GlobalMergeFunctions.cpp
Kyungwoo Lee 5a2888ddbd Revert "[CGData] Refactor Global Merge Functions (#115750)"
This reverts commit d3da78863c7021fa2447a168dc03ad791db69dc6.
2024-11-13 21:23:16 -08:00

673 lines
24 KiB
C++

//===---- GlobalMergeFunctions.cpp - Global merge functions -------*- C++ -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements the global merge function pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalMergeFunctions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/CGData/CodeGenData.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/StructuralHash.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#define DEBUG_TYPE "global-merge-func"
using namespace llvm;
using namespace llvm::support;
static cl::opt<bool> DisableCGDataForMerging(
"disable-cgdata-for-merging", cl::Hidden,
cl::desc("Disable codegen data for function merging. Local "
"merging is still enabled within a module."),
cl::init(false));
STATISTIC(NumMismatchedFunctionHash,
"Number of mismatched function hash for global merge function");
STATISTIC(NumMismatchedInstCount,
"Number of mismatched instruction count for global merge function");
STATISTIC(NumMismatchedConstHash,
"Number of mismatched const hash for global merge function");
STATISTIC(NumMismatchedModuleId,
"Number of mismatched Module Id for global merge function");
STATISTIC(NumMergedFunctions,
"Number of functions that are actually merged using function hash");
STATISTIC(NumAnalyzedModues, "Number of modules that are analyzed");
STATISTIC(NumAnalyzedFunctions, "Number of functions that are analyzed");
STATISTIC(NumEligibleFunctions, "Number of functions that are eligible");
/// Returns true if the \OpIdx operand of \p CI is the callee operand.
static bool isCalleeOperand(const CallBase *CI, unsigned OpIdx) {
return &CI->getCalledOperandUse() == &CI->getOperandUse(OpIdx);
}
static bool canParameterizeCallOperand(const CallBase *CI, unsigned OpIdx) {
if (CI->isInlineAsm())
return false;
Function *Callee = CI->getCalledOperand()
? dyn_cast_or_null<Function>(
CI->getCalledOperand()->stripPointerCasts())
: nullptr;
if (Callee) {
if (Callee->isIntrinsic())
return false;
auto Name = Callee->getName();
// objc_msgSend stubs must be called, and can't have their address taken.
if (Name.starts_with("objc_msgSend$"))
return false;
// Calls to dtrace probes must generate unique patchpoints.
if (Name.starts_with("__dtrace"))
return false;
}
if (isCalleeOperand(CI, OpIdx) &&
CI->getOperandBundle(LLVMContext::OB_ptrauth).has_value()) {
// The operand is the callee and it has already been signed. Ignore this
// because we cannot add another ptrauth bundle to the call instruction.
return false;
}
return true;
}
/// Returns true if function \p F is eligible for merging.
bool isEligibleFunction(Function *F) {
if (F->isDeclaration())
return false;
if (F->hasFnAttribute(llvm::Attribute::NoMerge) ||
F->hasFnAttribute(llvm::Attribute::AlwaysInline))
return false;
if (F->hasAvailableExternallyLinkage())
return false;
if (F->getFunctionType()->isVarArg())
return false;
if (F->getCallingConv() == CallingConv::SwiftTail)
return false;
// If function contains callsites with musttail, if we merge
// it, the merged function will have the musttail callsite, but
// the number of parameters can change, thus the parameter count
// of the callsite will mismatch with the function itself.
for (const BasicBlock &BB : *F) {
for (const Instruction &I : BB) {
const auto *CB = dyn_cast<CallBase>(&I);
if (CB && CB->isMustTailCall())
return false;
}
}
return true;
}
static bool isEligibleInstrunctionForConstantSharing(const Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Load:
case Instruction::Store:
case Instruction::Call:
case Instruction::Invoke:
return true;
default:
return false;
}
}
static bool ignoreOp(const Instruction *I, unsigned OpIdx) {
assert(OpIdx < I->getNumOperands() && "Invalid operand index");
if (!isEligibleInstrunctionForConstantSharing(I))
return false;
if (!isa<Constant>(I->getOperand(OpIdx)))
return false;
if (const auto *CI = dyn_cast<CallBase>(I))
return canParameterizeCallOperand(CI, OpIdx);
return true;
}
static Value *createCast(IRBuilder<> &Builder, Value *V, Type *DestTy) {
Type *SrcTy = V->getType();
if (SrcTy->isStructTy()) {
assert(DestTy->isStructTy());
assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
Value *Result = PoisonValue::get(DestTy);
for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
Value *Element =
createCast(Builder, Builder.CreateExtractValue(V, ArrayRef(I)),
DestTy->getStructElementType(I));
Result = Builder.CreateInsertValue(Result, Element, ArrayRef(I));
}
return Result;
}
assert(!DestTy->isStructTy());
if (auto *SrcAT = dyn_cast<ArrayType>(SrcTy)) {
auto *DestAT = dyn_cast<ArrayType>(DestTy);
assert(DestAT);
assert(SrcAT->getNumElements() == DestAT->getNumElements());
Value *Result = UndefValue::get(DestTy);
for (unsigned int I = 0, E = SrcAT->getNumElements(); I < E; ++I) {
Value *Element =
createCast(Builder, Builder.CreateExtractValue(V, ArrayRef(I)),
DestAT->getElementType());
Result = Builder.CreateInsertValue(Result, Element, ArrayRef(I));
}
return Result;
}
assert(!DestTy->isArrayTy());
if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
return Builder.CreateIntToPtr(V, DestTy);
if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
return Builder.CreatePtrToInt(V, DestTy);
return Builder.CreateBitCast(V, DestTy);
}
void GlobalMergeFunc::analyze(Module &M) {
++NumAnalyzedModues;
for (Function &Func : M) {
++NumAnalyzedFunctions;
if (isEligibleFunction(&Func)) {
++NumEligibleFunctions;
auto FI = llvm::StructuralHashWithDifferences(Func, ignoreOp);
// Convert the operand map to a vector for a serialization-friendly
// format.
IndexOperandHashVecType IndexOperandHashes;
for (auto &Pair : *FI.IndexOperandHashMap)
IndexOperandHashes.emplace_back(Pair);
StableFunction SF(FI.FunctionHash, get_stable_name(Func.getName()).str(),
M.getModuleIdentifier(), FI.IndexInstruction->size(),
std::move(IndexOperandHashes));
LocalFunctionMap->insert(SF);
}
}
}
/// Tuple to hold function info to process merging.
struct FuncMergeInfo {
StableFunctionMap::StableFunctionEntry *SF;
Function *F;
std::unique_ptr<IndexInstrMap> IndexInstruction;
FuncMergeInfo(StableFunctionMap::StableFunctionEntry *SF, Function *F,
std::unique_ptr<IndexInstrMap> IndexInstruction)
: SF(SF), F(F), IndexInstruction(std::move(IndexInstruction)) {}
};
// Given the func info, and the parameterized locations, create and return
// a new merged function by replacing the original constants with the new
// parameters.
static Function *createMergedFunction(FuncMergeInfo &FI,
ArrayRef<Type *> ConstParamTypes,
const ParamLocsVecTy &ParamLocsVec) {
// Synthesize a new merged function name by appending ".Tgm" to the root
// function's name.
auto *MergedFunc = FI.F;
std::string NewFunctionName =
MergedFunc->getName().str() + GlobalMergeFunc::MergingInstanceSuffix;
auto *M = MergedFunc->getParent();
assert(!M->getFunction(NewFunctionName));
FunctionType *OrigTy = MergedFunc->getFunctionType();
// Get the original params' types.
SmallVector<Type *> ParamTypes(OrigTy->param_begin(), OrigTy->param_end());
// Append const parameter types that are passed in.
ParamTypes.append(ConstParamTypes.begin(), ConstParamTypes.end());
FunctionType *FuncType = FunctionType::get(OrigTy->getReturnType(),
ParamTypes, /*isVarArg=*/false);
// Declare a new function
Function *NewFunction =
Function::Create(FuncType, MergedFunc->getLinkage(), NewFunctionName);
if (auto *SP = MergedFunc->getSubprogram())
NewFunction->setSubprogram(SP);
NewFunction->copyAttributesFrom(MergedFunc);
NewFunction->setDLLStorageClass(GlobalValue::DefaultStorageClass);
NewFunction->setLinkage(GlobalValue::InternalLinkage);
NewFunction->addFnAttr(Attribute::NoInline);
// Add the new function before the root function.
M->getFunctionList().insert(MergedFunc->getIterator(), NewFunction);
// Move the body of MergedFunc into the NewFunction.
NewFunction->splice(NewFunction->begin(), MergedFunc);
// Update the original args by the new args.
auto NewArgIter = NewFunction->arg_begin();
for (Argument &OrigArg : MergedFunc->args()) {
Argument &NewArg = *NewArgIter++;
OrigArg.replaceAllUsesWith(&NewArg);
}
// Replace the original Constants by the new args.
unsigned NumOrigArgs = MergedFunc->arg_size();
for (unsigned ParamIdx = 0; ParamIdx < ParamLocsVec.size(); ++ParamIdx) {
Argument *NewArg = NewFunction->getArg(NumOrigArgs + ParamIdx);
for (auto [InstIndex, OpndIndex] : ParamLocsVec[ParamIdx]) {
auto *Inst = FI.IndexInstruction->lookup(InstIndex);
auto *OrigC = Inst->getOperand(OpndIndex);
if (OrigC->getType() != NewArg->getType()) {
IRBuilder<> Builder(Inst->getParent(), Inst->getIterator());
Inst->setOperand(OpndIndex,
createCast(Builder, NewArg, OrigC->getType()));
} else {
Inst->setOperand(OpndIndex, NewArg);
}
}
}
return NewFunction;
}
// Given the original function (Thunk) and the merged function (ToFunc), create
// a thunk to the merged function.
static void createThunk(FuncMergeInfo &FI, ArrayRef<Constant *> Params,
Function *ToFunc) {
auto *Thunk = FI.F;
assert(Thunk->arg_size() + Params.size() ==
ToFunc->getFunctionType()->getNumParams());
Thunk->dropAllReferences();
BasicBlock *BB = BasicBlock::Create(Thunk->getContext(), "", Thunk);
IRBuilder<> Builder(BB);
SmallVector<Value *> Args;
unsigned ParamIdx = 0;
FunctionType *ToFuncTy = ToFunc->getFunctionType();
// Add arguments which are passed through Thunk.
for (Argument &AI : Thunk->args()) {
Args.push_back(createCast(Builder, &AI, ToFuncTy->getParamType(ParamIdx)));
++ParamIdx;
}
// Add new arguments defined by Params.
for (auto *Param : Params) {
assert(ParamIdx < ToFuncTy->getNumParams());
Args.push_back(
createCast(Builder, Param, ToFuncTy->getParamType(ParamIdx)));
++ParamIdx;
}
CallInst *CI = Builder.CreateCall(ToFunc, Args);
bool isSwiftTailCall = ToFunc->getCallingConv() == CallingConv::SwiftTail &&
Thunk->getCallingConv() == CallingConv::SwiftTail;
CI->setTailCallKind(isSwiftTailCall ? llvm::CallInst::TCK_MustTail
: llvm::CallInst::TCK_Tail);
CI->setCallingConv(ToFunc->getCallingConv());
CI->setAttributes(ToFunc->getAttributes());
if (Thunk->getReturnType()->isVoidTy())
Builder.CreateRetVoid();
else
Builder.CreateRet(createCast(Builder, CI, Thunk->getReturnType()));
}
// Check if the old merged/optimized IndexOperandHashMap is compatible with
// the current IndexOperandHashMap. An operand hash may not be stable across
// different builds due to varying modules combined. To address this, we relax
// the hash check condition by comparing Const hash patterns instead of absolute
// hash values. For example, let's assume we have three Consts located at idx1,
// idx3, and idx6, where their corresponding hashes are hash1, hash2, and hash1
// in the old merged map below:
// Old (Merged): [(idx1, hash1), (idx3, hash2), (idx6, hash1)]
// Current: [(idx1, hash1'), (idx3, hash2'), (idx6, hash1')]
// If the current function also has three Consts in the same locations,
// with hash sequences hash1', hash2', and hash1' where the first and third
// are the same as the old hash sequences, we consider them matched.
static bool checkConstHashCompatible(
const DenseMap<IndexPair, stable_hash> &OldInstOpndIndexToConstHash,
const DenseMap<IndexPair, stable_hash> &CurrInstOpndIndexToConstHash) {
DenseMap<stable_hash, stable_hash> OldHashToCurrHash;
for (const auto &[Index, OldHash] : OldInstOpndIndexToConstHash) {
auto It = CurrInstOpndIndexToConstHash.find(Index);
if (It == CurrInstOpndIndexToConstHash.end())
return false;
auto CurrHash = It->second;
auto J = OldHashToCurrHash.find(OldHash);
if (J == OldHashToCurrHash.end())
OldHashToCurrHash.insert({OldHash, CurrHash});
else if (J->second != CurrHash)
return false;
}
return true;
}
// Validate the locations pointed by a param has the same hash and Constant.
static bool
checkConstLocationCompatible(const StableFunctionMap::StableFunctionEntry &SF,
const IndexInstrMap &IndexInstruction,
const ParamLocsVecTy &ParamLocsVec) {
for (auto &ParamLocs : ParamLocsVec) {
std::optional<stable_hash> OldHash;
std::optional<Constant *> OldConst;
for (auto &Loc : ParamLocs) {
assert(SF.IndexOperandHashMap->count(Loc));
auto CurrHash = SF.IndexOperandHashMap.get()->at(Loc);
auto [InstIndex, OpndIndex] = Loc;
assert(InstIndex < IndexInstruction.size());
const auto *Inst = IndexInstruction.lookup(InstIndex);
auto *CurrConst = cast<Constant>(Inst->getOperand(OpndIndex));
if (!OldHash) {
OldHash = CurrHash;
OldConst = CurrConst;
} else if (CurrConst != *OldConst || CurrHash != *OldHash) {
return false;
}
}
}
return true;
}
static ParamLocsVecTy computeParamInfo(
const SmallVector<std::unique_ptr<StableFunctionMap::StableFunctionEntry>>
&SFS) {
std::map<std::vector<stable_hash>, ParamLocs> HashSeqToLocs;
auto &RSF = *SFS[0];
unsigned StableFunctionCount = SFS.size();
for (auto &[IndexPair, Hash] : *RSF.IndexOperandHashMap) {
// Const hash sequence across stable functions.
// We will allocate a parameter per unique hash squence.
// can't use SmallVector as key
std::vector<stable_hash> ConstHashSeq;
ConstHashSeq.push_back(Hash);
bool Identical = true;
for (unsigned J = 1; J < StableFunctionCount; ++J) {
auto &SF = SFS[J];
auto SHash = SF->IndexOperandHashMap->at(IndexPair);
if (Hash != SHash)
Identical = false;
ConstHashSeq.push_back(SHash);
}
if (Identical)
continue;
// For each unique Const hash sequence (parameter), add the locations.
HashSeqToLocs[ConstHashSeq].push_back(IndexPair);
}
ParamLocsVecTy ParamLocsVec;
for (auto &[HashSeq, Locs] : HashSeqToLocs) {
ParamLocsVec.push_back(std::move(Locs));
llvm::sort(ParamLocsVec, [&](const ParamLocs &L, const ParamLocs &R) {
return L[0] < R[0];
});
}
return ParamLocsVec;
}
bool GlobalMergeFunc::merge(Module &M, const StableFunctionMap *FunctionMap) {
bool Changed = false;
// Build a map from stable function name to function.
StringMap<Function *> StableNameToFuncMap;
for (auto &F : M)
StableNameToFuncMap[get_stable_name(F.getName())] = &F;
// Track merged functions
DenseSet<Function *> MergedFunctions;
auto ModId = M.getModuleIdentifier();
for (auto &[Hash, SFS] : FunctionMap->getFunctionMap()) {
// Parameter locations based on the unique hash sequences
// across the candidates.
std::optional<ParamLocsVecTy> ParamLocsVec;
Function *MergedFunc = nullptr;
std::string MergedModId;
SmallVector<FuncMergeInfo> FuncMergeInfos;
for (auto &SF : SFS) {
// Get the function from the stable name.
auto I = StableNameToFuncMap.find(
*FunctionMap->getNameForId(SF->FunctionNameId));
if (I == StableNameToFuncMap.end())
continue;
Function *F = I->second;
assert(F);
// Skip if the function has been merged before.
if (MergedFunctions.count(F))
continue;
// Consider the function if it is eligible for merging.
if (!isEligibleFunction(F))
continue;
auto FI = llvm::StructuralHashWithDifferences(*F, ignoreOp);
uint64_t FuncHash = FI.FunctionHash;
if (Hash != FuncHash) {
++NumMismatchedFunctionHash;
continue;
}
if (SF->InstCount != FI.IndexInstruction->size()) {
++NumMismatchedInstCount;
continue;
}
bool HasValidSharedConst = true;
for (auto &[Index, Hash] : *SF->IndexOperandHashMap) {
auto [InstIndex, OpndIndex] = Index;
assert(InstIndex < FI.IndexInstruction->size());
auto *Inst = FI.IndexInstruction->lookup(InstIndex);
if (!ignoreOp(Inst, OpndIndex)) {
HasValidSharedConst = false;
break;
}
}
if (!HasValidSharedConst) {
++NumMismatchedConstHash;
continue;
}
if (!checkConstHashCompatible(*SF->IndexOperandHashMap,
*FI.IndexOperandHashMap)) {
++NumMismatchedConstHash;
continue;
}
if (!ParamLocsVec.has_value()) {
ParamLocsVec = computeParamInfo(SFS);
LLVM_DEBUG(dbgs() << "[GlobalMergeFunc] Merging hash: " << Hash
<< " with Params " << ParamLocsVec->size() << "\n");
}
if (!checkConstLocationCompatible(*SF, *FI.IndexInstruction,
*ParamLocsVec)) {
++NumMismatchedConstHash;
continue;
}
if (MergedFunc) {
// Check if the matched functions fall into the same (first) module.
// This module check is not strictly necessary as the functions can move
// around. We just want to avoid merging functions from different
// modules than the first one in the function map, as they may not end
// up with being ICFed by the linker.
if (MergedModId != *FunctionMap->getNameForId(SF->ModuleNameId)) {
++NumMismatchedModuleId;
continue;
}
} else {
MergedFunc = F;
MergedModId = *FunctionMap->getNameForId(SF->ModuleNameId);
}
FuncMergeInfos.emplace_back(SF.get(), F, std::move(FI.IndexInstruction));
MergedFunctions.insert(F);
}
unsigned FuncMergeInfoSize = FuncMergeInfos.size();
if (FuncMergeInfoSize == 0)
continue;
LLVM_DEBUG(dbgs() << "[GlobalMergeFunc] Merging function count "
<< FuncMergeInfoSize << " in " << ModId << "\n");
for (auto &FMI : FuncMergeInfos) {
Changed = true;
// We've already validated all locations of constant operands pointed by
// the parameters. Populate parameters pointing to the original constants.
SmallVector<Constant *> Params;
SmallVector<Type *> ParamTypes;
for (auto &ParamLocs : *ParamLocsVec) {
assert(!ParamLocs.empty());
auto &[InstIndex, OpndIndex] = ParamLocs[0];
auto *Inst = FMI.IndexInstruction->lookup(InstIndex);
auto *Opnd = cast<Constant>(Inst->getOperand(OpndIndex));
Params.push_back(Opnd);
ParamTypes.push_back(Opnd->getType());
}
// Create a merged function derived from the current function.
Function *MergedFunc =
createMergedFunction(FMI, ParamTypes, *ParamLocsVec);
LLVM_DEBUG({
dbgs() << "[GlobalMergeFunc] Merged function (hash:" << FMI.SF->Hash
<< ") " << MergedFunc->getName() << " generated from "
<< FMI.F->getName() << ":\n";
MergedFunc->dump();
});
// Transform the current function into a thunk that calls the merged
// function.
createThunk(FMI, Params, MergedFunc);
LLVM_DEBUG({
dbgs() << "[GlobalMergeFunc] Thunk generated: \n";
FMI.F->dump();
});
++NumMergedFunctions;
}
}
return Changed;
}
void GlobalMergeFunc::initializeMergerMode(const Module &M) {
// Initialize the local function map regardless of the merger mode.
LocalFunctionMap = std::make_unique<StableFunctionMap>();
// Disable codegen data for merging. The local merge is still enabled.
if (DisableCGDataForMerging)
return;
// (Full)LTO module does not have functions added to the index.
// In this case, we run a local merger without using codegen data.
if (Index && !Index->hasExportedFunctions(M))
return;
if (cgdata::emitCGData())
MergerMode = HashFunctionMode::BuildingHashFuncion;
else if (cgdata::hasStableFunctionMap())
MergerMode = HashFunctionMode::UsingHashFunction;
}
void GlobalMergeFunc::emitFunctionMap(Module &M) {
LLVM_DEBUG(dbgs() << "Emit function map. Size: " << LocalFunctionMap->size()
<< "\n");
// No need to emit the function map if it is empty.
if (LocalFunctionMap->empty())
return;
SmallVector<char> Buf;
raw_svector_ostream OS(Buf);
StableFunctionMapRecord::serialize(OS, LocalFunctionMap.get());
std::unique_ptr<MemoryBuffer> Buffer = MemoryBuffer::getMemBuffer(
OS.str(), "in-memory stable function map", false);
Triple TT(M.getTargetTriple());
embedBufferInModule(M, *Buffer.get(),
getCodeGenDataSectionName(CG_merge, TT.getObjectFormat()),
Align(4));
}
bool GlobalMergeFunc::run(Module &M) {
initializeMergerMode(M);
const StableFunctionMap *FuncMap;
if (MergerMode == HashFunctionMode::UsingHashFunction) {
// Use the prior CG data to optimistically create global merge candidates.
FuncMap = cgdata::getStableFunctionMap();
} else {
analyze(M);
// Emit the local function map to the custom section, __llvm_merge before
// finalizing it.
if (MergerMode == HashFunctionMode::BuildingHashFuncion)
emitFunctionMap(M);
LocalFunctionMap->finalize();
FuncMap = LocalFunctionMap.get();
}
return merge(M, FuncMap);
}
namespace {
class GlobalMergeFuncPassWrapper : public ModulePass {
public:
static char ID;
GlobalMergeFuncPassWrapper();
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addUsedIfAvailable<ImmutableModuleSummaryIndexWrapperPass>();
AU.setPreservesAll();
ModulePass::getAnalysisUsage(AU);
}
StringRef getPassName() const override { return "Global Merge Functions"; }
bool runOnModule(Module &M) override;
};
} // namespace
char GlobalMergeFuncPassWrapper::ID = 0;
INITIALIZE_PASS_BEGIN(GlobalMergeFuncPassWrapper, "global-merge-func",
"Global merge function pass", false, false)
INITIALIZE_PASS_END(GlobalMergeFuncPassWrapper, "global-merge-func",
"Global merge function pass", false, false)
namespace llvm {
ModulePass *createGlobalMergeFuncPass() {
return new GlobalMergeFuncPassWrapper();
}
} // namespace llvm
GlobalMergeFuncPassWrapper::GlobalMergeFuncPassWrapper() : ModulePass(ID) {
initializeGlobalMergeFuncPassWrapperPass(
*llvm::PassRegistry::getPassRegistry());
}
bool GlobalMergeFuncPassWrapper::runOnModule(Module &M) {
const ModuleSummaryIndex *Index = nullptr;
if (auto *IndexWrapperPass =
getAnalysisIfAvailable<ImmutableModuleSummaryIndexWrapperPass>())
Index = IndexWrapperPass->getIndex();
return GlobalMergeFunc(Index).run(M);
}
PreservedAnalyses GlobalMergeFuncPass::run(Module &M,
AnalysisManager<Module> &AM) {
ModuleSummaryIndex *Index = &(AM.getResult<ModuleSummaryIndexAnalysis>(M));
bool Changed = GlobalMergeFunc(Index).run(M);
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}