mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-27 08:26:08 +00:00

Use the internal computeForAddCarry directly since we know the exact values of the carry bit.
1148 lines
40 KiB
C++
1148 lines
40 KiB
C++
//===-- KnownBits.cpp - Stores known zeros/ones ---------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a class for representing known zeros and ones used by
|
|
// computeKnownBits.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
|
|
using namespace llvm;
|
|
|
|
static KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS,
|
|
bool CarryZero, bool CarryOne) {
|
|
|
|
APInt PossibleSumZero = LHS.getMaxValue() + RHS.getMaxValue() + !CarryZero;
|
|
APInt PossibleSumOne = LHS.getMinValue() + RHS.getMinValue() + CarryOne;
|
|
|
|
// Compute known bits of the carry.
|
|
APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero);
|
|
APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One;
|
|
|
|
// Compute set of known bits (where all three relevant bits are known).
|
|
APInt LHSKnownUnion = LHS.Zero | LHS.One;
|
|
APInt RHSKnownUnion = RHS.Zero | RHS.One;
|
|
APInt CarryKnownUnion = std::move(CarryKnownZero) | CarryKnownOne;
|
|
APInt Known = std::move(LHSKnownUnion) & RHSKnownUnion & CarryKnownUnion;
|
|
|
|
// Compute known bits of the result.
|
|
KnownBits KnownOut;
|
|
KnownOut.Zero = ~std::move(PossibleSumZero) & Known;
|
|
KnownOut.One = std::move(PossibleSumOne) & Known;
|
|
return KnownOut;
|
|
}
|
|
|
|
KnownBits KnownBits::computeForAddCarry(
|
|
const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry) {
|
|
assert(Carry.getBitWidth() == 1 && "Carry must be 1-bit");
|
|
return ::computeForAddCarry(
|
|
LHS, RHS, Carry.Zero.getBoolValue(), Carry.One.getBoolValue());
|
|
}
|
|
|
|
KnownBits KnownBits::computeForAddSub(bool Add, bool NSW, bool NUW,
|
|
const KnownBits &LHS,
|
|
const KnownBits &RHS) {
|
|
unsigned BitWidth = LHS.getBitWidth();
|
|
KnownBits KnownOut(BitWidth);
|
|
// This can be a relatively expensive helper, so optimistically save some
|
|
// work.
|
|
if (LHS.isUnknown() && RHS.isUnknown())
|
|
return KnownOut;
|
|
|
|
if (!LHS.isUnknown() && !RHS.isUnknown()) {
|
|
if (Add) {
|
|
// Sum = LHS + RHS + 0
|
|
KnownOut = ::computeForAddCarry(LHS, RHS, /*CarryZero=*/true,
|
|
/*CarryOne=*/false);
|
|
} else {
|
|
// Sum = LHS + ~RHS + 1
|
|
KnownBits NotRHS = RHS;
|
|
std::swap(NotRHS.Zero, NotRHS.One);
|
|
KnownOut = ::computeForAddCarry(LHS, NotRHS, /*CarryZero=*/false,
|
|
/*CarryOne=*/true);
|
|
}
|
|
}
|
|
|
|
// Handle add/sub given nsw and/or nuw.
|
|
if (NUW) {
|
|
if (Add) {
|
|
// (add nuw X, Y)
|
|
APInt MinVal = LHS.getMinValue().uadd_sat(RHS.getMinValue());
|
|
// None of the adds can end up overflowing, so min consecutive highbits
|
|
// in minimum possible of X + Y must all remain set.
|
|
if (NSW) {
|
|
unsigned NumBits = MinVal.trunc(BitWidth - 1).countl_one();
|
|
// If we have NSW as well, we also know we can't overflow the signbit so
|
|
// can start counting from 1 bit back.
|
|
KnownOut.One.setBits(BitWidth - 1 - NumBits, BitWidth - 1);
|
|
}
|
|
KnownOut.One.setHighBits(MinVal.countl_one());
|
|
} else {
|
|
// (sub nuw X, Y)
|
|
APInt MaxVal = LHS.getMaxValue().usub_sat(RHS.getMinValue());
|
|
// None of the subs can overflow at any point, so any common high bits
|
|
// will subtract away and result in zeros.
|
|
if (NSW) {
|
|
// If we have NSW as well, we also know we can't overflow the signbit so
|
|
// can start counting from 1 bit back.
|
|
unsigned NumBits = MaxVal.trunc(BitWidth - 1).countl_zero();
|
|
KnownOut.Zero.setBits(BitWidth - 1 - NumBits, BitWidth - 1);
|
|
}
|
|
KnownOut.Zero.setHighBits(MaxVal.countl_zero());
|
|
}
|
|
}
|
|
|
|
if (NSW) {
|
|
APInt MinVal;
|
|
APInt MaxVal;
|
|
if (Add) {
|
|
// (add nsw X, Y)
|
|
MinVal = LHS.getSignedMinValue().sadd_sat(RHS.getSignedMinValue());
|
|
MaxVal = LHS.getSignedMaxValue().sadd_sat(RHS.getSignedMaxValue());
|
|
} else {
|
|
// (sub nsw X, Y)
|
|
MinVal = LHS.getSignedMinValue().ssub_sat(RHS.getSignedMaxValue());
|
|
MaxVal = LHS.getSignedMaxValue().ssub_sat(RHS.getSignedMinValue());
|
|
}
|
|
if (MinVal.isNonNegative()) {
|
|
// If min is non-negative, result will always be non-neg (can't overflow
|
|
// around).
|
|
unsigned NumBits = MinVal.trunc(BitWidth - 1).countl_one();
|
|
KnownOut.One.setBits(BitWidth - 1 - NumBits, BitWidth - 1);
|
|
KnownOut.Zero.setSignBit();
|
|
}
|
|
if (MaxVal.isNegative()) {
|
|
// If max is negative, result will always be neg (can't overflow around).
|
|
unsigned NumBits = MaxVal.trunc(BitWidth - 1).countl_zero();
|
|
KnownOut.Zero.setBits(BitWidth - 1 - NumBits, BitWidth - 1);
|
|
KnownOut.One.setSignBit();
|
|
}
|
|
}
|
|
|
|
// Just return 0 if the nsw/nuw is violated and we have poison.
|
|
if (KnownOut.hasConflict())
|
|
KnownOut.setAllZero();
|
|
return KnownOut;
|
|
}
|
|
|
|
KnownBits KnownBits::computeForSubBorrow(const KnownBits &LHS, KnownBits RHS,
|
|
const KnownBits &Borrow) {
|
|
assert(Borrow.getBitWidth() == 1 && "Borrow must be 1-bit");
|
|
|
|
// LHS - RHS = LHS + ~RHS + 1
|
|
// Carry 1 - Borrow in ::computeForAddCarry
|
|
std::swap(RHS.Zero, RHS.One);
|
|
return ::computeForAddCarry(LHS, RHS,
|
|
/*CarryZero=*/Borrow.One.getBoolValue(),
|
|
/*CarryOne=*/Borrow.Zero.getBoolValue());
|
|
}
|
|
|
|
KnownBits KnownBits::sextInReg(unsigned SrcBitWidth) const {
|
|
unsigned BitWidth = getBitWidth();
|
|
assert(0 < SrcBitWidth && SrcBitWidth <= BitWidth &&
|
|
"Illegal sext-in-register");
|
|
|
|
if (SrcBitWidth == BitWidth)
|
|
return *this;
|
|
|
|
unsigned ExtBits = BitWidth - SrcBitWidth;
|
|
KnownBits Result;
|
|
Result.One = One << ExtBits;
|
|
Result.Zero = Zero << ExtBits;
|
|
Result.One.ashrInPlace(ExtBits);
|
|
Result.Zero.ashrInPlace(ExtBits);
|
|
return Result;
|
|
}
|
|
|
|
KnownBits KnownBits::makeGE(const APInt &Val) const {
|
|
// Count the number of leading bit positions where our underlying value is
|
|
// known to be less than or equal to Val.
|
|
unsigned N = (Zero | Val).countl_one();
|
|
|
|
// For each of those bit positions, if Val has a 1 in that bit then our
|
|
// underlying value must also have a 1.
|
|
APInt MaskedVal(Val);
|
|
MaskedVal.clearLowBits(getBitWidth() - N);
|
|
return KnownBits(Zero, One | MaskedVal);
|
|
}
|
|
|
|
KnownBits KnownBits::umax(const KnownBits &LHS, const KnownBits &RHS) {
|
|
// If we can prove that LHS >= RHS then use LHS as the result. Likewise for
|
|
// RHS. Ideally our caller would already have spotted these cases and
|
|
// optimized away the umax operation, but we handle them here for
|
|
// completeness.
|
|
if (LHS.getMinValue().uge(RHS.getMaxValue()))
|
|
return LHS;
|
|
if (RHS.getMinValue().uge(LHS.getMaxValue()))
|
|
return RHS;
|
|
|
|
// If the result of the umax is LHS then it must be greater than or equal to
|
|
// the minimum possible value of RHS. Likewise for RHS. Any known bits that
|
|
// are common to these two values are also known in the result.
|
|
KnownBits L = LHS.makeGE(RHS.getMinValue());
|
|
KnownBits R = RHS.makeGE(LHS.getMinValue());
|
|
return L.intersectWith(R);
|
|
}
|
|
|
|
KnownBits KnownBits::umin(const KnownBits &LHS, const KnownBits &RHS) {
|
|
// Flip the range of values: [0, 0xFFFFFFFF] <-> [0xFFFFFFFF, 0]
|
|
auto Flip = [](const KnownBits &Val) { return KnownBits(Val.One, Val.Zero); };
|
|
return Flip(umax(Flip(LHS), Flip(RHS)));
|
|
}
|
|
|
|
KnownBits KnownBits::smax(const KnownBits &LHS, const KnownBits &RHS) {
|
|
// Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0, 0xFFFFFFFF]
|
|
auto Flip = [](const KnownBits &Val) {
|
|
unsigned SignBitPosition = Val.getBitWidth() - 1;
|
|
APInt Zero = Val.Zero;
|
|
APInt One = Val.One;
|
|
Zero.setBitVal(SignBitPosition, Val.One[SignBitPosition]);
|
|
One.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]);
|
|
return KnownBits(Zero, One);
|
|
};
|
|
return Flip(umax(Flip(LHS), Flip(RHS)));
|
|
}
|
|
|
|
KnownBits KnownBits::smin(const KnownBits &LHS, const KnownBits &RHS) {
|
|
// Flip the range of values: [-0x80000000, 0x7FFFFFFF] <-> [0xFFFFFFFF, 0]
|
|
auto Flip = [](const KnownBits &Val) {
|
|
unsigned SignBitPosition = Val.getBitWidth() - 1;
|
|
APInt Zero = Val.One;
|
|
APInt One = Val.Zero;
|
|
Zero.setBitVal(SignBitPosition, Val.Zero[SignBitPosition]);
|
|
One.setBitVal(SignBitPosition, Val.One[SignBitPosition]);
|
|
return KnownBits(Zero, One);
|
|
};
|
|
return Flip(umax(Flip(LHS), Flip(RHS)));
|
|
}
|
|
|
|
KnownBits KnownBits::abdu(const KnownBits &LHS, const KnownBits &RHS) {
|
|
// If we know which argument is larger, return (sub LHS, RHS) or
|
|
// (sub RHS, LHS) directly.
|
|
if (LHS.getMinValue().uge(RHS.getMaxValue()))
|
|
return computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/false, LHS,
|
|
RHS);
|
|
if (RHS.getMinValue().uge(LHS.getMaxValue()))
|
|
return computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/false, RHS,
|
|
LHS);
|
|
|
|
// By construction, the subtraction in abdu never has unsigned overflow.
|
|
// Find the common bits between (sub nuw LHS, RHS) and (sub nuw RHS, LHS).
|
|
KnownBits Diff0 =
|
|
computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/true, LHS, RHS);
|
|
KnownBits Diff1 =
|
|
computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/true, RHS, LHS);
|
|
return Diff0.intersectWith(Diff1);
|
|
}
|
|
|
|
KnownBits KnownBits::abds(KnownBits LHS, KnownBits RHS) {
|
|
// If we know which argument is larger, return (sub LHS, RHS) or
|
|
// (sub RHS, LHS) directly.
|
|
if (LHS.getSignedMinValue().sge(RHS.getSignedMaxValue()))
|
|
return computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/false, LHS,
|
|
RHS);
|
|
if (RHS.getSignedMinValue().sge(LHS.getSignedMaxValue()))
|
|
return computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/false, RHS,
|
|
LHS);
|
|
|
|
// Shift both arguments from the signed range to the unsigned range, e.g. from
|
|
// [-0x80, 0x7F] to [0, 0xFF]. This allows us to use "sub nuw" below just like
|
|
// abdu does.
|
|
// Note that we can't just use "sub nsw" instead because abds has signed
|
|
// inputs but an unsigned result, which makes the overflow conditions
|
|
// different.
|
|
unsigned SignBitPosition = LHS.getBitWidth() - 1;
|
|
for (auto Arg : {&LHS, &RHS}) {
|
|
bool Tmp = Arg->Zero[SignBitPosition];
|
|
Arg->Zero.setBitVal(SignBitPosition, Arg->One[SignBitPosition]);
|
|
Arg->One.setBitVal(SignBitPosition, Tmp);
|
|
}
|
|
|
|
// Find the common bits between (sub nuw LHS, RHS) and (sub nuw RHS, LHS).
|
|
KnownBits Diff0 =
|
|
computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/true, LHS, RHS);
|
|
KnownBits Diff1 =
|
|
computeForAddSub(/*Add=*/false, /*NSW=*/false, /*NUW=*/true, RHS, LHS);
|
|
return Diff0.intersectWith(Diff1);
|
|
}
|
|
|
|
static unsigned getMaxShiftAmount(const APInt &MaxValue, unsigned BitWidth) {
|
|
if (isPowerOf2_32(BitWidth))
|
|
return MaxValue.extractBitsAsZExtValue(Log2_32(BitWidth), 0);
|
|
// This is only an approximate upper bound.
|
|
return MaxValue.getLimitedValue(BitWidth - 1);
|
|
}
|
|
|
|
KnownBits KnownBits::shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW,
|
|
bool NSW, bool ShAmtNonZero) {
|
|
unsigned BitWidth = LHS.getBitWidth();
|
|
auto ShiftByConst = [&](const KnownBits &LHS, unsigned ShiftAmt) {
|
|
KnownBits Known;
|
|
bool ShiftedOutZero, ShiftedOutOne;
|
|
Known.Zero = LHS.Zero.ushl_ov(ShiftAmt, ShiftedOutZero);
|
|
Known.Zero.setLowBits(ShiftAmt);
|
|
Known.One = LHS.One.ushl_ov(ShiftAmt, ShiftedOutOne);
|
|
|
|
// All cases returning poison have been handled by MaxShiftAmount already.
|
|
if (NSW) {
|
|
if (NUW && ShiftAmt != 0)
|
|
// NUW means we can assume anything shifted out was a zero.
|
|
ShiftedOutZero = true;
|
|
|
|
if (ShiftedOutZero)
|
|
Known.makeNonNegative();
|
|
else if (ShiftedOutOne)
|
|
Known.makeNegative();
|
|
}
|
|
return Known;
|
|
};
|
|
|
|
// Fast path for a common case when LHS is completely unknown.
|
|
KnownBits Known(BitWidth);
|
|
unsigned MinShiftAmount = RHS.getMinValue().getLimitedValue(BitWidth);
|
|
if (MinShiftAmount == 0 && ShAmtNonZero)
|
|
MinShiftAmount = 1;
|
|
if (LHS.isUnknown()) {
|
|
Known.Zero.setLowBits(MinShiftAmount);
|
|
if (NUW && NSW && MinShiftAmount != 0)
|
|
Known.makeNonNegative();
|
|
return Known;
|
|
}
|
|
|
|
// Determine maximum shift amount, taking NUW/NSW flags into account.
|
|
APInt MaxValue = RHS.getMaxValue();
|
|
unsigned MaxShiftAmount = getMaxShiftAmount(MaxValue, BitWidth);
|
|
if (NUW && NSW)
|
|
MaxShiftAmount = std::min(MaxShiftAmount, LHS.countMaxLeadingZeros() - 1);
|
|
if (NUW)
|
|
MaxShiftAmount = std::min(MaxShiftAmount, LHS.countMaxLeadingZeros());
|
|
if (NSW)
|
|
MaxShiftAmount = std::min(
|
|
MaxShiftAmount,
|
|
std::max(LHS.countMaxLeadingZeros(), LHS.countMaxLeadingOnes()) - 1);
|
|
|
|
// Fast path for common case where the shift amount is unknown.
|
|
if (MinShiftAmount == 0 && MaxShiftAmount == BitWidth - 1 &&
|
|
isPowerOf2_32(BitWidth)) {
|
|
Known.Zero.setLowBits(LHS.countMinTrailingZeros());
|
|
if (LHS.isAllOnes())
|
|
Known.One.setSignBit();
|
|
if (NSW) {
|
|
if (LHS.isNonNegative())
|
|
Known.makeNonNegative();
|
|
if (LHS.isNegative())
|
|
Known.makeNegative();
|
|
}
|
|
return Known;
|
|
}
|
|
|
|
// Find the common bits from all possible shifts.
|
|
unsigned ShiftAmtZeroMask = RHS.Zero.zextOrTrunc(32).getZExtValue();
|
|
unsigned ShiftAmtOneMask = RHS.One.zextOrTrunc(32).getZExtValue();
|
|
Known.Zero.setAllBits();
|
|
Known.One.setAllBits();
|
|
for (unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount;
|
|
++ShiftAmt) {
|
|
// Skip if the shift amount is impossible.
|
|
if ((ShiftAmtZeroMask & ShiftAmt) != 0 ||
|
|
(ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
|
|
continue;
|
|
Known = Known.intersectWith(ShiftByConst(LHS, ShiftAmt));
|
|
if (Known.isUnknown())
|
|
break;
|
|
}
|
|
|
|
// All shift amounts may result in poison.
|
|
if (Known.hasConflict())
|
|
Known.setAllZero();
|
|
return Known;
|
|
}
|
|
|
|
KnownBits KnownBits::lshr(const KnownBits &LHS, const KnownBits &RHS,
|
|
bool ShAmtNonZero, bool Exact) {
|
|
unsigned BitWidth = LHS.getBitWidth();
|
|
auto ShiftByConst = [&](const KnownBits &LHS, unsigned ShiftAmt) {
|
|
KnownBits Known = LHS;
|
|
Known.Zero.lshrInPlace(ShiftAmt);
|
|
Known.One.lshrInPlace(ShiftAmt);
|
|
// High bits are known zero.
|
|
Known.Zero.setHighBits(ShiftAmt);
|
|
return Known;
|
|
};
|
|
|
|
// Fast path for a common case when LHS is completely unknown.
|
|
KnownBits Known(BitWidth);
|
|
unsigned MinShiftAmount = RHS.getMinValue().getLimitedValue(BitWidth);
|
|
if (MinShiftAmount == 0 && ShAmtNonZero)
|
|
MinShiftAmount = 1;
|
|
if (LHS.isUnknown()) {
|
|
Known.Zero.setHighBits(MinShiftAmount);
|
|
return Known;
|
|
}
|
|
|
|
// Find the common bits from all possible shifts.
|
|
APInt MaxValue = RHS.getMaxValue();
|
|
unsigned MaxShiftAmount = getMaxShiftAmount(MaxValue, BitWidth);
|
|
|
|
// If exact, bound MaxShiftAmount to first known 1 in LHS.
|
|
if (Exact) {
|
|
unsigned FirstOne = LHS.countMaxTrailingZeros();
|
|
if (FirstOne < MinShiftAmount) {
|
|
// Always poison. Return zero because we don't like returning conflict.
|
|
Known.setAllZero();
|
|
return Known;
|
|
}
|
|
MaxShiftAmount = std::min(MaxShiftAmount, FirstOne);
|
|
}
|
|
|
|
unsigned ShiftAmtZeroMask = RHS.Zero.zextOrTrunc(32).getZExtValue();
|
|
unsigned ShiftAmtOneMask = RHS.One.zextOrTrunc(32).getZExtValue();
|
|
Known.Zero.setAllBits();
|
|
Known.One.setAllBits();
|
|
for (unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount;
|
|
++ShiftAmt) {
|
|
// Skip if the shift amount is impossible.
|
|
if ((ShiftAmtZeroMask & ShiftAmt) != 0 ||
|
|
(ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
|
|
continue;
|
|
Known = Known.intersectWith(ShiftByConst(LHS, ShiftAmt));
|
|
if (Known.isUnknown())
|
|
break;
|
|
}
|
|
|
|
// All shift amounts may result in poison.
|
|
if (Known.hasConflict())
|
|
Known.setAllZero();
|
|
return Known;
|
|
}
|
|
|
|
KnownBits KnownBits::ashr(const KnownBits &LHS, const KnownBits &RHS,
|
|
bool ShAmtNonZero, bool Exact) {
|
|
unsigned BitWidth = LHS.getBitWidth();
|
|
auto ShiftByConst = [&](const KnownBits &LHS, unsigned ShiftAmt) {
|
|
KnownBits Known = LHS;
|
|
Known.Zero.ashrInPlace(ShiftAmt);
|
|
Known.One.ashrInPlace(ShiftAmt);
|
|
return Known;
|
|
};
|
|
|
|
// Fast path for a common case when LHS is completely unknown.
|
|
KnownBits Known(BitWidth);
|
|
unsigned MinShiftAmount = RHS.getMinValue().getLimitedValue(BitWidth);
|
|
if (MinShiftAmount == 0 && ShAmtNonZero)
|
|
MinShiftAmount = 1;
|
|
if (LHS.isUnknown()) {
|
|
if (MinShiftAmount == BitWidth) {
|
|
// Always poison. Return zero because we don't like returning conflict.
|
|
Known.setAllZero();
|
|
return Known;
|
|
}
|
|
return Known;
|
|
}
|
|
|
|
// Find the common bits from all possible shifts.
|
|
APInt MaxValue = RHS.getMaxValue();
|
|
unsigned MaxShiftAmount = getMaxShiftAmount(MaxValue, BitWidth);
|
|
|
|
// If exact, bound MaxShiftAmount to first known 1 in LHS.
|
|
if (Exact) {
|
|
unsigned FirstOne = LHS.countMaxTrailingZeros();
|
|
if (FirstOne < MinShiftAmount) {
|
|
// Always poison. Return zero because we don't like returning conflict.
|
|
Known.setAllZero();
|
|
return Known;
|
|
}
|
|
MaxShiftAmount = std::min(MaxShiftAmount, FirstOne);
|
|
}
|
|
|
|
unsigned ShiftAmtZeroMask = RHS.Zero.zextOrTrunc(32).getZExtValue();
|
|
unsigned ShiftAmtOneMask = RHS.One.zextOrTrunc(32).getZExtValue();
|
|
Known.Zero.setAllBits();
|
|
Known.One.setAllBits();
|
|
for (unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount;
|
|
++ShiftAmt) {
|
|
// Skip if the shift amount is impossible.
|
|
if ((ShiftAmtZeroMask & ShiftAmt) != 0 ||
|
|
(ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
|
|
continue;
|
|
Known = Known.intersectWith(ShiftByConst(LHS, ShiftAmt));
|
|
if (Known.isUnknown())
|
|
break;
|
|
}
|
|
|
|
// All shift amounts may result in poison.
|
|
if (Known.hasConflict())
|
|
Known.setAllZero();
|
|
return Known;
|
|
}
|
|
|
|
std::optional<bool> KnownBits::eq(const KnownBits &LHS, const KnownBits &RHS) {
|
|
if (LHS.isConstant() && RHS.isConstant())
|
|
return std::optional<bool>(LHS.getConstant() == RHS.getConstant());
|
|
if (LHS.One.intersects(RHS.Zero) || RHS.One.intersects(LHS.Zero))
|
|
return std::optional<bool>(false);
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<bool> KnownBits::ne(const KnownBits &LHS, const KnownBits &RHS) {
|
|
if (std::optional<bool> KnownEQ = eq(LHS, RHS))
|
|
return std::optional<bool>(!*KnownEQ);
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<bool> KnownBits::ugt(const KnownBits &LHS, const KnownBits &RHS) {
|
|
// LHS >u RHS -> false if umax(LHS) <= umax(RHS)
|
|
if (LHS.getMaxValue().ule(RHS.getMinValue()))
|
|
return std::optional<bool>(false);
|
|
// LHS >u RHS -> true if umin(LHS) > umax(RHS)
|
|
if (LHS.getMinValue().ugt(RHS.getMaxValue()))
|
|
return std::optional<bool>(true);
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<bool> KnownBits::uge(const KnownBits &LHS, const KnownBits &RHS) {
|
|
if (std::optional<bool> IsUGT = ugt(RHS, LHS))
|
|
return std::optional<bool>(!*IsUGT);
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<bool> KnownBits::ult(const KnownBits &LHS, const KnownBits &RHS) {
|
|
return ugt(RHS, LHS);
|
|
}
|
|
|
|
std::optional<bool> KnownBits::ule(const KnownBits &LHS, const KnownBits &RHS) {
|
|
return uge(RHS, LHS);
|
|
}
|
|
|
|
std::optional<bool> KnownBits::sgt(const KnownBits &LHS, const KnownBits &RHS) {
|
|
// LHS >s RHS -> false if smax(LHS) <= smax(RHS)
|
|
if (LHS.getSignedMaxValue().sle(RHS.getSignedMinValue()))
|
|
return std::optional<bool>(false);
|
|
// LHS >s RHS -> true if smin(LHS) > smax(RHS)
|
|
if (LHS.getSignedMinValue().sgt(RHS.getSignedMaxValue()))
|
|
return std::optional<bool>(true);
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<bool> KnownBits::sge(const KnownBits &LHS, const KnownBits &RHS) {
|
|
if (std::optional<bool> KnownSGT = sgt(RHS, LHS))
|
|
return std::optional<bool>(!*KnownSGT);
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<bool> KnownBits::slt(const KnownBits &LHS, const KnownBits &RHS) {
|
|
return sgt(RHS, LHS);
|
|
}
|
|
|
|
std::optional<bool> KnownBits::sle(const KnownBits &LHS, const KnownBits &RHS) {
|
|
return sge(RHS, LHS);
|
|
}
|
|
|
|
KnownBits KnownBits::abs(bool IntMinIsPoison) const {
|
|
// If the source's MSB is zero then we know the rest of the bits already.
|
|
if (isNonNegative())
|
|
return *this;
|
|
|
|
// Absolute value preserves trailing zero count.
|
|
KnownBits KnownAbs(getBitWidth());
|
|
|
|
// If the input is negative, then abs(x) == -x.
|
|
if (isNegative()) {
|
|
KnownBits Tmp = *this;
|
|
// Special case for IntMinIsPoison. We know the sign bit is set and we know
|
|
// all the rest of the bits except one to be zero. Since we have
|
|
// IntMinIsPoison, that final bit MUST be a one, as otherwise the input is
|
|
// INT_MIN.
|
|
if (IntMinIsPoison && (Zero.popcount() + 2) == getBitWidth())
|
|
Tmp.One.setBit(countMinTrailingZeros());
|
|
|
|
KnownAbs = computeForAddSub(
|
|
/*Add*/ false, IntMinIsPoison, /*NUW=*/false,
|
|
KnownBits::makeConstant(APInt(getBitWidth(), 0)), Tmp);
|
|
|
|
// One more special case for IntMinIsPoison. If we don't know any ones other
|
|
// than the signbit, we know for certain that all the unknowns can't be
|
|
// zero. So if we know high zero bits, but have unknown low bits, we know
|
|
// for certain those high-zero bits will end up as one. This is because,
|
|
// the low bits can't be all zeros, so the +1 in (~x + 1) cannot carry up
|
|
// to the high bits. If we know a known INT_MIN input skip this. The result
|
|
// is poison anyways.
|
|
if (IntMinIsPoison && Tmp.countMinPopulation() == 1 &&
|
|
Tmp.countMaxPopulation() != 1) {
|
|
Tmp.One.clearSignBit();
|
|
Tmp.Zero.setSignBit();
|
|
KnownAbs.One.setBits(getBitWidth() - Tmp.countMinLeadingZeros(),
|
|
getBitWidth() - 1);
|
|
}
|
|
|
|
} else {
|
|
unsigned MaxTZ = countMaxTrailingZeros();
|
|
unsigned MinTZ = countMinTrailingZeros();
|
|
|
|
KnownAbs.Zero.setLowBits(MinTZ);
|
|
// If we know the lowest set 1, then preserve it.
|
|
if (MaxTZ == MinTZ && MaxTZ < getBitWidth())
|
|
KnownAbs.One.setBit(MaxTZ);
|
|
|
|
// We only know that the absolute values's MSB will be zero if INT_MIN is
|
|
// poison, or there is a set bit that isn't the sign bit (otherwise it could
|
|
// be INT_MIN).
|
|
if (IntMinIsPoison || (!One.isZero() && !One.isMinSignedValue())) {
|
|
KnownAbs.One.clearSignBit();
|
|
KnownAbs.Zero.setSignBit();
|
|
}
|
|
}
|
|
|
|
return KnownAbs;
|
|
}
|
|
|
|
static KnownBits computeForSatAddSub(bool Add, bool Signed,
|
|
const KnownBits &LHS,
|
|
const KnownBits &RHS) {
|
|
// We don't see NSW even for sadd/ssub as we want to check if the result has
|
|
// signed overflow.
|
|
KnownBits Res =
|
|
KnownBits::computeForAddSub(Add, /*NSW=*/false, /*NUW=*/false, LHS, RHS);
|
|
unsigned BitWidth = Res.getBitWidth();
|
|
auto SignBitKnown = [&](const KnownBits &K) {
|
|
return K.Zero[BitWidth - 1] || K.One[BitWidth - 1];
|
|
};
|
|
std::optional<bool> Overflow;
|
|
|
|
if (Signed) {
|
|
// If we can actually detect overflow do so. Otherwise leave Overflow as
|
|
// nullopt (we assume it may have happened).
|
|
if (SignBitKnown(LHS) && SignBitKnown(RHS) && SignBitKnown(Res)) {
|
|
if (Add) {
|
|
// sadd.sat
|
|
Overflow = (LHS.isNonNegative() == RHS.isNonNegative() &&
|
|
Res.isNonNegative() != LHS.isNonNegative());
|
|
} else {
|
|
// ssub.sat
|
|
Overflow = (LHS.isNonNegative() != RHS.isNonNegative() &&
|
|
Res.isNonNegative() != LHS.isNonNegative());
|
|
}
|
|
}
|
|
} else if (Add) {
|
|
// uadd.sat
|
|
bool Of;
|
|
(void)LHS.getMaxValue().uadd_ov(RHS.getMaxValue(), Of);
|
|
if (!Of) {
|
|
Overflow = false;
|
|
} else {
|
|
(void)LHS.getMinValue().uadd_ov(RHS.getMinValue(), Of);
|
|
if (Of)
|
|
Overflow = true;
|
|
}
|
|
} else {
|
|
// usub.sat
|
|
bool Of;
|
|
(void)LHS.getMinValue().usub_ov(RHS.getMaxValue(), Of);
|
|
if (!Of) {
|
|
Overflow = false;
|
|
} else {
|
|
(void)LHS.getMaxValue().usub_ov(RHS.getMinValue(), Of);
|
|
if (Of)
|
|
Overflow = true;
|
|
}
|
|
}
|
|
|
|
if (Signed) {
|
|
if (Add) {
|
|
if (LHS.isNonNegative() && RHS.isNonNegative()) {
|
|
// Pos + Pos -> Pos
|
|
Res.One.clearSignBit();
|
|
Res.Zero.setSignBit();
|
|
}
|
|
if (LHS.isNegative() && RHS.isNegative()) {
|
|
// Neg + Neg -> Neg
|
|
Res.One.setSignBit();
|
|
Res.Zero.clearSignBit();
|
|
}
|
|
} else {
|
|
if (LHS.isNegative() && RHS.isNonNegative()) {
|
|
// Neg - Pos -> Neg
|
|
Res.One.setSignBit();
|
|
Res.Zero.clearSignBit();
|
|
} else if (LHS.isNonNegative() && RHS.isNegative()) {
|
|
// Pos - Neg -> Pos
|
|
Res.One.clearSignBit();
|
|
Res.Zero.setSignBit();
|
|
}
|
|
}
|
|
} else {
|
|
// Add: Leading ones of either operand are preserved.
|
|
// Sub: Leading zeros of LHS and leading ones of RHS are preserved
|
|
// as leading zeros in the result.
|
|
unsigned LeadingKnown;
|
|
if (Add)
|
|
LeadingKnown =
|
|
std::max(LHS.countMinLeadingOnes(), RHS.countMinLeadingOnes());
|
|
else
|
|
LeadingKnown =
|
|
std::max(LHS.countMinLeadingZeros(), RHS.countMinLeadingOnes());
|
|
|
|
// We select between the operation result and all-ones/zero
|
|
// respectively, so we can preserve known ones/zeros.
|
|
APInt Mask = APInt::getHighBitsSet(BitWidth, LeadingKnown);
|
|
if (Add) {
|
|
Res.One |= Mask;
|
|
Res.Zero &= ~Mask;
|
|
} else {
|
|
Res.Zero |= Mask;
|
|
Res.One &= ~Mask;
|
|
}
|
|
}
|
|
|
|
if (Overflow) {
|
|
// We know whether or not we overflowed.
|
|
if (!(*Overflow)) {
|
|
// No overflow.
|
|
return Res;
|
|
}
|
|
|
|
// We overflowed
|
|
APInt C;
|
|
if (Signed) {
|
|
// sadd.sat / ssub.sat
|
|
assert(SignBitKnown(LHS) &&
|
|
"We somehow know overflow without knowing input sign");
|
|
C = LHS.isNegative() ? APInt::getSignedMinValue(BitWidth)
|
|
: APInt::getSignedMaxValue(BitWidth);
|
|
} else if (Add) {
|
|
// uadd.sat
|
|
C = APInt::getMaxValue(BitWidth);
|
|
} else {
|
|
// uadd.sat
|
|
C = APInt::getMinValue(BitWidth);
|
|
}
|
|
|
|
Res.One = C;
|
|
Res.Zero = ~C;
|
|
return Res;
|
|
}
|
|
|
|
// We don't know if we overflowed.
|
|
if (Signed) {
|
|
// sadd.sat/ssub.sat
|
|
// We can keep our information about the sign bits.
|
|
Res.Zero.clearLowBits(BitWidth - 1);
|
|
Res.One.clearLowBits(BitWidth - 1);
|
|
} else if (Add) {
|
|
// uadd.sat
|
|
// We need to clear all the known zeros as we can only use the leading ones.
|
|
Res.Zero.clearAllBits();
|
|
} else {
|
|
// usub.sat
|
|
// We need to clear all the known ones as we can only use the leading zero.
|
|
Res.One.clearAllBits();
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
KnownBits KnownBits::sadd_sat(const KnownBits &LHS, const KnownBits &RHS) {
|
|
return computeForSatAddSub(/*Add*/ true, /*Signed*/ true, LHS, RHS);
|
|
}
|
|
KnownBits KnownBits::ssub_sat(const KnownBits &LHS, const KnownBits &RHS) {
|
|
return computeForSatAddSub(/*Add*/ false, /*Signed*/ true, LHS, RHS);
|
|
}
|
|
KnownBits KnownBits::uadd_sat(const KnownBits &LHS, const KnownBits &RHS) {
|
|
return computeForSatAddSub(/*Add*/ true, /*Signed*/ false, LHS, RHS);
|
|
}
|
|
KnownBits KnownBits::usub_sat(const KnownBits &LHS, const KnownBits &RHS) {
|
|
return computeForSatAddSub(/*Add*/ false, /*Signed*/ false, LHS, RHS);
|
|
}
|
|
|
|
static KnownBits avgCompute(KnownBits LHS, KnownBits RHS, bool IsCeil,
|
|
bool IsSigned) {
|
|
unsigned BitWidth = LHS.getBitWidth();
|
|
LHS = IsSigned ? LHS.sext(BitWidth + 1) : LHS.zext(BitWidth + 1);
|
|
RHS = IsSigned ? RHS.sext(BitWidth + 1) : RHS.zext(BitWidth + 1);
|
|
LHS =
|
|
computeForAddCarry(LHS, RHS, /*CarryZero*/ !IsCeil, /*CarryOne*/ IsCeil);
|
|
LHS = LHS.extractBits(BitWidth, 1);
|
|
return LHS;
|
|
}
|
|
|
|
KnownBits KnownBits::avgFloorS(const KnownBits &LHS, const KnownBits &RHS) {
|
|
return avgCompute(LHS, RHS, /* IsCeil */ false,
|
|
/* IsSigned */ true);
|
|
}
|
|
|
|
KnownBits KnownBits::avgFloorU(const KnownBits &LHS, const KnownBits &RHS) {
|
|
return avgCompute(LHS, RHS, /* IsCeil */ false,
|
|
/* IsSigned */ false);
|
|
}
|
|
|
|
KnownBits KnownBits::avgCeilS(const KnownBits &LHS, const KnownBits &RHS) {
|
|
return avgCompute(LHS, RHS, /* IsCeil */ true,
|
|
/* IsSigned */ true);
|
|
}
|
|
|
|
KnownBits KnownBits::avgCeilU(const KnownBits &LHS, const KnownBits &RHS) {
|
|
return avgCompute(LHS, RHS, /* IsCeil */ true,
|
|
/* IsSigned */ false);
|
|
}
|
|
|
|
KnownBits KnownBits::mul(const KnownBits &LHS, const KnownBits &RHS,
|
|
bool NoUndefSelfMultiply) {
|
|
unsigned BitWidth = LHS.getBitWidth();
|
|
assert(BitWidth == RHS.getBitWidth() && "Operand mismatch");
|
|
assert((!NoUndefSelfMultiply || LHS == RHS) &&
|
|
"Self multiplication knownbits mismatch");
|
|
|
|
// Compute the high known-0 bits by multiplying the unsigned max of each side.
|
|
// Conservatively, M active bits * N active bits results in M + N bits in the
|
|
// result. But if we know a value is a power-of-2 for example, then this
|
|
// computes one more leading zero.
|
|
// TODO: This could be generalized to number of sign bits (negative numbers).
|
|
APInt UMaxLHS = LHS.getMaxValue();
|
|
APInt UMaxRHS = RHS.getMaxValue();
|
|
|
|
// For leading zeros in the result to be valid, the unsigned max product must
|
|
// fit in the bitwidth (it must not overflow).
|
|
bool HasOverflow;
|
|
APInt UMaxResult = UMaxLHS.umul_ov(UMaxRHS, HasOverflow);
|
|
unsigned LeadZ = HasOverflow ? 0 : UMaxResult.countl_zero();
|
|
|
|
// The result of the bottom bits of an integer multiply can be
|
|
// inferred by looking at the bottom bits of both operands and
|
|
// multiplying them together.
|
|
// We can infer at least the minimum number of known trailing bits
|
|
// of both operands. Depending on number of trailing zeros, we can
|
|
// infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
|
|
// a and b are divisible by m and n respectively.
|
|
// We then calculate how many of those bits are inferrable and set
|
|
// the output. For example, the i8 mul:
|
|
// a = XXXX1100 (12)
|
|
// b = XXXX1110 (14)
|
|
// We know the bottom 3 bits are zero since the first can be divided by
|
|
// 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
|
|
// Applying the multiplication to the trimmed arguments gets:
|
|
// XX11 (3)
|
|
// X111 (7)
|
|
// -------
|
|
// XX11
|
|
// XX11
|
|
// XX11
|
|
// XX11
|
|
// -------
|
|
// XXXXX01
|
|
// Which allows us to infer the 2 LSBs. Since we're multiplying the result
|
|
// by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
|
|
// The proof for this can be described as:
|
|
// Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
|
|
// (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
|
|
// umin(countTrailingZeros(C2), C6) +
|
|
// umin(C5 - umin(countTrailingZeros(C1), C5),
|
|
// C6 - umin(countTrailingZeros(C2), C6)))) - 1)
|
|
// %aa = shl i8 %a, C5
|
|
// %bb = shl i8 %b, C6
|
|
// %aaa = or i8 %aa, C1
|
|
// %bbb = or i8 %bb, C2
|
|
// %mul = mul i8 %aaa, %bbb
|
|
// %mask = and i8 %mul, C7
|
|
// =>
|
|
// %mask = i8 ((C1*C2)&C7)
|
|
// Where C5, C6 describe the known bits of %a, %b
|
|
// C1, C2 describe the known bottom bits of %a, %b.
|
|
// C7 describes the mask of the known bits of the result.
|
|
const APInt &Bottom0 = LHS.One;
|
|
const APInt &Bottom1 = RHS.One;
|
|
|
|
// How many times we'd be able to divide each argument by 2 (shr by 1).
|
|
// This gives us the number of trailing zeros on the multiplication result.
|
|
unsigned TrailBitsKnown0 = (LHS.Zero | LHS.One).countr_one();
|
|
unsigned TrailBitsKnown1 = (RHS.Zero | RHS.One).countr_one();
|
|
unsigned TrailZero0 = LHS.countMinTrailingZeros();
|
|
unsigned TrailZero1 = RHS.countMinTrailingZeros();
|
|
unsigned TrailZ = TrailZero0 + TrailZero1;
|
|
|
|
// Figure out the fewest known-bits operand.
|
|
unsigned SmallestOperand =
|
|
std::min(TrailBitsKnown0 - TrailZero0, TrailBitsKnown1 - TrailZero1);
|
|
unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
|
|
|
|
APInt BottomKnown =
|
|
Bottom0.getLoBits(TrailBitsKnown0) * Bottom1.getLoBits(TrailBitsKnown1);
|
|
|
|
KnownBits Res(BitWidth);
|
|
Res.Zero.setHighBits(LeadZ);
|
|
Res.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
|
|
Res.One = BottomKnown.getLoBits(ResultBitsKnown);
|
|
|
|
// If we're self-multiplying then bit[1] is guaranteed to be zero.
|
|
if (NoUndefSelfMultiply && BitWidth > 1) {
|
|
assert(Res.One[1] == 0 &&
|
|
"Self-multiplication failed Quadratic Reciprocity!");
|
|
Res.Zero.setBit(1);
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
KnownBits KnownBits::mulhs(const KnownBits &LHS, const KnownBits &RHS) {
|
|
unsigned BitWidth = LHS.getBitWidth();
|
|
assert(BitWidth == RHS.getBitWidth() && "Operand mismatch");
|
|
KnownBits WideLHS = LHS.sext(2 * BitWidth);
|
|
KnownBits WideRHS = RHS.sext(2 * BitWidth);
|
|
return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth);
|
|
}
|
|
|
|
KnownBits KnownBits::mulhu(const KnownBits &LHS, const KnownBits &RHS) {
|
|
unsigned BitWidth = LHS.getBitWidth();
|
|
assert(BitWidth == RHS.getBitWidth() && "Operand mismatch");
|
|
KnownBits WideLHS = LHS.zext(2 * BitWidth);
|
|
KnownBits WideRHS = RHS.zext(2 * BitWidth);
|
|
return mul(WideLHS, WideRHS).extractBits(BitWidth, BitWidth);
|
|
}
|
|
|
|
static KnownBits divComputeLowBit(KnownBits Known, const KnownBits &LHS,
|
|
const KnownBits &RHS, bool Exact) {
|
|
|
|
if (!Exact)
|
|
return Known;
|
|
|
|
// If LHS is Odd, the result is Odd no matter what.
|
|
// Odd / Odd -> Odd
|
|
// Odd / Even -> Impossible (because its exact division)
|
|
if (LHS.One[0])
|
|
Known.One.setBit(0);
|
|
|
|
int MinTZ =
|
|
(int)LHS.countMinTrailingZeros() - (int)RHS.countMaxTrailingZeros();
|
|
int MaxTZ =
|
|
(int)LHS.countMaxTrailingZeros() - (int)RHS.countMinTrailingZeros();
|
|
if (MinTZ >= 0) {
|
|
// Result has at least MinTZ trailing zeros.
|
|
Known.Zero.setLowBits(MinTZ);
|
|
if (MinTZ == MaxTZ) {
|
|
// Result has exactly MinTZ trailing zeros.
|
|
Known.One.setBit(MinTZ);
|
|
}
|
|
} else if (MaxTZ < 0) {
|
|
// Poison Result
|
|
Known.setAllZero();
|
|
}
|
|
|
|
// In the KnownBits exhaustive tests, we have poison inputs for exact values
|
|
// a LOT. If we have a conflict, just return all zeros.
|
|
if (Known.hasConflict())
|
|
Known.setAllZero();
|
|
|
|
return Known;
|
|
}
|
|
|
|
KnownBits KnownBits::sdiv(const KnownBits &LHS, const KnownBits &RHS,
|
|
bool Exact) {
|
|
// Equivalent of `udiv`. We must have caught this before it was folded.
|
|
if (LHS.isNonNegative() && RHS.isNonNegative())
|
|
return udiv(LHS, RHS, Exact);
|
|
|
|
unsigned BitWidth = LHS.getBitWidth();
|
|
KnownBits Known(BitWidth);
|
|
|
|
if (LHS.isZero() || RHS.isZero()) {
|
|
// Result is either known Zero or UB. Return Zero either way.
|
|
// Checking this earlier saves us a lot of special cases later on.
|
|
Known.setAllZero();
|
|
return Known;
|
|
}
|
|
|
|
std::optional<APInt> Res;
|
|
if (LHS.isNegative() && RHS.isNegative()) {
|
|
// Result non-negative.
|
|
APInt Denom = RHS.getSignedMaxValue();
|
|
APInt Num = LHS.getSignedMinValue();
|
|
// INT_MIN/-1 would be a poison result (impossible). Estimate the division
|
|
// as signed max (we will only set sign bit in the result).
|
|
Res = (Num.isMinSignedValue() && Denom.isAllOnes())
|
|
? APInt::getSignedMaxValue(BitWidth)
|
|
: Num.sdiv(Denom);
|
|
} else if (LHS.isNegative() && RHS.isNonNegative()) {
|
|
// Result is negative if Exact OR -LHS u>= RHS.
|
|
if (Exact || (-LHS.getSignedMaxValue()).uge(RHS.getSignedMaxValue())) {
|
|
APInt Denom = RHS.getSignedMinValue();
|
|
APInt Num = LHS.getSignedMinValue();
|
|
Res = Denom.isZero() ? Num : Num.sdiv(Denom);
|
|
}
|
|
} else if (LHS.isStrictlyPositive() && RHS.isNegative()) {
|
|
// Result is negative if Exact OR LHS u>= -RHS.
|
|
if (Exact || LHS.getSignedMinValue().uge(-RHS.getSignedMinValue())) {
|
|
APInt Denom = RHS.getSignedMaxValue();
|
|
APInt Num = LHS.getSignedMaxValue();
|
|
Res = Num.sdiv(Denom);
|
|
}
|
|
}
|
|
|
|
if (Res) {
|
|
if (Res->isNonNegative()) {
|
|
unsigned LeadZ = Res->countLeadingZeros();
|
|
Known.Zero.setHighBits(LeadZ);
|
|
} else {
|
|
unsigned LeadO = Res->countLeadingOnes();
|
|
Known.One.setHighBits(LeadO);
|
|
}
|
|
}
|
|
|
|
Known = divComputeLowBit(Known, LHS, RHS, Exact);
|
|
return Known;
|
|
}
|
|
|
|
KnownBits KnownBits::udiv(const KnownBits &LHS, const KnownBits &RHS,
|
|
bool Exact) {
|
|
unsigned BitWidth = LHS.getBitWidth();
|
|
KnownBits Known(BitWidth);
|
|
|
|
if (LHS.isZero() || RHS.isZero()) {
|
|
// Result is either known Zero or UB. Return Zero either way.
|
|
// Checking this earlier saves us a lot of special cases later on.
|
|
Known.setAllZero();
|
|
return Known;
|
|
}
|
|
|
|
// We can figure out the minimum number of upper zero bits by doing
|
|
// MaxNumerator / MinDenominator. If the Numerator gets smaller or Denominator
|
|
// gets larger, the number of upper zero bits increases.
|
|
APInt MinDenom = RHS.getMinValue();
|
|
APInt MaxNum = LHS.getMaxValue();
|
|
APInt MaxRes = MinDenom.isZero() ? MaxNum : MaxNum.udiv(MinDenom);
|
|
|
|
unsigned LeadZ = MaxRes.countLeadingZeros();
|
|
|
|
Known.Zero.setHighBits(LeadZ);
|
|
Known = divComputeLowBit(Known, LHS, RHS, Exact);
|
|
|
|
return Known;
|
|
}
|
|
|
|
KnownBits KnownBits::remGetLowBits(const KnownBits &LHS, const KnownBits &RHS) {
|
|
unsigned BitWidth = LHS.getBitWidth();
|
|
if (!RHS.isZero() && RHS.Zero[0]) {
|
|
// rem X, Y where Y[0:N] is zero will preserve X[0:N] in the result.
|
|
unsigned RHSZeros = RHS.countMinTrailingZeros();
|
|
APInt Mask = APInt::getLowBitsSet(BitWidth, RHSZeros);
|
|
APInt OnesMask = LHS.One & Mask;
|
|
APInt ZerosMask = LHS.Zero & Mask;
|
|
return KnownBits(ZerosMask, OnesMask);
|
|
}
|
|
return KnownBits(BitWidth);
|
|
}
|
|
|
|
KnownBits KnownBits::urem(const KnownBits &LHS, const KnownBits &RHS) {
|
|
KnownBits Known = remGetLowBits(LHS, RHS);
|
|
if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) {
|
|
// NB: Low bits set in `remGetLowBits`.
|
|
APInt HighBits = ~(RHS.getConstant() - 1);
|
|
Known.Zero |= HighBits;
|
|
return Known;
|
|
}
|
|
|
|
// Since the result is less than or equal to either operand, any leading
|
|
// zero bits in either operand must also exist in the result.
|
|
uint32_t Leaders =
|
|
std::max(LHS.countMinLeadingZeros(), RHS.countMinLeadingZeros());
|
|
Known.Zero.setHighBits(Leaders);
|
|
return Known;
|
|
}
|
|
|
|
KnownBits KnownBits::srem(const KnownBits &LHS, const KnownBits &RHS) {
|
|
KnownBits Known = remGetLowBits(LHS, RHS);
|
|
if (RHS.isConstant() && RHS.getConstant().isPowerOf2()) {
|
|
// NB: Low bits are set in `remGetLowBits`.
|
|
APInt LowBits = RHS.getConstant() - 1;
|
|
// If the first operand is non-negative or has all low bits zero, then
|
|
// the upper bits are all zero.
|
|
if (LHS.isNonNegative() || LowBits.isSubsetOf(LHS.Zero))
|
|
Known.Zero |= ~LowBits;
|
|
|
|
// If the first operand is negative and not all low bits are zero, then
|
|
// the upper bits are all one.
|
|
if (LHS.isNegative() && LowBits.intersects(LHS.One))
|
|
Known.One |= ~LowBits;
|
|
return Known;
|
|
}
|
|
|
|
// The sign bit is the LHS's sign bit, except when the result of the
|
|
// remainder is zero. The magnitude of the result should be less than or
|
|
// equal to the magnitude of the LHS. Therefore any leading zeros that exist
|
|
// in the left hand side must also exist in the result.
|
|
Known.Zero.setHighBits(LHS.countMinLeadingZeros());
|
|
return Known;
|
|
}
|
|
|
|
KnownBits &KnownBits::operator&=(const KnownBits &RHS) {
|
|
// Result bit is 0 if either operand bit is 0.
|
|
Zero |= RHS.Zero;
|
|
// Result bit is 1 if both operand bits are 1.
|
|
One &= RHS.One;
|
|
return *this;
|
|
}
|
|
|
|
KnownBits &KnownBits::operator|=(const KnownBits &RHS) {
|
|
// Result bit is 0 if both operand bits are 0.
|
|
Zero &= RHS.Zero;
|
|
// Result bit is 1 if either operand bit is 1.
|
|
One |= RHS.One;
|
|
return *this;
|
|
}
|
|
|
|
KnownBits &KnownBits::operator^=(const KnownBits &RHS) {
|
|
// Result bit is 0 if both operand bits are 0 or both are 1.
|
|
APInt Z = (Zero & RHS.Zero) | (One & RHS.One);
|
|
// Result bit is 1 if one operand bit is 0 and the other is 1.
|
|
One = (Zero & RHS.One) | (One & RHS.Zero);
|
|
Zero = std::move(Z);
|
|
return *this;
|
|
}
|
|
|
|
KnownBits KnownBits::blsi() const {
|
|
unsigned BitWidth = getBitWidth();
|
|
KnownBits Known(Zero, APInt(BitWidth, 0));
|
|
unsigned Max = countMaxTrailingZeros();
|
|
Known.Zero.setBitsFrom(std::min(Max + 1, BitWidth));
|
|
unsigned Min = countMinTrailingZeros();
|
|
if (Max == Min && Max < BitWidth)
|
|
Known.One.setBit(Max);
|
|
return Known;
|
|
}
|
|
|
|
KnownBits KnownBits::blsmsk() const {
|
|
unsigned BitWidth = getBitWidth();
|
|
KnownBits Known(BitWidth);
|
|
unsigned Max = countMaxTrailingZeros();
|
|
Known.Zero.setBitsFrom(std::min(Max + 1, BitWidth));
|
|
unsigned Min = countMinTrailingZeros();
|
|
Known.One.setLowBits(std::min(Min + 1, BitWidth));
|
|
return Known;
|
|
}
|
|
|
|
void KnownBits::print(raw_ostream &OS) const {
|
|
unsigned BitWidth = getBitWidth();
|
|
for (unsigned I = 0; I < BitWidth; ++I) {
|
|
unsigned N = BitWidth - I - 1;
|
|
if (Zero[N] && One[N])
|
|
OS << "!";
|
|
else if (Zero[N])
|
|
OS << "0";
|
|
else if (One[N])
|
|
OS << "1";
|
|
else
|
|
OS << "?";
|
|
}
|
|
}
|
|
void KnownBits::dump() const {
|
|
print(dbgs());
|
|
dbgs() << "\n";
|
|
}
|