llvm-project/clang/test/Analysis/temporaries.cpp
Adam Balogh 5419a31215 [Analyzer] Allow creation of stack frame for functions without definition
Retrieving the parameter location of functions was disabled because it
may causes crashes due to the fact that functions may have multiple
declarations and without definition it is difficult to ensure that
always the same declration is used. Now parameters are stored in
`ParamRegions` which are independent of the declaration of the function,
therefore the same parameters always have the same regions,
independently of the function declaration used actually. This allows us
to remove the limitation described above.

Differential Revision: https://reviews.llvm.org/D80286
2020-06-09 12:08:57 +02:00

1242 lines
31 KiB
C++

// RUN: %clang_analyze_cc1 -w -analyzer-checker=core,cplusplus\
// RUN: -analyzer-checker debug.ExprInspection -Wno-non-pod-varargs\
// RUN: -analyzer-config eagerly-assume=false -verify %s\
// RUN: -std=c++03 -analyzer-config cfg-temporary-dtors=false
// RUN: %clang_analyze_cc1 -w -analyzer-checker=core,cplusplus\
// RUN: -analyzer-checker debug.ExprInspection -Wno-non-pod-varargs\
// RUN: -analyzer-config eagerly-assume=false -verify %s\
// RUN: -std=c++11 -analyzer-config cfg-temporary-dtors=false
// RUN: %clang_analyze_cc1 -w -analyzer-checker=core,cplusplus\
// RUN: -analyzer-checker debug.ExprInspection -Wno-non-pod-varargs\
// RUN: -analyzer-config eagerly-assume=false -verify %s\
// RUN: -std=c++11 -analyzer-config cfg-temporary-dtors=true\
// RUN: -DTEMPORARY_DTORS
// RUN: %clang_analyze_cc1 -w -analyzer-checker=core,cplusplus\
// RUN: -analyzer-checker debug.ExprInspection -Wno-non-pod-varargs\
// RUN: -analyzer-config eagerly-assume=false -verify %s\
// RUN: -std=c++17 -analyzer-config cfg-temporary-dtors=true\
// RUN: -DTEMPORARY_DTORS
extern bool clang_analyzer_eval(bool);
extern bool clang_analyzer_warnIfReached();
void clang_analyzer_checkInlined(bool);
#include "Inputs/system-header-simulator-cxx.h"
struct Trivial {
Trivial(int x) : value(x) {}
int value;
};
struct NonTrivial : public Trivial {
NonTrivial(int x) : Trivial(x) {}
~NonTrivial();
};
Trivial getTrivial() {
return Trivial(42); // no-warning
}
const Trivial &getTrivialRef() {
return Trivial(42); // expected-warning {{Address of stack memory associated with temporary object of type 'Trivial' returned to caller}}
}
NonTrivial getNonTrivial() {
return NonTrivial(42); // no-warning
}
const NonTrivial &getNonTrivialRef() {
return NonTrivial(42); // expected-warning {{Address of stack memory associated with temporary object of type 'NonTrivial' returned to caller}}
}
namespace rdar13265460 {
struct TrivialSubclass : public Trivial {
TrivialSubclass(int x) : Trivial(x), anotherValue(-x) {}
int anotherValue;
};
TrivialSubclass getTrivialSub() {
TrivialSubclass obj(1);
obj.value = 42;
obj.anotherValue = -42;
return obj;
}
void testImmediate() {
TrivialSubclass obj = getTrivialSub();
clang_analyzer_eval(obj.value == 42); // expected-warning{{TRUE}}
clang_analyzer_eval(obj.anotherValue == -42); // expected-warning{{TRUE}}
clang_analyzer_eval(getTrivialSub().value == 42); // expected-warning{{TRUE}}
clang_analyzer_eval(getTrivialSub().anotherValue == -42); // expected-warning{{TRUE}}
}
void testMaterializeTemporaryExpr() {
const TrivialSubclass &ref = getTrivialSub();
clang_analyzer_eval(ref.value == 42); // expected-warning{{TRUE}}
const Trivial &baseRef = getTrivialSub();
clang_analyzer_eval(baseRef.value == 42); // expected-warning{{TRUE}}
}
}
namespace rdar13281951 {
struct Derived : public Trivial {
Derived(int value) : Trivial(value), value2(-value) {}
int value2;
};
void test() {
Derived obj(1);
obj.value = 42;
const Trivial * const &pointerRef = &obj;
clang_analyzer_eval(pointerRef->value == 42); // expected-warning{{TRUE}}
}
}
namespace compound_literals {
struct POD {
int x, y;
};
struct HasCtor {
HasCtor(int x, int y) : x(x), y(y) {}
int x, y;
};
struct HasDtor {
int x, y;
~HasDtor();
};
struct HasCtorDtor {
HasCtorDtor(int x, int y) : x(x), y(y) {}
~HasCtorDtor();
int x, y;
};
void test() {
clang_analyzer_eval(((POD){1, 42}).y == 42); // expected-warning{{TRUE}}
clang_analyzer_eval(((HasDtor){1, 42}).y == 42); // expected-warning{{TRUE}}
#if __cplusplus >= 201103L
clang_analyzer_eval(((HasCtor){1, 42}).y == 42); // expected-warning{{TRUE}}
// FIXME: should be TRUE, but we don't inline the constructors of
// temporaries because we can't model their destructors yet.
clang_analyzer_eval(((HasCtorDtor){1, 42}).y == 42); // expected-warning{{UNKNOWN}}
#endif
}
}
namespace destructors {
struct Dtor {
~Dtor();
};
extern bool coin();
extern bool check(const Dtor &);
void testPR16664andPR18159Crash() {
// Regression test: we used to assert here when tmp dtors are enabled.
// PR16664 and PR18159
if (coin() && (coin() || coin() || check(Dtor()))) {
Dtor();
}
}
#ifdef TEMPORARY_DTORS
struct NoReturnDtor {
~NoReturnDtor() __attribute__((noreturn));
};
void noReturnTemp(int *x) {
if (! x) NoReturnDtor();
*x = 47; // no warning
}
void noReturnInline(int **x) {
NoReturnDtor();
}
void callNoReturn() {
int *x;
noReturnInline(&x);
*x = 47; // no warning
}
extern bool check(const NoReturnDtor &);
void testConsistencyIf(int i) {
if (i != 5)
return;
if (i == 5 && (i == 4 || check(NoReturnDtor()) || i == 5)) {
clang_analyzer_eval(true); // no warning, unreachable code
}
}
void testConsistencyTernary(int i) {
(i == 5 && (i == 4 || check(NoReturnDtor()) || i == 5)) ? 1 : 0;
clang_analyzer_eval(true); // expected-warning{{TRUE}}
if (i != 5)
return;
(i == 5 && (i == 4 || check(NoReturnDtor()) || i == 5)) ? 1 : 0;
clang_analyzer_eval(true); // no warning, unreachable code
}
// Regression test: we used to assert here.
// PR16664 and PR18159
void testConsistencyNested(int i) {
extern bool compute(bool);
if (i == 5 && (i == 4 || i == 5 || check(NoReturnDtor())))
clang_analyzer_eval(true); // expected-warning{{TRUE}}
if (i == 5 && (i == 4 || i == 5 || check(NoReturnDtor())))
clang_analyzer_eval(true); // expected-warning{{TRUE}}
if (i != 5)
return;
if (compute(i == 5 &&
(i == 4 || compute(true) ||
compute(i == 5 && (i == 4 || check(NoReturnDtor()))))) ||
i != 4) {
clang_analyzer_eval(true); // expected-warning{{TRUE}}
}
if (compute(i == 5 &&
(i == 4 || i == 4 ||
compute(i == 5 && (i == 4 || check(NoReturnDtor()))))) ||
i != 4) {
clang_analyzer_eval(true); // no warning, unreachable code
}
}
// PR16664 and PR18159
void testConsistencyNestedSimple(bool value) {
if (value) {
if (!value || check(NoReturnDtor())) {
clang_analyzer_eval(true); // no warning, unreachable code
}
}
}
// PR16664 and PR18159
void testConsistencyNestedComplex(bool value) {
if (value) {
if (!value || !value || check(NoReturnDtor())) {
clang_analyzer_eval(true); // no warning, unreachable code
}
}
}
// PR16664 and PR18159
void testConsistencyNestedWarning(bool value) {
if (value) {
if (!value || value || check(NoReturnDtor())) {
clang_analyzer_eval(true); // expected-warning{{TRUE}}
}
}
}
// PR16664 and PR18159
void testConsistencyNestedComplexMidBranch(bool value) {
if (value) {
if (!value || !value || check(NoReturnDtor()) || value) {
clang_analyzer_eval(true); // no warning, unreachable code
}
}
}
// PR16664 and PR18159
void testConsistencyNestedComplexNestedBranch(bool value) {
if (value) {
if (!value || (!value || check(NoReturnDtor()) || value)) {
clang_analyzer_eval(true); // no warning, unreachable code
}
}
}
// PR16664 and PR18159
void testConsistencyNestedVariableModification(bool value) {
bool other = true;
if (value) {
if (!other || !value || (other = false) || check(NoReturnDtor()) ||
!other) {
clang_analyzer_eval(true); // no warning, unreachable code
}
}
}
void testTernaryNoReturnTrueBranch(bool value) {
if (value) {
bool b = value && (value ? check(NoReturnDtor()) : true);
clang_analyzer_eval(true); // no warning, unreachable code
}
}
void testTernaryNoReturnFalseBranch(bool value) {
if (value) {
bool b = !value && !value ? true : check(NoReturnDtor());
clang_analyzer_eval(true); // no warning, unreachable code
}
}
void testTernaryIgnoreNoreturnBranch(bool value) {
if (value) {
bool b = !value && !value ? check(NoReturnDtor()) : true;
clang_analyzer_eval(true); // expected-warning{{TRUE}}
}
}
void testTernaryTrueBranchReached(bool value) {
value ? clang_analyzer_warnIfReached() : // expected-warning{{REACHABLE}}
check(NoReturnDtor());
}
void testTernaryFalseBranchReached(bool value) {
value ? check(NoReturnDtor()) :
clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}}
}
void testLoop() {
for (int i = 0; i < 10; ++i) {
if (i < 3 && (i >= 2 || check(NoReturnDtor()))) {
clang_analyzer_eval(true); // no warning, unreachable code
}
}
}
bool testRecursiveFrames(bool isInner) {
if (isInner ||
(clang_analyzer_warnIfReached(), false) || // expected-warning{{REACHABLE}}
check(NoReturnDtor()) ||
testRecursiveFrames(true)) {
clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}}
}
}
void testRecursiveFramesStart() { testRecursiveFrames(false); }
void testLambdas() {
[]() { check(NoReturnDtor()); } != nullptr || check(Dtor());
}
void testGnuExpressionStatements(int v) {
({ ++v; v == 10 || check(NoReturnDtor()); v == 42; }) || v == 23;
clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}}
({ ++v; check(NoReturnDtor()); v == 42; }) || v == 23;
clang_analyzer_warnIfReached(); // no warning, unreachable code
}
void testGnuExpressionStatementsDestructionPoint(int v) {
// In normal context, the temporary destructor runs at the end of the full
// statement, thus the last statement is reached.
(++v, check(NoReturnDtor()), v == 42),
clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}}
// GNU expression statements execute temporary destructors within the
// blocks, thus the last statement is not reached.
({ ++v; check(NoReturnDtor()); v == 42; }),
clang_analyzer_warnIfReached(); // no warning, unreachable code
}
void testMultipleTemporaries(bool value) {
if (value) {
// FIXME: Find a way to verify construction order.
// ~Dtor should run before ~NoReturnDtor() because construction order is
// guaranteed by comma operator.
if (!value || check((NoReturnDtor(), Dtor())) || value) {
clang_analyzer_eval(true); // no warning, unreachable code
}
}
}
void testBinaryOperatorShortcut(bool value) {
if (value) {
if (false && false && check(NoReturnDtor()) && true) {
clang_analyzer_eval(true);
}
}
}
void testIfAtEndOfLoop() {
int y = 0;
while (true) {
if (y > 0) {
clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}}
}
++y;
// Test that the CFG gets hooked up correctly when temporary destructors
// are handled after a statically known branch condition.
if (true) (void)0; else (void)check(NoReturnDtor());
}
}
void testTernaryAtEndOfLoop() {
int y = 0;
while (true) {
if (y > 0) {
clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}}
}
++y;
// Test that the CFG gets hooked up correctly when temporary destructors
// are handled after a statically known branch condition.
true ? (void)0 : (void)check(NoReturnDtor());
}
}
void testNoReturnInComplexCondition() {
check(Dtor()) &&
(check(NoReturnDtor()) || check(NoReturnDtor())) && check(Dtor());
clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}}
}
void testSequencingOfConditionalTempDtors(bool b) {
b || (check(Dtor()), check(NoReturnDtor()));
clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}}
}
void testSequencingOfConditionalTempDtors2(bool b) {
(b || check(Dtor())), check(NoReturnDtor());
clang_analyzer_warnIfReached(); // no warning, unreachable code
}
void testSequencingOfConditionalTempDtorsWithinBinaryOperators(bool b) {
b || (check(Dtor()) + check(NoReturnDtor()));
clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}}
}
void f(Dtor d = Dtor());
void testDefaultParameters() {
f();
}
struct DefaultParam {
DefaultParam(int, const Dtor& d = Dtor());
~DefaultParam();
};
void testDefaultParamConstructorsInLoops() {
while (true) {
// FIXME: This exact pattern triggers the temporary cleanup logic
// to fail when adding a 'clean' state.
DefaultParam(42);
DefaultParam(42);
}
}
void testDefaultParamConstructorsInTernariesInLoops(bool value) {
while (true) {
// FIXME: This exact pattern triggers the temporary cleanup logic
// to visit the bind-temporary logic with a state that already has that
// temporary marked as executed.
value ? DefaultParam(42) : DefaultParam(42);
}
}
#else // !TEMPORARY_DTORS
// Test for fallback logic that conservatively stops exploration after
// executing a temporary constructor for a class with a no-return destructor
// when temporary destructors are not enabled in the CFG.
struct CtorWithNoReturnDtor {
CtorWithNoReturnDtor() = default;
CtorWithNoReturnDtor(int x) {
clang_analyzer_checkInlined(false); // no-warning
}
~CtorWithNoReturnDtor() __attribute__((noreturn));
};
void testDefaultContructorWithNoReturnDtor() {
CtorWithNoReturnDtor();
clang_analyzer_warnIfReached(); // no-warning
}
void testLifeExtensionWithNoReturnDtor() {
const CtorWithNoReturnDtor &c = CtorWithNoReturnDtor();
// This represents an (expected) loss of coverage, since the destructor
// of the lifetime-exended temporary is executed at the end of
// scope.
clang_analyzer_warnIfReached(); // no-warning
}
#if __cplusplus >= 201103L
struct CtorWithNoReturnDtor2 {
CtorWithNoReturnDtor2() = default;
CtorWithNoReturnDtor2(int x) {
clang_analyzer_checkInlined(true); // expected-warning{{TRUE}}
}
~CtorWithNoReturnDtor2() __attribute__((noreturn));
};
CtorWithNoReturnDtor2 returnNoReturnDtor() {
return {1}; // no-crash
}
#endif
#endif // TEMPORARY_DTORS
}
namespace default_param_elided_destructors {
struct a {
~a();
};
struct F {
a d;
F(char *, a = a());
};
void g() {
char h[1];
for (int i = 0;;)
F j(i ? j : h);
}
} // namespace default_param_elided_destructors
void testStaticMaterializeTemporaryExpr() {
static const Trivial &ref = getTrivial();
clang_analyzer_eval(ref.value == 42); // expected-warning{{TRUE}}
static const Trivial &directRef = Trivial(42);
clang_analyzer_eval(directRef.value == 42); // expected-warning{{TRUE}}
#if __has_feature(cxx_thread_local)
thread_local static const Trivial &threadRef = getTrivial();
clang_analyzer_eval(threadRef.value == 42); // expected-warning{{TRUE}}
thread_local static const Trivial &threadDirectRef = Trivial(42);
clang_analyzer_eval(threadDirectRef.value == 42); // expected-warning{{TRUE}}
#endif
}
namespace PR16629 {
struct A {
explicit A(int* p_) : p(p_) {}
int* p;
};
extern void escape(const A*[]);
extern void check(int);
void callEscape(const A& a) {
const A* args[] = { &a };
escape(args);
}
void testNoWarning() {
int x;
callEscape(A(&x));
check(x); // Analyzer used to give a "x is uninitialized warning" here
}
void set(const A*a[]) {
*a[0]->p = 47;
}
void callSet(const A& a) {
const A* args[] = { &a };
set(args);
}
void testConsistency() {
int x;
callSet(A(&x));
clang_analyzer_eval(x == 47); // expected-warning{{TRUE}}
}
}
namespace PR32088 {
void testReturnFromStmtExprInitializer() {
// We shouldn't try to destroy the object pointed to by `obj' upon return.
const NonTrivial &obj = ({
return; // no-crash
NonTrivial(42);
});
}
}
namespace CopyToTemporaryCorrectly {
class Super {
public:
void m() {
mImpl();
}
virtual void mImpl() = 0;
};
class Sub : public Super {
public:
Sub(const int &p) : j(p) {}
virtual void mImpl() override {
// Used to be undefined pointer dereference because we didn't copy
// the subclass data (j) to the temporary object properly.
(void)(j + 1); // no-warning
if (j != 22) {
clang_analyzer_warnIfReached(); // no-warning
}
}
const int &j;
};
void run() {
int i = 22;
Sub(i).m();
}
}
namespace test_return_temporary {
class C {
int x, y;
public:
C(int x, int y) : x(x), y(y) {}
int getX() const { return x; }
int getY() const { return y; }
~C() {}
};
class D: public C {
public:
D() : C(1, 2) {}
D(const D &d): C(d.getX(), d.getY()) {}
};
C returnTemporaryWithVariable() { C c(1, 2); return c; }
C returnTemporaryWithAnotherFunctionWithVariable() {
return returnTemporaryWithVariable();
}
C returnTemporaryWithCopyConstructionWithVariable() {
return C(returnTemporaryWithVariable());
}
C returnTemporaryWithConstruction() { return C(1, 2); }
C returnTemporaryWithAnotherFunctionWithConstruction() {
return returnTemporaryWithConstruction();
}
C returnTemporaryWithCopyConstructionWithConstruction() {
return C(returnTemporaryWithConstruction());
}
D returnTemporaryWithVariableAndNonTrivialCopy() { D d; return d; }
D returnTemporaryWithAnotherFunctionWithVariableAndNonTrivialCopy() {
return returnTemporaryWithVariableAndNonTrivialCopy();
}
D returnTemporaryWithCopyConstructionWithVariableAndNonTrivialCopy() {
return D(returnTemporaryWithVariableAndNonTrivialCopy());
}
#if __cplusplus >= 201103L
C returnTemporaryWithBraces() { return {1, 2}; }
C returnTemporaryWithAnotherFunctionWithBraces() {
return returnTemporaryWithBraces();
}
C returnTemporaryWithCopyConstructionWithBraces() {
return C(returnTemporaryWithBraces());
}
#endif // C++11
void test() {
C c1 = returnTemporaryWithVariable();
clang_analyzer_eval(c1.getX() == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(c1.getY() == 2); // expected-warning{{TRUE}}
C c2 = returnTemporaryWithAnotherFunctionWithVariable();
clang_analyzer_eval(c2.getX() == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(c2.getY() == 2); // expected-warning{{TRUE}}
C c3 = returnTemporaryWithCopyConstructionWithVariable();
clang_analyzer_eval(c3.getX() == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(c3.getY() == 2); // expected-warning{{TRUE}}
C c4 = returnTemporaryWithConstruction();
clang_analyzer_eval(c4.getX() == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(c4.getY() == 2); // expected-warning{{TRUE}}
C c5 = returnTemporaryWithAnotherFunctionWithConstruction();
clang_analyzer_eval(c5.getX() == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(c5.getY() == 2); // expected-warning{{TRUE}}
C c6 = returnTemporaryWithCopyConstructionWithConstruction();
clang_analyzer_eval(c5.getX() == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(c5.getY() == 2); // expected-warning{{TRUE}}
#if __cplusplus >= 201103L
C c7 = returnTemporaryWithBraces();
clang_analyzer_eval(c7.getX() == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(c7.getY() == 2); // expected-warning{{TRUE}}
C c8 = returnTemporaryWithAnotherFunctionWithBraces();
clang_analyzer_eval(c8.getX() == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(c8.getY() == 2); // expected-warning{{TRUE}}
C c9 = returnTemporaryWithCopyConstructionWithBraces();
clang_analyzer_eval(c9.getX() == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(c9.getY() == 2); // expected-warning{{TRUE}}
#endif // C++11
D d1 = returnTemporaryWithVariableAndNonTrivialCopy();
clang_analyzer_eval(d1.getX() == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(d1.getY() == 2); // expected-warning{{TRUE}}
D d2 = returnTemporaryWithAnotherFunctionWithVariableAndNonTrivialCopy();
clang_analyzer_eval(d2.getX() == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(d2.getY() == 2); // expected-warning{{TRUE}}
D d3 = returnTemporaryWithCopyConstructionWithVariableAndNonTrivialCopy();
clang_analyzer_eval(d3.getX() == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(d3.getY() == 2); // expected-warning{{TRUE}}
}
} // namespace test_return_temporary
namespace test_temporary_object_expr_without_dtor {
class C {
int x;
public:
C(int x) : x(x) {}
int getX() const { return x; }
};
void test() {
clang_analyzer_eval(C(3).getX() == 3); // expected-warning{{TRUE}}
};
}
namespace test_temporary_object_expr_with_dtor {
class C {
int x;
public:
C(int x) : x(x) {}
~C() {}
int getX() const { return x; }
};
void test(int coin) {
clang_analyzer_eval(C(3).getX() == 3);
#ifdef TEMPORARY_DTORS
// expected-warning@-2{{TRUE}}
#else
// expected-warning@-4{{UNKNOWN}}
#endif
const C &c1 = coin ? C(1) : C(2);
if (coin) {
clang_analyzer_eval(c1.getX() == 1);
#ifdef TEMPORARY_DTORS
// expected-warning@-2{{TRUE}}
#else
// expected-warning@-4{{UNKNOWN}}
#endif
} else {
clang_analyzer_eval(c1.getX() == 2);
#ifdef TEMPORARY_DTORS
// expected-warning@-2{{TRUE}}
#else
// expected-warning@-4{{UNKNOWN}}
#endif
}
C c2 = coin ? C(1) : C(2);
if (coin) {
clang_analyzer_eval(c2.getX() == 1); // expected-warning{{TRUE}}
} else {
clang_analyzer_eval(c2.getX() == 2); // expected-warning{{TRUE}}
}
}
} // namespace test_temporary_object_expr
namespace test_match_constructors_and_destructors {
class C {
public:
int &x, &y;
C(int &_x, int &_y) : x(_x), y(_y) { ++x; }
C(const C &c): x(c.x), y(c.y) { ++x; }
~C() { ++y; }
};
void test_simple_temporary() {
int x = 0, y = 0;
{
const C &c = C(x, y);
}
// One constructor and one destructor.
clang_analyzer_eval(x == 1);
clang_analyzer_eval(y == 1);
#ifdef TEMPORARY_DTORS
// expected-warning@-3{{TRUE}}
// expected-warning@-3{{TRUE}}
#else
// expected-warning@-6{{UNKNOWN}}
// expected-warning@-6{{UNKNOWN}}
#endif
}
void test_simple_temporary_with_copy() {
int x = 0, y = 0;
{
C c = C(x, y);
}
// Only one constructor directly into the variable, and one destructor.
clang_analyzer_eval(x == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(y == 1); // expected-warning{{TRUE}}
}
void test_ternary_temporary(int coin) {
int x = 0, y = 0, z = 0, w = 0;
{
const C &c = coin ? C(x, y) : C(z, w);
}
// Only one constructor on every branch, and one automatic destructor.
if (coin) {
clang_analyzer_eval(x == 1);
clang_analyzer_eval(y == 1);
#ifdef TEMPORARY_DTORS
// expected-warning@-3{{TRUE}}
// expected-warning@-3{{TRUE}}
#else
// expected-warning@-6{{UNKNOWN}}
// expected-warning@-6{{UNKNOWN}}
#endif
clang_analyzer_eval(z == 0); // expected-warning{{TRUE}}
clang_analyzer_eval(w == 0); // expected-warning{{TRUE}}
} else {
clang_analyzer_eval(x == 0); // expected-warning{{TRUE}}
clang_analyzer_eval(y == 0); // expected-warning{{TRUE}}
clang_analyzer_eval(z == 1);
clang_analyzer_eval(w == 1);
#ifdef TEMPORARY_DTORS
// expected-warning@-3{{TRUE}}
// expected-warning@-3{{TRUE}}
#else
// expected-warning@-6{{UNKNOWN}}
// expected-warning@-6{{UNKNOWN}}
#endif
}
}
void test_ternary_temporary_with_copy(int coin) {
int x = 0, y = 0, z = 0, w = 0;
{
C c = coin ? C(x, y) : C(z, w);
}
// On each branch the variable is constructed directly.
if (coin) {
clang_analyzer_eval(x == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(y == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(z == 0); // expected-warning{{TRUE}}
clang_analyzer_eval(w == 0); // expected-warning{{TRUE}}
} else {
clang_analyzer_eval(x == 0); // expected-warning{{TRUE}}
clang_analyzer_eval(y == 0); // expected-warning{{TRUE}}
clang_analyzer_eval(z == 1); // expected-warning{{TRUE}}
clang_analyzer_eval(w == 1); // expected-warning{{TRUE}}
}
}
} // namespace test_match_constructors_and_destructors
namespace destructors_for_return_values {
class C {
public:
~C() {
1 / 0; // expected-warning{{Division by zero}}
}
};
C make();
void testFloatingCall() {
make();
// Should have divided by zero in the destructor.
clang_analyzer_warnIfReached();
#ifndef TEMPORARY_DTORS
// expected-warning@-2{{REACHABLE}}
#endif
}
void testLifetimeExtendedCall() {
{
const C &c = make();
clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}}
}
// Should have divided by zero in the destructor.
clang_analyzer_warnIfReached(); // no-warning
}
void testCopiedCall() {
{
C c = make();
// Should have elided the constructor/destructor for the temporary
clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}}
}
// Should have divided by zero in the destructor.
clang_analyzer_warnIfReached(); // no-warning
}
} // namespace destructors_for_return_values
namespace dont_forget_destructor_around_logical_op {
int glob;
class C {
public:
~C() {
glob = 1;
clang_analyzer_checkInlined(true);
#ifdef TEMPORARY_DTORS
// expected-warning@-2{{TRUE}}
#endif
}
};
C get();
bool is(C);
void test(int coin) {
// Here temporaries are being cleaned up after && is evaluated. There are two
// temporaries: the return value of get() and the elidable copy constructor
// of that return value into is(). According to the CFG, we need to cleanup
// both of them depending on whether the temporary corresponding to the
// return value of get() was initialized. However, we didn't track
// temporaries returned from functions, so we took the wrong branch.
coin && is(get()); // no-crash
if (coin) {
clang_analyzer_eval(glob);
#ifdef TEMPORARY_DTORS
// expected-warning@-2{{TRUE}}
#else
// expected-warning@-4{{UNKNOWN}}
#endif
} else {
// The destructor is not called on this branch.
clang_analyzer_eval(glob); // expected-warning{{UNKNOWN}}
}
}
} // namespace dont_forget_destructor_around_logical_op
#if __cplusplus >= 201103L
namespace temporary_list_crash {
class C {
public:
C() {}
~C() {}
};
void test() {
std::initializer_list<C>{C(), C()}; // no-crash
}
} // namespace temporary_list_crash
#endif // C++11
namespace implicit_constructor_conversion {
struct S {
int x;
S(int x) : x(x) {}
~S() {}
};
class C {
int x;
public:
C(const S &s) : x(s.x) {}
~C() {}
int getX() const { return x; }
};
void test() {
const C &c1 = S(10);
clang_analyzer_eval(c1.getX() == 10);
#ifdef TEMPORARY_DTORS
// expected-warning@-2{{TRUE}}
#else
// expected-warning@-4{{UNKNOWN}}
#endif
S s = 20;
clang_analyzer_eval(s.x == 20); // expected-warning{{TRUE}}
C c2 = s;
clang_analyzer_eval(c2.getX() == 20); // expected-warning{{TRUE}}
}
} // end namespace implicit_constructor_conversion
namespace pass_references_through {
class C {
public:
~C() {}
};
const C &foo1();
C &&foo2();
// In these examples the foo() expression has record type, not reference type.
// Don't try to figure out how to perform construction of the record here.
const C &bar1() { return foo1(); } // no-crash
C &&bar2() { return foo2(); } // no-crash
} // end namespace pass_references_through
namespace arguments {
int glob;
struct S {
int x;
S(int x): x(x) {}
S(const S &s) : x(s.x) {}
~S() {}
S &operator+(S s) {
glob = s.x;
x += s.x;
return *this;
}
};
class C {
public:
virtual void bar3(S s) {}
};
class D: public C {
public:
D() {}
virtual void bar3(S s) override { glob = s.x; }
};
void bar1(S s) {
glob = s.x;
}
// Record-typed calls are a different CFGStmt, let's see if we handle that
// as well.
S bar2(S s) {
glob = s.x;
return S(3);
}
void bar5(int, ...);
void foo(void (*bar4)(S)) {
bar1(S(1));
clang_analyzer_eval(glob == 1);
#ifdef TEMPORARY_DTORS
// expected-warning@-2{{TRUE}}
#else
// expected-warning@-4{{UNKNOWN}}
#endif
bar2(S(2));
clang_analyzer_eval(glob == 2);
#ifdef TEMPORARY_DTORS
// expected-warning@-2{{TRUE}}
#else
// expected-warning@-4{{UNKNOWN}}
#endif
C *c = new D();
c->bar3(S(3));
// FIXME: Should be TRUE.
clang_analyzer_eval(glob == 3); // expected-warning{{UNKNOWN}}
delete c;
// What if we've no idea what we're calling?
bar4(S(4)); // no-crash
S(5) + S(6);
clang_analyzer_eval(glob == 6);
#ifdef TEMPORARY_DTORS
// expected-warning@-2{{TRUE}}
#else
// expected-warning@-4{{UNKNOWN}}
#endif
// Variadic functions. This will __builtin_trap() because you cannot pass
// an object as a variadic argument.
bar5(7, S(7)); // no-crash
clang_analyzer_warnIfReached(); // no-warning
}
} // namespace arguments
namespace ctor_argument {
// Stripped down unique_ptr<int>
struct IntPtr {
IntPtr(): i(new int) {}
IntPtr(IntPtr &&o): i(o.i) { o.i = 0; }
~IntPtr() { delete i; }
int *i;
};
struct Foo {
Foo(IntPtr);
void bar();
IntPtr i;
};
void bar() {
IntPtr ptr;
int *i = ptr.i;
Foo f(static_cast<IntPtr &&>(ptr));
*i = 99; // no-warning
}
} // namespace ctor_argument
namespace operator_implicit_argument {
struct S {
bool x;
S(bool x): x(x) {}
operator bool() const { return x; }
};
void foo() {
if (S(false)) {
clang_analyzer_warnIfReached(); // no-warning
}
if (S(true)) {
clang_analyzer_warnIfReached(); // expected-warning{{REACHABLE}}
}
}
} // namespace operator_implicit_argument
#if __cplusplus >= 201103L
namespace argument_lazy_bindings {
int glob;
struct S {
int x, y, z;
};
struct T {
S s;
int w;
T(int w): s{5, 6, 7}, w(w) {}
};
void foo(T t) {
t.s = {1, 2, 3};
glob = t.w;
}
void bar() {
foo(T(4));
clang_analyzer_eval(glob == 4); // expected-warning{{TRUE}}
}
} // namespace argument_lazy_bindings
#endif
namespace operator_argument_cleanup {
struct S {
S();
};
class C {
public:
void operator=(S);
};
void foo() {
C c;
c = S(); // no-crash
}
} // namespace operator_argument_cleanup
namespace argument_decl_lookup {
class C {};
int foo(C);
int bar(C c) { foo(c); }
int foo(C c) {}
} // namespace argument_decl_lookup
namespace argument_virtual_decl_lookup {
class C {};
struct T {
virtual void foo(C);
};
void run() {
T *t;
t->foo(C()); // no-crash // expected-warning{{Called C++ object pointer is uninitialized}}
}
// This is after run() because the test is about picking the correct decl
// for the parameter region, which should belong to the correct function decl,
// and the non-definition decl should be found by direct lookup.
void T::foo(C) {}
} // namespace argument_virtual_decl_lookup
namespace union_indirect_field_crash {
union U {
struct {
int x;
};
};
template <typename T> class C {
public:
void foo() const {
(void)(true ? U().x : 0);
}
};
void test() {
C<int> c;
c.foo();
}
} // namespace union_indirect_field_crash
namespace return_from_top_frame {
struct S {
int *p;
S() { p = new int; }
S(S &&s) : p(s.p) { s.p = 0; }
~S(); // Presumably releases 'p'.
};
S foo() {
S s;
return s;
}
S bar1() {
return foo(); // no-warning
}
S bar2() {
return S();
}
S bar3(int coin) {
return coin ? S() : foo(); // no-warning
}
} // namespace return_from_top_frame
#if __cplusplus >= 201103L
namespace arguments_of_operators {
struct S {
S() {}
S(const S &) {}
};
void test() {
int x = 0;
auto foo = [](S s, int &y) { y = 1; };
foo(S(), x);
clang_analyzer_eval(x == 1); // expected-warning{{TRUE}}
}
} // namespace arguments_of_operators
#endif // __cplusplus >= 201103L