llvm-project/flang/test/Lower/io-item-list.f90
jeanPerier f35f863a88
[flang][NFC] Use hlfir=false and flang-deprecated-no-hlfir in legacy tests (#71957)
Patch 2/3 of the transition step 1 described in

https://discourse.llvm.org/t/rfc-enabling-the-hlfir-lowering-by-default/72778/7.

All the modified tests are still here since coverage for the direct
lowering to FIR was still needed while it was default. Some already have
an HLFIR version, some have not and will need to be ported in step 2
described in the RFC.

Note that another 147 lit tests use -emit-fir/-emit-llvm outputs but do
not need a flag since the HLFIR/no HLFIR output is the same for what is
being tested.
2023-11-13 09:14:05 +01:00

110 lines
7.3 KiB
Fortran

! RUN: bbc -emit-fir -hlfir=false %s -o - | FileCheck %s
! Test that IO item list are lowered and passed correctly
! CHECK-LABEL: func @_QPpass_assumed_len_char_unformatted_io
subroutine pass_assumed_len_char_unformatted_io(c)
character(*) :: c
! CHECK: %[[unbox:.*]]:2 = fir.unboxchar %arg0 : (!fir.boxchar<1>) -> (!fir.ref<!fir.char<1,?>>, index)
write(1, rec=1) c
! CHECK: %[[box:.*]] = fir.embox %[[unbox]]#0 typeparams %[[unbox]]#1 : (!fir.ref<!fir.char<1,?>>, index) -> !fir.box<!fir.char<1,?>>
! CHECK: %[[castedBox:.*]] = fir.convert %[[box]] : (!fir.box<!fir.char<1,?>>) -> !fir.box<none>
! CHECK: fir.call @_FortranAioOutputDescriptor(%{{.*}}, %[[castedBox]]) {{.*}}: (!fir.ref<i8>, !fir.box<none>) -> i1
end
! CHECK-LABEL: func @_QPpass_assumed_len_char_array
subroutine pass_assumed_len_char_array(carray)
character(*) :: carray(2, 3)
! CHECK-DAG: %[[unboxed:.*]]:2 = fir.unboxchar %arg0 : (!fir.boxchar<1>) -> (!fir.ref<!fir.char<1,?>>, index)
! CHECK-DAG: %[[buffer:.*]] = fir.convert %[[unboxed]]#0 : (!fir.ref<!fir.char<1,?>>) -> !fir.ref<!fir.array<2x3x!fir.char<1,?>>>
! CHECK-DAG: %[[c2:.*]] = arith.constant 2 : index
! CHECK-DAG: %[[c3:.*]] = arith.constant 3 : index
! CHECK-DAG: %[[shape:.*]] = fir.shape %[[c2]], %[[c3]] : (index, index) -> !fir.shape<2>
! CHECK: %[[box:.*]] = fir.embox %[[buffer]](%[[shape]]) typeparams %[[unboxed]]#1 : (!fir.ref<!fir.array<2x3x!fir.char<1,?>>>, !fir.shape<2>, index) -> !fir.box<!fir.array<2x3x!fir.char<1,?>>>
! CHECK: %[[descriptor:.*]] = fir.convert %[[box]] : (!fir.box<!fir.array<2x3x!fir.char<1,?>>>) -> !fir.box<none>
! CHECK: fir.call @_FortranAioOutputDescriptor(%{{.*}}, %[[descriptor]]) {{.*}}: (!fir.ref<i8>, !fir.box<none>) -> i1
print *, carray
end
! CHECK-LABEL: func @_QPpass_array_slice_read(
! CHECK-SAME: %[[VAL_0:.*]]: !fir.box<!fir.array<?xf32>>{{.*}}) {
! CHECK: %[[VAL_1:.*]] = arith.constant 5 : i32
! CHECK: %[[VAL_2:.*]] = fir.address_of(@_QQclX{{.*}}) : !fir.ref<!fir.char<1,
! CHECK: %[[VAL_3:.*]] = fir.convert %[[VAL_2]] : (!fir.ref<!fir.char<1,{{[0-9]+}}>>) -> !fir.ref<i8>
! CHECK: %[[VAL_4:.*]] = arith.constant {{[0-9]+}} : i32
! CHECK: %[[VAL_5:.*]] = fir.call @_FortranAioBeginExternalListInput(%[[VAL_1]], %[[VAL_3]], %[[VAL_4]]) {{.*}}: (i32, !fir.ref<i8>, i32) -> !fir.ref<i8>
! CHECK: %[[VAL_6:.*]] = arith.constant 101 : i64
! CHECK: %[[VAL_7:.*]] = fir.convert %[[VAL_6]] : (i64) -> index
! CHECK: %[[VAL_8:.*]] = arith.constant 2 : i64
! CHECK: %[[VAL_9:.*]] = fir.convert %[[VAL_8]] : (i64) -> index
! CHECK: %[[VAL_10:.*]] = arith.constant 200 : i64
! CHECK: %[[VAL_11:.*]] = fir.convert %[[VAL_10]] : (i64) -> index
! CHECK: %[[VAL_12:.*]] = fir.slice %[[VAL_7]], %[[VAL_11]], %[[VAL_9]] : (index, index, index) -> !fir.slice<1>
! CHECK: %[[VAL_13:.*]] = fir.rebox %[[VAL_0]] {{\[}}%[[VAL_12]]] : (!fir.box<!fir.array<?xf32>>, !fir.slice<1>) -> !fir.box<!fir.array<50xf32>>
! CHECK: %[[VAL_14:.*]] = fir.convert %[[VAL_13]] : (!fir.box<!fir.array<50xf32>>) -> !fir.box<none>
! CHECK: %[[VAL_15:.*]] = fir.call @_FortranAioInputDescriptor(%[[VAL_5]], %[[VAL_14]]) {{.*}}: (!fir.ref<i8>, !fir.box<none>) -> i1
! CHECK: %[[VAL_16:.*]] = fir.call @_FortranAioEndIoStatement(%[[VAL_5]]) {{.*}}: (!fir.ref<i8>) -> i32
! CHECK: return
! CHECK: }
subroutine pass_array_slice_read(x)
real :: x(:)
read(5, *) x(101:200:2)
end
! CHECK-LABEL: func @_QPpass_array_slice_write(
! CHECK-SAME: %[[VAL_0:.*]]: !fir.box<!fir.array<?xf32>>{{.*}}) {
! CHECK: %[[VAL_1:.*]] = arith.constant 1 : i32
! CHECK: %[[VAL_2:.*]] = fir.address_of(@_QQclX{{.*}}) : !fir.ref<!fir.char<1,
! CHECK: %[[VAL_3:.*]] = fir.convert %[[VAL_2]] : (!fir.ref<!fir.char<1,{{[0-9]+}}>>) -> !fir.ref<i8>
! CHECK: %[[VAL_4:.*]] = arith.constant {{[0-9]+}} : i32
! CHECK: %[[VAL_5:.*]] = fir.call @_FortranAioBeginUnformattedOutput(%[[VAL_1]], %[[VAL_3]], %[[VAL_4]]) {{.*}}: (i32, !fir.ref<i8>, i32) -> !fir.ref<i8>
! CHECK: %[[VAL_6:.*]] = arith.constant 1 : i32
! CHECK: %[[VAL_7:.*]] = fir.convert %[[VAL_6]] : (i32) -> i64
! CHECK: %[[VAL_8:.*]] = fir.call @_FortranAioSetRec(%[[VAL_5]], %[[VAL_7]]) {{.*}}: (!fir.ref<i8>, i64) -> i1
! CHECK: %[[VAL_9:.*]] = arith.constant 101 : i64
! CHECK: %[[VAL_10:.*]] = fir.convert %[[VAL_9]] : (i64) -> index
! CHECK: %[[VAL_11:.*]] = arith.constant 2 : i64
! CHECK: %[[VAL_12:.*]] = fir.convert %[[VAL_11]] : (i64) -> index
! CHECK: %[[VAL_13:.*]] = arith.constant 200 : i64
! CHECK: %[[VAL_14:.*]] = fir.convert %[[VAL_13]] : (i64) -> index
! CHECK: %[[VAL_15:.*]] = fir.slice %[[VAL_10]], %[[VAL_14]], %[[VAL_12]] : (index, index, index) -> !fir.slice<1>
! CHECK: %[[VAL_16:.*]] = fir.rebox %[[VAL_0]] {{\[}}%[[VAL_15]]] : (!fir.box<!fir.array<?xf32>>, !fir.slice<1>) -> !fir.box<!fir.array<50xf32>>
! CHECK: %[[VAL_17:.*]] = fir.convert %[[VAL_16]] : (!fir.box<!fir.array<50xf32>>) -> !fir.box<none>
! CHECK: %[[VAL_18:.*]] = fir.call @_FortranAioOutputDescriptor(%[[VAL_5]], %[[VAL_17]]) {{.*}}: (!fir.ref<i8>, !fir.box<none>) -> i1
! CHECK: %[[VAL_19:.*]] = fir.call @_FortranAioEndIoStatement(%[[VAL_5]]) {{.*}}: (!fir.ref<i8>) -> i32
! CHECK: return
! CHECK: }
subroutine pass_array_slice_write(x)
real :: x(:)
write(1, rec=1) x(101:200:2)
end
! CHECK-LABEL: func @_QPpass_vector_subscript_write(
! CHECK-SAME: %[[x:.*]]: !fir.ref<!fir.array<100xf32>>{{.*}}, %[[j:.*]]: !fir.ref<!fir.array<10xi32>>{{.*}})
subroutine pass_vector_subscript_write(x, j)
! Check that a temp is made for array with vector subscript in output IO.
integer :: j(10)
real :: x(100)
! CHECK: %[[jload:.*]] = fir.array_load %[[j]](%{{.*}}) : (!fir.ref<!fir.array<10xi32>>, !fir.shape<1>) -> !fir.array<10xi32>
! CHECK: %[[xload:.*]] = fir.array_load %[[x]](%{{.*}}) : (!fir.ref<!fir.array<100xf32>>, !fir.shape<1>) -> !fir.array<100xf32>
! CHECK: %[[temp:.*]] = fir.allocmem !fir.array<10xf32>
! CHECK: %[[tempload:.*]] = fir.array_load %[[temp]](%{{.*}}) : (!fir.heap<!fir.array<10xf32>>, !fir.shape<1>) -> !fir.array<10xf32>
! CHECK: %[[copy:.*]] = fir.do_loop
! CHECK: %[[jfetch:.*]] = fir.array_fetch %[[jload]], %{{.*}} : (!fir.array<10xi32>, index) -> i32
! CHECK: %[[jcast:.*]] = fir.convert %[[jfetch]] : (i32) -> index
! CHECK: %[[jindex:.*]] = arith.subi %[[jcast]], %c1{{.*}} : index
! CHECK: %[[xfetch:.*]] = fir.array_fetch %[[xload]], %[[jindex]] : (!fir.array<100xf32>, index) -> f32
! CHECK: %[[update:.*]] = fir.array_update %{{.*}}, %[[xfetch]], %{{.*}} : (!fir.array<10xf32>, f32, index) -> !fir.array<10xf32>
! CHECK: fir.result %[[update]] : !fir.array<10xf32>
! CHECK: }
! CHECK: fir.array_merge_store %[[tempload]], %[[copy]] to %[[temp]] : !fir.array<10xf32>, !fir.array<10xf32>, !fir.heap<!fir.array<10xf32>>
! CHECK: %[[embox:.*]] = fir.embox %[[temp]](%{{.*}}) : (!fir.heap<!fir.array<10xf32>>, !fir.shape<1>) -> !fir.box<!fir.array<10xf32>>
! CHECK: %[[boxCast:.*]] = fir.convert %[[embox]] : (!fir.box<!fir.array<10xf32>>) -> !fir.box<none>
! CHECK: fir.call @_FortranAioOutputDescriptor(%{{.*}}, %[[boxCast]]) {{.*}}: (!fir.ref<i8>, !fir.box<none>) -> i1
! CHECK: fir.freemem %[[temp]] : !fir.heap<!fir.array<10xf32>>
write(1, rec=1) x(j)
end