llvm-project/clang/lib/AST/FormatString.cpp
apple-fcloutier c7101188fb
[clang] Implement __attribute__((format_matches)) (#116708)
This implements ``__attribute__((format_matches))``, as described in the
RFC:
https://discourse.llvm.org/t/rfc-format-attribute-attribute-format-like/83076

The ``format`` attribute only allows the compiler to check that a format
string matches its arguments. If the format string is passed
independently of its arguments, there is no way to have the compiler
check it. ``format_matches(flavor, fmtidx, example)`` allows the
compiler to check format strings against the ``example`` format string
instead of against format arguments. See the changes to AttrDocs.td in
this diff for more information.

Implementation-wise, this change subclasses CheckPrintfHandler and
CheckScanfHandler to allow them to collect specifiers into arrays, and
implements comparing that two specifiers are equivalent.
`checkFormatStringExpr` gets a new `ReferenceFormatString` argument that
is piped down when calling a function with the `format_matches`
attribute (and is `nullptr` otherwise); this is the string that the
actual format string is compared against.

Although this change does not enable -Wformat-nonliteral by default,
IMO, all the pieces are now in place such that it could be.
2025-02-24 18:58:59 -08:00

1227 lines
37 KiB
C++

// FormatString.cpp - Common stuff for handling printf/scanf formats -*- C++ -*-
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Shared details for processing format strings of printf and scanf
// (and friends).
//
//===----------------------------------------------------------------------===//
#include "FormatStringParsing.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/Support/ConvertUTF.h"
#include <optional>
using clang::analyze_format_string::ArgType;
using clang::analyze_format_string::FormatStringHandler;
using clang::analyze_format_string::FormatSpecifier;
using clang::analyze_format_string::LengthModifier;
using clang::analyze_format_string::OptionalAmount;
using clang::analyze_format_string::ConversionSpecifier;
using namespace clang;
// Key function to FormatStringHandler.
FormatStringHandler::~FormatStringHandler() {}
//===----------------------------------------------------------------------===//
// Functions for parsing format strings components in both printf and
// scanf format strings.
//===----------------------------------------------------------------------===//
OptionalAmount
clang::analyze_format_string::ParseAmount(const char *&Beg, const char *E) {
const char *I = Beg;
UpdateOnReturn <const char*> UpdateBeg(Beg, I);
unsigned accumulator = 0;
bool hasDigits = false;
for ( ; I != E; ++I) {
char c = *I;
if (c >= '0' && c <= '9') {
hasDigits = true;
accumulator = (accumulator * 10) + (c - '0');
continue;
}
if (hasDigits)
return OptionalAmount(OptionalAmount::Constant, accumulator, Beg, I - Beg,
false);
break;
}
return OptionalAmount();
}
OptionalAmount
clang::analyze_format_string::ParseNonPositionAmount(const char *&Beg,
const char *E,
unsigned &argIndex) {
if (*Beg == '*') {
++Beg;
return OptionalAmount(OptionalAmount::Arg, argIndex++, Beg, 0, false);
}
return ParseAmount(Beg, E);
}
OptionalAmount
clang::analyze_format_string::ParsePositionAmount(FormatStringHandler &H,
const char *Start,
const char *&Beg,
const char *E,
PositionContext p) {
if (*Beg == '*') {
const char *I = Beg + 1;
const OptionalAmount &Amt = ParseAmount(I, E);
if (Amt.getHowSpecified() == OptionalAmount::NotSpecified) {
H.HandleInvalidPosition(Beg, I - Beg, p);
return OptionalAmount(false);
}
if (I == E) {
// No more characters left?
H.HandleIncompleteSpecifier(Start, E - Start);
return OptionalAmount(false);
}
assert(Amt.getHowSpecified() == OptionalAmount::Constant);
if (*I == '$') {
// Handle positional arguments
// Special case: '*0$', since this is an easy mistake.
if (Amt.getConstantAmount() == 0) {
H.HandleZeroPosition(Beg, I - Beg + 1);
return OptionalAmount(false);
}
const char *Tmp = Beg;
Beg = ++I;
return OptionalAmount(OptionalAmount::Arg, Amt.getConstantAmount() - 1,
Tmp, 0, true);
}
H.HandleInvalidPosition(Beg, I - Beg, p);
return OptionalAmount(false);
}
return ParseAmount(Beg, E);
}
bool
clang::analyze_format_string::ParseFieldWidth(FormatStringHandler &H,
FormatSpecifier &CS,
const char *Start,
const char *&Beg, const char *E,
unsigned *argIndex) {
// FIXME: Support negative field widths.
if (argIndex) {
CS.setFieldWidth(ParseNonPositionAmount(Beg, E, *argIndex));
}
else {
const OptionalAmount Amt =
ParsePositionAmount(H, Start, Beg, E,
analyze_format_string::FieldWidthPos);
if (Amt.isInvalid())
return true;
CS.setFieldWidth(Amt);
}
return false;
}
bool
clang::analyze_format_string::ParseArgPosition(FormatStringHandler &H,
FormatSpecifier &FS,
const char *Start,
const char *&Beg,
const char *E) {
const char *I = Beg;
const OptionalAmount &Amt = ParseAmount(I, E);
if (I == E) {
// No more characters left?
H.HandleIncompleteSpecifier(Start, E - Start);
return true;
}
if (Amt.getHowSpecified() == OptionalAmount::Constant && *(I++) == '$') {
// Warn that positional arguments are non-standard.
H.HandlePosition(Start, I - Start);
// Special case: '%0$', since this is an easy mistake.
if (Amt.getConstantAmount() == 0) {
H.HandleZeroPosition(Start, I - Start);
return true;
}
FS.setArgIndex(Amt.getConstantAmount() - 1);
FS.setUsesPositionalArg();
// Update the caller's pointer if we decided to consume
// these characters.
Beg = I;
return false;
}
return false;
}
bool
clang::analyze_format_string::ParseVectorModifier(FormatStringHandler &H,
FormatSpecifier &FS,
const char *&I,
const char *E,
const LangOptions &LO) {
if (!LO.OpenCL)
return false;
const char *Start = I;
if (*I == 'v') {
++I;
if (I == E) {
H.HandleIncompleteSpecifier(Start, E - Start);
return true;
}
OptionalAmount NumElts = ParseAmount(I, E);
if (NumElts.getHowSpecified() != OptionalAmount::Constant) {
H.HandleIncompleteSpecifier(Start, E - Start);
return true;
}
FS.setVectorNumElts(NumElts);
}
return false;
}
bool
clang::analyze_format_string::ParseLengthModifier(FormatSpecifier &FS,
const char *&I,
const char *E,
const LangOptions &LO,
bool IsScanf) {
LengthModifier::Kind lmKind = LengthModifier::None;
const char *lmPosition = I;
switch (*I) {
default:
return false;
case 'h':
++I;
if (I != E && *I == 'h') {
++I;
lmKind = LengthModifier::AsChar;
} else if (I != E && *I == 'l' && LO.OpenCL) {
++I;
lmKind = LengthModifier::AsShortLong;
} else {
lmKind = LengthModifier::AsShort;
}
break;
case 'l':
++I;
if (I != E && *I == 'l') {
++I;
lmKind = LengthModifier::AsLongLong;
} else {
lmKind = LengthModifier::AsLong;
}
break;
case 'j': lmKind = LengthModifier::AsIntMax; ++I; break;
case 'z': lmKind = LengthModifier::AsSizeT; ++I; break;
case 't': lmKind = LengthModifier::AsPtrDiff; ++I; break;
case 'L': lmKind = LengthModifier::AsLongDouble; ++I; break;
case 'q': lmKind = LengthModifier::AsQuad; ++I; break;
case 'a':
if (IsScanf && !LO.C99 && !LO.CPlusPlus11) {
// For scanf in C90, look at the next character to see if this should
// be parsed as the GNU extension 'a' length modifier. If not, this
// will be parsed as a conversion specifier.
++I;
if (I != E && (*I == 's' || *I == 'S' || *I == '[')) {
lmKind = LengthModifier::AsAllocate;
break;
}
--I;
}
return false;
case 'm':
if (IsScanf) {
lmKind = LengthModifier::AsMAllocate;
++I;
break;
}
return false;
// printf: AsInt64, AsInt32, AsInt3264
// scanf: AsInt64
case 'I':
if (I + 1 != E && I + 2 != E) {
if (I[1] == '6' && I[2] == '4') {
I += 3;
lmKind = LengthModifier::AsInt64;
break;
}
if (IsScanf)
return false;
if (I[1] == '3' && I[2] == '2') {
I += 3;
lmKind = LengthModifier::AsInt32;
break;
}
}
++I;
lmKind = LengthModifier::AsInt3264;
break;
case 'w':
lmKind = LengthModifier::AsWide; ++I; break;
}
LengthModifier lm(lmPosition, lmKind);
FS.setLengthModifier(lm);
return true;
}
bool clang::analyze_format_string::ParseUTF8InvalidSpecifier(
const char *SpecifierBegin, const char *FmtStrEnd, unsigned &Len) {
if (SpecifierBegin + 1 >= FmtStrEnd)
return false;
const llvm::UTF8 *SB =
reinterpret_cast<const llvm::UTF8 *>(SpecifierBegin + 1);
const llvm::UTF8 *SE = reinterpret_cast<const llvm::UTF8 *>(FmtStrEnd);
const char FirstByte = *SB;
// If the invalid specifier is a multibyte UTF-8 string, return the
// total length accordingly so that the conversion specifier can be
// properly updated to reflect a complete UTF-8 specifier.
unsigned NumBytes = llvm::getNumBytesForUTF8(FirstByte);
if (NumBytes == 1)
return false;
if (SB + NumBytes > SE)
return false;
Len = NumBytes + 1;
return true;
}
//===----------------------------------------------------------------------===//
// Methods on ArgType.
//===----------------------------------------------------------------------===//
clang::analyze_format_string::ArgType::MatchKind
ArgType::matchesType(ASTContext &C, QualType argTy) const {
// When using the format attribute in C++, you can receive a function or an
// array that will necessarily decay to a pointer when passed to the final
// format consumer. Apply decay before type comparison.
if (argTy->canDecayToPointerType())
argTy = C.getDecayedType(argTy);
if (Ptr) {
// It has to be a pointer.
const PointerType *PT = argTy->getAs<PointerType>();
if (!PT)
return NoMatch;
// We cannot write through a const qualified pointer.
if (PT->getPointeeType().isConstQualified())
return NoMatch;
argTy = PT->getPointeeType();
}
switch (K) {
case InvalidTy:
llvm_unreachable("ArgType must be valid");
case UnknownTy:
return Match;
case AnyCharTy: {
if (const auto *ETy = argTy->getAs<EnumType>()) {
// If the enum is incomplete we know nothing about the underlying type.
// Assume that it's 'int'. Do not use the underlying type for a scoped
// enumeration.
if (!ETy->getDecl()->isComplete())
return NoMatch;
if (ETy->isUnscopedEnumerationType())
argTy = ETy->getDecl()->getIntegerType();
}
if (const auto *BT = argTy->getAs<BuiltinType>()) {
// The types are perfectly matched?
switch (BT->getKind()) {
default:
break;
case BuiltinType::Char_S:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Char_U:
return Match;
case BuiltinType::Bool:
if (!Ptr)
return Match;
break;
}
// "Partially matched" because of promotions?
if (!Ptr) {
switch (BT->getKind()) {
default:
break;
case BuiltinType::Int:
case BuiltinType::UInt:
return MatchPromotion;
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
return NoMatchPromotionTypeConfusion;
}
}
}
return NoMatch;
}
case SpecificTy: {
if (const EnumType *ETy = argTy->getAs<EnumType>()) {
// If the enum is incomplete we know nothing about the underlying type.
// Assume that it's 'int'. Do not use the underlying type for a scoped
// enumeration as that needs an exact match.
if (!ETy->getDecl()->isComplete())
argTy = C.IntTy;
else if (ETy->isUnscopedEnumerationType())
argTy = ETy->getDecl()->getIntegerType();
}
if (argTy->isSaturatedFixedPointType())
argTy = C.getCorrespondingUnsaturatedType(argTy);
argTy = C.getCanonicalType(argTy).getUnqualifiedType();
if (T == argTy)
return Match;
if (const auto *BT = argTy->getAs<BuiltinType>()) {
// Check if the only difference between them is signed vs unsigned
// if true, return match signedness.
switch (BT->getKind()) {
default:
break;
case BuiltinType::Bool:
if (Ptr && (T == C.UnsignedCharTy || T == C.SignedCharTy))
return NoMatch;
[[fallthrough]];
case BuiltinType::Char_S:
case BuiltinType::SChar:
if (T == C.UnsignedShortTy || T == C.ShortTy)
return NoMatchTypeConfusion;
if (T == C.UnsignedCharTy)
return NoMatchSignedness;
if (T == C.SignedCharTy)
return Match;
break;
case BuiltinType::Char_U:
case BuiltinType::UChar:
if (T == C.UnsignedShortTy || T == C.ShortTy)
return NoMatchTypeConfusion;
if (T == C.UnsignedCharTy)
return Match;
if (T == C.SignedCharTy)
return NoMatchSignedness;
break;
case BuiltinType::Short:
if (T == C.UnsignedShortTy)
return NoMatchSignedness;
break;
case BuiltinType::UShort:
if (T == C.ShortTy)
return NoMatchSignedness;
break;
case BuiltinType::Int:
if (T == C.UnsignedIntTy)
return NoMatchSignedness;
break;
case BuiltinType::UInt:
if (T == C.IntTy)
return NoMatchSignedness;
break;
case BuiltinType::Long:
if (T == C.UnsignedLongTy)
return NoMatchSignedness;
break;
case BuiltinType::ULong:
if (T == C.LongTy)
return NoMatchSignedness;
break;
case BuiltinType::LongLong:
if (T == C.UnsignedLongLongTy)
return NoMatchSignedness;
break;
case BuiltinType::ULongLong:
if (T == C.LongLongTy)
return NoMatchSignedness;
break;
}
// "Partially matched" because of promotions?
if (!Ptr) {
switch (BT->getKind()) {
default:
break;
case BuiltinType::Bool:
if (T == C.IntTy || T == C.UnsignedIntTy)
return MatchPromotion;
break;
case BuiltinType::Int:
case BuiltinType::UInt:
if (T == C.SignedCharTy || T == C.UnsignedCharTy ||
T == C.ShortTy || T == C.UnsignedShortTy || T == C.WCharTy ||
T == C.WideCharTy)
return MatchPromotion;
break;
case BuiltinType::Char_U:
if (T == C.UnsignedIntTy)
return MatchPromotion;
if (T == C.UnsignedShortTy)
return NoMatchPromotionTypeConfusion;
break;
case BuiltinType::Char_S:
if (T == C.IntTy)
return MatchPromotion;
if (T == C.ShortTy)
return NoMatchPromotionTypeConfusion;
break;
case BuiltinType::Half:
case BuiltinType::Float:
if (T == C.DoubleTy)
return MatchPromotion;
break;
case BuiltinType::Short:
case BuiltinType::UShort:
if (T == C.SignedCharTy || T == C.UnsignedCharTy)
return NoMatchPromotionTypeConfusion;
break;
case BuiltinType::WChar_U:
case BuiltinType::WChar_S:
if (T != C.WCharTy && T != C.WideCharTy)
return NoMatchPromotionTypeConfusion;
}
}
}
return NoMatch;
}
case CStrTy:
if (const auto *PT = argTy->getAs<PointerType>();
PT && PT->getPointeeType()->isCharType())
return Match;
return NoMatch;
case WCStrTy:
if (const auto *PT = argTy->getAs<PointerType>();
PT &&
C.hasSameUnqualifiedType(PT->getPointeeType(), C.getWideCharType()))
return Match;
return NoMatch;
case WIntTy: {
QualType WInt = C.getCanonicalType(C.getWIntType()).getUnqualifiedType();
if (C.getCanonicalType(argTy).getUnqualifiedType() == WInt)
return Match;
QualType PromoArg = C.isPromotableIntegerType(argTy)
? C.getPromotedIntegerType(argTy)
: argTy;
PromoArg = C.getCanonicalType(PromoArg).getUnqualifiedType();
// If the promoted argument is the corresponding signed type of the
// wint_t type, then it should match.
if (PromoArg->hasSignedIntegerRepresentation() &&
C.getCorrespondingUnsignedType(PromoArg) == WInt)
return Match;
return WInt == PromoArg ? Match : NoMatch;
}
case CPointerTy:
if (const auto *PT = argTy->getAs<PointerType>()) {
QualType PointeeTy = PT->getPointeeType();
if (PointeeTy->isVoidType() || (!Ptr && PointeeTy->isCharType()))
return Match;
return NoMatchPedantic;
}
// nullptr_t* is not a double pointer, so reject when something like
// void** is expected.
// In C++, nullptr is promoted to void*. In C23, va_arg(ap, void*) is not
// undefined when the next argument is of type nullptr_t.
if (!Ptr && argTy->isNullPtrType())
return C.getLangOpts().CPlusPlus ? MatchPromotion : Match;
if (argTy->isObjCObjectPointerType() || argTy->isBlockPointerType())
return NoMatchPedantic;
return NoMatch;
case ObjCPointerTy: {
if (argTy->getAs<ObjCObjectPointerType>() ||
argTy->getAs<BlockPointerType>())
return Match;
// Handle implicit toll-free bridging.
if (const PointerType *PT = argTy->getAs<PointerType>()) {
// Things such as CFTypeRef are really just opaque pointers
// to C structs representing CF types that can often be bridged
// to Objective-C objects. Since the compiler doesn't know which
// structs can be toll-free bridged, we just accept them all.
QualType pointee = PT->getPointeeType();
if (pointee->getAsStructureType() || pointee->isVoidType())
return Match;
}
return NoMatch;
}
}
llvm_unreachable("Invalid ArgType Kind!");
}
static analyze_format_string::ArgType::MatchKind
integerTypeMatch(ASTContext &C, QualType A, QualType B, bool CheckSign) {
using MK = analyze_format_string::ArgType::MatchKind;
uint64_t IntSize = C.getTypeSize(C.IntTy);
uint64_t ASize = C.getTypeSize(A);
uint64_t BSize = C.getTypeSize(B);
if (std::max(ASize, IntSize) != std::max(BSize, IntSize))
return MK::NoMatch;
if (CheckSign && A->isSignedIntegerType() != B->isSignedIntegerType())
return MK::NoMatchSignedness;
if (ASize != BSize)
return MK::MatchPromotion;
return MK::Match;
}
analyze_format_string::ArgType::MatchKind
ArgType::matchesArgType(ASTContext &C, const ArgType &Other) const {
using AK = analyze_format_string::ArgType::Kind;
// Per matchesType.
if (K == AK::InvalidTy || Other.K == AK::InvalidTy)
return NoMatch;
if (K == AK::UnknownTy || Other.K == AK::UnknownTy)
return Match;
// Handle whether either (or both, or neither) sides has Ptr set,
// in addition to whether either (or both, or neither) sides is a SpecificTy
// that is a pointer.
ArgType Left = *this;
bool LeftWasPointer = false;
ArgType Right = Other;
bool RightWasPointer = false;
if (Left.Ptr) {
Left.Ptr = false;
LeftWasPointer = true;
} else if (Left.K == AK::SpecificTy && Left.T->isPointerType()) {
Left.T = Left.T->getPointeeType();
LeftWasPointer = true;
}
if (Right.Ptr) {
Right.Ptr = false;
RightWasPointer = true;
} else if (Right.K == AK::SpecificTy && Right.T->isPointerType()) {
Right.T = Right.T->getPointeeType();
RightWasPointer = true;
}
if (LeftWasPointer != RightWasPointer)
return NoMatch;
// Ensure that if at least one side is a SpecificTy, then Left is a
// SpecificTy.
if (Right.K == AK::SpecificTy)
std::swap(Left, Right);
if (Left.K == AK::SpecificTy) {
if (Right.K == AK::SpecificTy) {
auto Canon1 = C.getCanonicalType(Left.T);
auto Canon2 = C.getCanonicalType(Right.T);
if (Canon1 == Canon2)
return Match;
auto *BT1 = QualType(Canon1)->getAs<BuiltinType>();
auto *BT2 = QualType(Canon2)->getAs<BuiltinType>();
if (BT1 == nullptr || BT2 == nullptr)
return NoMatch;
if (BT1 == BT2)
return Match;
if (!LeftWasPointer && BT1->isInteger() && BT2->isInteger())
return integerTypeMatch(C, Canon1, Canon2, true);
return NoMatch;
} else if (Right.K == AK::AnyCharTy) {
if (!LeftWasPointer && Left.T->isIntegerType())
return integerTypeMatch(C, Left.T, C.CharTy, false);
return NoMatch;
} else if (Right.K == AK::WIntTy) {
if (!LeftWasPointer && Left.T->isIntegerType())
return integerTypeMatch(C, Left.T, C.WIntTy, true);
return NoMatch;
}
// It's hypothetically possible to create an AK::SpecificTy ArgType
// that matches another kind of ArgType, but in practice Clang doesn't
// do that, so ignore that case.
return NoMatch;
}
return Left.K == Right.K ? Match : NoMatch;
}
ArgType ArgType::makeVectorType(ASTContext &C, unsigned NumElts) const {
// Check for valid vector element types.
if (T.isNull())
return ArgType::Invalid();
QualType Vec = C.getExtVectorType(T, NumElts);
return ArgType(Vec, Name);
}
QualType ArgType::getRepresentativeType(ASTContext &C) const {
QualType Res;
switch (K) {
case InvalidTy:
llvm_unreachable("No representative type for Invalid ArgType");
case UnknownTy:
llvm_unreachable("No representative type for Unknown ArgType");
case AnyCharTy:
Res = C.CharTy;
break;
case SpecificTy:
Res = T;
break;
case CStrTy:
Res = C.getPointerType(C.CharTy);
break;
case WCStrTy:
Res = C.getPointerType(C.getWideCharType());
break;
case ObjCPointerTy:
Res = C.ObjCBuiltinIdTy;
break;
case CPointerTy:
Res = C.VoidPtrTy;
break;
case WIntTy: {
Res = C.getWIntType();
break;
}
}
if (Ptr)
Res = C.getPointerType(Res);
return Res;
}
std::string ArgType::getRepresentativeTypeName(ASTContext &C) const {
std::string S = getRepresentativeType(C).getAsString(C.getPrintingPolicy());
std::string Alias;
if (Name) {
// Use a specific name for this type, e.g. "size_t".
Alias = Name;
if (Ptr) {
// If ArgType is actually a pointer to T, append an asterisk.
Alias += (Alias[Alias.size()-1] == '*') ? "*" : " *";
}
// If Alias is the same as the underlying type, e.g. wchar_t, then drop it.
if (S == Alias)
Alias.clear();
}
if (!Alias.empty())
return std::string("'") + Alias + "' (aka '" + S + "')";
return std::string("'") + S + "'";
}
//===----------------------------------------------------------------------===//
// Methods on OptionalAmount.
//===----------------------------------------------------------------------===//
ArgType
analyze_format_string::OptionalAmount::getArgType(ASTContext &Ctx) const {
return Ctx.IntTy;
}
//===----------------------------------------------------------------------===//
// Methods on LengthModifier.
//===----------------------------------------------------------------------===//
const char *
analyze_format_string::LengthModifier::toString() const {
switch (kind) {
case AsChar:
return "hh";
case AsShort:
return "h";
case AsShortLong:
return "hl";
case AsLong: // or AsWideChar
return "l";
case AsLongLong:
return "ll";
case AsQuad:
return "q";
case AsIntMax:
return "j";
case AsSizeT:
return "z";
case AsPtrDiff:
return "t";
case AsInt32:
return "I32";
case AsInt3264:
return "I";
case AsInt64:
return "I64";
case AsLongDouble:
return "L";
case AsAllocate:
return "a";
case AsMAllocate:
return "m";
case AsWide:
return "w";
case None:
return "";
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Methods on ConversionSpecifier.
//===----------------------------------------------------------------------===//
const char *ConversionSpecifier::toString() const {
switch (kind) {
case bArg: return "b";
case BArg: return "B";
case dArg: return "d";
case DArg: return "D";
case iArg: return "i";
case oArg: return "o";
case OArg: return "O";
case uArg: return "u";
case UArg: return "U";
case xArg: return "x";
case XArg: return "X";
case fArg: return "f";
case FArg: return "F";
case eArg: return "e";
case EArg: return "E";
case gArg: return "g";
case GArg: return "G";
case aArg: return "a";
case AArg: return "A";
case cArg: return "c";
case sArg: return "s";
case pArg: return "p";
case PArg:
return "P";
case nArg: return "n";
case PercentArg: return "%";
case ScanListArg: return "[";
case InvalidSpecifier: return nullptr;
// POSIX unicode extensions.
case CArg: return "C";
case SArg: return "S";
// Objective-C specific specifiers.
case ObjCObjArg: return "@";
// FreeBSD kernel specific specifiers.
case FreeBSDbArg: return "b";
case FreeBSDDArg: return "D";
case FreeBSDrArg: return "r";
case FreeBSDyArg: return "y";
// GlibC specific specifiers.
case PrintErrno: return "m";
// MS specific specifiers.
case ZArg: return "Z";
// ISO/IEC TR 18037 (fixed-point) specific specifiers.
case rArg:
return "r";
case RArg:
return "R";
case kArg:
return "k";
case KArg:
return "K";
}
return nullptr;
}
std::optional<ConversionSpecifier>
ConversionSpecifier::getStandardSpecifier() const {
ConversionSpecifier::Kind NewKind;
switch (getKind()) {
default:
return std::nullopt;
case DArg:
NewKind = dArg;
break;
case UArg:
NewKind = uArg;
break;
case OArg:
NewKind = oArg;
break;
}
ConversionSpecifier FixedCS(*this);
FixedCS.setKind(NewKind);
return FixedCS;
}
//===----------------------------------------------------------------------===//
// Methods on OptionalAmount.
//===----------------------------------------------------------------------===//
void OptionalAmount::toString(raw_ostream &os) const {
switch (hs) {
case Invalid:
case NotSpecified:
return;
case Arg:
if (UsesDotPrefix)
os << ".";
if (usesPositionalArg())
os << "*" << getPositionalArgIndex() << "$";
else
os << "*";
break;
case Constant:
if (UsesDotPrefix)
os << ".";
os << amt;
break;
}
}
bool FormatSpecifier::hasValidLengthModifier(const TargetInfo &Target,
const LangOptions &LO) const {
switch (LM.getKind()) {
case LengthModifier::None:
return true;
// Handle most integer flags
case LengthModifier::AsShort:
// Length modifier only applies to FP vectors.
if (LO.OpenCL && CS.isDoubleArg())
return !VectorNumElts.isInvalid();
if (CS.isFixedPointArg())
return true;
if (Target.getTriple().isOSMSVCRT()) {
switch (CS.getKind()) {
case ConversionSpecifier::cArg:
case ConversionSpecifier::CArg:
case ConversionSpecifier::sArg:
case ConversionSpecifier::SArg:
case ConversionSpecifier::ZArg:
return true;
default:
break;
}
}
[[fallthrough]];
case LengthModifier::AsChar:
case LengthModifier::AsLongLong:
case LengthModifier::AsQuad:
case LengthModifier::AsIntMax:
case LengthModifier::AsSizeT:
case LengthModifier::AsPtrDiff:
switch (CS.getKind()) {
case ConversionSpecifier::bArg:
case ConversionSpecifier::BArg:
case ConversionSpecifier::dArg:
case ConversionSpecifier::DArg:
case ConversionSpecifier::iArg:
case ConversionSpecifier::oArg:
case ConversionSpecifier::OArg:
case ConversionSpecifier::uArg:
case ConversionSpecifier::UArg:
case ConversionSpecifier::xArg:
case ConversionSpecifier::XArg:
case ConversionSpecifier::nArg:
return true;
case ConversionSpecifier::FreeBSDrArg:
case ConversionSpecifier::FreeBSDyArg:
return Target.getTriple().isOSFreeBSD() || Target.getTriple().isPS();
default:
return false;
}
case LengthModifier::AsShortLong:
return LO.OpenCL && !VectorNumElts.isInvalid();
// Handle 'l' flag
case LengthModifier::AsLong: // or AsWideChar
if (CS.isDoubleArg()) {
// Invalid for OpenCL FP scalars.
if (LO.OpenCL && VectorNumElts.isInvalid())
return false;
return true;
}
if (CS.isFixedPointArg())
return true;
switch (CS.getKind()) {
case ConversionSpecifier::bArg:
case ConversionSpecifier::BArg:
case ConversionSpecifier::dArg:
case ConversionSpecifier::DArg:
case ConversionSpecifier::iArg:
case ConversionSpecifier::oArg:
case ConversionSpecifier::OArg:
case ConversionSpecifier::uArg:
case ConversionSpecifier::UArg:
case ConversionSpecifier::xArg:
case ConversionSpecifier::XArg:
case ConversionSpecifier::nArg:
case ConversionSpecifier::cArg:
case ConversionSpecifier::sArg:
case ConversionSpecifier::ScanListArg:
case ConversionSpecifier::ZArg:
return true;
case ConversionSpecifier::FreeBSDrArg:
case ConversionSpecifier::FreeBSDyArg:
return Target.getTriple().isOSFreeBSD() || Target.getTriple().isPS();
default:
return false;
}
case LengthModifier::AsLongDouble:
switch (CS.getKind()) {
case ConversionSpecifier::aArg:
case ConversionSpecifier::AArg:
case ConversionSpecifier::fArg:
case ConversionSpecifier::FArg:
case ConversionSpecifier::eArg:
case ConversionSpecifier::EArg:
case ConversionSpecifier::gArg:
case ConversionSpecifier::GArg:
return true;
// GNU libc extension.
case ConversionSpecifier::dArg:
case ConversionSpecifier::iArg:
case ConversionSpecifier::oArg:
case ConversionSpecifier::uArg:
case ConversionSpecifier::xArg:
case ConversionSpecifier::XArg:
return !Target.getTriple().isOSDarwin() &&
!Target.getTriple().isOSWindows();
default:
return false;
}
case LengthModifier::AsAllocate:
switch (CS.getKind()) {
case ConversionSpecifier::sArg:
case ConversionSpecifier::SArg:
case ConversionSpecifier::ScanListArg:
return true;
default:
return false;
}
case LengthModifier::AsMAllocate:
switch (CS.getKind()) {
case ConversionSpecifier::cArg:
case ConversionSpecifier::CArg:
case ConversionSpecifier::sArg:
case ConversionSpecifier::SArg:
case ConversionSpecifier::ScanListArg:
return true;
default:
return false;
}
case LengthModifier::AsInt32:
case LengthModifier::AsInt3264:
case LengthModifier::AsInt64:
switch (CS.getKind()) {
case ConversionSpecifier::dArg:
case ConversionSpecifier::iArg:
case ConversionSpecifier::oArg:
case ConversionSpecifier::uArg:
case ConversionSpecifier::xArg:
case ConversionSpecifier::XArg:
return Target.getTriple().isOSMSVCRT();
default:
return false;
}
case LengthModifier::AsWide:
switch (CS.getKind()) {
case ConversionSpecifier::cArg:
case ConversionSpecifier::CArg:
case ConversionSpecifier::sArg:
case ConversionSpecifier::SArg:
case ConversionSpecifier::ZArg:
return Target.getTriple().isOSMSVCRT();
default:
return false;
}
}
llvm_unreachable("Invalid LengthModifier Kind!");
}
bool FormatSpecifier::hasStandardLengthModifier() const {
switch (LM.getKind()) {
case LengthModifier::None:
case LengthModifier::AsChar:
case LengthModifier::AsShort:
case LengthModifier::AsLong:
case LengthModifier::AsLongLong:
case LengthModifier::AsIntMax:
case LengthModifier::AsSizeT:
case LengthModifier::AsPtrDiff:
case LengthModifier::AsLongDouble:
return true;
case LengthModifier::AsAllocate:
case LengthModifier::AsMAllocate:
case LengthModifier::AsQuad:
case LengthModifier::AsInt32:
case LengthModifier::AsInt3264:
case LengthModifier::AsInt64:
case LengthModifier::AsWide:
case LengthModifier::AsShortLong: // ???
return false;
}
llvm_unreachable("Invalid LengthModifier Kind!");
}
bool FormatSpecifier::hasStandardConversionSpecifier(
const LangOptions &LangOpt) const {
switch (CS.getKind()) {
case ConversionSpecifier::bArg:
case ConversionSpecifier::BArg:
case ConversionSpecifier::cArg:
case ConversionSpecifier::dArg:
case ConversionSpecifier::iArg:
case ConversionSpecifier::oArg:
case ConversionSpecifier::uArg:
case ConversionSpecifier::xArg:
case ConversionSpecifier::XArg:
case ConversionSpecifier::fArg:
case ConversionSpecifier::FArg:
case ConversionSpecifier::eArg:
case ConversionSpecifier::EArg:
case ConversionSpecifier::gArg:
case ConversionSpecifier::GArg:
case ConversionSpecifier::aArg:
case ConversionSpecifier::AArg:
case ConversionSpecifier::sArg:
case ConversionSpecifier::pArg:
case ConversionSpecifier::nArg:
case ConversionSpecifier::ObjCObjArg:
case ConversionSpecifier::ScanListArg:
case ConversionSpecifier::PercentArg:
case ConversionSpecifier::PArg:
return true;
case ConversionSpecifier::CArg:
case ConversionSpecifier::SArg:
return LangOpt.ObjC;
case ConversionSpecifier::InvalidSpecifier:
case ConversionSpecifier::FreeBSDbArg:
case ConversionSpecifier::FreeBSDDArg:
case ConversionSpecifier::FreeBSDrArg:
case ConversionSpecifier::FreeBSDyArg:
case ConversionSpecifier::PrintErrno:
case ConversionSpecifier::DArg:
case ConversionSpecifier::OArg:
case ConversionSpecifier::UArg:
case ConversionSpecifier::ZArg:
return false;
case ConversionSpecifier::rArg:
case ConversionSpecifier::RArg:
case ConversionSpecifier::kArg:
case ConversionSpecifier::KArg:
return LangOpt.FixedPoint;
}
llvm_unreachable("Invalid ConversionSpecifier Kind!");
}
bool FormatSpecifier::hasStandardLengthConversionCombination() const {
if (LM.getKind() == LengthModifier::AsLongDouble) {
switch(CS.getKind()) {
case ConversionSpecifier::dArg:
case ConversionSpecifier::iArg:
case ConversionSpecifier::oArg:
case ConversionSpecifier::uArg:
case ConversionSpecifier::xArg:
case ConversionSpecifier::XArg:
return false;
default:
return true;
}
}
return true;
}
std::optional<LengthModifier>
FormatSpecifier::getCorrectedLengthModifier() const {
if (CS.isAnyIntArg() || CS.getKind() == ConversionSpecifier::nArg) {
if (LM.getKind() == LengthModifier::AsLongDouble ||
LM.getKind() == LengthModifier::AsQuad) {
LengthModifier FixedLM(LM);
FixedLM.setKind(LengthModifier::AsLongLong);
return FixedLM;
}
}
return std::nullopt;
}
bool FormatSpecifier::namedTypeToLengthModifier(QualType QT,
LengthModifier &LM) {
for (/**/; const auto *TT = QT->getAs<TypedefType>();
QT = TT->getDecl()->getUnderlyingType()) {
const TypedefNameDecl *Typedef = TT->getDecl();
const IdentifierInfo *Identifier = Typedef->getIdentifier();
if (Identifier->getName() == "size_t") {
LM.setKind(LengthModifier::AsSizeT);
return true;
} else if (Identifier->getName() == "ssize_t") {
// Not C99, but common in Unix.
LM.setKind(LengthModifier::AsSizeT);
return true;
} else if (Identifier->getName() == "intmax_t") {
LM.setKind(LengthModifier::AsIntMax);
return true;
} else if (Identifier->getName() == "uintmax_t") {
LM.setKind(LengthModifier::AsIntMax);
return true;
} else if (Identifier->getName() == "ptrdiff_t") {
LM.setKind(LengthModifier::AsPtrDiff);
return true;
}
}
return false;
}