mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-13 12:36:07 +00:00

to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
650 lines
22 KiB
C++
650 lines
22 KiB
C++
//===- FuzzerTracePC.cpp - PC tracing--------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// Trace PCs.
|
|
// This module implements __sanitizer_cov_trace_pc_guard[_init],
|
|
// the callback required for -fsanitize-coverage=trace-pc-guard instrumentation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "FuzzerTracePC.h"
|
|
#include "FuzzerBuiltins.h"
|
|
#include "FuzzerBuiltinsMsvc.h"
|
|
#include "FuzzerCorpus.h"
|
|
#include "FuzzerDefs.h"
|
|
#include "FuzzerDictionary.h"
|
|
#include "FuzzerExtFunctions.h"
|
|
#include "FuzzerIO.h"
|
|
#include "FuzzerUtil.h"
|
|
#include "FuzzerValueBitMap.h"
|
|
#include <set>
|
|
|
|
// The coverage counters and PCs.
|
|
// These are declared as global variables named "__sancov_*" to simplify
|
|
// experiments with inlined instrumentation.
|
|
alignas(64) ATTRIBUTE_INTERFACE
|
|
uint8_t __sancov_trace_pc_guard_8bit_counters[fuzzer::TracePC::kNumPCs];
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
uintptr_t __sancov_trace_pc_pcs[fuzzer::TracePC::kNumPCs];
|
|
|
|
// Used by -fsanitize-coverage=stack-depth to track stack depth
|
|
ATTRIBUTES_INTERFACE_TLS_INITIAL_EXEC uintptr_t __sancov_lowest_stack;
|
|
|
|
namespace fuzzer {
|
|
|
|
TracePC TPC;
|
|
|
|
uint8_t *TracePC::Counters() const {
|
|
return __sancov_trace_pc_guard_8bit_counters;
|
|
}
|
|
|
|
uintptr_t *TracePC::PCs() const {
|
|
return __sancov_trace_pc_pcs;
|
|
}
|
|
|
|
size_t TracePC::GetTotalPCCoverage() {
|
|
if (ObservedPCs.size())
|
|
return ObservedPCs.size();
|
|
size_t Res = 0;
|
|
for (size_t i = 1, N = GetNumPCs(); i < N; i++)
|
|
if (PCs()[i])
|
|
Res++;
|
|
return Res;
|
|
}
|
|
|
|
|
|
void TracePC::HandleInline8bitCountersInit(uint8_t *Start, uint8_t *Stop) {
|
|
if (Start == Stop) return;
|
|
if (NumModulesWithInline8bitCounters &&
|
|
ModuleCounters[NumModulesWithInline8bitCounters-1].Start == Start) return;
|
|
assert(NumModulesWithInline8bitCounters <
|
|
sizeof(ModuleCounters) / sizeof(ModuleCounters[0]));
|
|
ModuleCounters[NumModulesWithInline8bitCounters++] = {Start, Stop};
|
|
NumInline8bitCounters += Stop - Start;
|
|
}
|
|
|
|
void TracePC::HandlePCsInit(const uintptr_t *Start, const uintptr_t *Stop) {
|
|
const PCTableEntry *B = reinterpret_cast<const PCTableEntry *>(Start);
|
|
const PCTableEntry *E = reinterpret_cast<const PCTableEntry *>(Stop);
|
|
if (NumPCTables && ModulePCTable[NumPCTables - 1].Start == B) return;
|
|
assert(NumPCTables < sizeof(ModulePCTable) / sizeof(ModulePCTable[0]));
|
|
ModulePCTable[NumPCTables++] = {B, E};
|
|
NumPCsInPCTables += E - B;
|
|
}
|
|
|
|
void TracePC::HandleInit(uint32_t *Start, uint32_t *Stop) {
|
|
if (Start == Stop || *Start) return;
|
|
assert(NumModules < sizeof(Modules) / sizeof(Modules[0]));
|
|
for (uint32_t *P = Start; P < Stop; P++) {
|
|
NumGuards++;
|
|
if (NumGuards == kNumPCs) {
|
|
RawPrint(
|
|
"WARNING: The binary has too many instrumented PCs.\n"
|
|
" You may want to reduce the size of the binary\n"
|
|
" for more efficient fuzzing and precise coverage data\n");
|
|
}
|
|
*P = NumGuards % kNumPCs;
|
|
}
|
|
Modules[NumModules].Start = Start;
|
|
Modules[NumModules].Stop = Stop;
|
|
NumModules++;
|
|
}
|
|
|
|
void TracePC::PrintModuleInfo() {
|
|
if (NumGuards) {
|
|
Printf("INFO: Loaded %zd modules (%zd guards): ", NumModules, NumGuards);
|
|
for (size_t i = 0; i < NumModules; i++)
|
|
Printf("%zd [%p, %p), ", Modules[i].Stop - Modules[i].Start,
|
|
Modules[i].Start, Modules[i].Stop);
|
|
Printf("\n");
|
|
}
|
|
if (NumModulesWithInline8bitCounters) {
|
|
Printf("INFO: Loaded %zd modules (%zd inline 8-bit counters): ",
|
|
NumModulesWithInline8bitCounters, NumInline8bitCounters);
|
|
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++)
|
|
Printf("%zd [%p, %p), ", ModuleCounters[i].Stop - ModuleCounters[i].Start,
|
|
ModuleCounters[i].Start, ModuleCounters[i].Stop);
|
|
Printf("\n");
|
|
}
|
|
if (NumPCTables) {
|
|
Printf("INFO: Loaded %zd PC tables (%zd PCs): ", NumPCTables,
|
|
NumPCsInPCTables);
|
|
for (size_t i = 0; i < NumPCTables; i++) {
|
|
Printf("%zd [%p,%p), ", ModulePCTable[i].Stop - ModulePCTable[i].Start,
|
|
ModulePCTable[i].Start, ModulePCTable[i].Stop);
|
|
}
|
|
Printf("\n");
|
|
|
|
if ((NumGuards && NumGuards != NumPCsInPCTables) ||
|
|
(NumInline8bitCounters && NumInline8bitCounters != NumPCsInPCTables)) {
|
|
Printf("ERROR: The size of coverage PC tables does not match the\n"
|
|
"number of instrumented PCs. This might be a compiler bug,\n"
|
|
"please contact the libFuzzer developers.\n"
|
|
"Also check https://bugs.llvm.org/show_bug.cgi?id=34636\n"
|
|
"for possible workarounds (tl;dr: don't use the old GNU ld)\n");
|
|
_Exit(1);
|
|
}
|
|
}
|
|
if (size_t NumExtraCounters = ExtraCountersEnd() - ExtraCountersBegin())
|
|
Printf("INFO: %zd Extra Counters\n", NumExtraCounters);
|
|
}
|
|
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void TracePC::HandleCallerCallee(uintptr_t Caller, uintptr_t Callee) {
|
|
const uintptr_t kBits = 12;
|
|
const uintptr_t kMask = (1 << kBits) - 1;
|
|
uintptr_t Idx = (Caller & kMask) | ((Callee & kMask) << kBits);
|
|
ValueProfileMap.AddValueModPrime(Idx);
|
|
}
|
|
|
|
/// \return the address of the previous instruction.
|
|
/// Note: the logic is copied from `sanitizer_common/sanitizer_stacktrace.h`
|
|
inline ALWAYS_INLINE uintptr_t GetPreviousInstructionPc(uintptr_t PC) {
|
|
#if defined(__arm__)
|
|
// T32 (Thumb) branch instructions might be 16 or 32 bit long,
|
|
// so we return (pc-2) in that case in order to be safe.
|
|
// For A32 mode we return (pc-4) because all instructions are 32 bit long.
|
|
return (PC - 3) & (~1);
|
|
#elif defined(__powerpc__) || defined(__powerpc64__) || defined(__aarch64__)
|
|
// PCs are always 4 byte aligned.
|
|
return PC - 4;
|
|
#elif defined(__sparc__) || defined(__mips__)
|
|
return PC - 8;
|
|
#else
|
|
return PC - 1;
|
|
#endif
|
|
}
|
|
|
|
/// \return the address of the next instruction.
|
|
/// Note: the logic is copied from `sanitizer_common/sanitizer_stacktrace.cc`
|
|
inline ALWAYS_INLINE uintptr_t GetNextInstructionPc(uintptr_t PC) {
|
|
#if defined(__mips__)
|
|
return PC + 8;
|
|
#elif defined(__powerpc__) || defined(__sparc__) || defined(__arm__) || \
|
|
defined(__aarch64__)
|
|
return PC + 4;
|
|
#else
|
|
return PC + 1;
|
|
#endif
|
|
}
|
|
|
|
void TracePC::UpdateObservedPCs() {
|
|
Vector<uintptr_t> CoveredFuncs;
|
|
auto ObservePC = [&](uintptr_t PC) {
|
|
if (ObservedPCs.insert(PC).second && DoPrintNewPCs) {
|
|
PrintPC("\tNEW_PC: %p %F %L", "\tNEW_PC: %p", GetNextInstructionPc(PC));
|
|
Printf("\n");
|
|
}
|
|
};
|
|
|
|
auto Observe = [&](const PCTableEntry &TE) {
|
|
if (TE.PCFlags & 1)
|
|
if (++ObservedFuncs[TE.PC] == 1 && NumPrintNewFuncs)
|
|
CoveredFuncs.push_back(TE.PC);
|
|
ObservePC(TE.PC);
|
|
};
|
|
|
|
if (NumPCsInPCTables) {
|
|
if (NumInline8bitCounters == NumPCsInPCTables) {
|
|
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) {
|
|
uint8_t *Beg = ModuleCounters[i].Start;
|
|
size_t Size = ModuleCounters[i].Stop - Beg;
|
|
assert(Size ==
|
|
(size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start));
|
|
for (size_t j = 0; j < Size; j++)
|
|
if (Beg[j])
|
|
Observe(ModulePCTable[i].Start[j]);
|
|
}
|
|
} else if (NumGuards == NumPCsInPCTables) {
|
|
size_t GuardIdx = 1;
|
|
for (size_t i = 0; i < NumModules; i++) {
|
|
uint32_t *Beg = Modules[i].Start;
|
|
size_t Size = Modules[i].Stop - Beg;
|
|
assert(Size ==
|
|
(size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start));
|
|
for (size_t j = 0; j < Size; j++, GuardIdx++)
|
|
if (Counters()[GuardIdx])
|
|
Observe(ModulePCTable[i].Start[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0, N = Min(CoveredFuncs.size(), NumPrintNewFuncs); i < N;
|
|
i++) {
|
|
Printf("\tNEW_FUNC[%zd/%zd]: ", i + 1, CoveredFuncs.size());
|
|
PrintPC("%p %F %L", "%p", GetNextInstructionPc(CoveredFuncs[i]));
|
|
Printf("\n");
|
|
}
|
|
}
|
|
|
|
|
|
static std::string GetModuleName(uintptr_t PC) {
|
|
char ModulePathRaw[4096] = ""; // What's PATH_MAX in portable C++?
|
|
void *OffsetRaw = nullptr;
|
|
if (!EF->__sanitizer_get_module_and_offset_for_pc(
|
|
reinterpret_cast<void *>(PC), ModulePathRaw,
|
|
sizeof(ModulePathRaw), &OffsetRaw))
|
|
return "";
|
|
return ModulePathRaw;
|
|
}
|
|
|
|
template<class CallBack>
|
|
void TracePC::IterateCoveredFunctions(CallBack CB) {
|
|
for (size_t i = 0; i < NumPCTables; i++) {
|
|
auto &M = ModulePCTable[i];
|
|
assert(M.Start < M.Stop);
|
|
auto ModuleName = GetModuleName(M.Start->PC);
|
|
for (auto NextFE = M.Start; NextFE < M.Stop; ) {
|
|
auto FE = NextFE;
|
|
assert((FE->PCFlags & 1) && "Not a function entry point");
|
|
do {
|
|
NextFE++;
|
|
} while (NextFE < M.Stop && !(NextFE->PCFlags & 1));
|
|
if (ObservedFuncs.count(FE->PC))
|
|
CB(FE, NextFE, ObservedFuncs[FE->PC]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void TracePC::SetFocusFunction(const std::string &FuncName) {
|
|
// This function should be called once.
|
|
assert(FocusFunction.first > NumModulesWithInline8bitCounters);
|
|
if (FuncName.empty())
|
|
return;
|
|
for (size_t M = 0; M < NumModulesWithInline8bitCounters; M++) {
|
|
auto &PCTE = ModulePCTable[M];
|
|
size_t N = PCTE.Stop - PCTE.Start;
|
|
for (size_t I = 0; I < N; I++) {
|
|
if (!(PCTE.Start[I].PCFlags & 1)) continue; // not a function entry.
|
|
auto Name = DescribePC("%F", GetNextInstructionPc(PCTE.Start[I].PC));
|
|
if (Name[0] == 'i' && Name[1] == 'n' && Name[2] == ' ')
|
|
Name = Name.substr(3, std::string::npos);
|
|
if (FuncName != Name) continue;
|
|
Printf("INFO: Focus function is set to '%s'\n", Name.c_str());
|
|
FocusFunction = {M, I};
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool TracePC::ObservedFocusFunction() {
|
|
size_t I = FocusFunction.first;
|
|
size_t J = FocusFunction.second;
|
|
if (I >= NumModulesWithInline8bitCounters)
|
|
return false;
|
|
auto &MC = ModuleCounters[I];
|
|
size_t Size = MC.Stop - MC.Start;
|
|
if (J >= Size)
|
|
return false;
|
|
return MC.Start[J] != 0;
|
|
}
|
|
|
|
void TracePC::PrintCoverage() {
|
|
if (!EF->__sanitizer_symbolize_pc ||
|
|
!EF->__sanitizer_get_module_and_offset_for_pc) {
|
|
Printf("INFO: __sanitizer_symbolize_pc or "
|
|
"__sanitizer_get_module_and_offset_for_pc is not available,"
|
|
" not printing coverage\n");
|
|
return;
|
|
}
|
|
Printf("COVERAGE:\n");
|
|
auto CoveredFunctionCallback = [&](const PCTableEntry *First,
|
|
const PCTableEntry *Last,
|
|
uintptr_t Counter) {
|
|
assert(First < Last);
|
|
auto VisualizePC = GetNextInstructionPc(First->PC);
|
|
std::string FileStr = DescribePC("%s", VisualizePC);
|
|
if (!IsInterestingCoverageFile(FileStr))
|
|
return;
|
|
std::string FunctionStr = DescribePC("%F", VisualizePC);
|
|
if (FunctionStr.find("in ") == 0)
|
|
FunctionStr = FunctionStr.substr(3);
|
|
std::string LineStr = DescribePC("%l", VisualizePC);
|
|
size_t Line = std::stoul(LineStr);
|
|
size_t NumEdges = Last - First;
|
|
Vector<uintptr_t> UncoveredPCs;
|
|
for (auto TE = First; TE < Last; TE++)
|
|
if (!ObservedPCs.count(TE->PC))
|
|
UncoveredPCs.push_back(TE->PC);
|
|
Printf("COVERED_FUNC: hits: %zd", Counter);
|
|
Printf(" edges: %zd/%zd", NumEdges - UncoveredPCs.size(), NumEdges);
|
|
Printf(" %s %s:%zd\n", FunctionStr.c_str(), FileStr.c_str(), Line);
|
|
for (auto PC: UncoveredPCs)
|
|
Printf(" UNCOVERED_PC: %s\n",
|
|
DescribePC("%s:%l", GetNextInstructionPc(PC)).c_str());
|
|
};
|
|
|
|
IterateCoveredFunctions(CoveredFunctionCallback);
|
|
}
|
|
|
|
void TracePC::DumpCoverage() {
|
|
if (EF->__sanitizer_dump_coverage) {
|
|
Vector<uintptr_t> PCsCopy(GetNumPCs());
|
|
for (size_t i = 0; i < GetNumPCs(); i++)
|
|
PCsCopy[i] = PCs()[i] ? GetPreviousInstructionPc(PCs()[i]) : 0;
|
|
EF->__sanitizer_dump_coverage(PCsCopy.data(), PCsCopy.size());
|
|
}
|
|
}
|
|
|
|
// Value profile.
|
|
// We keep track of various values that affect control flow.
|
|
// These values are inserted into a bit-set-based hash map.
|
|
// Every new bit in the map is treated as a new coverage.
|
|
//
|
|
// For memcmp/strcmp/etc the interesting value is the length of the common
|
|
// prefix of the parameters.
|
|
// For cmp instructions the interesting value is a XOR of the parameters.
|
|
// The interesting value is mixed up with the PC and is then added to the map.
|
|
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void TracePC::AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2,
|
|
size_t n, bool StopAtZero) {
|
|
if (!n) return;
|
|
size_t Len = std::min(n, Word::GetMaxSize());
|
|
const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1);
|
|
const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2);
|
|
uint8_t B1[Word::kMaxSize];
|
|
uint8_t B2[Word::kMaxSize];
|
|
// Copy the data into locals in this non-msan-instrumented function
|
|
// to avoid msan complaining further.
|
|
size_t Hash = 0; // Compute some simple hash of both strings.
|
|
for (size_t i = 0; i < Len; i++) {
|
|
B1[i] = A1[i];
|
|
B2[i] = A2[i];
|
|
size_t T = B1[i];
|
|
Hash ^= (T << 8) | B2[i];
|
|
}
|
|
size_t I = 0;
|
|
for (; I < Len; I++)
|
|
if (B1[I] != B2[I] || (StopAtZero && B1[I] == 0))
|
|
break;
|
|
size_t PC = reinterpret_cast<size_t>(caller_pc);
|
|
size_t Idx = (PC & 4095) | (I << 12);
|
|
ValueProfileMap.AddValue(Idx);
|
|
TORCW.Insert(Idx ^ Hash, Word(B1, Len), Word(B2, Len));
|
|
}
|
|
|
|
template <class T>
|
|
ATTRIBUTE_TARGET_POPCNT ALWAYS_INLINE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void TracePC::HandleCmp(uintptr_t PC, T Arg1, T Arg2) {
|
|
uint64_t ArgXor = Arg1 ^ Arg2;
|
|
if (sizeof(T) == 4)
|
|
TORC4.Insert(ArgXor, Arg1, Arg2);
|
|
else if (sizeof(T) == 8)
|
|
TORC8.Insert(ArgXor, Arg1, Arg2);
|
|
uint64_t HammingDistance = Popcountll(ArgXor); // [0,64]
|
|
uint64_t AbsoluteDistance = (Arg1 == Arg2 ? 0 : Clzll(Arg1 - Arg2) + 1);
|
|
ValueProfileMap.AddValue(PC * 128 + HammingDistance);
|
|
ValueProfileMap.AddValue(PC * 128 + 64 + AbsoluteDistance);
|
|
}
|
|
|
|
static size_t InternalStrnlen(const char *S, size_t MaxLen) {
|
|
size_t Len = 0;
|
|
for (; Len < MaxLen && S[Len]; Len++) {}
|
|
return Len;
|
|
}
|
|
|
|
// Finds min of (strlen(S1), strlen(S2)).
|
|
// Needed bacause one of these strings may actually be non-zero terminated.
|
|
static size_t InternalStrnlen2(const char *S1, const char *S2) {
|
|
size_t Len = 0;
|
|
for (; S1[Len] && S2[Len]; Len++) {}
|
|
return Len;
|
|
}
|
|
|
|
void TracePC::ClearInlineCounters() {
|
|
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) {
|
|
uint8_t *Beg = ModuleCounters[i].Start;
|
|
size_t Size = ModuleCounters[i].Stop - Beg;
|
|
memset(Beg, 0, Size);
|
|
}
|
|
}
|
|
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void TracePC::RecordInitialStack() {
|
|
int stack;
|
|
__sancov_lowest_stack = InitialStack = reinterpret_cast<uintptr_t>(&stack);
|
|
}
|
|
|
|
uintptr_t TracePC::GetMaxStackOffset() const {
|
|
return InitialStack - __sancov_lowest_stack; // Stack grows down
|
|
}
|
|
|
|
} // namespace fuzzer
|
|
|
|
extern "C" {
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void __sanitizer_cov_trace_pc_guard(uint32_t *Guard) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
uint32_t Idx = *Guard;
|
|
__sancov_trace_pc_pcs[Idx] = PC;
|
|
__sancov_trace_pc_guard_8bit_counters[Idx]++;
|
|
}
|
|
|
|
// Best-effort support for -fsanitize-coverage=trace-pc, which is available
|
|
// in both Clang and GCC.
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void __sanitizer_cov_trace_pc() {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
uintptr_t Idx = PC & (((uintptr_t)1 << fuzzer::TracePC::kTracePcBits) - 1);
|
|
__sancov_trace_pc_pcs[Idx] = PC;
|
|
__sancov_trace_pc_guard_8bit_counters[Idx]++;
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop) {
|
|
fuzzer::TPC.HandleInit(Start, Stop);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
void __sanitizer_cov_8bit_counters_init(uint8_t *Start, uint8_t *Stop) {
|
|
fuzzer::TPC.HandleInline8bitCountersInit(Start, Stop);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
void __sanitizer_cov_pcs_init(const uintptr_t *pcs_beg,
|
|
const uintptr_t *pcs_end) {
|
|
fuzzer::TPC.HandlePCsInit(pcs_beg, pcs_end);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
void __sanitizer_cov_trace_pc_indir(uintptr_t Callee) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCallerCallee(PC, Callee);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
// Now the __sanitizer_cov_trace_const_cmp[1248] callbacks just mimic
|
|
// the behaviour of __sanitizer_cov_trace_cmp[1248] ones. This, however,
|
|
// should be changed later to make full use of instrumentation.
|
|
void __sanitizer_cov_trace_const_cmp8(uint64_t Arg1, uint64_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_const_cmp4(uint32_t Arg1, uint32_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_const_cmp2(uint16_t Arg1, uint16_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_const_cmp1(uint8_t Arg1, uint8_t Arg2) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) {
|
|
uint64_t N = Cases[0];
|
|
uint64_t ValSizeInBits = Cases[1];
|
|
uint64_t *Vals = Cases + 2;
|
|
// Skip the most common and the most boring case.
|
|
if (Vals[N - 1] < 256 && Val < 256)
|
|
return;
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
size_t i;
|
|
uint64_t Token = 0;
|
|
for (i = 0; i < N; i++) {
|
|
Token = Val ^ Vals[i];
|
|
if (Val < Vals[i])
|
|
break;
|
|
}
|
|
|
|
if (ValSizeInBits == 16)
|
|
fuzzer::TPC.HandleCmp(PC + i, static_cast<uint16_t>(Token), (uint16_t)(0));
|
|
else if (ValSizeInBits == 32)
|
|
fuzzer::TPC.HandleCmp(PC + i, static_cast<uint32_t>(Token), (uint32_t)(0));
|
|
else
|
|
fuzzer::TPC.HandleCmp(PC + i, Token, (uint64_t)(0));
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_div4(uint32_t Val) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Val, (uint32_t)0);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_div8(uint64_t Val) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Val, (uint64_t)0);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE
|
|
ATTRIBUTE_NO_SANITIZE_ALL
|
|
ATTRIBUTE_TARGET_POPCNT
|
|
void __sanitizer_cov_trace_gep(uintptr_t Idx) {
|
|
uintptr_t PC = reinterpret_cast<uintptr_t>(GET_CALLER_PC());
|
|
fuzzer::TPC.HandleCmp(PC, Idx, (uintptr_t)0);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_memcmp(void *caller_pc, const void *s1,
|
|
const void *s2, size_t n, int result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
if (result == 0) return; // No reason to mutate.
|
|
if (n <= 1) return; // Not interesting.
|
|
fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/false);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_strncmp(void *caller_pc, const char *s1,
|
|
const char *s2, size_t n, int result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
if (result == 0) return; // No reason to mutate.
|
|
size_t Len1 = fuzzer::InternalStrnlen(s1, n);
|
|
size_t Len2 = fuzzer::InternalStrnlen(s2, n);
|
|
n = std::min(n, Len1);
|
|
n = std::min(n, Len2);
|
|
if (n <= 1) return; // Not interesting.
|
|
fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/true);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_strcmp(void *caller_pc, const char *s1,
|
|
const char *s2, int result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
if (result == 0) return; // No reason to mutate.
|
|
size_t N = fuzzer::InternalStrnlen2(s1, s2);
|
|
if (N <= 1) return; // Not interesting.
|
|
fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, N, /*StopAtZero*/true);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_strncasecmp(void *called_pc, const char *s1,
|
|
const char *s2, size_t n, int result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
return __sanitizer_weak_hook_strncmp(called_pc, s1, s2, n, result);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_strcasecmp(void *called_pc, const char *s1,
|
|
const char *s2, int result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
return __sanitizer_weak_hook_strcmp(called_pc, s1, s2, result);
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_strstr(void *called_pc, const char *s1,
|
|
const char *s2, char *result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), strlen(s2));
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_strcasestr(void *called_pc, const char *s1,
|
|
const char *s2, char *result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), strlen(s2));
|
|
}
|
|
|
|
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
|
|
void __sanitizer_weak_hook_memmem(void *called_pc, const void *s1, size_t len1,
|
|
const void *s2, size_t len2, void *result) {
|
|
if (!fuzzer::RunningUserCallback) return;
|
|
fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), len2);
|
|
}
|
|
} // extern "C"
|