mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-14 07:06:07 +00:00

ExplodedGraph::TrimGraph: - Just do a DFS both ways instead of BFS-DFS. We're just determining what subset of the nodes are reachable from the root and reverse-reachable from the bug nodes. DFS is more efficient for this task. BugReporter: - MakeReportGraph: Do a reverse-BFS instead of a reverse-DFS to determine the approximate shortest path through the simulation graph. We were seeing some weird cases where too many loops were being reported for simple bugs. Possibly we will need to replace this with actually computing the shortest path in terms of line numbers. llvm-svn: 66842
242 lines
7.3 KiB
C++
242 lines
7.3 KiB
C++
//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the template classes ExplodedNode and ExplodedGraph,
|
|
// which represent a path-sensitive, intra-procedural "exploded graph."
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/PathSensitive/ExplodedGraph.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include <vector>
|
|
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Node auditing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// An out of line virtual method to provide a home for the class vtable.
|
|
ExplodedNodeImpl::Auditor::~Auditor() {}
|
|
|
|
#ifndef NDEBUG
|
|
static ExplodedNodeImpl::Auditor* NodeAuditor = 0;
|
|
#endif
|
|
|
|
void ExplodedNodeImpl::SetAuditor(ExplodedNodeImpl::Auditor* A) {
|
|
#ifndef NDEBUG
|
|
NodeAuditor = A;
|
|
#endif
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExplodedNodeImpl.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static inline std::vector<ExplodedNodeImpl*>& getVector(void* P) {
|
|
return *reinterpret_cast<std::vector<ExplodedNodeImpl*>*>(P);
|
|
}
|
|
|
|
void ExplodedNodeImpl::addPredecessor(ExplodedNodeImpl* V) {
|
|
assert (!V->isSink());
|
|
Preds.addNode(V);
|
|
V->Succs.addNode(this);
|
|
#ifndef NDEBUG
|
|
if (NodeAuditor) NodeAuditor->AddEdge(V, this);
|
|
#endif
|
|
}
|
|
|
|
void ExplodedNodeImpl::NodeGroup::addNode(ExplodedNodeImpl* N) {
|
|
|
|
assert ((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
|
|
assert (!getFlag());
|
|
|
|
if (getKind() == Size1) {
|
|
if (ExplodedNodeImpl* NOld = getNode()) {
|
|
std::vector<ExplodedNodeImpl*>* V = new std::vector<ExplodedNodeImpl*>();
|
|
assert ((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
|
|
V->push_back(NOld);
|
|
V->push_back(N);
|
|
P = reinterpret_cast<uintptr_t>(V) | SizeOther;
|
|
assert (getPtr() == (void*) V);
|
|
assert (getKind() == SizeOther);
|
|
}
|
|
else {
|
|
P = reinterpret_cast<uintptr_t>(N);
|
|
assert (getKind() == Size1);
|
|
}
|
|
}
|
|
else {
|
|
assert (getKind() == SizeOther);
|
|
getVector(getPtr()).push_back(N);
|
|
}
|
|
}
|
|
|
|
|
|
unsigned ExplodedNodeImpl::NodeGroup::size() const {
|
|
if (getFlag())
|
|
return 0;
|
|
|
|
if (getKind() == Size1)
|
|
return getNode() ? 1 : 0;
|
|
else
|
|
return getVector(getPtr()).size();
|
|
}
|
|
|
|
ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::begin() const {
|
|
if (getFlag())
|
|
return NULL;
|
|
|
|
if (getKind() == Size1)
|
|
return (ExplodedNodeImpl**) (getPtr() ? &P : NULL);
|
|
else
|
|
return const_cast<ExplodedNodeImpl**>(&*(getVector(getPtr()).begin()));
|
|
}
|
|
|
|
ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::end() const {
|
|
if (getFlag())
|
|
return NULL;
|
|
|
|
if (getKind() == Size1)
|
|
return (ExplodedNodeImpl**) (getPtr() ? &P+1 : NULL);
|
|
else {
|
|
// Dereferencing end() is undefined behaviour. The vector is not empty, so
|
|
// we can dereference the last elem and then add 1 to the result.
|
|
return const_cast<ExplodedNodeImpl**>(&getVector(getPtr()).back()) + 1;
|
|
}
|
|
}
|
|
|
|
ExplodedNodeImpl::NodeGroup::~NodeGroup() {
|
|
if (getKind() == SizeOther) delete &getVector(getPtr());
|
|
}
|
|
|
|
ExplodedGraphImpl*
|
|
ExplodedGraphImpl::Trim(const ExplodedNodeImpl* const* BeginSources,
|
|
const ExplodedNodeImpl* const* EndSources,
|
|
InterExplodedGraphMapImpl* M,
|
|
llvm::DenseMap<const void*, const void*> *InverseMap)
|
|
const {
|
|
|
|
typedef llvm::DenseSet<const ExplodedNodeImpl*> Pass1Ty;
|
|
Pass1Ty Pass1;
|
|
|
|
typedef llvm::DenseMap<const ExplodedNodeImpl*, ExplodedNodeImpl*> Pass2Ty;
|
|
Pass2Ty& Pass2 = M->M;
|
|
|
|
llvm::SmallVector<const ExplodedNodeImpl*, 10> WL1, WL2;
|
|
|
|
// ===- Pass 1 (reverse DFS) -===
|
|
for (const ExplodedNodeImpl* const* I = BeginSources; I != EndSources; ++I) {
|
|
assert(*I);
|
|
WL1.push_back(*I);
|
|
}
|
|
|
|
// Process the first worklist until it is empty. Because it is a std::list
|
|
// it acts like a FIFO queue.
|
|
while (!WL1.empty()) {
|
|
const ExplodedNodeImpl *N = WL1.back();
|
|
WL1.pop_back();
|
|
|
|
// Have we already visited this node? If so, continue to the next one.
|
|
if (Pass1.count(N))
|
|
continue;
|
|
|
|
// Otherwise, mark this node as visited.
|
|
Pass1.insert(N);
|
|
|
|
// If this is a root enqueue it to the second worklist.
|
|
if (N->Preds.empty()) {
|
|
WL2.push_back(N);
|
|
continue;
|
|
}
|
|
|
|
// Visit our predecessors and enqueue them.
|
|
for (ExplodedNodeImpl** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
|
|
WL1.push_back(*I);
|
|
}
|
|
|
|
// We didn't hit a root? Return with a null pointer for the new graph.
|
|
if (WL2.empty())
|
|
return 0;
|
|
|
|
// Create an empty graph.
|
|
ExplodedGraphImpl* G = MakeEmptyGraph();
|
|
|
|
// ===- Pass 2 (forward DFS to construct the new graph) -===
|
|
while (!WL2.empty()) {
|
|
const ExplodedNodeImpl* N = WL2.back();
|
|
WL2.pop_back();
|
|
|
|
// Skip this node if we have already processed it.
|
|
if (Pass2.find(N) != Pass2.end())
|
|
continue;
|
|
|
|
// Create the corresponding node in the new graph and record the mapping
|
|
// from the old node to the new node.
|
|
ExplodedNodeImpl* NewN = G->getNodeImpl(N->getLocation(), N->State, NULL);
|
|
Pass2[N] = NewN;
|
|
|
|
// Also record the reverse mapping from the new node to the old node.
|
|
if (InverseMap) (*InverseMap)[NewN] = N;
|
|
|
|
// If this node is a root, designate it as such in the graph.
|
|
if (N->Preds.empty())
|
|
G->addRoot(NewN);
|
|
|
|
// In the case that some of the intended predecessors of NewN have already
|
|
// been created, we should hook them up as predecessors.
|
|
|
|
// Walk through the predecessors of 'N' and hook up their corresponding
|
|
// nodes in the new graph (if any) to the freshly created node.
|
|
for (ExplodedNodeImpl **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
|
|
Pass2Ty::iterator PI = Pass2.find(*I);
|
|
if (PI == Pass2.end())
|
|
continue;
|
|
|
|
NewN->addPredecessor(PI->second);
|
|
}
|
|
|
|
// In the case that some of the intended successors of NewN have already
|
|
// been created, we should hook them up as successors. Otherwise, enqueue
|
|
// the new nodes from the original graph that should have nodes created
|
|
// in the new graph.
|
|
for (ExplodedNodeImpl **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
|
|
Pass2Ty::iterator PI = Pass2.find(*I);
|
|
if (PI != Pass2.end()) {
|
|
PI->second->addPredecessor(NewN);
|
|
continue;
|
|
}
|
|
|
|
// Enqueue nodes to the worklist that were marked during pass 1.
|
|
if (Pass1.count(*I))
|
|
WL2.push_back(*I);
|
|
}
|
|
|
|
// Finally, explictly mark all nodes without any successors as sinks.
|
|
if (N->isSink())
|
|
NewN->markAsSink();
|
|
}
|
|
|
|
return G;
|
|
}
|
|
|
|
ExplodedNodeImpl*
|
|
InterExplodedGraphMapImpl::getMappedImplNode(const ExplodedNodeImpl* N) const {
|
|
llvm::DenseMap<const ExplodedNodeImpl*, ExplodedNodeImpl*>::iterator I =
|
|
M.find(N);
|
|
|
|
return I == M.end() ? 0 : I->second;
|
|
}
|
|
|
|
InterExplodedGraphMapImpl::InterExplodedGraphMapImpl() {}
|
|
|