Julian Brown 2fdf191e24 [OpenMP] Fix crash with task stealing and task dependencies (#126049)
This patch series demonstrates and fixes a bug that causes crashes with
OpenMP 'taskwait' directives in heavily multi-threaded scenarios.

TLDR: The early return from __kmpc_omp_taskwait_deps_51 missed the
synchronization mechanism in place for the late return.

Additional debug assertions check for the implied invariants of the code.

@jpeyton52 found the timing hole as this sequence of events:
>
> 1. THREAD 1: A regular task with dependences is created, call it T1
> 2. THREAD 1: Call into `__kmpc_omp_taskwait_deps_51()` and create a stack
based depnode (`NULL` task), call it T2 (stack)
> 3. THREAD 2: Steals task T1 and executes it getting to
`__kmp_release_deps()` region.
> 4. THREAD 1: During processing of dependences for T2 (stack) (within
`__kmp_check_deps()` region),  a link is created T1 -> T2. This increases
T2's (stack) `nrefs` count.
> 5. THREAD 2: Iterates through the successors list: decrement the T2's
(stack) npredecessor count. BUT HASN'T YET `__kmp_node_deref()`-ed it.
> 6. THREAD 1: Now when finished with `__kmp_check_deps()`, it returns false
because npredecessor count is 0, but T2's (stack) `nrefs`  count is 2 because
THREAD 2 still references it!
> 7. THREAD 1: Because `__kmp_check_deps()` returns false, early exit.
>    _Now the stack based depnode is invalid, but THREAD 2 still references it._
>
> We've reached improper stack referencing behavior. Varied results/crashes/
asserts can occur if THREAD 1 comes back and recreates the exact same depnode
in the exact same stack address during the same time THREAD 2 calls
`__kmp_node_deref()`.
2025-02-14 10:55:59 +01:00
2025-01-28 19:48:43 -08:00
2025-01-27 18:47:12 +01:00
2025-01-28 19:48:43 -08:00
2025-02-13 17:49:48 +00:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.
Readme 5 GiB
Languages
LLVM 39.9%
C++ 32.5%
C 13.5%
Assembly 9.4%
MLIR 1.4%
Other 2.8%