llvm-project/clang/lib/AST/Comment.cpp
Aaron Puchert 3010883fc2 Comment AST: Recognize function-like objects via return type (NFC)
Instead of pretending that function pointer type aliases or variables
are functions, and thereby losing the information that they are type
aliases or variables, respectively, we use the existence of a return
type in the DeclInfo to signify a "function-like" object.

That seems pretty natural, since it's also the return type (or parameter
list) from the DeclInfo that we compare the documentation with.

Addresses a concern voiced in D111264#3115104.

Reviewed By: gribozavr2

Differential Revision: https://reviews.llvm.org/D113691
2021-11-12 21:11:11 +01:00

393 lines
12 KiB
C++

//===--- Comment.cpp - Comment AST node implementation --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Comment.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Basic/CharInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include <type_traits>
namespace clang {
namespace comments {
// Check that no comment class has a non-trival destructor. They are allocated
// with a BumpPtrAllocator and therefore their destructor is not executed.
#define ABSTRACT_COMMENT(COMMENT)
#define COMMENT(CLASS, PARENT) \
static_assert(std::is_trivially_destructible<CLASS>::value, \
#CLASS " should be trivially destructible!");
#include "clang/AST/CommentNodes.inc"
#undef COMMENT
#undef ABSTRACT_COMMENT
// DeclInfo is also allocated with a BumpPtrAllocator.
static_assert(std::is_trivially_destructible<DeclInfo>::value,
"DeclInfo should be trivially destructible!");
const char *Comment::getCommentKindName() const {
switch (getCommentKind()) {
case NoCommentKind: return "NoCommentKind";
#define ABSTRACT_COMMENT(COMMENT)
#define COMMENT(CLASS, PARENT) \
case CLASS##Kind: \
return #CLASS;
#include "clang/AST/CommentNodes.inc"
#undef COMMENT
#undef ABSTRACT_COMMENT
}
llvm_unreachable("Unknown comment kind!");
}
namespace {
struct good {};
struct bad {};
template <typename T>
good implements_child_begin_end(Comment::child_iterator (T::*)() const) {
return good();
}
LLVM_ATTRIBUTE_UNUSED
static inline bad implements_child_begin_end(
Comment::child_iterator (Comment::*)() const) {
return bad();
}
#define ASSERT_IMPLEMENTS_child_begin(function) \
(void) good(implements_child_begin_end(function))
LLVM_ATTRIBUTE_UNUSED
static inline void CheckCommentASTNodes() {
#define ABSTRACT_COMMENT(COMMENT)
#define COMMENT(CLASS, PARENT) \
ASSERT_IMPLEMENTS_child_begin(&CLASS::child_begin); \
ASSERT_IMPLEMENTS_child_begin(&CLASS::child_end);
#include "clang/AST/CommentNodes.inc"
#undef COMMENT
#undef ABSTRACT_COMMENT
}
#undef ASSERT_IMPLEMENTS_child_begin
} // end unnamed namespace
Comment::child_iterator Comment::child_begin() const {
switch (getCommentKind()) {
case NoCommentKind: llvm_unreachable("comment without a kind");
#define ABSTRACT_COMMENT(COMMENT)
#define COMMENT(CLASS, PARENT) \
case CLASS##Kind: \
return static_cast<const CLASS *>(this)->child_begin();
#include "clang/AST/CommentNodes.inc"
#undef COMMENT
#undef ABSTRACT_COMMENT
}
llvm_unreachable("Unknown comment kind!");
}
Comment::child_iterator Comment::child_end() const {
switch (getCommentKind()) {
case NoCommentKind: llvm_unreachable("comment without a kind");
#define ABSTRACT_COMMENT(COMMENT)
#define COMMENT(CLASS, PARENT) \
case CLASS##Kind: \
return static_cast<const CLASS *>(this)->child_end();
#include "clang/AST/CommentNodes.inc"
#undef COMMENT
#undef ABSTRACT_COMMENT
}
llvm_unreachable("Unknown comment kind!");
}
bool TextComment::isWhitespaceNoCache() const {
for (StringRef::const_iterator I = Text.begin(), E = Text.end();
I != E; ++I) {
if (!clang::isWhitespace(*I))
return false;
}
return true;
}
bool ParagraphComment::isWhitespaceNoCache() const {
for (child_iterator I = child_begin(), E = child_end(); I != E; ++I) {
if (const TextComment *TC = dyn_cast<TextComment>(*I)) {
if (!TC->isWhitespace())
return false;
} else
return false;
}
return true;
}
static TypeLoc lookThroughTypedefOrTypeAliasLocs(TypeLoc &SrcTL) {
TypeLoc TL = SrcTL.IgnoreParens();
// Look through attribute types.
if (AttributedTypeLoc AttributeTL = TL.getAs<AttributedTypeLoc>())
return AttributeTL.getModifiedLoc();
// Look through qualified types.
if (QualifiedTypeLoc QualifiedTL = TL.getAs<QualifiedTypeLoc>())
return QualifiedTL.getUnqualifiedLoc();
// Look through pointer types.
if (PointerTypeLoc PointerTL = TL.getAs<PointerTypeLoc>())
return PointerTL.getPointeeLoc().getUnqualifiedLoc();
// Look through reference types.
if (ReferenceTypeLoc ReferenceTL = TL.getAs<ReferenceTypeLoc>())
return ReferenceTL.getPointeeLoc().getUnqualifiedLoc();
// Look through adjusted types.
if (AdjustedTypeLoc ATL = TL.getAs<AdjustedTypeLoc>())
return ATL.getOriginalLoc();
if (BlockPointerTypeLoc BlockPointerTL = TL.getAs<BlockPointerTypeLoc>())
return BlockPointerTL.getPointeeLoc().getUnqualifiedLoc();
if (MemberPointerTypeLoc MemberPointerTL = TL.getAs<MemberPointerTypeLoc>())
return MemberPointerTL.getPointeeLoc().getUnqualifiedLoc();
if (ElaboratedTypeLoc ETL = TL.getAs<ElaboratedTypeLoc>())
return ETL.getNamedTypeLoc();
return TL;
}
static bool getFunctionTypeLoc(TypeLoc TL, FunctionTypeLoc &ResFTL) {
TypeLoc PrevTL;
while (PrevTL != TL) {
PrevTL = TL;
TL = lookThroughTypedefOrTypeAliasLocs(TL);
}
if (FunctionTypeLoc FTL = TL.getAs<FunctionTypeLoc>()) {
ResFTL = FTL;
return true;
}
if (TemplateSpecializationTypeLoc STL =
TL.getAs<TemplateSpecializationTypeLoc>()) {
// If we have a typedef to a template specialization with exactly one
// template argument of a function type, this looks like std::function,
// boost::function, or other function wrapper. Treat these typedefs as
// functions.
if (STL.getNumArgs() != 1)
return false;
TemplateArgumentLoc MaybeFunction = STL.getArgLoc(0);
if (MaybeFunction.getArgument().getKind() != TemplateArgument::Type)
return false;
TypeSourceInfo *MaybeFunctionTSI = MaybeFunction.getTypeSourceInfo();
TypeLoc TL = MaybeFunctionTSI->getTypeLoc().getUnqualifiedLoc();
if (FunctionTypeLoc FTL = TL.getAs<FunctionTypeLoc>()) {
ResFTL = FTL;
return true;
}
}
return false;
}
const char *ParamCommandComment::getDirectionAsString(PassDirection D) {
switch (D) {
case ParamCommandComment::In:
return "[in]";
case ParamCommandComment::Out:
return "[out]";
case ParamCommandComment::InOut:
return "[in,out]";
}
llvm_unreachable("unknown PassDirection");
}
void DeclInfo::fill() {
assert(!IsFilled);
// Set defaults.
Kind = OtherKind;
TemplateKind = NotTemplate;
IsObjCMethod = false;
IsInstanceMethod = false;
IsClassMethod = false;
IsVariadic = false;
ParamVars = None;
TemplateParameters = nullptr;
if (!CommentDecl) {
// If there is no declaration, the defaults is our only guess.
IsFilled = true;
return;
}
CurrentDecl = CommentDecl;
Decl::Kind K = CommentDecl->getKind();
const TypeSourceInfo *TSI = nullptr;
switch (K) {
default:
// Defaults are should be good for declarations we don't handle explicitly.
break;
case Decl::Function:
case Decl::CXXMethod:
case Decl::CXXConstructor:
case Decl::CXXDestructor:
case Decl::CXXConversion: {
const FunctionDecl *FD = cast<FunctionDecl>(CommentDecl);
Kind = FunctionKind;
ParamVars = FD->parameters();
ReturnType = FD->getReturnType();
unsigned NumLists = FD->getNumTemplateParameterLists();
if (NumLists != 0) {
TemplateKind = TemplateSpecialization;
TemplateParameters =
FD->getTemplateParameterList(NumLists - 1);
}
if (K == Decl::CXXMethod || K == Decl::CXXConstructor ||
K == Decl::CXXDestructor || K == Decl::CXXConversion) {
const CXXMethodDecl *MD = cast<CXXMethodDecl>(CommentDecl);
IsInstanceMethod = MD->isInstance();
IsClassMethod = !IsInstanceMethod;
}
IsVariadic = FD->isVariadic();
assert(involvesFunctionType());
break;
}
case Decl::ObjCMethod: {
const ObjCMethodDecl *MD = cast<ObjCMethodDecl>(CommentDecl);
Kind = FunctionKind;
ParamVars = MD->parameters();
ReturnType = MD->getReturnType();
IsObjCMethod = true;
IsInstanceMethod = MD->isInstanceMethod();
IsClassMethod = !IsInstanceMethod;
IsVariadic = MD->isVariadic();
assert(involvesFunctionType());
break;
}
case Decl::FunctionTemplate: {
const FunctionTemplateDecl *FTD = cast<FunctionTemplateDecl>(CommentDecl);
Kind = FunctionKind;
TemplateKind = Template;
const FunctionDecl *FD = FTD->getTemplatedDecl();
ParamVars = FD->parameters();
ReturnType = FD->getReturnType();
TemplateParameters = FTD->getTemplateParameters();
IsVariadic = FD->isVariadic();
assert(involvesFunctionType());
break;
}
case Decl::ClassTemplate: {
const ClassTemplateDecl *CTD = cast<ClassTemplateDecl>(CommentDecl);
Kind = ClassKind;
TemplateKind = Template;
TemplateParameters = CTD->getTemplateParameters();
break;
}
case Decl::ClassTemplatePartialSpecialization: {
const ClassTemplatePartialSpecializationDecl *CTPSD =
cast<ClassTemplatePartialSpecializationDecl>(CommentDecl);
Kind = ClassKind;
TemplateKind = TemplatePartialSpecialization;
TemplateParameters = CTPSD->getTemplateParameters();
break;
}
case Decl::ClassTemplateSpecialization:
Kind = ClassKind;
TemplateKind = TemplateSpecialization;
break;
case Decl::Record:
case Decl::CXXRecord:
Kind = ClassKind;
break;
case Decl::Var:
if (const VarTemplateDecl *VTD =
cast<VarDecl>(CommentDecl)->getDescribedVarTemplate()) {
TemplateKind = TemplateSpecialization;
TemplateParameters = VTD->getTemplateParameters();
}
LLVM_FALLTHROUGH;
case Decl::Field:
case Decl::EnumConstant:
case Decl::ObjCIvar:
case Decl::ObjCAtDefsField:
case Decl::ObjCProperty:
if (const auto *VD = dyn_cast<DeclaratorDecl>(CommentDecl))
TSI = VD->getTypeSourceInfo();
else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(CommentDecl))
TSI = PD->getTypeSourceInfo();
Kind = VariableKind;
break;
case Decl::VarTemplate: {
const VarTemplateDecl *VTD = cast<VarTemplateDecl>(CommentDecl);
Kind = VariableKind;
TemplateKind = Template;
TemplateParameters = VTD->getTemplateParameters();
if (const VarDecl *VD = VTD->getTemplatedDecl())
TSI = VD->getTypeSourceInfo();
break;
}
case Decl::Namespace:
Kind = NamespaceKind;
break;
case Decl::TypeAlias:
case Decl::Typedef:
Kind = TypedefKind;
TSI = cast<TypedefNameDecl>(CommentDecl)->getTypeSourceInfo();
break;
case Decl::TypeAliasTemplate: {
const TypeAliasTemplateDecl *TAT = cast<TypeAliasTemplateDecl>(CommentDecl);
Kind = TypedefKind;
TemplateKind = Template;
TemplateParameters = TAT->getTemplateParameters();
if (TypeAliasDecl *TAD = TAT->getTemplatedDecl())
TSI = TAD->getTypeSourceInfo();
break;
}
case Decl::Enum:
Kind = EnumKind;
break;
}
// If the type is a typedef / using to something we consider a function,
// extract arguments and return type.
if (TSI) {
TypeLoc TL = TSI->getTypeLoc().getUnqualifiedLoc();
FunctionTypeLoc FTL;
if (getFunctionTypeLoc(TL, FTL)) {
ParamVars = FTL.getParams();
ReturnType = FTL.getReturnLoc().getType();
if (const auto *FPT = dyn_cast<FunctionProtoType>(FTL.getTypePtr()))
IsVariadic = FPT->isVariadic();
assert(involvesFunctionType());
}
}
IsFilled = true;
}
StringRef ParamCommandComment::getParamName(const FullComment *FC) const {
assert(isParamIndexValid());
if (isVarArgParam())
return "...";
return FC->getDeclInfo()->ParamVars[getParamIndex()]->getName();
}
StringRef TParamCommandComment::getParamName(const FullComment *FC) const {
assert(isPositionValid());
const TemplateParameterList *TPL = FC->getDeclInfo()->TemplateParameters;
for (unsigned i = 0, e = getDepth(); i != e; ++i) {
assert(TPL && "Unknown TemplateParameterList");
if (i == e - 1)
return TPL->getParam(getIndex(i))->getName();
const NamedDecl *Param = TPL->getParam(getIndex(i));
if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param))
TPL = TTP->getTemplateParameters();
}
return "";
}
} // end namespace comments
} // end namespace clang