Jeff Niu 30171e76f0 [mlir] Switch segment size attributes to DenseI32ArrayAttr
Switch variadic operand and result segment size attributes to use the
dense i32 array. Dense integer arrays were introduced primarily to
represent index lists. They are a better fit for segment sizes than
dense elements attrs.

Depends on D131738

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D131702
2022-08-11 20:56:45 -04:00

348 lines
12 KiB
C++

//===- Async.cpp - MLIR Async Operations ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/IR/DialectImplementation.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::async;
#include "mlir/Dialect/Async/IR/AsyncOpsDialect.cpp.inc"
constexpr StringRef AsyncDialect::kAllowedToBlockAttrName;
void AsyncDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/Async/IR/AsyncOps.cpp.inc"
>();
addTypes<
#define GET_TYPEDEF_LIST
#include "mlir/Dialect/Async/IR/AsyncOpsTypes.cpp.inc"
>();
}
//===----------------------------------------------------------------------===//
// YieldOp
//===----------------------------------------------------------------------===//
LogicalResult YieldOp::verify() {
// Get the underlying value types from async values returned from the
// parent `async.execute` operation.
auto executeOp = (*this)->getParentOfType<ExecuteOp>();
auto types = llvm::map_range(executeOp.results(), [](const OpResult &result) {
return result.getType().cast<ValueType>().getValueType();
});
if (getOperandTypes() != types)
return emitOpError("operand types do not match the types returned from "
"the parent ExecuteOp");
return success();
}
MutableOperandRange
YieldOp::getMutableSuccessorOperands(Optional<unsigned> index) {
return operandsMutable();
}
//===----------------------------------------------------------------------===//
/// ExecuteOp
//===----------------------------------------------------------------------===//
constexpr char kOperandSegmentSizesAttr[] = "operand_segment_sizes";
OperandRange ExecuteOp::getSuccessorEntryOperands(Optional<unsigned> index) {
assert(index && *index == 0 && "invalid region index");
return operands();
}
bool ExecuteOp::areTypesCompatible(Type lhs, Type rhs) {
const auto getValueOrTokenType = [](Type type) {
if (auto value = type.dyn_cast<ValueType>())
return value.getValueType();
return type;
};
return getValueOrTokenType(lhs) == getValueOrTokenType(rhs);
}
void ExecuteOp::getSuccessorRegions(Optional<unsigned> index,
ArrayRef<Attribute>,
SmallVectorImpl<RegionSuccessor> &regions) {
// The `body` region branch back to the parent operation.
if (index) {
assert(*index == 0 && "invalid region index");
regions.push_back(RegionSuccessor(results()));
return;
}
// Otherwise the successor is the body region.
regions.push_back(RegionSuccessor(&body(), body().getArguments()));
}
void ExecuteOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, ValueRange dependencies,
ValueRange operands, BodyBuilderFn bodyBuilder) {
result.addOperands(dependencies);
result.addOperands(operands);
// Add derived `operand_segment_sizes` attribute based on parsed operands.
int32_t numDependencies = dependencies.size();
int32_t numOperands = operands.size();
auto operandSegmentSizes =
builder.getDenseI32ArrayAttr({numDependencies, numOperands});
result.addAttribute(kOperandSegmentSizesAttr, operandSegmentSizes);
// First result is always a token, and then `resultTypes` wrapped into
// `async.value`.
result.addTypes({TokenType::get(result.getContext())});
for (Type type : resultTypes)
result.addTypes(ValueType::get(type));
// Add a body region with block arguments as unwrapped async value operands.
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block);
Block &bodyBlock = bodyRegion->front();
for (Value operand : operands) {
auto valueType = operand.getType().dyn_cast<ValueType>();
bodyBlock.addArgument(valueType ? valueType.getValueType()
: operand.getType(),
operand.getLoc());
}
// Create the default terminator if the builder is not provided and if the
// expected result is empty. Otherwise, leave this to the caller
// because we don't know which values to return from the execute op.
if (resultTypes.empty() && !bodyBuilder) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
builder.create<async::YieldOp>(result.location, ValueRange());
} else if (bodyBuilder) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
bodyBuilder(builder, result.location, bodyBlock.getArguments());
}
}
void ExecuteOp::print(OpAsmPrinter &p) {
// [%tokens,...]
if (!dependencies().empty())
p << " [" << dependencies() << "]";
// (%value as %unwrapped: !async.value<!arg.type>, ...)
if (!operands().empty()) {
p << " (";
Block *entry = body().empty() ? nullptr : &body().front();
llvm::interleaveComma(operands(), p, [&, n = 0](Value operand) mutable {
Value argument = entry ? entry->getArgument(n++) : Value();
p << operand << " as " << argument << ": " << operand.getType();
});
p << ")";
}
// -> (!async.value<!return.type>, ...)
p.printOptionalArrowTypeList(llvm::drop_begin(getResultTypes()));
p.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
{kOperandSegmentSizesAttr});
p << ' ';
p.printRegion(body(), /*printEntryBlockArgs=*/false);
}
ParseResult ExecuteOp::parse(OpAsmParser &parser, OperationState &result) {
MLIRContext *ctx = result.getContext();
// Sizes of parsed variadic operands, will be updated below after parsing.
int32_t numDependencies = 0;
auto tokenTy = TokenType::get(ctx);
// Parse dependency tokens.
if (succeeded(parser.parseOptionalLSquare())) {
SmallVector<OpAsmParser::UnresolvedOperand, 4> tokenArgs;
if (parser.parseOperandList(tokenArgs) ||
parser.resolveOperands(tokenArgs, tokenTy, result.operands) ||
parser.parseRSquare())
return failure();
numDependencies = tokenArgs.size();
}
// Parse async value operands (%value as %unwrapped : !async.value<!type>).
SmallVector<OpAsmParser::UnresolvedOperand, 4> valueArgs;
SmallVector<OpAsmParser::Argument, 4> unwrappedArgs;
SmallVector<Type, 4> valueTypes;
// Parse a single instance of `%value as %unwrapped : !async.value<!type>`.
auto parseAsyncValueArg = [&]() -> ParseResult {
if (parser.parseOperand(valueArgs.emplace_back()) ||
parser.parseKeyword("as") ||
parser.parseArgument(unwrappedArgs.emplace_back()) ||
parser.parseColonType(valueTypes.emplace_back()))
return failure();
auto valueTy = valueTypes.back().dyn_cast<ValueType>();
unwrappedArgs.back().type = valueTy ? valueTy.getValueType() : Type();
return success();
};
auto argsLoc = parser.getCurrentLocation();
if (parser.parseCommaSeparatedList(OpAsmParser::Delimiter::OptionalParen,
parseAsyncValueArg) ||
parser.resolveOperands(valueArgs, valueTypes, argsLoc, result.operands))
return failure();
int32_t numOperands = valueArgs.size();
// Add derived `operand_segment_sizes` attribute based on parsed operands.
auto operandSegmentSizes =
parser.getBuilder().getDenseI32ArrayAttr({numDependencies, numOperands});
result.addAttribute(kOperandSegmentSizesAttr, operandSegmentSizes);
// Parse the types of results returned from the async execute op.
SmallVector<Type, 4> resultTypes;
NamedAttrList attrs;
if (parser.parseOptionalArrowTypeList(resultTypes) ||
// Async execute first result is always a completion token.
parser.addTypeToList(tokenTy, result.types) ||
parser.addTypesToList(resultTypes, result.types) ||
// Parse operation attributes.
parser.parseOptionalAttrDictWithKeyword(attrs))
return failure();
result.addAttributes(attrs);
// Parse asynchronous region.
Region *body = result.addRegion();
return parser.parseRegion(*body, /*arguments=*/unwrappedArgs);
}
LogicalResult ExecuteOp::verifyRegions() {
// Unwrap async.execute value operands types.
auto unwrappedTypes = llvm::map_range(operands(), [](Value operand) {
return operand.getType().cast<ValueType>().getValueType();
});
// Verify that unwrapped argument types matches the body region arguments.
if (body().getArgumentTypes() != unwrappedTypes)
return emitOpError("async body region argument types do not match the "
"execute operation arguments types");
return success();
}
//===----------------------------------------------------------------------===//
/// CreateGroupOp
//===----------------------------------------------------------------------===//
LogicalResult CreateGroupOp::canonicalize(CreateGroupOp op,
PatternRewriter &rewriter) {
// Find all `await_all` users of the group.
llvm::SmallVector<AwaitAllOp> awaitAllUsers;
auto isAwaitAll = [&](Operation *op) -> bool {
if (AwaitAllOp awaitAll = dyn_cast<AwaitAllOp>(op)) {
awaitAllUsers.push_back(awaitAll);
return true;
}
return false;
};
// Check if all users of the group are `await_all` operations.
if (!llvm::all_of(op->getUsers(), isAwaitAll))
return failure();
// If group is only awaited without adding anything to it, we can safely erase
// the create operation and all users.
for (AwaitAllOp awaitAll : awaitAllUsers)
rewriter.eraseOp(awaitAll);
rewriter.eraseOp(op);
return success();
}
//===----------------------------------------------------------------------===//
/// AwaitOp
//===----------------------------------------------------------------------===//
void AwaitOp::build(OpBuilder &builder, OperationState &result, Value operand,
ArrayRef<NamedAttribute> attrs) {
result.addOperands({operand});
result.attributes.append(attrs.begin(), attrs.end());
// Add unwrapped async.value type to the returned values types.
if (auto valueType = operand.getType().dyn_cast<ValueType>())
result.addTypes(valueType.getValueType());
}
static ParseResult parseAwaitResultType(OpAsmParser &parser, Type &operandType,
Type &resultType) {
if (parser.parseType(operandType))
return failure();
// Add unwrapped async.value type to the returned values types.
if (auto valueType = operandType.dyn_cast<ValueType>())
resultType = valueType.getValueType();
return success();
}
static void printAwaitResultType(OpAsmPrinter &p, Operation *op,
Type operandType, Type resultType) {
p << operandType;
}
LogicalResult AwaitOp::verify() {
Type argType = operand().getType();
// Awaiting on a token does not have any results.
if (argType.isa<TokenType>() && !getResultTypes().empty())
return emitOpError("awaiting on a token must have empty result");
// Awaiting on a value unwraps the async value type.
if (auto value = argType.dyn_cast<ValueType>()) {
if (*getResultType() != value.getValueType())
return emitOpError() << "result type " << *getResultType()
<< " does not match async value type "
<< value.getValueType();
}
return success();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/Async/IR/AsyncOps.cpp.inc"
//===----------------------------------------------------------------------===//
// TableGen'd type method definitions
//===----------------------------------------------------------------------===//
#define GET_TYPEDEF_CLASSES
#include "mlir/Dialect/Async/IR/AsyncOpsTypes.cpp.inc"
void ValueType::print(AsmPrinter &printer) const {
printer << "<";
printer.printType(getValueType());
printer << '>';
}
Type ValueType::parse(mlir::AsmParser &parser) {
Type ty;
if (parser.parseLess() || parser.parseType(ty) || parser.parseGreater()) {
parser.emitError(parser.getNameLoc(), "failed to parse async value type");
return Type();
}
return ValueType::get(ty);
}