llvm-project/clang/lib/Analysis/FlowSensitive/DataflowEnvironment.cpp
Martin Braenne 48bc71505e [clang][dataflow] Eliminate SkipPast::ReferenceThenPointer.
As a replacement, we provide the accessors `getImplicitObjectLocation()` and
`getBaseObjectLocation()`, which are higher-level constructs that cover the use
cases in which `SkipPast::ReferenceThenPointer` was typically used.

Unfortunately, it isn't possible to use these accessors in
UncheckedOptionalAccessModel.cpp; I've added a FIXME to the code explaining the
details. I initially attempted to resolve the issue as part of this patch, but
it turned out to be non-trivial to fix. Instead, I have therefore added a
lower-level replacement for `SkipPast::ReferenceThenPointer` that is used only
within this file.

The wider context of this change is that `SkipPast` will be going away entirely.
See also the RFC at https://discourse.llvm.org/t/70086.

Reviewed By: ymandel, gribozavr2

Differential Revision: https://reviews.llvm.org/D149838
2023-05-15 04:33:29 +00:00

862 lines
30 KiB
C++

//===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an Environment class that is used by dataflow analyses
// that run over Control-Flow Graphs (CFGs) to keep track of the state of the
// program at given program points.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/FlowSensitive/DataflowLattice.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <memory>
#include <utility>
namespace clang {
namespace dataflow {
// FIXME: convert these to parameters of the analysis or environment. Current
// settings have been experimentaly validated, but only for a particular
// analysis.
static constexpr int MaxCompositeValueDepth = 3;
static constexpr int MaxCompositeValueSize = 1000;
/// Returns a map consisting of key-value entries that are present in both maps.
template <typename K, typename V>
llvm::DenseMap<K, V> intersectDenseMaps(const llvm::DenseMap<K, V> &Map1,
const llvm::DenseMap<K, V> &Map2) {
llvm::DenseMap<K, V> Result;
for (auto &Entry : Map1) {
auto It = Map2.find(Entry.first);
if (It != Map2.end() && Entry.second == It->second)
Result.insert({Entry.first, Entry.second});
}
return Result;
}
static bool compareDistinctValues(QualType Type, Value &Val1,
const Environment &Env1, Value &Val2,
const Environment &Env2,
Environment::ValueModel &Model) {
// Note: Potentially costly, but, for booleans, we could check whether both
// can be proven equivalent in their respective environments.
// FIXME: move the reference/pointers logic from `areEquivalentValues` to here
// and implement separate, join/widen specific handling for
// reference/pointers.
switch (Model.compare(Type, Val1, Env1, Val2, Env2)) {
case ComparisonResult::Same:
return true;
case ComparisonResult::Different:
return false;
case ComparisonResult::Unknown:
switch (Val1.getKind()) {
case Value::Kind::Integer:
case Value::Kind::Reference:
case Value::Kind::Pointer:
case Value::Kind::Struct:
// FIXME: this choice intentionally introduces unsoundness to allow
// for convergence. Once we have widening support for the
// reference/pointer and struct built-in models, this should be
// `false`.
return true;
default:
return false;
}
}
llvm_unreachable("All cases covered in switch");
}
/// Attempts to merge distinct values `Val1` and `Val2` in `Env1` and `Env2`,
/// respectively, of the same type `Type`. Merging generally produces a single
/// value that (soundly) approximates the two inputs, although the actual
/// meaning depends on `Model`.
static Value *mergeDistinctValues(QualType Type, Value &Val1,
const Environment &Env1, Value &Val2,
const Environment &Env2,
Environment &MergedEnv,
Environment::ValueModel &Model) {
// Join distinct boolean values preserving information about the constraints
// in the respective path conditions.
if (isa<BoolValue>(&Val1) && isa<BoolValue>(&Val2)) {
// FIXME: Checking both values should be unnecessary, since they should have
// a consistent shape. However, right now we can end up with BoolValue's in
// integer-typed variables due to our incorrect handling of
// boolean-to-integer casts (we just propagate the BoolValue to the result
// of the cast). So, a join can encounter an integer in one branch but a
// bool in the other.
// For example:
// ```
// std::optional<bool> o;
// int x;
// if (o.has_value())
// x = o.value();
// ```
auto *Expr1 = cast<BoolValue>(&Val1);
auto *Expr2 = cast<BoolValue>(&Val2);
auto &MergedVal = MergedEnv.makeAtomicBoolValue();
MergedEnv.addToFlowCondition(MergedEnv.makeOr(
MergedEnv.makeAnd(Env1.getFlowConditionToken(),
MergedEnv.makeIff(MergedVal, *Expr1)),
MergedEnv.makeAnd(Env2.getFlowConditionToken(),
MergedEnv.makeIff(MergedVal, *Expr2))));
return &MergedVal;
}
// FIXME: Consider destroying `MergedValue` immediately if `ValueModel::merge`
// returns false to avoid storing unneeded values in `DACtx`.
// FIXME: Creating the value based on the type alone creates misshapen values
// for lvalues, since the type does not reflect the need for `ReferenceValue`.
if (Value *MergedVal = MergedEnv.createValue(Type))
if (Model.merge(Type, Val1, Env1, Val2, Env2, *MergedVal, MergedEnv))
return MergedVal;
return nullptr;
}
// When widening does not change `Current`, return value will equal `&Prev`.
static Value &widenDistinctValues(QualType Type, Value &Prev,
const Environment &PrevEnv, Value &Current,
Environment &CurrentEnv,
Environment::ValueModel &Model) {
// Boolean-model widening.
if (isa<BoolValue>(&Prev)) {
assert(isa<BoolValue>(Current));
// Widen to Top, because we know they are different values. If previous was
// already Top, re-use that to (implicitly) indicate that no change occured.
if (isa<TopBoolValue>(Prev))
return Prev;
return CurrentEnv.makeTopBoolValue();
}
// FIXME: Add other built-in model widening.
// Custom-model widening.
if (auto *W = Model.widen(Type, Prev, PrevEnv, Current, CurrentEnv))
return *W;
// Default of widening is a no-op: leave the current value unchanged.
return Current;
}
/// Initializes a global storage value.
static void insertIfGlobal(const Decl &D,
llvm::DenseSet<const VarDecl *> &Vars) {
if (auto *V = dyn_cast<VarDecl>(&D))
if (V->hasGlobalStorage())
Vars.insert(V);
}
static void insertIfFunction(const Decl &D,
llvm::DenseSet<const FunctionDecl *> &Funcs) {
if (auto *FD = dyn_cast<FunctionDecl>(&D))
Funcs.insert(FD);
}
static void
getFieldsGlobalsAndFuncs(const Decl &D,
llvm::DenseSet<const FieldDecl *> &Fields,
llvm::DenseSet<const VarDecl *> &Vars,
llvm::DenseSet<const FunctionDecl *> &Funcs) {
insertIfGlobal(D, Vars);
insertIfFunction(D, Funcs);
if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D))
for (const auto *B : Decomp->bindings())
if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding()))
// FIXME: should we be using `E->getFoundDecl()`?
if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
Fields.insert(FD);
}
/// Traverses `S` and inserts into `Fields`, `Vars` and `Funcs` any fields,
/// global variables and functions that are declared in or referenced from
/// sub-statements.
static void
getFieldsGlobalsAndFuncs(const Stmt &S,
llvm::DenseSet<const FieldDecl *> &Fields,
llvm::DenseSet<const VarDecl *> &Vars,
llvm::DenseSet<const FunctionDecl *> &Funcs) {
for (auto *Child : S.children())
if (Child != nullptr)
getFieldsGlobalsAndFuncs(*Child, Fields, Vars, Funcs);
if (auto *DS = dyn_cast<DeclStmt>(&S)) {
if (DS->isSingleDecl())
getFieldsGlobalsAndFuncs(*DS->getSingleDecl(), Fields, Vars, Funcs);
else
for (auto *D : DS->getDeclGroup())
getFieldsGlobalsAndFuncs(*D, Fields, Vars, Funcs);
} else if (auto *E = dyn_cast<DeclRefExpr>(&S)) {
insertIfGlobal(*E->getDecl(), Vars);
insertIfFunction(*E->getDecl(), Funcs);
} else if (auto *E = dyn_cast<MemberExpr>(&S)) {
// FIXME: should we be using `E->getFoundDecl()`?
const ValueDecl *VD = E->getMemberDecl();
insertIfGlobal(*VD, Vars);
insertIfFunction(*VD, Funcs);
if (const auto *FD = dyn_cast<FieldDecl>(VD))
Fields.insert(FD);
}
}
// FIXME: Add support for resetting globals after function calls to enable
// the implementation of sound analyses.
void Environment::initFieldsGlobalsAndFuncs(const FunctionDecl *FuncDecl) {
assert(FuncDecl->getBody() != nullptr);
llvm::DenseSet<const FieldDecl *> Fields;
llvm::DenseSet<const VarDecl *> Vars;
llvm::DenseSet<const FunctionDecl *> Funcs;
// Look for global variable and field references in the
// constructor-initializers.
if (const auto *CtorDecl = dyn_cast<CXXConstructorDecl>(FuncDecl)) {
for (const auto *Init : CtorDecl->inits()) {
if (const auto *M = Init->getAnyMember())
Fields.insert(M);
const Expr *E = Init->getInit();
assert(E != nullptr);
getFieldsGlobalsAndFuncs(*E, Fields, Vars, Funcs);
}
// Add all fields mentioned in default member initializers.
for (const FieldDecl *F : CtorDecl->getParent()->fields())
if (const auto *I = F->getInClassInitializer())
getFieldsGlobalsAndFuncs(*I, Fields, Vars, Funcs);
}
getFieldsGlobalsAndFuncs(*FuncDecl->getBody(), Fields, Vars, Funcs);
// These have to be added before the lines that follow to ensure that
// `create*` work correctly for structs.
DACtx->addModeledFields(Fields);
for (const VarDecl *D : Vars) {
if (getStorageLocation(*D) != nullptr)
continue;
auto &Loc = createStorageLocation(D->getType().getNonReferenceType());
setStorageLocation(*D, Loc);
if (auto *Val = createValue(D->getType().getNonReferenceType()))
setValue(Loc, *Val);
}
for (const FunctionDecl *FD : Funcs) {
if (getStorageLocation(*FD) != nullptr)
continue;
auto &Loc = createStorageLocation(FD->getType());
setStorageLocation(*FD, Loc);
}
}
Environment::Environment(DataflowAnalysisContext &DACtx)
: DACtx(&DACtx),
FlowConditionToken(&DACtx.arena().makeFlowConditionToken()) {}
Environment::Environment(const Environment &Other)
: DACtx(Other.DACtx), CallStack(Other.CallStack),
ReturnLoc(Other.ReturnLoc), ThisPointeeLoc(Other.ThisPointeeLoc),
DeclToLoc(Other.DeclToLoc), ExprToLoc(Other.ExprToLoc),
LocToVal(Other.LocToVal), MemberLocToStruct(Other.MemberLocToStruct),
FlowConditionToken(&DACtx->forkFlowCondition(*Other.FlowConditionToken)) {
}
Environment &Environment::operator=(const Environment &Other) {
Environment Copy(Other);
*this = std::move(Copy);
return *this;
}
Environment::Environment(DataflowAnalysisContext &DACtx,
const DeclContext &DeclCtx)
: Environment(DACtx) {
CallStack.push_back(&DeclCtx);
if (const auto *FuncDecl = dyn_cast<FunctionDecl>(&DeclCtx)) {
assert(FuncDecl->getBody() != nullptr);
initFieldsGlobalsAndFuncs(FuncDecl);
for (const auto *ParamDecl : FuncDecl->parameters()) {
assert(ParamDecl != nullptr);
// References aren't objects, so the reference itself doesn't have a
// storage location. Instead, the storage location for a reference refers
// directly to an object of the referenced type -- so strip off any
// reference from the type.
auto &ParamLoc =
createStorageLocation(ParamDecl->getType().getNonReferenceType());
setStorageLocation(*ParamDecl, ParamLoc);
if (Value *ParamVal =
createValue(ParamDecl->getType().getNonReferenceType()))
setValue(ParamLoc, *ParamVal);
}
QualType ReturnType = FuncDecl->getReturnType();
ReturnLoc = &createStorageLocation(ReturnType);
}
if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(&DeclCtx)) {
auto *Parent = MethodDecl->getParent();
assert(Parent != nullptr);
if (Parent->isLambda())
MethodDecl = dyn_cast<CXXMethodDecl>(Parent->getDeclContext());
// FIXME: Initialize the ThisPointeeLoc of lambdas too.
if (MethodDecl && !MethodDecl->isStatic()) {
QualType ThisPointeeType = MethodDecl->getThisObjectType();
ThisPointeeLoc = &createStorageLocation(ThisPointeeType);
if (Value *ThisPointeeVal = createValue(ThisPointeeType))
setValue(*ThisPointeeLoc, *ThisPointeeVal);
}
}
}
bool Environment::canDescend(unsigned MaxDepth,
const DeclContext *Callee) const {
return CallStack.size() <= MaxDepth && !llvm::is_contained(CallStack, Callee);
}
Environment Environment::pushCall(const CallExpr *Call) const {
Environment Env(*this);
// FIXME: Support references here.
Env.ReturnLoc = getStorageLocation(*Call, SkipPast::Reference);
if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Call)) {
if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) {
if (!isa<CXXThisExpr>(Arg))
Env.ThisPointeeLoc = getStorageLocation(*Arg, SkipPast::Reference);
// Otherwise (when the argument is `this`), retain the current
// environment's `ThisPointeeLoc`.
}
}
Env.pushCallInternal(Call->getDirectCallee(),
llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
return Env;
}
Environment Environment::pushCall(const CXXConstructExpr *Call) const {
Environment Env(*this);
// FIXME: Support references here.
Env.ReturnLoc = getStorageLocation(*Call, SkipPast::Reference);
Env.ThisPointeeLoc = Env.ReturnLoc;
Env.pushCallInternal(Call->getConstructor(),
llvm::ArrayRef(Call->getArgs(), Call->getNumArgs()));
return Env;
}
void Environment::pushCallInternal(const FunctionDecl *FuncDecl,
ArrayRef<const Expr *> Args) {
CallStack.push_back(FuncDecl);
initFieldsGlobalsAndFuncs(FuncDecl);
const auto *ParamIt = FuncDecl->param_begin();
// FIXME: Parameters don't always map to arguments 1:1; examples include
// overloaded operators implemented as member functions, and parameter packs.
for (unsigned ArgIndex = 0; ArgIndex < Args.size(); ++ParamIt, ++ArgIndex) {
assert(ParamIt != FuncDecl->param_end());
const Expr *Arg = Args[ArgIndex];
auto *ArgLoc = getStorageLocation(*Arg, SkipPast::Reference);
if (ArgLoc == nullptr)
continue;
const VarDecl *Param = *ParamIt;
QualType ParamType = Param->getType();
if (ParamType->isReferenceType()) {
setStorageLocation(*Param, *ArgLoc);
} else {
auto &Loc = createStorageLocation(*Param);
setStorageLocation(*Param, Loc);
if (auto *ArgVal = getValue(*ArgLoc)) {
setValue(Loc, *ArgVal);
} else if (Value *Val = createValue(ParamType)) {
setValue(Loc, *Val);
}
}
}
}
void Environment::popCall(const Environment &CalleeEnv) {
// We ignore `DACtx` because it's already the same in both. We don't want the
// callee's `DeclCtx`, `ReturnLoc` or `ThisPointeeLoc`. We don't bring back
// `DeclToLoc` and `ExprToLoc` because we want to be able to later analyze the
// same callee in a different context, and `setStorageLocation` requires there
// to not already be a storage location assigned. Conceptually, these maps
// capture information from the local scope, so when popping that scope, we do
// not propagate the maps.
this->LocToVal = std::move(CalleeEnv.LocToVal);
this->MemberLocToStruct = std::move(CalleeEnv.MemberLocToStruct);
this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
}
bool Environment::equivalentTo(const Environment &Other,
Environment::ValueModel &Model) const {
assert(DACtx == Other.DACtx);
if (ReturnLoc != Other.ReturnLoc)
return false;
if (ThisPointeeLoc != Other.ThisPointeeLoc)
return false;
if (DeclToLoc != Other.DeclToLoc)
return false;
if (ExprToLoc != Other.ExprToLoc)
return false;
// Compare the contents for the intersection of their domains.
for (auto &Entry : LocToVal) {
const StorageLocation *Loc = Entry.first;
assert(Loc != nullptr);
Value *Val = Entry.second;
assert(Val != nullptr);
auto It = Other.LocToVal.find(Loc);
if (It == Other.LocToVal.end())
continue;
assert(It->second != nullptr);
if (!areEquivalentValues(*Val, *It->second) &&
!compareDistinctValues(Loc->getType(), *Val, *this, *It->second, Other,
Model))
return false;
}
return true;
}
LatticeJoinEffect Environment::widen(const Environment &PrevEnv,
Environment::ValueModel &Model) {
assert(DACtx == PrevEnv.DACtx);
assert(ReturnLoc == PrevEnv.ReturnLoc);
assert(ThisPointeeLoc == PrevEnv.ThisPointeeLoc);
assert(CallStack == PrevEnv.CallStack);
auto Effect = LatticeJoinEffect::Unchanged;
// By the API, `PrevEnv` is a previous version of the environment for the same
// block, so we have some guarantees about its shape. In particular, it will
// be the result of a join or widen operation on previous values for this
// block. For `DeclToLoc` and `ExprToLoc`, join guarantees that these maps are
// subsets of the maps in `PrevEnv`. So, as long as we maintain this property
// here, we don't need change their current values to widen.
//
// FIXME: `MemberLocToStruct` does not share the above property, because
// `join` can cause the map size to increase (when we add fresh data in places
// of conflict). Once this issue with join is resolved, re-enable the
// assertion below or replace with something that captures the desired
// invariant.
assert(DeclToLoc.size() <= PrevEnv.DeclToLoc.size());
assert(ExprToLoc.size() <= PrevEnv.ExprToLoc.size());
// assert(MemberLocToStruct.size() <= PrevEnv.MemberLocToStruct.size());
llvm::DenseMap<const StorageLocation *, Value *> WidenedLocToVal;
for (auto &Entry : LocToVal) {
const StorageLocation *Loc = Entry.first;
assert(Loc != nullptr);
Value *Val = Entry.second;
assert(Val != nullptr);
auto PrevIt = PrevEnv.LocToVal.find(Loc);
if (PrevIt == PrevEnv.LocToVal.end())
continue;
assert(PrevIt->second != nullptr);
if (areEquivalentValues(*Val, *PrevIt->second)) {
WidenedLocToVal.insert({Loc, Val});
continue;
}
Value &WidenedVal = widenDistinctValues(Loc->getType(), *PrevIt->second,
PrevEnv, *Val, *this, Model);
WidenedLocToVal.insert({Loc, &WidenedVal});
if (&WidenedVal != PrevIt->second)
Effect = LatticeJoinEffect::Changed;
}
LocToVal = std::move(WidenedLocToVal);
// FIXME: update the equivalence calculation for `MemberLocToStruct`, once we
// have a systematic way of soundly comparing this map.
if (DeclToLoc.size() != PrevEnv.DeclToLoc.size() ||
ExprToLoc.size() != PrevEnv.ExprToLoc.size() ||
LocToVal.size() != PrevEnv.LocToVal.size() ||
MemberLocToStruct.size() != PrevEnv.MemberLocToStruct.size())
Effect = LatticeJoinEffect::Changed;
return Effect;
}
LatticeJoinEffect Environment::join(const Environment &Other,
Environment::ValueModel &Model) {
assert(DACtx == Other.DACtx);
assert(ReturnLoc == Other.ReturnLoc);
assert(ThisPointeeLoc == Other.ThisPointeeLoc);
assert(CallStack == Other.CallStack);
auto Effect = LatticeJoinEffect::Unchanged;
Environment JoinedEnv(*DACtx);
JoinedEnv.CallStack = CallStack;
JoinedEnv.ReturnLoc = ReturnLoc;
JoinedEnv.ThisPointeeLoc = ThisPointeeLoc;
// FIXME: Once we're able to remove declarations from `DeclToLoc` when their
// lifetime ends, add an assertion that there aren't any entries in
// `DeclToLoc` and `Other.DeclToLoc` that map the same declaration to
// different storage locations.
JoinedEnv.DeclToLoc = intersectDenseMaps(DeclToLoc, Other.DeclToLoc);
if (DeclToLoc.size() != JoinedEnv.DeclToLoc.size())
Effect = LatticeJoinEffect::Changed;
JoinedEnv.ExprToLoc = intersectDenseMaps(ExprToLoc, Other.ExprToLoc);
if (ExprToLoc.size() != JoinedEnv.ExprToLoc.size())
Effect = LatticeJoinEffect::Changed;
JoinedEnv.MemberLocToStruct =
intersectDenseMaps(MemberLocToStruct, Other.MemberLocToStruct);
if (MemberLocToStruct.size() != JoinedEnv.MemberLocToStruct.size())
Effect = LatticeJoinEffect::Changed;
// FIXME: set `Effect` as needed.
// FIXME: update join to detect backedges and simplify the flow condition
// accordingly.
JoinedEnv.FlowConditionToken = &DACtx->joinFlowConditions(
*FlowConditionToken, *Other.FlowConditionToken);
for (auto &Entry : LocToVal) {
const StorageLocation *Loc = Entry.first;
assert(Loc != nullptr);
Value *Val = Entry.second;
assert(Val != nullptr);
auto It = Other.LocToVal.find(Loc);
if (It == Other.LocToVal.end())
continue;
assert(It->second != nullptr);
if (areEquivalentValues(*Val, *It->second)) {
JoinedEnv.LocToVal.insert({Loc, Val});
continue;
}
if (Value *MergedVal =
mergeDistinctValues(Loc->getType(), *Val, *this, *It->second, Other,
JoinedEnv, Model)) {
JoinedEnv.LocToVal.insert({Loc, MergedVal});
Effect = LatticeJoinEffect::Changed;
}
}
if (LocToVal.size() != JoinedEnv.LocToVal.size())
Effect = LatticeJoinEffect::Changed;
*this = std::move(JoinedEnv);
return Effect;
}
StorageLocation &Environment::createStorageLocation(QualType Type) {
return DACtx->createStorageLocation(Type);
}
StorageLocation &Environment::createStorageLocation(const VarDecl &D) {
// Evaluated declarations are always assigned the same storage locations to
// ensure that the environment stabilizes across loop iterations. Storage
// locations for evaluated declarations are stored in the analysis context.
return DACtx->getStableStorageLocation(D);
}
StorageLocation &Environment::createStorageLocation(const Expr &E) {
// Evaluated expressions are always assigned the same storage locations to
// ensure that the environment stabilizes across loop iterations. Storage
// locations for evaluated expressions are stored in the analysis context.
return DACtx->getStableStorageLocation(E);
}
void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) {
assert(!DeclToLoc.contains(&D));
assert(!isa_and_nonnull<ReferenceValue>(getValue(Loc)));
DeclToLoc[&D] = &Loc;
}
StorageLocation *Environment::getStorageLocation(const ValueDecl &D) const {
auto It = DeclToLoc.find(&D);
if (It == DeclToLoc.end())
return nullptr;
StorageLocation *Loc = It->second;
assert(!isa_and_nonnull<ReferenceValue>(getValue(*Loc)));
return Loc;
}
void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) {
const Expr &CanonE = ignoreCFGOmittedNodes(E);
assert(!ExprToLoc.contains(&CanonE));
ExprToLoc[&CanonE] = &Loc;
}
StorageLocation *Environment::getStorageLocation(const Expr &E,
SkipPast SP) const {
// FIXME: Add a test with parens.
auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
return It == ExprToLoc.end() ? nullptr : &skip(*It->second, SP);
}
StorageLocation *Environment::getThisPointeeStorageLocation() const {
return ThisPointeeLoc;
}
StorageLocation *Environment::getReturnStorageLocation() const {
return ReturnLoc;
}
PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) {
return DACtx->getOrCreateNullPointerValue(PointeeType);
}
void Environment::setValue(const StorageLocation &Loc, Value &Val) {
LocToVal[&Loc] = &Val;
if (auto *StructVal = dyn_cast<StructValue>(&Val)) {
auto &AggregateLoc = *cast<AggregateStorageLocation>(&Loc);
const QualType Type = AggregateLoc.getType();
assert(Type->isRecordType());
for (const FieldDecl *Field : DACtx->getReferencedFields(Type)) {
assert(Field != nullptr);
StorageLocation &FieldLoc = AggregateLoc.getChild(*Field);
MemberLocToStruct[&FieldLoc] = std::make_pair(StructVal, Field);
if (auto *FieldVal = StructVal->getChild(*Field))
setValue(FieldLoc, *FieldVal);
}
}
auto It = MemberLocToStruct.find(&Loc);
if (It != MemberLocToStruct.end()) {
// `Loc` is the location of a struct member so we need to also update the
// value of the member in the corresponding `StructValue`.
assert(It->second.first != nullptr);
StructValue &StructVal = *It->second.first;
assert(It->second.second != nullptr);
const ValueDecl &Member = *It->second.second;
StructVal.setChild(Member, Val);
}
}
Value *Environment::getValue(const StorageLocation &Loc) const {
auto It = LocToVal.find(&Loc);
return It == LocToVal.end() ? nullptr : It->second;
}
Value *Environment::getValue(const ValueDecl &D) const {
auto *Loc = getStorageLocation(D);
if (Loc == nullptr)
return nullptr;
return getValue(*Loc);
}
Value *Environment::getValue(const Expr &E, SkipPast SP) const {
auto *Loc = getStorageLocation(E, SP);
if (Loc == nullptr)
return nullptr;
return getValue(*Loc);
}
Value *Environment::createValue(QualType Type) {
llvm::DenseSet<QualType> Visited;
int CreatedValuesCount = 0;
Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0,
CreatedValuesCount);
if (CreatedValuesCount > MaxCompositeValueSize) {
llvm::errs() << "Attempting to initialize a huge value of type: " << Type
<< '\n';
}
return Val;
}
Value *Environment::createValueUnlessSelfReferential(
QualType Type, llvm::DenseSet<QualType> &Visited, int Depth,
int &CreatedValuesCount) {
assert(!Type.isNull());
// Allow unlimited fields at depth 1; only cap at deeper nesting levels.
if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) ||
Depth > MaxCompositeValueDepth)
return nullptr;
if (Type->isBooleanType()) {
CreatedValuesCount++;
return &makeAtomicBoolValue();
}
if (Type->isIntegerType()) {
// FIXME: consider instead `return nullptr`, given that we do nothing useful
// with integers, and so distinguishing them serves no purpose, but could
// prevent convergence.
CreatedValuesCount++;
return &DACtx->arena().create<IntegerValue>();
}
if (Type->isReferenceType() || Type->isPointerType()) {
CreatedValuesCount++;
QualType PointeeType = Type->getPointeeType();
auto &PointeeLoc = createStorageLocation(PointeeType);
if (Visited.insert(PointeeType.getCanonicalType()).second) {
Value *PointeeVal = createValueUnlessSelfReferential(
PointeeType, Visited, Depth, CreatedValuesCount);
Visited.erase(PointeeType.getCanonicalType());
if (PointeeVal != nullptr)
setValue(PointeeLoc, *PointeeVal);
}
if (Type->isReferenceType())
return &DACtx->arena().create<ReferenceValue>(PointeeLoc);
else
return &DACtx->arena().create<PointerValue>(PointeeLoc);
}
if (Type->isRecordType()) {
CreatedValuesCount++;
llvm::DenseMap<const ValueDecl *, Value *> FieldValues;
for (const FieldDecl *Field : DACtx->getReferencedFields(Type)) {
assert(Field != nullptr);
QualType FieldType = Field->getType();
if (Visited.contains(FieldType.getCanonicalType()))
continue;
Visited.insert(FieldType.getCanonicalType());
if (auto *FieldValue = createValueUnlessSelfReferential(
FieldType, Visited, Depth + 1, CreatedValuesCount))
FieldValues.insert({Field, FieldValue});
Visited.erase(FieldType.getCanonicalType());
}
return &DACtx->arena().create<StructValue>(std::move(FieldValues));
}
return nullptr;
}
StorageLocation &Environment::skip(StorageLocation &Loc, SkipPast SP) const {
switch (SP) {
case SkipPast::None:
return Loc;
case SkipPast::Reference:
// References cannot be chained so we only need to skip past one level of
// indirection.
if (auto *Val = dyn_cast_or_null<ReferenceValue>(getValue(Loc)))
return Val->getReferentLoc();
return Loc;
}
llvm_unreachable("bad SkipPast kind");
}
const StorageLocation &Environment::skip(const StorageLocation &Loc,
SkipPast SP) const {
return skip(*const_cast<StorageLocation *>(&Loc), SP);
}
void Environment::addToFlowCondition(BoolValue &Val) {
DACtx->addFlowConditionConstraint(*FlowConditionToken, Val);
}
bool Environment::flowConditionImplies(BoolValue &Val) const {
return DACtx->flowConditionImplies(*FlowConditionToken, Val);
}
void Environment::dump(raw_ostream &OS) const {
// FIXME: add printing for remaining fields and allow caller to decide what
// fields are printed.
OS << "DeclToLoc:\n";
for (auto [D, L] : DeclToLoc)
OS << " [" << D->getNameAsString() << ", " << L << "]\n";
OS << "ExprToLoc:\n";
for (auto [E, L] : ExprToLoc)
OS << " [" << E << ", " << L << "]\n";
OS << "LocToVal:\n";
for (auto [L, V] : LocToVal) {
OS << " [" << L << ", " << V << ": " << *V << "]\n";
}
OS << "FlowConditionToken:\n";
DACtx->dumpFlowCondition(*FlowConditionToken, OS);
}
void Environment::dump() const {
dump(llvm::dbgs());
}
AggregateStorageLocation *
getImplicitObjectLocation(const CXXMemberCallExpr &MCE,
const Environment &Env) {
Expr *ImplicitObject = MCE.getImplicitObjectArgument();
if (ImplicitObject == nullptr)
return nullptr;
StorageLocation *Loc =
Env.getStorageLocation(*ImplicitObject, SkipPast::Reference);
if (Loc == nullptr)
return nullptr;
if (ImplicitObject->getType()->isPointerType()) {
if (auto *Val = cast_or_null<PointerValue>(Env.getValue(*Loc)))
return &cast<AggregateStorageLocation>(Val->getPointeeLoc());
return nullptr;
}
return cast<AggregateStorageLocation>(Loc);
}
AggregateStorageLocation *getBaseObjectLocation(const MemberExpr &ME,
const Environment &Env) {
Expr *Base = ME.getBase();
if (Base == nullptr)
return nullptr;
StorageLocation *Loc = Env.getStorageLocation(*Base, SkipPast::Reference);
if (Loc == nullptr)
return nullptr;
if (ME.isArrow()) {
if (auto *Val = cast_or_null<PointerValue>(Env.getValue(*Loc)))
return &cast<AggregateStorageLocation>(Val->getPointeeLoc());
return nullptr;
}
return cast<AggregateStorageLocation>(Loc);
}
} // namespace dataflow
} // namespace clang