Krzysztof Drewniak d7c53a91c2
[mlir] Decouple enum generation from attributes, adding EnumInfo and EnumCase (#132148)
This commit pulls apart the inherent attribute dependence of classes
like EnumAttrInfo and EnumAttrCase, factoring them out into simpler
EnumCase and EnumInfo variants. This allows specifying the cases of an
enum without needing to make the cases, or the EnumInfo itself, a
subclass of SignlessIntegerAttrBase.

The existing classes are retained as subclasses of the new ones, both
for backwards compatibility and to allow attribute-specific information.

In addition, the new BitEnum class changes its default printer/parser
behavior: cases when multiple keywords appear, like having both nuw and
nsw in overflow flags, will no longer be quoted by the operator<<, and
the FieldParser instance will now expect multiple keywords. All
instances of BitEnumAttr retain the old behavior.
2025-03-27 19:40:06 -05:00

917 lines
30 KiB
C++

//===- Pattern.cpp - Pattern wrapper class --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Pattern wrapper class to simplify using TableGen Record defining a MLIR
// Pattern.
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "mlir/TableGen/Pattern.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#define DEBUG_TYPE "mlir-tblgen-pattern"
using namespace mlir;
using namespace tblgen;
using llvm::DagInit;
using llvm::dbgs;
using llvm::DefInit;
using llvm::formatv;
using llvm::IntInit;
using llvm::Record;
//===----------------------------------------------------------------------===//
// DagLeaf
//===----------------------------------------------------------------------===//
bool DagLeaf::isUnspecified() const {
return isa_and_nonnull<llvm::UnsetInit>(def);
}
bool DagLeaf::isOperandMatcher() const {
// Operand matchers specify a type constraint.
return isSubClassOf("TypeConstraint");
}
bool DagLeaf::isAttrMatcher() const {
// Attribute matchers specify an attribute constraint.
return isSubClassOf("AttrConstraint");
}
bool DagLeaf::isNativeCodeCall() const {
return isSubClassOf("NativeCodeCall");
}
bool DagLeaf::isConstantAttr() const { return isSubClassOf("ConstantAttr"); }
bool DagLeaf::isEnumCase() const { return isSubClassOf("EnumCase"); }
bool DagLeaf::isStringAttr() const { return isa<llvm::StringInit>(def); }
Constraint DagLeaf::getAsConstraint() const {
assert((isOperandMatcher() || isAttrMatcher()) &&
"the DAG leaf must be operand or attribute");
return Constraint(cast<DefInit>(def)->getDef());
}
ConstantAttr DagLeaf::getAsConstantAttr() const {
assert(isConstantAttr() && "the DAG leaf must be constant attribute");
return ConstantAttr(cast<DefInit>(def));
}
EnumCase DagLeaf::getAsEnumCase() const {
assert(isEnumCase() && "the DAG leaf must be an enum attribute case");
return EnumCase(cast<DefInit>(def));
}
std::string DagLeaf::getConditionTemplate() const {
return getAsConstraint().getConditionTemplate();
}
StringRef DagLeaf::getNativeCodeTemplate() const {
assert(isNativeCodeCall() && "the DAG leaf must be NativeCodeCall");
return cast<DefInit>(def)->getDef()->getValueAsString("expression");
}
int DagLeaf::getNumReturnsOfNativeCode() const {
assert(isNativeCodeCall() && "the DAG leaf must be NativeCodeCall");
return cast<DefInit>(def)->getDef()->getValueAsInt("numReturns");
}
std::string DagLeaf::getStringAttr() const {
assert(isStringAttr() && "the DAG leaf must be string attribute");
return def->getAsUnquotedString();
}
bool DagLeaf::isSubClassOf(StringRef superclass) const {
if (auto *defInit = dyn_cast_or_null<DefInit>(def))
return defInit->getDef()->isSubClassOf(superclass);
return false;
}
void DagLeaf::print(raw_ostream &os) const {
if (def)
def->print(os);
}
//===----------------------------------------------------------------------===//
// DagNode
//===----------------------------------------------------------------------===//
bool DagNode::isNativeCodeCall() const {
if (auto *defInit = dyn_cast_or_null<DefInit>(node->getOperator()))
return defInit->getDef()->isSubClassOf("NativeCodeCall");
return false;
}
bool DagNode::isOperation() const {
return !isNativeCodeCall() && !isReplaceWithValue() &&
!isLocationDirective() && !isReturnTypeDirective() && !isEither() &&
!isVariadic();
}
StringRef DagNode::getNativeCodeTemplate() const {
assert(isNativeCodeCall() && "the DAG leaf must be NativeCodeCall");
return cast<DefInit>(node->getOperator())
->getDef()
->getValueAsString("expression");
}
int DagNode::getNumReturnsOfNativeCode() const {
assert(isNativeCodeCall() && "the DAG leaf must be NativeCodeCall");
return cast<DefInit>(node->getOperator())
->getDef()
->getValueAsInt("numReturns");
}
StringRef DagNode::getSymbol() const { return node->getNameStr(); }
Operator &DagNode::getDialectOp(RecordOperatorMap *mapper) const {
const Record *opDef = cast<DefInit>(node->getOperator())->getDef();
auto [it, inserted] = mapper->try_emplace(opDef);
if (inserted)
it->second = std::make_unique<Operator>(opDef);
return *it->second;
}
int DagNode::getNumOps() const {
// We want to get number of operations recursively involved in the DAG tree.
// All other directives should be excluded.
int count = isOperation() ? 1 : 0;
for (int i = 0, e = getNumArgs(); i != e; ++i) {
if (auto child = getArgAsNestedDag(i))
count += child.getNumOps();
}
return count;
}
int DagNode::getNumArgs() const { return node->getNumArgs(); }
bool DagNode::isNestedDagArg(unsigned index) const {
return isa<DagInit>(node->getArg(index));
}
DagNode DagNode::getArgAsNestedDag(unsigned index) const {
return DagNode(dyn_cast_or_null<DagInit>(node->getArg(index)));
}
DagLeaf DagNode::getArgAsLeaf(unsigned index) const {
assert(!isNestedDagArg(index));
return DagLeaf(node->getArg(index));
}
StringRef DagNode::getArgName(unsigned index) const {
return node->getArgNameStr(index);
}
bool DagNode::isReplaceWithValue() const {
auto *dagOpDef = cast<DefInit>(node->getOperator())->getDef();
return dagOpDef->getName() == "replaceWithValue";
}
bool DagNode::isLocationDirective() const {
auto *dagOpDef = cast<DefInit>(node->getOperator())->getDef();
return dagOpDef->getName() == "location";
}
bool DagNode::isReturnTypeDirective() const {
auto *dagOpDef = cast<DefInit>(node->getOperator())->getDef();
return dagOpDef->getName() == "returnType";
}
bool DagNode::isEither() const {
auto *dagOpDef = cast<DefInit>(node->getOperator())->getDef();
return dagOpDef->getName() == "either";
}
bool DagNode::isVariadic() const {
auto *dagOpDef = cast<DefInit>(node->getOperator())->getDef();
return dagOpDef->getName() == "variadic";
}
void DagNode::print(raw_ostream &os) const {
if (node)
node->print(os);
}
//===----------------------------------------------------------------------===//
// SymbolInfoMap
//===----------------------------------------------------------------------===//
StringRef SymbolInfoMap::getValuePackName(StringRef symbol, int *index) {
int idx = -1;
auto [name, indexStr] = symbol.rsplit("__");
if (indexStr.consumeInteger(10, idx)) {
// The second part is not an index; we return the whole symbol as-is.
return symbol;
}
if (index) {
*index = idx;
}
return name;
}
SymbolInfoMap::SymbolInfo::SymbolInfo(
const Operator *op, SymbolInfo::Kind kind,
std::optional<DagAndConstant> dagAndConstant)
: op(op), kind(kind), dagAndConstant(dagAndConstant) {}
int SymbolInfoMap::SymbolInfo::getStaticValueCount() const {
switch (kind) {
case Kind::Attr:
case Kind::Operand:
case Kind::Value:
return 1;
case Kind::Result:
return op->getNumResults();
case Kind::MultipleValues:
return getSize();
}
llvm_unreachable("unknown kind");
}
std::string SymbolInfoMap::SymbolInfo::getVarName(StringRef name) const {
return alternativeName ? *alternativeName : name.str();
}
std::string SymbolInfoMap::SymbolInfo::getVarTypeStr(StringRef name) const {
LLVM_DEBUG(dbgs() << "getVarTypeStr for '" << name << "': ");
switch (kind) {
case Kind::Attr: {
if (op)
return cast<NamedAttribute *>(op->getArg(getArgIndex()))
->attr.getStorageType()
.str();
// TODO(suderman): Use a more exact type when available.
return "::mlir::Attribute";
}
case Kind::Operand: {
// Use operand range for captured operands (to support potential variadic
// operands).
return "::mlir::Operation::operand_range";
}
case Kind::Value: {
return "::mlir::Value";
}
case Kind::MultipleValues: {
return "::mlir::ValueRange";
}
case Kind::Result: {
// Use the op itself for captured results.
return op->getQualCppClassName();
}
}
llvm_unreachable("unknown kind");
}
std::string SymbolInfoMap::SymbolInfo::getVarDecl(StringRef name) const {
LLVM_DEBUG(dbgs() << "getVarDecl for '" << name << "': ");
std::string varInit = kind == Kind::Operand ? "(op0->getOperands())" : "";
return std::string(
formatv("{0} {1}{2};\n", getVarTypeStr(name), getVarName(name), varInit));
}
std::string SymbolInfoMap::SymbolInfo::getArgDecl(StringRef name) const {
LLVM_DEBUG(dbgs() << "getArgDecl for '" << name << "': ");
return std::string(
formatv("{0} &{1}", getVarTypeStr(name), getVarName(name)));
}
std::string SymbolInfoMap::SymbolInfo::getValueAndRangeUse(
StringRef name, int index, const char *fmt, const char *separator) const {
LLVM_DEBUG(dbgs() << "getValueAndRangeUse for '" << name << "': ");
switch (kind) {
case Kind::Attr: {
assert(index < 0);
auto repl = formatv(fmt, name);
LLVM_DEBUG(dbgs() << repl << " (Attr)\n");
return std::string(repl);
}
case Kind::Operand: {
assert(index < 0);
auto *operand = cast<NamedTypeConstraint *>(op->getArg(getArgIndex()));
// If this operand is variadic and this SymbolInfo doesn't have a range
// index, then return the full variadic operand_range. Otherwise, return
// the value itself.
if (operand->isVariableLength() && !getVariadicSubIndex().has_value()) {
auto repl = formatv(fmt, name);
LLVM_DEBUG(dbgs() << repl << " (VariadicOperand)\n");
return std::string(repl);
}
auto repl = formatv(fmt, formatv("(*{0}.begin())", name));
LLVM_DEBUG(dbgs() << repl << " (SingleOperand)\n");
return std::string(repl);
}
case Kind::Result: {
// If `index` is greater than zero, then we are referencing a specific
// result of a multi-result op. The result can still be variadic.
if (index >= 0) {
std::string v =
std::string(formatv("{0}.getODSResults({1})", name, index));
if (!op->getResult(index).isVariadic())
v = std::string(formatv("(*{0}.begin())", v));
auto repl = formatv(fmt, v);
LLVM_DEBUG(dbgs() << repl << " (SingleResult)\n");
return std::string(repl);
}
// If this op has no result at all but still we bind a symbol to it, it
// means we want to capture the op itself.
if (op->getNumResults() == 0) {
LLVM_DEBUG(dbgs() << name << " (Op)\n");
return formatv(fmt, name);
}
// We are referencing all results of the multi-result op. A specific result
// can either be a value or a range. Then join them with `separator`.
SmallVector<std::string, 4> values;
values.reserve(op->getNumResults());
for (int i = 0, e = op->getNumResults(); i < e; ++i) {
std::string v = std::string(formatv("{0}.getODSResults({1})", name, i));
if (!op->getResult(i).isVariadic()) {
v = std::string(formatv("(*{0}.begin())", v));
}
values.push_back(std::string(formatv(fmt, v)));
}
auto repl = llvm::join(values, separator);
LLVM_DEBUG(dbgs() << repl << " (VariadicResult)\n");
return repl;
}
case Kind::Value: {
assert(index < 0);
assert(op == nullptr);
auto repl = formatv(fmt, name);
LLVM_DEBUG(dbgs() << repl << " (Value)\n");
return std::string(repl);
}
case Kind::MultipleValues: {
assert(op == nullptr);
assert(index < getSize());
if (index >= 0) {
std::string repl =
formatv(fmt, std::string(formatv("{0}[{1}]", name, index)));
LLVM_DEBUG(dbgs() << repl << " (MultipleValues)\n");
return repl;
}
// If it doesn't specify certain element, unpack them all.
auto repl =
formatv(fmt, std::string(formatv("{0}.begin(), {0}.end()", name)));
LLVM_DEBUG(dbgs() << repl << " (MultipleValues)\n");
return std::string(repl);
}
}
llvm_unreachable("unknown kind");
}
std::string SymbolInfoMap::SymbolInfo::getAllRangeUse(
StringRef name, int index, const char *fmt, const char *separator) const {
LLVM_DEBUG(dbgs() << "getAllRangeUse for '" << name << "': ");
switch (kind) {
case Kind::Attr:
case Kind::Operand: {
assert(index < 0 && "only allowed for symbol bound to result");
auto repl = formatv(fmt, name);
LLVM_DEBUG(dbgs() << repl << " (Operand/Attr)\n");
return std::string(repl);
}
case Kind::Result: {
if (index >= 0) {
auto repl = formatv(fmt, formatv("{0}.getODSResults({1})", name, index));
LLVM_DEBUG(dbgs() << repl << " (SingleResult)\n");
return std::string(repl);
}
// We are referencing all results of the multi-result op. Each result should
// have a value range, and then join them with `separator`.
SmallVector<std::string, 4> values;
values.reserve(op->getNumResults());
for (int i = 0, e = op->getNumResults(); i < e; ++i) {
values.push_back(std::string(
formatv(fmt, formatv("{0}.getODSResults({1})", name, i))));
}
auto repl = llvm::join(values, separator);
LLVM_DEBUG(dbgs() << repl << " (VariadicResult)\n");
return repl;
}
case Kind::Value: {
assert(index < 0 && "only allowed for symbol bound to result");
assert(op == nullptr);
auto repl = formatv(fmt, formatv("{{{0}}", name));
LLVM_DEBUG(dbgs() << repl << " (Value)\n");
return std::string(repl);
}
case Kind::MultipleValues: {
assert(op == nullptr);
assert(index < getSize());
if (index >= 0) {
std::string repl =
formatv(fmt, std::string(formatv("{0}[{1}]", name, index)));
LLVM_DEBUG(dbgs() << repl << " (MultipleValues)\n");
return repl;
}
auto repl =
formatv(fmt, std::string(formatv("{0}.begin(), {0}.end()", name)));
LLVM_DEBUG(dbgs() << repl << " (MultipleValues)\n");
return std::string(repl);
}
}
llvm_unreachable("unknown kind");
}
bool SymbolInfoMap::bindOpArgument(DagNode node, StringRef symbol,
const Operator &op, int argIndex,
std::optional<int> variadicSubIndex) {
StringRef name = getValuePackName(symbol);
if (name != symbol) {
auto error = formatv(
"symbol '{0}' with trailing index cannot bind to op argument", symbol);
PrintFatalError(loc, error);
}
auto symInfo =
isa<NamedAttribute *>(op.getArg(argIndex))
? SymbolInfo::getAttr(&op, argIndex)
: SymbolInfo::getOperand(node, &op, argIndex, variadicSubIndex);
std::string key = symbol.str();
if (symbolInfoMap.count(key)) {
// Only non unique name for the operand is supported.
if (symInfo.kind != SymbolInfo::Kind::Operand) {
return false;
}
// Cannot add new operand if there is already non operand with the same
// name.
if (symbolInfoMap.find(key)->second.kind != SymbolInfo::Kind::Operand) {
return false;
}
}
symbolInfoMap.emplace(key, symInfo);
return true;
}
bool SymbolInfoMap::bindOpResult(StringRef symbol, const Operator &op) {
std::string name = getValuePackName(symbol).str();
auto inserted = symbolInfoMap.emplace(name, SymbolInfo::getResult(&op));
return symbolInfoMap.count(inserted->first) == 1;
}
bool SymbolInfoMap::bindValues(StringRef symbol, int numValues) {
std::string name = getValuePackName(symbol).str();
if (numValues > 1)
return bindMultipleValues(name, numValues);
return bindValue(name);
}
bool SymbolInfoMap::bindValue(StringRef symbol) {
auto inserted = symbolInfoMap.emplace(symbol.str(), SymbolInfo::getValue());
return symbolInfoMap.count(inserted->first) == 1;
}
bool SymbolInfoMap::bindMultipleValues(StringRef symbol, int numValues) {
std::string name = getValuePackName(symbol).str();
auto inserted =
symbolInfoMap.emplace(name, SymbolInfo::getMultipleValues(numValues));
return symbolInfoMap.count(inserted->first) == 1;
}
bool SymbolInfoMap::bindAttr(StringRef symbol) {
auto inserted = symbolInfoMap.emplace(symbol.str(), SymbolInfo::getAttr());
return symbolInfoMap.count(inserted->first) == 1;
}
bool SymbolInfoMap::contains(StringRef symbol) const {
return find(symbol) != symbolInfoMap.end();
}
SymbolInfoMap::const_iterator SymbolInfoMap::find(StringRef key) const {
std::string name = getValuePackName(key).str();
return symbolInfoMap.find(name);
}
SymbolInfoMap::const_iterator
SymbolInfoMap::findBoundSymbol(StringRef key, DagNode node, const Operator &op,
int argIndex,
std::optional<int> variadicSubIndex) const {
return findBoundSymbol(
key, SymbolInfo::getOperand(node, &op, argIndex, variadicSubIndex));
}
SymbolInfoMap::const_iterator
SymbolInfoMap::findBoundSymbol(StringRef key,
const SymbolInfo &symbolInfo) const {
std::string name = getValuePackName(key).str();
auto range = symbolInfoMap.equal_range(name);
for (auto it = range.first; it != range.second; ++it)
if (it->second.dagAndConstant == symbolInfo.dagAndConstant)
return it;
return symbolInfoMap.end();
}
std::pair<SymbolInfoMap::iterator, SymbolInfoMap::iterator>
SymbolInfoMap::getRangeOfEqualElements(StringRef key) {
std::string name = getValuePackName(key).str();
return symbolInfoMap.equal_range(name);
}
int SymbolInfoMap::count(StringRef key) const {
std::string name = getValuePackName(key).str();
return symbolInfoMap.count(name);
}
int SymbolInfoMap::getStaticValueCount(StringRef symbol) const {
StringRef name = getValuePackName(symbol);
if (name != symbol) {
// If there is a trailing index inside symbol, it references just one
// static value.
return 1;
}
// Otherwise, find how many it represents by querying the symbol's info.
return find(name)->second.getStaticValueCount();
}
std::string SymbolInfoMap::getValueAndRangeUse(StringRef symbol,
const char *fmt,
const char *separator) const {
int index = -1;
StringRef name = getValuePackName(symbol, &index);
auto it = symbolInfoMap.find(name.str());
if (it == symbolInfoMap.end()) {
auto error = formatv("referencing unbound symbol '{0}'", symbol);
PrintFatalError(loc, error);
}
return it->second.getValueAndRangeUse(name, index, fmt, separator);
}
std::string SymbolInfoMap::getAllRangeUse(StringRef symbol, const char *fmt,
const char *separator) const {
int index = -1;
StringRef name = getValuePackName(symbol, &index);
auto it = symbolInfoMap.find(name.str());
if (it == symbolInfoMap.end()) {
auto error = formatv("referencing unbound symbol '{0}'", symbol);
PrintFatalError(loc, error);
}
return it->second.getAllRangeUse(name, index, fmt, separator);
}
void SymbolInfoMap::assignUniqueAlternativeNames() {
llvm::StringSet<> usedNames;
for (auto symbolInfoIt = symbolInfoMap.begin();
symbolInfoIt != symbolInfoMap.end();) {
auto range = symbolInfoMap.equal_range(symbolInfoIt->first);
auto startRange = range.first;
auto endRange = range.second;
auto operandName = symbolInfoIt->first;
int startSearchIndex = 0;
for (++startRange; startRange != endRange; ++startRange) {
// Current operand name is not unique, find a unique one
// and set the alternative name.
for (int i = startSearchIndex;; ++i) {
std::string alternativeName = operandName + std::to_string(i);
if (!usedNames.contains(alternativeName) &&
symbolInfoMap.count(alternativeName) == 0) {
usedNames.insert(alternativeName);
startRange->second.alternativeName = alternativeName;
startSearchIndex = i + 1;
break;
}
}
}
symbolInfoIt = endRange;
}
}
//===----------------------------------------------------------------------===//
// Pattern
//==----------------------------------------------------------------------===//
Pattern::Pattern(const Record *def, RecordOperatorMap *mapper)
: def(*def), recordOpMap(mapper) {}
DagNode Pattern::getSourcePattern() const {
return DagNode(def.getValueAsDag("sourcePattern"));
}
int Pattern::getNumResultPatterns() const {
auto *results = def.getValueAsListInit("resultPatterns");
return results->size();
}
DagNode Pattern::getResultPattern(unsigned index) const {
auto *results = def.getValueAsListInit("resultPatterns");
return DagNode(cast<DagInit>(results->getElement(index)));
}
void Pattern::collectSourcePatternBoundSymbols(SymbolInfoMap &infoMap) {
LLVM_DEBUG(dbgs() << "start collecting source pattern bound symbols\n");
collectBoundSymbols(getSourcePattern(), infoMap, /*isSrcPattern=*/true);
LLVM_DEBUG(dbgs() << "done collecting source pattern bound symbols\n");
LLVM_DEBUG(dbgs() << "start assigning alternative names for symbols\n");
infoMap.assignUniqueAlternativeNames();
LLVM_DEBUG(dbgs() << "done assigning alternative names for symbols\n");
}
void Pattern::collectResultPatternBoundSymbols(SymbolInfoMap &infoMap) {
LLVM_DEBUG(dbgs() << "start collecting result pattern bound symbols\n");
for (int i = 0, e = getNumResultPatterns(); i < e; ++i) {
auto pattern = getResultPattern(i);
collectBoundSymbols(pattern, infoMap, /*isSrcPattern=*/false);
}
LLVM_DEBUG(dbgs() << "done collecting result pattern bound symbols\n");
}
const Operator &Pattern::getSourceRootOp() {
return getSourcePattern().getDialectOp(recordOpMap);
}
Operator &Pattern::getDialectOp(DagNode node) {
return node.getDialectOp(recordOpMap);
}
std::vector<AppliedConstraint> Pattern::getConstraints() const {
auto *listInit = def.getValueAsListInit("constraints");
std::vector<AppliedConstraint> ret;
ret.reserve(listInit->size());
for (auto *it : *listInit) {
auto *dagInit = dyn_cast<DagInit>(it);
if (!dagInit)
PrintFatalError(&def, "all elements in Pattern multi-entity "
"constraints should be DAG nodes");
std::vector<std::string> entities;
entities.reserve(dagInit->arg_size());
for (auto *argName : dagInit->getArgNames()) {
if (!argName) {
PrintFatalError(
&def,
"operands to additional constraints can only be symbol references");
}
entities.emplace_back(argName->getValue());
}
ret.emplace_back(cast<DefInit>(dagInit->getOperator())->getDef(),
dagInit->getNameStr(), std::move(entities));
}
return ret;
}
int Pattern::getNumSupplementalPatterns() const {
auto *results = def.getValueAsListInit("supplementalPatterns");
return results->size();
}
DagNode Pattern::getSupplementalPattern(unsigned index) const {
auto *results = def.getValueAsListInit("supplementalPatterns");
return DagNode(cast<DagInit>(results->getElement(index)));
}
int Pattern::getBenefit() const {
// The initial benefit value is a heuristic with number of ops in the source
// pattern.
int initBenefit = getSourcePattern().getNumOps();
const DagInit *delta = def.getValueAsDag("benefitDelta");
if (delta->getNumArgs() != 1 || !isa<IntInit>(delta->getArg(0))) {
PrintFatalError(&def,
"The 'addBenefit' takes and only takes one integer value");
}
return initBenefit + dyn_cast<IntInit>(delta->getArg(0))->getValue();
}
std::vector<Pattern::IdentifierLine> Pattern::getLocation() const {
std::vector<std::pair<StringRef, unsigned>> result;
result.reserve(def.getLoc().size());
for (auto loc : def.getLoc()) {
unsigned buf = llvm::SrcMgr.FindBufferContainingLoc(loc);
assert(buf && "invalid source location");
result.emplace_back(
llvm::SrcMgr.getBufferInfo(buf).Buffer->getBufferIdentifier(),
llvm::SrcMgr.getLineAndColumn(loc, buf).first);
}
return result;
}
void Pattern::verifyBind(bool result, StringRef symbolName) {
if (!result) {
auto err = formatv("symbol '{0}' bound more than once", symbolName);
PrintFatalError(&def, err);
}
}
void Pattern::collectBoundSymbols(DagNode tree, SymbolInfoMap &infoMap,
bool isSrcPattern) {
auto treeName = tree.getSymbol();
auto numTreeArgs = tree.getNumArgs();
if (tree.isNativeCodeCall()) {
if (!treeName.empty()) {
if (!isSrcPattern) {
LLVM_DEBUG(dbgs() << "found symbol bound to NativeCodeCall: "
<< treeName << '\n');
verifyBind(
infoMap.bindValues(treeName, tree.getNumReturnsOfNativeCode()),
treeName);
} else {
PrintFatalError(&def,
formatv("binding symbol '{0}' to NativecodeCall in "
"MatchPattern is not supported",
treeName));
}
}
for (int i = 0; i != numTreeArgs; ++i) {
if (auto treeArg = tree.getArgAsNestedDag(i)) {
// This DAG node argument is a DAG node itself. Go inside recursively.
collectBoundSymbols(treeArg, infoMap, isSrcPattern);
continue;
}
if (!isSrcPattern)
continue;
// We can only bind symbols to arguments in source pattern. Those
// symbols are referenced in result patterns.
auto treeArgName = tree.getArgName(i);
// `$_` is a special symbol meaning ignore the current argument.
if (!treeArgName.empty() && treeArgName != "_") {
DagLeaf leaf = tree.getArgAsLeaf(i);
// In (NativeCodeCall<"Foo($_self, $0, $1, $2)"> I8Attr:$a, I8:$b, $c),
if (leaf.isUnspecified()) {
// This is case of $c, a Value without any constraints.
verifyBind(infoMap.bindValue(treeArgName), treeArgName);
} else {
auto constraint = leaf.getAsConstraint();
bool isAttr = leaf.isAttrMatcher() || leaf.isEnumCase() ||
leaf.isConstantAttr() ||
constraint.getKind() == Constraint::Kind::CK_Attr;
if (isAttr) {
// This is case of $a, a binding to a certain attribute.
verifyBind(infoMap.bindAttr(treeArgName), treeArgName);
continue;
}
// This is case of $b, a binding to a certain type.
verifyBind(infoMap.bindValue(treeArgName), treeArgName);
}
}
}
return;
}
if (tree.isOperation()) {
auto &op = getDialectOp(tree);
auto numOpArgs = op.getNumArgs();
int numEither = 0;
// We need to exclude the trailing directives and `either` directive groups
// two operands of the operation.
int numDirectives = 0;
for (int i = numTreeArgs - 1; i >= 0; --i) {
if (auto dagArg = tree.getArgAsNestedDag(i)) {
if (dagArg.isLocationDirective() || dagArg.isReturnTypeDirective())
++numDirectives;
else if (dagArg.isEither())
++numEither;
}
}
if (numOpArgs != numTreeArgs - numDirectives + numEither) {
auto err =
formatv("op '{0}' argument number mismatch: "
"{1} in pattern vs. {2} in definition",
op.getOperationName(), numTreeArgs + numEither, numOpArgs);
PrintFatalError(&def, err);
}
// The name attached to the DAG node's operator is for representing the
// results generated from this op. It should be remembered as bound results.
if (!treeName.empty()) {
LLVM_DEBUG(dbgs() << "found symbol bound to op result: " << treeName
<< '\n');
verifyBind(infoMap.bindOpResult(treeName, op), treeName);
}
// The operand in `either` DAG should be bound to the operation in the
// parent DagNode.
auto collectSymbolInEither = [&](DagNode parent, DagNode tree,
int opArgIdx) {
for (int i = 0; i < tree.getNumArgs(); ++i, ++opArgIdx) {
if (DagNode subTree = tree.getArgAsNestedDag(i)) {
collectBoundSymbols(subTree, infoMap, isSrcPattern);
} else {
auto argName = tree.getArgName(i);
if (!argName.empty() && argName != "_") {
verifyBind(infoMap.bindOpArgument(parent, argName, op, opArgIdx),
argName);
}
}
}
};
// The operand in `variadic` DAG should be bound to the operation in the
// parent DagNode. The range index must be included as well to distinguish
// (potentially) repeating argName within the `variadic` DAG.
auto collectSymbolInVariadic = [&](DagNode parent, DagNode tree,
int opArgIdx) {
auto treeName = tree.getSymbol();
if (!treeName.empty()) {
// If treeName is specified, bind to the full variadic operand_range.
verifyBind(infoMap.bindOpArgument(parent, treeName, op, opArgIdx,
std::nullopt),
treeName);
}
for (int i = 0; i < tree.getNumArgs(); ++i) {
if (DagNode subTree = tree.getArgAsNestedDag(i)) {
collectBoundSymbols(subTree, infoMap, isSrcPattern);
} else {
auto argName = tree.getArgName(i);
if (!argName.empty() && argName != "_") {
verifyBind(infoMap.bindOpArgument(parent, argName, op, opArgIdx,
/*variadicSubIndex=*/i),
argName);
}
}
}
};
for (int i = 0, opArgIdx = 0; i != numTreeArgs; ++i, ++opArgIdx) {
if (auto treeArg = tree.getArgAsNestedDag(i)) {
if (treeArg.isEither()) {
collectSymbolInEither(tree, treeArg, opArgIdx);
// `either` DAG is *flattened*. For example,
//
// (FooOp (either arg0, arg1), arg2)
//
// can be viewed as:
//
// (FooOp arg0, arg1, arg2)
++opArgIdx;
} else if (treeArg.isVariadic()) {
collectSymbolInVariadic(tree, treeArg, opArgIdx);
} else {
// This DAG node argument is a DAG node itself. Go inside recursively.
collectBoundSymbols(treeArg, infoMap, isSrcPattern);
}
continue;
}
if (isSrcPattern) {
// We can only bind symbols to op arguments in source pattern. Those
// symbols are referenced in result patterns.
auto treeArgName = tree.getArgName(i);
// `$_` is a special symbol meaning ignore the current argument.
if (!treeArgName.empty() && treeArgName != "_") {
LLVM_DEBUG(dbgs() << "found symbol bound to op argument: "
<< treeArgName << '\n');
verifyBind(infoMap.bindOpArgument(tree, treeArgName, op, opArgIdx),
treeArgName);
}
}
}
return;
}
if (!treeName.empty()) {
PrintFatalError(
&def, formatv("binding symbol '{0}' to non-operation/native code call "
"unsupported right now",
treeName));
}
}