llvm-project/flang/lib/Semantics/resolve-directives.cpp
Leandro Lupori 366eade911
[flang][OpenMP] Reland Fix copyprivate semantic checks (#95799) (#101009)
There are some cases in which variables used in OpenMP constructs
are predetermined as private. The semantic checks for copyprivate
were not handling those cases.

Besides that, shared symbols were not being properly represented
in some cases. When there was no previously declared private
(implicit) symbol, no new association symbols, representing
shared ones, were being created.

These symbols must always be inserted in constructs that may
privatize the original symbol: parallel, teams and task
generating constructs.

Fixes #87214 and #86907
2024-07-31 14:39:06 -03:00

2831 lines
107 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "resolve-directives.h"
#include "check-acc-structure.h"
#include "check-omp-structure.h"
#include "resolve-names-utils.h"
#include "flang/Common/idioms.h"
#include "flang/Evaluate/fold.h"
#include "flang/Evaluate/tools.h"
#include "flang/Evaluate/type.h"
#include "flang/Parser/parse-tree-visitor.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Parser/tools.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/tools.h"
#include <list>
#include <map>
#include <sstream>
template <typename T>
static Fortran::semantics::Scope *GetScope(
Fortran::semantics::SemanticsContext &context, const T &x) {
std::optional<Fortran::parser::CharBlock> source{GetLastSource(x)};
return source ? &context.FindScope(*source) : nullptr;
}
namespace Fortran::semantics {
template <typename T> class DirectiveAttributeVisitor {
public:
explicit DirectiveAttributeVisitor(SemanticsContext &context)
: context_{context} {}
template <typename A> bool Pre(const A &) { return true; }
template <typename A> void Post(const A &) {}
protected:
struct DirContext {
DirContext(const parser::CharBlock &source, T d, Scope &s)
: directiveSource{source}, directive{d}, scope{s} {}
parser::CharBlock directiveSource;
T directive;
Scope &scope;
Symbol::Flag defaultDSA{Symbol::Flag::AccShared}; // TODOACC
std::map<const Symbol *, Symbol::Flag> objectWithDSA;
bool withinConstruct{false};
std::int64_t associatedLoopLevel{0};
};
DirContext &GetContext() {
CHECK(!dirContext_.empty());
return dirContext_.back();
}
std::optional<DirContext> GetContextIf() {
return dirContext_.empty()
? std::nullopt
: std::make_optional<DirContext>(dirContext_.back());
}
void PushContext(const parser::CharBlock &source, T dir, Scope &scope) {
dirContext_.emplace_back(source, dir, scope);
}
void PushContext(const parser::CharBlock &source, T dir) {
dirContext_.emplace_back(source, dir, context_.FindScope(source));
}
void PopContext() { dirContext_.pop_back(); }
void SetContextDirectiveSource(parser::CharBlock &dir) {
GetContext().directiveSource = dir;
}
Scope &currScope() { return GetContext().scope; }
void SetContextDefaultDSA(Symbol::Flag flag) {
GetContext().defaultDSA = flag;
}
void AddToContextObjectWithDSA(
const Symbol &symbol, Symbol::Flag flag, DirContext &context) {
context.objectWithDSA.emplace(&symbol, flag);
}
void AddToContextObjectWithDSA(const Symbol &symbol, Symbol::Flag flag) {
AddToContextObjectWithDSA(symbol, flag, GetContext());
}
bool IsObjectWithDSA(const Symbol &symbol) {
auto it{GetContext().objectWithDSA.find(&symbol)};
return it != GetContext().objectWithDSA.end();
}
void SetContextAssociatedLoopLevel(std::int64_t level) {
GetContext().associatedLoopLevel = level;
}
Symbol &MakeAssocSymbol(const SourceName &name, Symbol &prev, Scope &scope) {
const auto pair{scope.try_emplace(name, Attrs{}, HostAssocDetails{prev})};
return *pair.first->second;
}
Symbol &MakeAssocSymbol(const SourceName &name, Symbol &prev) {
return MakeAssocSymbol(name, prev, currScope());
}
void AddDataSharingAttributeObject(SymbolRef object) {
dataSharingAttributeObjects_.insert(object);
}
void ClearDataSharingAttributeObjects() {
dataSharingAttributeObjects_.clear();
}
bool HasDataSharingAttributeObject(const Symbol &);
const parser::Name *GetLoopIndex(const parser::DoConstruct &);
const parser::DoConstruct *GetDoConstructIf(
const parser::ExecutionPartConstruct &);
Symbol *DeclarePrivateAccessEntity(
const parser::Name &, Symbol::Flag, Scope &);
Symbol *DeclarePrivateAccessEntity(Symbol &, Symbol::Flag, Scope &);
Symbol *DeclareOrMarkOtherAccessEntity(const parser::Name &, Symbol::Flag);
UnorderedSymbolSet dataSharingAttributeObjects_; // on one directive
SemanticsContext &context_;
std::vector<DirContext> dirContext_; // used as a stack
};
class AccAttributeVisitor : DirectiveAttributeVisitor<llvm::acc::Directive> {
public:
explicit AccAttributeVisitor(SemanticsContext &context, Scope *topScope)
: DirectiveAttributeVisitor(context), topScope_(topScope) {}
template <typename A> void Walk(const A &x) { parser::Walk(x, *this); }
template <typename A> bool Pre(const A &) { return true; }
template <typename A> void Post(const A &) {}
bool Pre(const parser::OpenACCBlockConstruct &);
void Post(const parser::OpenACCBlockConstruct &) { PopContext(); }
bool Pre(const parser::OpenACCCombinedConstruct &);
void Post(const parser::OpenACCCombinedConstruct &) { PopContext(); }
bool Pre(const parser::OpenACCDeclarativeConstruct &);
void Post(const parser::OpenACCDeclarativeConstruct &) { PopContext(); }
void Post(const parser::AccDeclarativeDirective &) {
GetContext().withinConstruct = true;
}
bool Pre(const parser::OpenACCRoutineConstruct &);
bool Pre(const parser::AccBindClause &);
void Post(const parser::OpenACCStandaloneDeclarativeConstruct &);
void Post(const parser::AccBeginBlockDirective &) {
GetContext().withinConstruct = true;
}
bool Pre(const parser::OpenACCLoopConstruct &);
void Post(const parser::OpenACCLoopConstruct &) { PopContext(); }
void Post(const parser::AccLoopDirective &) {
GetContext().withinConstruct = true;
}
bool Pre(const parser::OpenACCStandaloneConstruct &);
void Post(const parser::OpenACCStandaloneConstruct &) { PopContext(); }
void Post(const parser::AccStandaloneDirective &) {
GetContext().withinConstruct = true;
}
bool Pre(const parser::OpenACCCacheConstruct &);
void Post(const parser::OpenACCCacheConstruct &) { PopContext(); }
void Post(const parser::AccDefaultClause &);
bool Pre(const parser::AccClause::Attach &);
bool Pre(const parser::AccClause::Detach &);
bool Pre(const parser::AccClause::Copy &x) {
ResolveAccObjectList(x.v, Symbol::Flag::AccCopy);
return false;
}
bool Pre(const parser::AccClause::Create &x) {
const auto &objectList{std::get<parser::AccObjectList>(x.v.t)};
ResolveAccObjectList(objectList, Symbol::Flag::AccCreate);
return false;
}
bool Pre(const parser::AccClause::Copyin &x) {
const auto &objectList{std::get<parser::AccObjectList>(x.v.t)};
const auto &modifier{
std::get<std::optional<parser::AccDataModifier>>(x.v.t)};
if (modifier &&
(*modifier).v == parser::AccDataModifier::Modifier::ReadOnly) {
ResolveAccObjectList(objectList, Symbol::Flag::AccCopyInReadOnly);
} else {
ResolveAccObjectList(objectList, Symbol::Flag::AccCopyIn);
}
return false;
}
bool Pre(const parser::AccClause::Copyout &x) {
const auto &objectList{std::get<parser::AccObjectList>(x.v.t)};
ResolveAccObjectList(objectList, Symbol::Flag::AccCopyOut);
return false;
}
bool Pre(const parser::AccClause::Present &x) {
ResolveAccObjectList(x.v, Symbol::Flag::AccPresent);
return false;
}
bool Pre(const parser::AccClause::Private &x) {
ResolveAccObjectList(x.v, Symbol::Flag::AccPrivate);
return false;
}
bool Pre(const parser::AccClause::Firstprivate &x) {
ResolveAccObjectList(x.v, Symbol::Flag::AccFirstPrivate);
return false;
}
bool Pre(const parser::AccClause::Device &x) {
ResolveAccObjectList(x.v, Symbol::Flag::AccDevice);
return false;
}
bool Pre(const parser::AccClause::DeviceResident &x) {
ResolveAccObjectList(x.v, Symbol::Flag::AccDeviceResident);
return false;
}
bool Pre(const parser::AccClause::Deviceptr &x) {
ResolveAccObjectList(x.v, Symbol::Flag::AccDevicePtr);
return false;
}
bool Pre(const parser::AccClause::Link &x) {
ResolveAccObjectList(x.v, Symbol::Flag::AccLink);
return false;
}
bool Pre(const parser::AccClause::Host &x) {
ResolveAccObjectList(x.v, Symbol::Flag::AccHost);
return false;
}
bool Pre(const parser::AccClause::Self &x) {
const std::optional<parser::AccSelfClause> &accSelfClause = x.v;
if (accSelfClause &&
std::holds_alternative<parser::AccObjectList>((*accSelfClause).u)) {
const auto &accObjectList =
std::get<parser::AccObjectList>((*accSelfClause).u);
ResolveAccObjectList(accObjectList, Symbol::Flag::AccSelf);
}
return false;
}
void Post(const parser::Name &);
private:
std::int64_t GetAssociatedLoopLevelFromClauses(const parser::AccClauseList &);
Symbol::Flags dataSharingAttributeFlags{Symbol::Flag::AccShared,
Symbol::Flag::AccPrivate, Symbol::Flag::AccFirstPrivate,
Symbol::Flag::AccReduction};
Symbol::Flags dataMappingAttributeFlags{Symbol::Flag::AccCreate,
Symbol::Flag::AccCopyIn, Symbol::Flag::AccCopyOut,
Symbol::Flag::AccDelete, Symbol::Flag::AccPresent};
Symbol::Flags accDataMvtFlags{
Symbol::Flag::AccDevice, Symbol::Flag::AccHost, Symbol::Flag::AccSelf};
Symbol::Flags accFlagsRequireMark{Symbol::Flag::AccCreate,
Symbol::Flag::AccCopyIn, Symbol::Flag::AccCopyInReadOnly,
Symbol::Flag::AccCopy, Symbol::Flag::AccCopyOut,
Symbol::Flag::AccDevicePtr, Symbol::Flag::AccDeviceResident,
Symbol::Flag::AccLink, Symbol::Flag::AccPresent};
void CheckAssociatedLoop(const parser::DoConstruct &);
void ResolveAccObjectList(const parser::AccObjectList &, Symbol::Flag);
void ResolveAccObject(const parser::AccObject &, Symbol::Flag);
Symbol *ResolveAcc(const parser::Name &, Symbol::Flag, Scope &);
Symbol *ResolveAcc(Symbol &, Symbol::Flag, Scope &);
Symbol *ResolveName(const parser::Name &, bool parentScope = false);
Symbol *ResolveFctName(const parser::Name &);
Symbol *ResolveAccCommonBlockName(const parser::Name *);
Symbol *DeclareOrMarkOtherAccessEntity(const parser::Name &, Symbol::Flag);
Symbol *DeclareOrMarkOtherAccessEntity(Symbol &, Symbol::Flag);
void CheckMultipleAppearances(
const parser::Name &, const Symbol &, Symbol::Flag);
void AllowOnlyArrayAndSubArray(const parser::AccObjectList &objectList);
void DoNotAllowAssumedSizedArray(const parser::AccObjectList &objectList);
void AllowOnlyVariable(const parser::AccObject &object);
void EnsureAllocatableOrPointer(
const llvm::acc::Clause clause, const parser::AccObjectList &objectList);
void AddRoutineInfoToSymbol(
Symbol &, const parser::OpenACCRoutineConstruct &);
Scope *topScope_;
};
// Data-sharing and Data-mapping attributes for data-refs in OpenMP construct
class OmpAttributeVisitor : DirectiveAttributeVisitor<llvm::omp::Directive> {
public:
explicit OmpAttributeVisitor(SemanticsContext &context)
: DirectiveAttributeVisitor(context) {}
template <typename A> void Walk(const A &x) { parser::Walk(x, *this); }
template <typename A> bool Pre(const A &) { return true; }
template <typename A> void Post(const A &) {}
template <typename A> bool Pre(const parser::Statement<A> &statement) {
currentStatementSource_ = statement.source;
// Keep track of the labels in all the labelled statements
if (statement.label) {
auto label{statement.label.value()};
// Get the context to check if the labelled statement is in an
// enclosing OpenMP construct
std::optional<DirContext> thisContext{GetContextIf()};
targetLabels_.emplace(
label, std::make_pair(currentStatementSource_, thisContext));
// Check if a statement that causes a jump to the 'label'
// has already been encountered
auto range{sourceLabels_.equal_range(label)};
for (auto it{range.first}; it != range.second; ++it) {
// Check if both the statement with 'label' and the statement that
// causes a jump to the 'label' are in the same scope
CheckLabelContext(it->second.first, currentStatementSource_,
it->second.second, thisContext);
}
}
return true;
}
bool Pre(const parser::InternalSubprogram &) {
// Clear the labels being tracked in the previous scope
ClearLabels();
return true;
}
bool Pre(const parser::ModuleSubprogram &) {
// Clear the labels being tracked in the previous scope
ClearLabels();
return true;
}
bool Pre(const parser::StmtFunctionStmt &x) {
const auto &parsedExpr{std::get<parser::Scalar<parser::Expr>>(x.t)};
if (const auto *expr{GetExpr(context_, parsedExpr)}) {
for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) {
if (!IsStmtFunctionDummy(symbol)) {
stmtFunctionExprSymbols_.insert(symbol.GetUltimate());
}
}
}
return true;
}
bool Pre(const parser::OpenMPBlockConstruct &);
void Post(const parser::OpenMPBlockConstruct &);
void Post(const parser::OmpBeginBlockDirective &) {
GetContext().withinConstruct = true;
}
bool Pre(const parser::OpenMPSimpleStandaloneConstruct &);
void Post(const parser::OpenMPSimpleStandaloneConstruct &) { PopContext(); }
bool Pre(const parser::OpenMPLoopConstruct &);
void Post(const parser::OpenMPLoopConstruct &) { PopContext(); }
void Post(const parser::OmpBeginLoopDirective &) {
GetContext().withinConstruct = true;
}
bool Pre(const parser::DoConstruct &);
bool Pre(const parser::OpenMPSectionsConstruct &);
void Post(const parser::OpenMPSectionsConstruct &) { PopContext(); }
bool Pre(const parser::OpenMPCriticalConstruct &critical);
void Post(const parser::OpenMPCriticalConstruct &) { PopContext(); }
bool Pre(const parser::OpenMPDeclareSimdConstruct &x) {
PushContext(x.source, llvm::omp::Directive::OMPD_declare_simd);
const auto &name{std::get<std::optional<parser::Name>>(x.t)};
if (name) {
ResolveOmpName(*name, Symbol::Flag::OmpDeclareSimd);
}
return true;
}
void Post(const parser::OpenMPDeclareSimdConstruct &) { PopContext(); }
bool Pre(const parser::OpenMPRequiresConstruct &x) {
using Flags = WithOmpDeclarative::RequiresFlags;
using Requires = WithOmpDeclarative::RequiresFlag;
PushContext(x.source, llvm::omp::Directive::OMPD_requires);
// Gather information from the clauses.
Flags flags;
std::optional<common::OmpAtomicDefaultMemOrderType> memOrder;
for (const auto &clause : std::get<parser::OmpClauseList>(x.t).v) {
flags |= common::visit(
common::visitors{
[&memOrder](
const parser::OmpClause::AtomicDefaultMemOrder &atomic) {
memOrder = atomic.v.v;
return Flags{};
},
[](const parser::OmpClause::ReverseOffload &) {
return Flags{Requires::ReverseOffload};
},
[](const parser::OmpClause::UnifiedAddress &) {
return Flags{Requires::UnifiedAddress};
},
[](const parser::OmpClause::UnifiedSharedMemory &) {
return Flags{Requires::UnifiedSharedMemory};
},
[](const parser::OmpClause::DynamicAllocators &) {
return Flags{Requires::DynamicAllocators};
},
[](const auto &) { return Flags{}; }},
clause.u);
}
// Merge clauses into parents' symbols details.
AddOmpRequiresToScope(currScope(), flags, memOrder);
return true;
}
void Post(const parser::OpenMPRequiresConstruct &) { PopContext(); }
bool Pre(const parser::OpenMPDeclareTargetConstruct &);
void Post(const parser::OpenMPDeclareTargetConstruct &) { PopContext(); }
bool Pre(const parser::OpenMPThreadprivate &);
void Post(const parser::OpenMPThreadprivate &) { PopContext(); }
bool Pre(const parser::OpenMPDeclarativeAllocate &);
void Post(const parser::OpenMPDeclarativeAllocate &) { PopContext(); }
bool Pre(const parser::OpenMPExecutableAllocate &);
void Post(const parser::OpenMPExecutableAllocate &);
bool Pre(const parser::OpenMPAllocatorsConstruct &);
void Post(const parser::OpenMPAllocatorsConstruct &);
// 2.15.3 Data-Sharing Attribute Clauses
void Post(const parser::OmpDefaultClause &);
bool Pre(const parser::OmpClause::Shared &x) {
ResolveOmpObjectList(x.v, Symbol::Flag::OmpShared);
return false;
}
bool Pre(const parser::OmpClause::Private &x) {
ResolveOmpObjectList(x.v, Symbol::Flag::OmpPrivate);
return false;
}
bool Pre(const parser::OmpAllocateClause &x) {
const auto &objectList{std::get<parser::OmpObjectList>(x.t)};
ResolveOmpObjectList(objectList, Symbol::Flag::OmpAllocate);
return false;
}
bool Pre(const parser::OmpClause::Firstprivate &x) {
ResolveOmpObjectList(x.v, Symbol::Flag::OmpFirstPrivate);
return false;
}
bool Pre(const parser::OmpClause::Lastprivate &x) {
ResolveOmpObjectList(x.v, Symbol::Flag::OmpLastPrivate);
return false;
}
bool Pre(const parser::OmpClause::Copyin &x) {
ResolveOmpObjectList(x.v, Symbol::Flag::OmpCopyIn);
return false;
}
bool Pre(const parser::OmpClause::Copyprivate &x) {
ResolveOmpObjectList(x.v, Symbol::Flag::OmpCopyPrivate);
return false;
}
bool Pre(const parser::OmpLinearClause &x) {
common::visit(common::visitors{
[&](const parser::OmpLinearClause::WithoutModifier
&linearWithoutModifier) {
ResolveOmpNameList(linearWithoutModifier.names,
Symbol::Flag::OmpLinear);
},
[&](const parser::OmpLinearClause::WithModifier
&linearWithModifier) {
ResolveOmpNameList(
linearWithModifier.names, Symbol::Flag::OmpLinear);
},
},
x.u);
return false;
}
bool Pre(const parser::OmpClause::Reduction &x) {
const parser::OmpReductionOperator &opr{
std::get<parser::OmpReductionOperator>(x.v.t)};
auto createDummyProcSymbol = [&](const parser::Name *name) {
// If name resolution failed, create a dummy symbol
const auto namePair{
currScope().try_emplace(name->source, Attrs{}, ProcEntityDetails{})};
auto &newSymbol{*namePair.first->second};
if (context_.intrinsics().IsIntrinsic(name->ToString())) {
newSymbol.attrs().set(Attr::INTRINSIC);
}
name->symbol = &newSymbol;
};
if (const auto *procD{parser::Unwrap<parser::ProcedureDesignator>(opr.u)}) {
if (const auto *name{parser::Unwrap<parser::Name>(procD->u)}) {
if (!name->symbol) {
if (!ResolveName(name)) {
createDummyProcSymbol(name);
}
}
}
if (const auto *procRef{
parser::Unwrap<parser::ProcComponentRef>(procD->u)}) {
if (!procRef->v.thing.component.symbol) {
if (!ResolveName(&procRef->v.thing.component)) {
createDummyProcSymbol(&procRef->v.thing.component);
}
}
}
}
const auto &objList{std::get<parser::OmpObjectList>(x.v.t)};
ResolveOmpObjectList(objList, Symbol::Flag::OmpReduction);
return false;
}
bool Pre(const parser::OmpAlignedClause &x) {
const auto &alignedNameList{std::get<parser::OmpObjectList>(x.t)};
ResolveOmpObjectList(alignedNameList, Symbol::Flag::OmpAligned);
return false;
}
bool Pre(const parser::OmpClause::Nontemporal &x) {
const auto &nontemporalNameList{x.v};
ResolveOmpNameList(nontemporalNameList, Symbol::Flag::OmpNontemporal);
return false;
}
bool Pre(const parser::OmpDependClause &x) {
if (const auto *dependSink{
std::get_if<parser::OmpDependClause::Sink>(&x.u)}) {
const auto &dependSinkVec{dependSink->v};
for (const auto &dependSinkElement : dependSinkVec) {
const auto &name{std::get<parser::Name>(dependSinkElement.t)};
ResolveName(&name);
}
}
return false;
}
bool Pre(const parser::OmpClause::UseDevicePtr &x) {
ResolveOmpObjectList(x.v, Symbol::Flag::OmpUseDevicePtr);
return false;
}
bool Pre(const parser::OmpClause::UseDeviceAddr &x) {
ResolveOmpObjectList(x.v, Symbol::Flag::OmpUseDeviceAddr);
return false;
}
bool Pre(const parser::OmpClause::IsDevicePtr &x) {
ResolveOmpObjectList(x.v, Symbol::Flag::OmpIsDevicePtr);
return false;
}
bool Pre(const parser::OmpClause::HasDeviceAddr &x) {
ResolveOmpObjectList(x.v, Symbol::Flag::OmpHasDeviceAddr);
return false;
}
void Post(const parser::Name &);
// Keep track of labels in the statements that causes jumps to target labels
void Post(const parser::GotoStmt &gotoStmt) { CheckSourceLabel(gotoStmt.v); }
void Post(const parser::ComputedGotoStmt &computedGotoStmt) {
for (auto &label : std::get<std::list<parser::Label>>(computedGotoStmt.t)) {
CheckSourceLabel(label);
}
}
void Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) {
CheckSourceLabel(std::get<1>(arithmeticIfStmt.t));
CheckSourceLabel(std::get<2>(arithmeticIfStmt.t));
CheckSourceLabel(std::get<3>(arithmeticIfStmt.t));
}
void Post(const parser::AssignedGotoStmt &assignedGotoStmt) {
for (auto &label : std::get<std::list<parser::Label>>(assignedGotoStmt.t)) {
CheckSourceLabel(label);
}
}
void Post(const parser::AltReturnSpec &altReturnSpec) {
CheckSourceLabel(altReturnSpec.v);
}
void Post(const parser::ErrLabel &errLabel) { CheckSourceLabel(errLabel.v); }
void Post(const parser::EndLabel &endLabel) { CheckSourceLabel(endLabel.v); }
void Post(const parser::EorLabel &eorLabel) { CheckSourceLabel(eorLabel.v); }
void Post(const parser::OmpMapClause &x) {
Symbol::Flag ompFlag = Symbol::Flag::OmpMapToFrom;
if (const auto &maptype{std::get<std::optional<parser::OmpMapType>>(x.t)}) {
using Type = parser::OmpMapType::Type;
const Type &type{std::get<Type>(maptype->t)};
switch (type) {
case Type::To:
ompFlag = Symbol::Flag::OmpMapTo;
break;
case Type::From:
ompFlag = Symbol::Flag::OmpMapFrom;
break;
case Type::Tofrom:
ompFlag = Symbol::Flag::OmpMapToFrom;
break;
case Type::Alloc:
ompFlag = Symbol::Flag::OmpMapAlloc;
break;
case Type::Release:
ompFlag = Symbol::Flag::OmpMapRelease;
break;
case Type::Delete:
ompFlag = Symbol::Flag::OmpMapDelete;
break;
}
}
const auto &ompObjList{std::get<parser::OmpObjectList>(x.t)};
for (const auto &ompObj : ompObjList.v) {
common::visit(
common::visitors{
[&](const parser::Designator &designator) {
if (const auto *name{
semantics::getDesignatorNameIfDataRef(designator)}) {
if (name->symbol) {
name->symbol->set(ompFlag);
AddToContextObjectWithDSA(*name->symbol, ompFlag);
}
if (name->symbol &&
semantics::IsAssumedSizeArray(*name->symbol)) {
context_.Say(designator.source,
"Assumed-size whole arrays may not appear on the %s "
"clause"_err_en_US,
"MAP");
}
}
},
[&](const auto &name) {},
},
ompObj.u);
ResolveOmpObject(ompObj, ompFlag);
}
}
const parser::OmpClause *associatedClause{nullptr};
void SetAssociatedClause(const parser::OmpClause &c) {
associatedClause = &c;
}
const parser::OmpClause *GetAssociatedClause() { return associatedClause; }
private:
std::int64_t GetAssociatedLoopLevelFromClauses(const parser::OmpClauseList &);
Symbol::Flags dataSharingAttributeFlags{Symbol::Flag::OmpShared,
Symbol::Flag::OmpPrivate, Symbol::Flag::OmpFirstPrivate,
Symbol::Flag::OmpLastPrivate, Symbol::Flag::OmpReduction,
Symbol::Flag::OmpLinear};
Symbol::Flags privateDataSharingAttributeFlags{Symbol::Flag::OmpPrivate,
Symbol::Flag::OmpFirstPrivate, Symbol::Flag::OmpLastPrivate};
Symbol::Flags ompFlagsRequireNewSymbol{Symbol::Flag::OmpPrivate,
Symbol::Flag::OmpLinear, Symbol::Flag::OmpFirstPrivate,
Symbol::Flag::OmpLastPrivate, Symbol::Flag::OmpReduction,
Symbol::Flag::OmpCriticalLock, Symbol::Flag::OmpCopyIn,
Symbol::Flag::OmpUseDevicePtr, Symbol::Flag::OmpUseDeviceAddr,
Symbol::Flag::OmpIsDevicePtr, Symbol::Flag::OmpHasDeviceAddr};
Symbol::Flags ompFlagsRequireMark{
Symbol::Flag::OmpThreadprivate, Symbol::Flag::OmpDeclareTarget};
Symbol::Flags dataCopyingAttributeFlags{
Symbol::Flag::OmpCopyIn, Symbol::Flag::OmpCopyPrivate};
std::vector<const parser::Name *> allocateNames_; // on one directive
UnorderedSymbolSet privateDataSharingAttributeObjects_; // on one directive
UnorderedSymbolSet stmtFunctionExprSymbols_;
std::multimap<const parser::Label,
std::pair<parser::CharBlock, std::optional<DirContext>>>
sourceLabels_;
std::map<const parser::Label,
std::pair<parser::CharBlock, std::optional<DirContext>>>
targetLabels_;
parser::CharBlock currentStatementSource_;
void AddAllocateName(const parser::Name *&object) {
allocateNames_.push_back(object);
}
void ClearAllocateNames() { allocateNames_.clear(); }
void AddPrivateDataSharingAttributeObjects(SymbolRef object) {
privateDataSharingAttributeObjects_.insert(object);
}
void ClearPrivateDataSharingAttributeObjects() {
privateDataSharingAttributeObjects_.clear();
}
// Predetermined DSA rules
void PrivatizeAssociatedLoopIndexAndCheckLoopLevel(
const parser::OpenMPLoopConstruct &);
void ResolveSeqLoopIndexInParallelOrTaskConstruct(const parser::Name &);
bool IsNestedInDirective(llvm::omp::Directive directive);
void ResolveOmpObjectList(const parser::OmpObjectList &, Symbol::Flag);
void ResolveOmpObject(const parser::OmpObject &, Symbol::Flag);
Symbol *ResolveOmp(const parser::Name &, Symbol::Flag, Scope &);
Symbol *ResolveOmp(Symbol &, Symbol::Flag, Scope &);
Symbol *ResolveOmpCommonBlockName(const parser::Name *);
void ResolveOmpNameList(const std::list<parser::Name> &, Symbol::Flag);
void ResolveOmpName(const parser::Name &, Symbol::Flag);
Symbol *ResolveName(const parser::Name *);
Symbol *ResolveOmpObjectScope(const parser::Name *);
Symbol *DeclareOrMarkOtherAccessEntity(const parser::Name &, Symbol::Flag);
Symbol *DeclareOrMarkOtherAccessEntity(Symbol &, Symbol::Flag);
void CheckMultipleAppearances(
const parser::Name &, const Symbol &, Symbol::Flag);
void CheckDataCopyingClause(
const parser::Name &, const Symbol &, Symbol::Flag);
void CheckAssocLoopLevel(std::int64_t level, const parser::OmpClause *clause);
void CheckObjectInNamelist(
const parser::Name &, const Symbol &, Symbol::Flag);
void CheckSourceLabel(const parser::Label &);
void CheckLabelContext(const parser::CharBlock, const parser::CharBlock,
std::optional<DirContext>, std::optional<DirContext>);
void ClearLabels() {
sourceLabels_.clear();
targetLabels_.clear();
};
void CheckAllNamesInAllocateStmt(const parser::CharBlock &source,
const parser::OmpObjectList &ompObjectList,
const parser::AllocateStmt &allocate);
void CheckNameInAllocateStmt(const parser::CharBlock &source,
const parser::Name &ompObject, const parser::AllocateStmt &allocate);
std::int64_t ordCollapseLevel{0};
void AddOmpRequiresToScope(Scope &, WithOmpDeclarative::RequiresFlags,
std::optional<common::OmpAtomicDefaultMemOrderType>);
void IssueNonConformanceWarning(
llvm::omp::Directive D, parser::CharBlock source);
};
template <typename T>
bool DirectiveAttributeVisitor<T>::HasDataSharingAttributeObject(
const Symbol &object) {
auto it{dataSharingAttributeObjects_.find(object)};
return it != dataSharingAttributeObjects_.end();
}
template <typename T>
const parser::Name *DirectiveAttributeVisitor<T>::GetLoopIndex(
const parser::DoConstruct &x) {
using Bounds = parser::LoopControl::Bounds;
if (x.GetLoopControl()) {
if (const Bounds * b{std::get_if<Bounds>(&x.GetLoopControl()->u)}) {
return &b->name.thing;
} else {
return nullptr;
}
} else {
context_
.Say(std::get<parser::Statement<parser::NonLabelDoStmt>>(x.t).source,
"Loop control is not present in the DO LOOP"_err_en_US)
.Attach(GetContext().directiveSource,
"associated with the enclosing LOOP construct"_en_US);
return nullptr;
}
}
template <typename T>
const parser::DoConstruct *DirectiveAttributeVisitor<T>::GetDoConstructIf(
const parser::ExecutionPartConstruct &x) {
return parser::Unwrap<parser::DoConstruct>(x);
}
template <typename T>
Symbol *DirectiveAttributeVisitor<T>::DeclarePrivateAccessEntity(
const parser::Name &name, Symbol::Flag flag, Scope &scope) {
if (!name.symbol) {
return nullptr; // not resolved by Name Resolution step, do nothing
}
name.symbol = DeclarePrivateAccessEntity(*name.symbol, flag, scope);
return name.symbol;
}
template <typename T>
Symbol *DirectiveAttributeVisitor<T>::DeclarePrivateAccessEntity(
Symbol &object, Symbol::Flag flag, Scope &scope) {
if (object.owner() != currScope()) {
auto &symbol{MakeAssocSymbol(object.name(), object, scope)};
symbol.set(flag);
if (flag == Symbol::Flag::OmpCopyIn) {
// The symbol in copyin clause must be threadprivate entity.
symbol.set(Symbol::Flag::OmpThreadprivate);
}
return &symbol;
} else {
object.set(flag);
return &object;
}
}
bool AccAttributeVisitor::Pre(const parser::OpenACCBlockConstruct &x) {
const auto &beginBlockDir{std::get<parser::AccBeginBlockDirective>(x.t)};
const auto &blockDir{std::get<parser::AccBlockDirective>(beginBlockDir.t)};
switch (blockDir.v) {
case llvm::acc::Directive::ACCD_data:
case llvm::acc::Directive::ACCD_host_data:
case llvm::acc::Directive::ACCD_kernels:
case llvm::acc::Directive::ACCD_parallel:
case llvm::acc::Directive::ACCD_serial:
PushContext(blockDir.source, blockDir.v);
break;
default:
break;
}
ClearDataSharingAttributeObjects();
return true;
}
bool AccAttributeVisitor::Pre(const parser::OpenACCDeclarativeConstruct &x) {
if (const auto *declConstruct{
std::get_if<parser::OpenACCStandaloneDeclarativeConstruct>(&x.u)}) {
const auto &declDir{
std::get<parser::AccDeclarativeDirective>(declConstruct->t)};
PushContext(declDir.source, llvm::acc::Directive::ACCD_declare);
}
ClearDataSharingAttributeObjects();
return true;
}
static const parser::AccObjectList &GetAccObjectList(
const parser::AccClause &clause) {
if (const auto *copyClause =
std::get_if<Fortran::parser::AccClause::Copy>(&clause.u)) {
return copyClause->v;
} else if (const auto *createClause =
std::get_if<Fortran::parser::AccClause::Create>(&clause.u)) {
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
createClause->v;
const Fortran::parser::AccObjectList &accObjectList =
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
return accObjectList;
} else if (const auto *copyinClause =
std::get_if<Fortran::parser::AccClause::Copyin>(&clause.u)) {
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
copyinClause->v;
const Fortran::parser::AccObjectList &accObjectList =
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
return accObjectList;
} else if (const auto *copyoutClause =
std::get_if<Fortran::parser::AccClause::Copyout>(&clause.u)) {
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
copyoutClause->v;
const Fortran::parser::AccObjectList &accObjectList =
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
return accObjectList;
} else if (const auto *presentClause =
std::get_if<Fortran::parser::AccClause::Present>(&clause.u)) {
return presentClause->v;
} else if (const auto *deviceptrClause =
std::get_if<Fortran::parser::AccClause::Deviceptr>(
&clause.u)) {
return deviceptrClause->v;
} else if (const auto *deviceResidentClause =
std::get_if<Fortran::parser::AccClause::DeviceResident>(
&clause.u)) {
return deviceResidentClause->v;
} else if (const auto *linkClause =
std::get_if<Fortran::parser::AccClause::Link>(&clause.u)) {
return linkClause->v;
} else {
llvm_unreachable("Clause without object list!");
}
}
void AccAttributeVisitor::Post(
const parser::OpenACCStandaloneDeclarativeConstruct &x) {
const auto &clauseList = std::get<parser::AccClauseList>(x.t);
for (const auto &clause : clauseList.v) {
// Restriction - line 2414
DoNotAllowAssumedSizedArray(GetAccObjectList(clause));
}
}
bool AccAttributeVisitor::Pre(const parser::OpenACCLoopConstruct &x) {
const auto &beginDir{std::get<parser::AccBeginLoopDirective>(x.t)};
const auto &loopDir{std::get<parser::AccLoopDirective>(beginDir.t)};
const auto &clauseList{std::get<parser::AccClauseList>(beginDir.t)};
if (loopDir.v == llvm::acc::Directive::ACCD_loop) {
PushContext(loopDir.source, loopDir.v);
}
ClearDataSharingAttributeObjects();
SetContextAssociatedLoopLevel(GetAssociatedLoopLevelFromClauses(clauseList));
const auto &outer{std::get<std::optional<parser::DoConstruct>>(x.t)};
CheckAssociatedLoop(*outer);
return true;
}
bool AccAttributeVisitor::Pre(const parser::OpenACCStandaloneConstruct &x) {
const auto &standaloneDir{std::get<parser::AccStandaloneDirective>(x.t)};
switch (standaloneDir.v) {
case llvm::acc::Directive::ACCD_enter_data:
case llvm::acc::Directive::ACCD_exit_data:
case llvm::acc::Directive::ACCD_init:
case llvm::acc::Directive::ACCD_set:
case llvm::acc::Directive::ACCD_shutdown:
case llvm::acc::Directive::ACCD_update:
PushContext(standaloneDir.source, standaloneDir.v);
break;
default:
break;
}
ClearDataSharingAttributeObjects();
return true;
}
Symbol *AccAttributeVisitor::ResolveName(
const parser::Name &name, bool parentScope) {
Symbol *prev{currScope().FindSymbol(name.source)};
// Check in parent scope if asked for.
if (!prev && parentScope) {
prev = currScope().parent().FindSymbol(name.source);
}
if (prev != name.symbol) {
name.symbol = prev;
}
return prev;
}
Symbol *AccAttributeVisitor::ResolveFctName(const parser::Name &name) {
Symbol *prev{currScope().FindSymbol(name.source)};
if (!prev || (prev && prev->IsFuncResult())) {
prev = currScope().parent().FindSymbol(name.source);
if (!prev) {
prev = &context_.globalScope().MakeSymbol(
name.source, Attrs{}, ProcEntityDetails{});
}
}
if (prev != name.symbol) {
name.symbol = prev;
}
return prev;
}
template <typename T>
common::IfNoLvalue<T, T> FoldExpr(
evaluate::FoldingContext &foldingContext, T &&expr) {
return evaluate::Fold(foldingContext, std::move(expr));
}
template <typename T>
MaybeExpr EvaluateExpr(
Fortran::semantics::SemanticsContext &semanticsContext, const T &expr) {
return FoldExpr(
semanticsContext.foldingContext(), AnalyzeExpr(semanticsContext, expr));
}
void AccAttributeVisitor::AddRoutineInfoToSymbol(
Symbol &symbol, const parser::OpenACCRoutineConstruct &x) {
if (symbol.has<SubprogramDetails>()) {
Fortran::semantics::OpenACCRoutineInfo info;
const auto &clauses = std::get<Fortran::parser::AccClauseList>(x.t);
for (const Fortran::parser::AccClause &clause : clauses.v) {
if (std::get_if<Fortran::parser::AccClause::Seq>(&clause.u)) {
if (info.deviceTypeInfos().empty()) {
info.set_isSeq();
} else {
info.deviceTypeInfos().back().set_isSeq();
}
} else if (const auto *gangClause =
std::get_if<Fortran::parser::AccClause::Gang>(&clause.u)) {
if (info.deviceTypeInfos().empty()) {
info.set_isGang();
} else {
info.deviceTypeInfos().back().set_isGang();
}
if (gangClause->v) {
const Fortran::parser::AccGangArgList &x = *gangClause->v;
for (const Fortran::parser::AccGangArg &gangArg : x.v) {
if (const auto *dim =
std::get_if<Fortran::parser::AccGangArg::Dim>(&gangArg.u)) {
if (const auto v{EvaluateInt64(context_, dim->v)}) {
if (info.deviceTypeInfos().empty()) {
info.set_gangDim(*v);
} else {
info.deviceTypeInfos().back().set_gangDim(*v);
}
}
}
}
}
} else if (std::get_if<Fortran::parser::AccClause::Vector>(&clause.u)) {
if (info.deviceTypeInfos().empty()) {
info.set_isVector();
} else {
info.deviceTypeInfos().back().set_isVector();
}
} else if (std::get_if<Fortran::parser::AccClause::Worker>(&clause.u)) {
if (info.deviceTypeInfos().empty()) {
info.set_isWorker();
} else {
info.deviceTypeInfos().back().set_isWorker();
}
} else if (std::get_if<Fortran::parser::AccClause::Nohost>(&clause.u)) {
info.set_isNohost();
} else if (const auto *bindClause =
std::get_if<Fortran::parser::AccClause::Bind>(&clause.u)) {
if (const auto *name =
std::get_if<Fortran::parser::Name>(&bindClause->v.u)) {
if (Symbol *sym = ResolveFctName(*name)) {
if (info.deviceTypeInfos().empty()) {
info.set_bindName(sym->name().ToString());
} else {
info.deviceTypeInfos().back().set_bindName(
sym->name().ToString());
}
} else {
context_.Say((*name).source,
"No function or subroutine declared for '%s'"_err_en_US,
(*name).source);
}
} else if (const auto charExpr =
std::get_if<Fortran::parser::ScalarDefaultCharExpr>(
&bindClause->v.u)) {
auto *charConst =
Fortran::parser::Unwrap<Fortran::parser::CharLiteralConstant>(
*charExpr);
std::string str{std::get<std::string>(charConst->t)};
std::stringstream bindName;
bindName << "\"" << str << "\"";
if (info.deviceTypeInfos().empty()) {
info.set_bindName(bindName.str());
} else {
info.deviceTypeInfos().back().set_bindName(bindName.str());
}
}
} else if (const auto *dType =
std::get_if<Fortran::parser::AccClause::DeviceType>(
&clause.u)) {
const parser::AccDeviceTypeExprList &deviceTypeExprList = dType->v;
OpenACCRoutineDeviceTypeInfo dtypeInfo;
dtypeInfo.set_dType(deviceTypeExprList.v.front().v);
info.add_deviceTypeInfo(dtypeInfo);
}
}
symbol.get<SubprogramDetails>().add_openACCRoutineInfo(info);
}
}
bool AccAttributeVisitor::Pre(const parser::OpenACCRoutineConstruct &x) {
const auto &verbatim{std::get<parser::Verbatim>(x.t)};
if (topScope_) {
PushContext(
verbatim.source, llvm::acc::Directive::ACCD_routine, *topScope_);
} else {
PushContext(verbatim.source, llvm::acc::Directive::ACCD_routine);
}
const auto &optName{std::get<std::optional<parser::Name>>(x.t)};
if (optName) {
if (Symbol *sym = ResolveFctName(*optName)) {
Symbol &ultimate{sym->GetUltimate()};
AddRoutineInfoToSymbol(ultimate, x);
} else {
context_.Say((*optName).source,
"No function or subroutine declared for '%s'"_err_en_US,
(*optName).source);
}
} else {
if (currScope().symbol()) {
AddRoutineInfoToSymbol(*currScope().symbol(), x);
}
}
return true;
}
bool AccAttributeVisitor::Pre(const parser::AccBindClause &x) {
if (const auto *name{std::get_if<parser::Name>(&x.u)}) {
if (!ResolveFctName(*name)) {
context_.Say(name->source,
"No function or subroutine declared for '%s'"_err_en_US,
name->source);
}
}
return true;
}
bool AccAttributeVisitor::Pre(const parser::OpenACCCombinedConstruct &x) {
const auto &beginBlockDir{std::get<parser::AccBeginCombinedDirective>(x.t)};
const auto &combinedDir{
std::get<parser::AccCombinedDirective>(beginBlockDir.t)};
switch (combinedDir.v) {
case llvm::acc::Directive::ACCD_kernels_loop:
case llvm::acc::Directive::ACCD_parallel_loop:
case llvm::acc::Directive::ACCD_serial_loop:
PushContext(combinedDir.source, combinedDir.v);
break;
default:
break;
}
const auto &clauseList{std::get<parser::AccClauseList>(beginBlockDir.t)};
SetContextAssociatedLoopLevel(GetAssociatedLoopLevelFromClauses(clauseList));
const auto &outer{std::get<std::optional<parser::DoConstruct>>(x.t)};
CheckAssociatedLoop(*outer);
ClearDataSharingAttributeObjects();
return true;
}
static bool IsLastNameArray(const parser::Designator &designator) {
const auto &name{GetLastName(designator)};
const evaluate::DataRef dataRef{*(name.symbol)};
return common::visit(
common::visitors{
[](const evaluate::SymbolRef &ref) {
return ref->Rank() > 0 ||
ref->GetType()->category() == DeclTypeSpec::Numeric;
},
[](const evaluate::ArrayRef &aref) {
return aref.base().IsSymbol() ||
aref.base().GetComponent().base().Rank() == 0;
},
[](const auto &) { return false; },
},
dataRef.u);
}
void AccAttributeVisitor::AllowOnlyArrayAndSubArray(
const parser::AccObjectList &objectList) {
for (const auto &accObject : objectList.v) {
common::visit(
common::visitors{
[&](const parser::Designator &designator) {
if (!IsLastNameArray(designator)) {
context_.Say(designator.source,
"Only array element or subarray are allowed in %s directive"_err_en_US,
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCDirectiveName(
GetContext().directive)
.str()));
}
},
[&](const auto &name) {
context_.Say(name.source,
"Only array element or subarray are allowed in %s directive"_err_en_US,
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCDirectiveName(GetContext().directive)
.str()));
},
},
accObject.u);
}
}
void AccAttributeVisitor::DoNotAllowAssumedSizedArray(
const parser::AccObjectList &objectList) {
for (const auto &accObject : objectList.v) {
common::visit(
common::visitors{
[&](const parser::Designator &designator) {
const auto &name{GetLastName(designator)};
if (name.symbol && semantics::IsAssumedSizeArray(*name.symbol)) {
context_.Say(designator.source,
"Assumed-size dummy arrays may not appear on the %s "
"directive"_err_en_US,
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCDirectiveName(
GetContext().directive)
.str()));
}
},
[&](const auto &name) {
},
},
accObject.u);
}
}
void AccAttributeVisitor::AllowOnlyVariable(const parser::AccObject &object) {
common::visit(
common::visitors{
[&](const parser::Designator &designator) {
const auto &name{GetLastName(designator)};
if (name.symbol && !semantics::IsVariableName(*name.symbol) &&
!semantics::IsNamedConstant(*name.symbol)) {
context_.Say(designator.source,
"Only variables are allowed in data clauses on the %s "
"directive"_err_en_US,
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCDirectiveName(GetContext().directive)
.str()));
}
},
[&](const auto &name) {},
},
object.u);
}
bool AccAttributeVisitor::Pre(const parser::OpenACCCacheConstruct &x) {
const auto &verbatim{std::get<parser::Verbatim>(x.t)};
PushContext(verbatim.source, llvm::acc::Directive::ACCD_cache);
ClearDataSharingAttributeObjects();
const auto &objectListWithModifier =
std::get<parser::AccObjectListWithModifier>(x.t);
const auto &objectList =
std::get<Fortran::parser::AccObjectList>(objectListWithModifier.t);
// 2.10 Cache directive restriction: A var in a cache directive must be a
// single array element or a simple subarray.
AllowOnlyArrayAndSubArray(objectList);
return true;
}
std::int64_t AccAttributeVisitor::GetAssociatedLoopLevelFromClauses(
const parser::AccClauseList &x) {
std::int64_t collapseLevel{0};
for (const auto &clause : x.v) {
if (const auto *collapseClause{
std::get_if<parser::AccClause::Collapse>(&clause.u)}) {
const parser::AccCollapseArg &arg = collapseClause->v;
const auto &collapseValue{std::get<parser::ScalarIntConstantExpr>(arg.t)};
if (const auto v{EvaluateInt64(context_, collapseValue)}) {
collapseLevel = *v;
}
}
}
if (collapseLevel) {
return collapseLevel;
}
return 1; // default is outermost loop
}
void AccAttributeVisitor::CheckAssociatedLoop(
const parser::DoConstruct &outerDoConstruct) {
std::int64_t level{GetContext().associatedLoopLevel};
if (level <= 0) { // collapse value was negative or 0
return;
}
const auto getNextDoConstruct =
[this](const parser::Block &block,
std::int64_t &level) -> const parser::DoConstruct * {
for (const auto &entry : block) {
if (const auto *doConstruct = GetDoConstructIf(entry)) {
return doConstruct;
} else if (parser::Unwrap<parser::CompilerDirective>(entry)) {
// It is allowed to have a compiler directive associated with the loop.
continue;
} else if (const auto &accLoop{
parser::Unwrap<parser::OpenACCLoopConstruct>(entry)}) {
if (level == 0)
break;
const auto &beginDir{
std::get<parser::AccBeginLoopDirective>(accLoop->t)};
context_.Say(beginDir.source,
"LOOP directive not expected in COLLAPSE loop nest"_err_en_US);
level = 0;
} else {
break;
}
}
return nullptr;
};
auto checkExprHasSymbols = [&](llvm::SmallVector<Symbol *> &ivs,
semantics::UnorderedSymbolSet &symbols) {
for (auto iv : ivs) {
if (symbols.count(*iv) != 0) {
context_.Say(GetContext().directiveSource,
"Trip count must be computable and invariant"_err_en_US);
}
}
};
Symbol::Flag flag = Symbol::Flag::AccPrivate;
llvm::SmallVector<Symbol *> ivs;
using Bounds = parser::LoopControl::Bounds;
for (const parser::DoConstruct *loop{&outerDoConstruct}; loop && level > 0;) {
// Go through all nested loops to ensure index variable exists.
if (const parser::Name * ivName{GetLoopIndex(*loop)}) {
if (auto *symbol{ResolveAcc(*ivName, flag, currScope())}) {
if (auto &control{loop->GetLoopControl()}) {
if (const Bounds * b{std::get_if<Bounds>(&control->u)}) {
if (auto lowerExpr{semantics::AnalyzeExpr(context_, b->lower)}) {
semantics::UnorderedSymbolSet lowerSyms =
evaluate::CollectSymbols(*lowerExpr);
checkExprHasSymbols(ivs, lowerSyms);
}
if (auto upperExpr{semantics::AnalyzeExpr(context_, b->upper)}) {
semantics::UnorderedSymbolSet upperSyms =
evaluate::CollectSymbols(*upperExpr);
checkExprHasSymbols(ivs, upperSyms);
}
}
}
ivs.push_back(symbol);
}
}
const auto &block{std::get<parser::Block>(loop->t)};
--level;
loop = getNextDoConstruct(block, level);
}
CHECK(level == 0);
}
void AccAttributeVisitor::EnsureAllocatableOrPointer(
const llvm::acc::Clause clause, const parser::AccObjectList &objectList) {
for (const auto &accObject : objectList.v) {
common::visit(
common::visitors{
[&](const parser::Designator &designator) {
const auto &lastName{GetLastName(designator)};
if (!IsAllocatableOrObjectPointer(lastName.symbol)) {
context_.Say(designator.source,
"Argument `%s` on the %s clause must be a variable or "
"array with the POINTER or ALLOCATABLE attribute"_err_en_US,
lastName.symbol->name(),
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCClauseName(clause).str()));
}
},
[&](const auto &name) {
context_.Say(name.source,
"Argument on the %s clause must be a variable or "
"array with the POINTER or ALLOCATABLE attribute"_err_en_US,
parser::ToUpperCaseLetters(
llvm::acc::getOpenACCClauseName(clause).str()));
},
},
accObject.u);
}
}
bool AccAttributeVisitor::Pre(const parser::AccClause::Attach &x) {
// Restriction - line 1708-1709
EnsureAllocatableOrPointer(llvm::acc::Clause::ACCC_attach, x.v);
return true;
}
bool AccAttributeVisitor::Pre(const parser::AccClause::Detach &x) {
// Restriction - line 1715-1717
EnsureAllocatableOrPointer(llvm::acc::Clause::ACCC_detach, x.v);
return true;
}
void AccAttributeVisitor::Post(const parser::AccDefaultClause &x) {
if (!dirContext_.empty()) {
switch (x.v) {
case llvm::acc::DefaultValue::ACC_Default_present:
SetContextDefaultDSA(Symbol::Flag::AccPresent);
break;
case llvm::acc::DefaultValue::ACC_Default_none:
SetContextDefaultDSA(Symbol::Flag::AccNone);
break;
}
}
}
// For OpenACC constructs, check all the data-refs within the constructs
// and adjust the symbol for each Name if necessary
void AccAttributeVisitor::Post(const parser::Name &name) {
auto *symbol{name.symbol};
if (symbol && !dirContext_.empty() && GetContext().withinConstruct) {
if (!symbol->owner().IsDerivedType() && !symbol->has<ProcEntityDetails>() &&
!symbol->has<SubprogramDetails>() && !IsObjectWithDSA(*symbol)) {
if (Symbol * found{currScope().FindSymbol(name.source)}) {
if (symbol != found) {
name.symbol = found; // adjust the symbol within region
} else if (GetContext().defaultDSA == Symbol::Flag::AccNone) {
// 2.5.14.
context_.Say(name.source,
"The DEFAULT(NONE) clause requires that '%s' must be listed in "
"a data-mapping clause"_err_en_US,
symbol->name());
}
}
}
} // within OpenACC construct
}
Symbol *AccAttributeVisitor::ResolveAccCommonBlockName(
const parser::Name *name) {
if (auto *prev{name
? GetContext().scope.parent().FindCommonBlock(name->source)
: nullptr}) {
name->symbol = prev;
return prev;
}
// Check if the Common Block is declared in the current scope
if (auto *commonBlockSymbol{
name ? GetContext().scope.FindCommonBlock(name->source) : nullptr}) {
name->symbol = commonBlockSymbol;
return commonBlockSymbol;
}
return nullptr;
}
void AccAttributeVisitor::ResolveAccObjectList(
const parser::AccObjectList &accObjectList, Symbol::Flag accFlag) {
for (const auto &accObject : accObjectList.v) {
AllowOnlyVariable(accObject);
ResolveAccObject(accObject, accFlag);
}
}
void AccAttributeVisitor::ResolveAccObject(
const parser::AccObject &accObject, Symbol::Flag accFlag) {
common::visit(
common::visitors{
[&](const parser::Designator &designator) {
if (const auto *name{
semantics::getDesignatorNameIfDataRef(designator)}) {
if (auto *symbol{ResolveAcc(*name, accFlag, currScope())}) {
AddToContextObjectWithDSA(*symbol, accFlag);
if (dataSharingAttributeFlags.test(accFlag)) {
CheckMultipleAppearances(*name, *symbol, accFlag);
}
}
} else {
// Array sections to be changed to substrings as needed
if (AnalyzeExpr(context_, designator)) {
if (std::holds_alternative<parser::Substring>(designator.u)) {
context_.Say(designator.source,
"Substrings are not allowed on OpenACC "
"directives or clauses"_err_en_US);
}
}
// other checks, more TBD
}
},
[&](const parser::Name &name) { // common block
if (auto *symbol{ResolveAccCommonBlockName(&name)}) {
CheckMultipleAppearances(
name, *symbol, Symbol::Flag::AccCommonBlock);
for (auto &object : symbol->get<CommonBlockDetails>().objects()) {
if (auto *resolvedObject{
ResolveAcc(*object, accFlag, currScope())}) {
AddToContextObjectWithDSA(*resolvedObject, accFlag);
}
}
} else {
context_.Say(name.source,
"COMMON block must be declared in the same scoping unit "
"in which the OpenACC directive or clause appears"_err_en_US);
}
},
},
accObject.u);
}
Symbol *AccAttributeVisitor::ResolveAcc(
const parser::Name &name, Symbol::Flag accFlag, Scope &scope) {
return DeclareOrMarkOtherAccessEntity(name, accFlag);
}
Symbol *AccAttributeVisitor::ResolveAcc(
Symbol &symbol, Symbol::Flag accFlag, Scope &scope) {
return DeclareOrMarkOtherAccessEntity(symbol, accFlag);
}
Symbol *AccAttributeVisitor::DeclareOrMarkOtherAccessEntity(
const parser::Name &name, Symbol::Flag accFlag) {
Symbol *prev{currScope().FindSymbol(name.source)};
if (!name.symbol || !prev) {
return nullptr;
} else if (prev != name.symbol) {
name.symbol = prev;
}
return DeclareOrMarkOtherAccessEntity(*prev, accFlag);
}
Symbol *AccAttributeVisitor::DeclareOrMarkOtherAccessEntity(
Symbol &object, Symbol::Flag accFlag) {
if (accFlagsRequireMark.test(accFlag)) {
if (GetContext().directive == llvm::acc::ACCD_declare) {
object.set(Symbol::Flag::AccDeclare);
object.set(accFlag);
}
}
return &object;
}
static bool WithMultipleAppearancesAccException(
const Symbol &symbol, Symbol::Flag flag) {
return false; // Place holder
}
void AccAttributeVisitor::CheckMultipleAppearances(
const parser::Name &name, const Symbol &symbol, Symbol::Flag accFlag) {
const auto *target{&symbol};
if (HasDataSharingAttributeObject(*target) &&
!WithMultipleAppearancesAccException(symbol, accFlag)) {
context_.Say(name.source,
"'%s' appears in more than one data-sharing clause "
"on the same OpenACC directive"_err_en_US,
name.ToString());
} else {
AddDataSharingAttributeObject(*target);
}
}
bool OmpAttributeVisitor::Pre(const parser::OpenMPBlockConstruct &x) {
const auto &beginBlockDir{std::get<parser::OmpBeginBlockDirective>(x.t)};
const auto &beginDir{std::get<parser::OmpBlockDirective>(beginBlockDir.t)};
switch (beginDir.v) {
case llvm::omp::Directive::OMPD_masked:
case llvm::omp::Directive::OMPD_parallel_masked:
case llvm::omp::Directive::OMPD_master:
case llvm::omp::Directive::OMPD_ordered:
case llvm::omp::Directive::OMPD_parallel:
case llvm::omp::Directive::OMPD_single:
case llvm::omp::Directive::OMPD_target:
case llvm::omp::Directive::OMPD_target_data:
case llvm::omp::Directive::OMPD_task:
case llvm::omp::Directive::OMPD_taskgroup:
case llvm::omp::Directive::OMPD_teams:
case llvm::omp::Directive::OMPD_workshare:
case llvm::omp::Directive::OMPD_parallel_workshare:
case llvm::omp::Directive::OMPD_target_teams:
case llvm::omp::Directive::OMPD_target_parallel:
PushContext(beginDir.source, beginDir.v);
break;
default:
// TODO others
break;
}
if (beginDir.v == llvm::omp::Directive::OMPD_master)
IssueNonConformanceWarning(beginDir.v, beginDir.source);
ClearDataSharingAttributeObjects();
ClearPrivateDataSharingAttributeObjects();
ClearAllocateNames();
return true;
}
void OmpAttributeVisitor::Post(const parser::OpenMPBlockConstruct &x) {
const auto &beginBlockDir{std::get<parser::OmpBeginBlockDirective>(x.t)};
const auto &beginDir{std::get<parser::OmpBlockDirective>(beginBlockDir.t)};
switch (beginDir.v) {
case llvm::omp::Directive::OMPD_masked:
case llvm::omp::Directive::OMPD_parallel_masked:
case llvm::omp::Directive::OMPD_parallel:
case llvm::omp::Directive::OMPD_single:
case llvm::omp::Directive::OMPD_target:
case llvm::omp::Directive::OMPD_task:
case llvm::omp::Directive::OMPD_teams:
case llvm::omp::Directive::OMPD_parallel_workshare:
case llvm::omp::Directive::OMPD_target_teams:
case llvm::omp::Directive::OMPD_target_parallel: {
bool hasPrivate;
for (const auto *allocName : allocateNames_) {
hasPrivate = false;
for (auto privateObj : privateDataSharingAttributeObjects_) {
const Symbol &symbolPrivate{*privateObj};
if (allocName->source == symbolPrivate.name()) {
hasPrivate = true;
break;
}
}
if (!hasPrivate) {
context_.Say(allocName->source,
"The ALLOCATE clause requires that '%s' must be listed in a "
"private "
"data-sharing attribute clause on the same directive"_err_en_US,
allocName->ToString());
}
}
break;
}
default:
break;
}
PopContext();
}
bool OmpAttributeVisitor::Pre(
const parser::OpenMPSimpleStandaloneConstruct &x) {
const auto &standaloneDir{
std::get<parser::OmpSimpleStandaloneDirective>(x.t)};
switch (standaloneDir.v) {
case llvm::omp::Directive::OMPD_barrier:
case llvm::omp::Directive::OMPD_ordered:
case llvm::omp::Directive::OMPD_target_enter_data:
case llvm::omp::Directive::OMPD_target_exit_data:
case llvm::omp::Directive::OMPD_target_update:
case llvm::omp::Directive::OMPD_taskwait:
case llvm::omp::Directive::OMPD_taskyield:
PushContext(standaloneDir.source, standaloneDir.v);
break;
default:
break;
}
ClearDataSharingAttributeObjects();
return true;
}
bool OmpAttributeVisitor::Pre(const parser::OpenMPLoopConstruct &x) {
const auto &beginLoopDir{std::get<parser::OmpBeginLoopDirective>(x.t)};
const auto &beginDir{std::get<parser::OmpLoopDirective>(beginLoopDir.t)};
const auto &clauseList{std::get<parser::OmpClauseList>(beginLoopDir.t)};
switch (beginDir.v) {
case llvm::omp::Directive::OMPD_distribute:
case llvm::omp::Directive::OMPD_distribute_parallel_do:
case llvm::omp::Directive::OMPD_distribute_parallel_do_simd:
case llvm::omp::Directive::OMPD_distribute_simd:
case llvm::omp::Directive::OMPD_do:
case llvm::omp::Directive::OMPD_do_simd:
case llvm::omp::Directive::OMPD_loop:
case llvm::omp::Directive::OMPD_masked_taskloop_simd:
case llvm::omp::Directive::OMPD_masked_taskloop:
case llvm::omp::Directive::OMPD_parallel_do:
case llvm::omp::Directive::OMPD_parallel_do_simd:
case llvm::omp::Directive::OMPD_parallel_masked_taskloop_simd:
case llvm::omp::Directive::OMPD_parallel_masked_taskloop:
case llvm::omp::Directive::OMPD_simd:
case llvm::omp::Directive::OMPD_target_loop:
case llvm::omp::Directive::OMPD_target_parallel_do:
case llvm::omp::Directive::OMPD_target_parallel_do_simd:
case llvm::omp::Directive::OMPD_target_parallel_loop:
case llvm::omp::Directive::OMPD_target_teams_distribute:
case llvm::omp::Directive::OMPD_target_teams_distribute_parallel_do:
case llvm::omp::Directive::OMPD_target_teams_distribute_parallel_do_simd:
case llvm::omp::Directive::OMPD_target_teams_distribute_simd:
case llvm::omp::Directive::OMPD_target_teams_loop:
case llvm::omp::Directive::OMPD_target_simd:
case llvm::omp::Directive::OMPD_taskloop:
case llvm::omp::Directive::OMPD_taskloop_simd:
case llvm::omp::Directive::OMPD_teams_distribute:
case llvm::omp::Directive::OMPD_teams_distribute_parallel_do:
case llvm::omp::Directive::OMPD_teams_distribute_parallel_do_simd:
case llvm::omp::Directive::OMPD_teams_distribute_simd:
case llvm::omp::Directive::OMPD_tile:
case llvm::omp::Directive::OMPD_unroll:
PushContext(beginDir.source, beginDir.v);
break;
default:
break;
}
if (beginDir.v == llvm::omp::Directive::OMPD_target_loop)
IssueNonConformanceWarning(beginDir.v, beginDir.source);
ClearDataSharingAttributeObjects();
SetContextAssociatedLoopLevel(GetAssociatedLoopLevelFromClauses(clauseList));
if (beginDir.v == llvm::omp::Directive::OMPD_do) {
if (const auto &doConstruct{
std::get<std::optional<parser::DoConstruct>>(x.t)}) {
if (doConstruct.value().IsDoWhile()) {
return true;
}
}
}
PrivatizeAssociatedLoopIndexAndCheckLoopLevel(x);
ordCollapseLevel = GetAssociatedLoopLevelFromClauses(clauseList) + 1;
return true;
}
void OmpAttributeVisitor::ResolveSeqLoopIndexInParallelOrTaskConstruct(
const parser::Name &iv) {
// Find the parallel or task generating construct enclosing the
// sequential loop.
auto targetIt{dirContext_.rbegin()};
for (;; ++targetIt) {
if (targetIt == dirContext_.rend()) {
return;
}
if (llvm::omp::allParallelSet.test(targetIt->directive) ||
llvm::omp::taskGeneratingSet.test(targetIt->directive)) {
break;
}
}
// If this symbol already has a data-sharing attribute then there is nothing
// to do here.
if (const Symbol * symbol{iv.symbol}) {
for (auto symMap : targetIt->objectWithDSA) {
if (symMap.first->name() == symbol->name()) {
return;
}
}
}
// If this symbol is already Private or Firstprivate in the enclosing
// OpenMP parallel or task then there is nothing to do here.
if (auto *symbol{targetIt->scope.FindSymbol(iv.source)}) {
if (symbol->owner() == targetIt->scope) {
if (symbol->test(Symbol::Flag::OmpPrivate) ||
symbol->test(Symbol::Flag::OmpFirstPrivate)) {
return;
}
}
}
// Otherwise find the symbol and make it Private for the entire enclosing
// parallel or task
if (auto *symbol{ResolveOmp(iv, Symbol::Flag::OmpPrivate, targetIt->scope)}) {
targetIt++;
symbol->set(Symbol::Flag::OmpPreDetermined);
iv.symbol = symbol; // adjust the symbol within region
for (auto it{dirContext_.rbegin()}; it != targetIt; ++it) {
AddToContextObjectWithDSA(*symbol, Symbol::Flag::OmpPrivate, *it);
}
}
}
// [OMP-4.5]2.15.1.1 Data-sharing Attribute Rules - Predetermined
// - A loop iteration variable for a sequential loop in a parallel
// or task generating construct is private in the innermost such
// construct that encloses the loop
// Loop iteration variables are not well defined for DO WHILE loop.
// Use of DO CONCURRENT inside OpenMP construct is unspecified behavior
// till OpenMP-5.0 standard.
// In above both cases we skip the privatization of iteration variables.
// [OpenMP 5.1] DO CONCURRENT indices are private
bool OmpAttributeVisitor::Pre(const parser::DoConstruct &x) {
if (!dirContext_.empty() && GetContext().withinConstruct) {
llvm::SmallVector<const parser::Name *> ivs;
if (x.IsDoNormal()) {
const parser::Name *iv{GetLoopIndex(x)};
if (iv && iv->symbol)
ivs.push_back(iv);
} else if (x.IsDoConcurrent()) {
const Fortran::parser::LoopControl *loopControl = &*x.GetLoopControl();
const Fortran::parser::LoopControl::Concurrent &concurrent =
std::get<Fortran::parser::LoopControl::Concurrent>(loopControl->u);
const Fortran::parser::ConcurrentHeader &concurrentHeader =
std::get<Fortran::parser::ConcurrentHeader>(concurrent.t);
const std::list<Fortran::parser::ConcurrentControl> &controls =
std::get<std::list<Fortran::parser::ConcurrentControl>>(
concurrentHeader.t);
for (const auto &control : controls) {
const parser::Name *iv{&std::get<0>(control.t)};
if (iv && iv->symbol)
ivs.push_back(iv);
}
}
ordCollapseLevel--;
for (auto iv : ivs) {
if (!iv->symbol->test(Symbol::Flag::OmpPreDetermined)) {
ResolveSeqLoopIndexInParallelOrTaskConstruct(*iv);
} else {
// TODO: conflict checks with explicitly determined DSA
}
if (ordCollapseLevel) {
if (const auto *details{iv->symbol->detailsIf<HostAssocDetails>()}) {
const Symbol *tpSymbol = &details->symbol();
// TODO: DoConcurrent won't capture the following check because a new
// symbol is declared in ResolveIndexName(), which will not have the
// OmpThreadprivate flag.
if (tpSymbol->test(Symbol::Flag::OmpThreadprivate)) {
context_.Say(iv->source,
"Loop iteration variable %s is not allowed in THREADPRIVATE."_err_en_US,
iv->ToString());
}
}
}
}
}
return true;
}
std::int64_t OmpAttributeVisitor::GetAssociatedLoopLevelFromClauses(
const parser::OmpClauseList &x) {
std::int64_t orderedLevel{0};
std::int64_t collapseLevel{0};
const parser::OmpClause *ordClause{nullptr};
const parser::OmpClause *collClause{nullptr};
for (const auto &clause : x.v) {
if (const auto *orderedClause{
std::get_if<parser::OmpClause::Ordered>(&clause.u)}) {
if (const auto v{EvaluateInt64(context_, orderedClause->v)}) {
orderedLevel = *v;
}
ordClause = &clause;
}
if (const auto *collapseClause{
std::get_if<parser::OmpClause::Collapse>(&clause.u)}) {
if (const auto v{EvaluateInt64(context_, collapseClause->v)}) {
collapseLevel = *v;
}
collClause = &clause;
}
}
if (orderedLevel && (!collapseLevel || orderedLevel >= collapseLevel)) {
SetAssociatedClause(*ordClause);
return orderedLevel;
} else if (!orderedLevel && collapseLevel) {
SetAssociatedClause(*collClause);
return collapseLevel;
} // orderedLevel < collapseLevel is an error handled in structural checks
return 1; // default is outermost loop
}
// 2.15.1.1 Data-sharing Attribute Rules - Predetermined
// - The loop iteration variable(s) in the associated do-loop(s) of a do,
// parallel do, taskloop, or distribute construct is (are) private.
// - The loop iteration variable in the associated do-loop of a simd construct
// with just one associated do-loop is linear with a linear-step that is the
// increment of the associated do-loop.
// - The loop iteration variables in the associated do-loops of a simd
// construct with multiple associated do-loops are lastprivate.
void OmpAttributeVisitor::PrivatizeAssociatedLoopIndexAndCheckLoopLevel(
const parser::OpenMPLoopConstruct &x) {
std::int64_t level{GetContext().associatedLoopLevel};
if (level <= 0) {
return;
}
Symbol::Flag ivDSA;
if (!llvm::omp::allSimdSet.test(GetContext().directive)) {
ivDSA = Symbol::Flag::OmpPrivate;
} else if (level == 1) {
ivDSA = Symbol::Flag::OmpLinear;
} else {
ivDSA = Symbol::Flag::OmpLastPrivate;
}
const auto &outer{std::get<std::optional<parser::DoConstruct>>(x.t)};
for (const parser::DoConstruct *loop{&*outer}; loop && level > 0; --level) {
// go through all the nested do-loops and resolve index variables
const parser::Name *iv{GetLoopIndex(*loop)};
if (iv) {
if (auto *symbol{ResolveOmp(*iv, ivDSA, currScope())}) {
symbol->set(Symbol::Flag::OmpPreDetermined);
iv->symbol = symbol; // adjust the symbol within region
AddToContextObjectWithDSA(*symbol, ivDSA);
}
const auto &block{std::get<parser::Block>(loop->t)};
const auto it{block.begin()};
loop = it != block.end() ? GetDoConstructIf(*it) : nullptr;
}
}
CheckAssocLoopLevel(level, GetAssociatedClause());
}
void OmpAttributeVisitor::CheckAssocLoopLevel(
std::int64_t level, const parser::OmpClause *clause) {
if (clause && level != 0) {
context_.Say(clause->source,
"The value of the parameter in the COLLAPSE or ORDERED clause must"
" not be larger than the number of nested loops"
" following the construct."_err_en_US);
}
}
bool OmpAttributeVisitor::Pre(const parser::OpenMPSectionsConstruct &x) {
const auto &beginSectionsDir{
std::get<parser::OmpBeginSectionsDirective>(x.t)};
const auto &beginDir{
std::get<parser::OmpSectionsDirective>(beginSectionsDir.t)};
switch (beginDir.v) {
case llvm::omp::Directive::OMPD_parallel_sections:
case llvm::omp::Directive::OMPD_sections:
PushContext(beginDir.source, beginDir.v);
GetContext().withinConstruct = true;
break;
default:
break;
}
ClearDataSharingAttributeObjects();
return true;
}
bool OmpAttributeVisitor::Pre(const parser::OpenMPCriticalConstruct &x) {
const auto &beginCriticalDir{std::get<parser::OmpCriticalDirective>(x.t)};
const auto &endCriticalDir{std::get<parser::OmpEndCriticalDirective>(x.t)};
PushContext(beginCriticalDir.source, llvm::omp::Directive::OMPD_critical);
GetContext().withinConstruct = true;
if (const auto &criticalName{
std::get<std::optional<parser::Name>>(beginCriticalDir.t)}) {
ResolveOmpName(*criticalName, Symbol::Flag::OmpCriticalLock);
}
if (const auto &endCriticalName{
std::get<std::optional<parser::Name>>(endCriticalDir.t)}) {
ResolveOmpName(*endCriticalName, Symbol::Flag::OmpCriticalLock);
}
return true;
}
bool OmpAttributeVisitor::Pre(const parser::OpenMPDeclareTargetConstruct &x) {
PushContext(x.source, llvm::omp::Directive::OMPD_declare_target);
const auto &spec{std::get<parser::OmpDeclareTargetSpecifier>(x.t)};
if (const auto *objectList{parser::Unwrap<parser::OmpObjectList>(spec.u)}) {
ResolveOmpObjectList(*objectList, Symbol::Flag::OmpDeclareTarget);
} else if (const auto *clauseList{
parser::Unwrap<parser::OmpClauseList>(spec.u)}) {
for (const auto &clause : clauseList->v) {
if (const auto *toClause{std::get_if<parser::OmpClause::To>(&clause.u)}) {
ResolveOmpObjectList(toClause->v, Symbol::Flag::OmpDeclareTarget);
} else if (const auto *linkClause{
std::get_if<parser::OmpClause::Link>(&clause.u)}) {
ResolveOmpObjectList(linkClause->v, Symbol::Flag::OmpDeclareTarget);
} else if (const auto *enterClause{
std::get_if<parser::OmpClause::Enter>(&clause.u)}) {
ResolveOmpObjectList(enterClause->v, Symbol::Flag::OmpDeclareTarget);
}
}
}
return true;
}
bool OmpAttributeVisitor::Pre(const parser::OpenMPThreadprivate &x) {
PushContext(x.source, llvm::omp::Directive::OMPD_threadprivate);
const auto &list{std::get<parser::OmpObjectList>(x.t)};
ResolveOmpObjectList(list, Symbol::Flag::OmpThreadprivate);
return true;
}
bool OmpAttributeVisitor::Pre(const parser::OpenMPDeclarativeAllocate &x) {
PushContext(x.source, llvm::omp::Directive::OMPD_allocate);
const auto &list{std::get<parser::OmpObjectList>(x.t)};
ResolveOmpObjectList(list, Symbol::Flag::OmpDeclarativeAllocateDirective);
return false;
}
bool OmpAttributeVisitor::Pre(const parser::OpenMPExecutableAllocate &x) {
PushContext(x.source, llvm::omp::Directive::OMPD_allocate);
const auto &list{std::get<std::optional<parser::OmpObjectList>>(x.t)};
if (list) {
ResolveOmpObjectList(*list, Symbol::Flag::OmpExecutableAllocateDirective);
}
return true;
}
bool OmpAttributeVisitor::Pre(const parser::OpenMPAllocatorsConstruct &x) {
PushContext(x.source, llvm::omp::Directive::OMPD_allocators);
const auto &clauseList{std::get<parser::OmpClauseList>(x.t)};
for (const auto &clause : clauseList.v) {
if (const auto *allocClause{
std::get_if<parser::OmpClause::Allocate>(&clause.u)}) {
ResolveOmpObjectList(std::get<parser::OmpObjectList>(allocClause->v.t),
Symbol::Flag::OmpExecutableAllocateDirective);
}
}
return true;
}
void OmpAttributeVisitor::Post(const parser::OmpDefaultClause &x) {
if (!dirContext_.empty()) {
switch (x.v) {
case parser::OmpDefaultClause::Type::Private:
SetContextDefaultDSA(Symbol::Flag::OmpPrivate);
break;
case parser::OmpDefaultClause::Type::Firstprivate:
SetContextDefaultDSA(Symbol::Flag::OmpFirstPrivate);
break;
case parser::OmpDefaultClause::Type::Shared:
SetContextDefaultDSA(Symbol::Flag::OmpShared);
break;
case parser::OmpDefaultClause::Type::None:
SetContextDefaultDSA(Symbol::Flag::OmpNone);
break;
}
}
}
bool OmpAttributeVisitor::IsNestedInDirective(llvm::omp::Directive directive) {
if (dirContext_.size() >= 1) {
for (std::size_t i = dirContext_.size() - 1; i > 0; --i) {
if (dirContext_[i - 1].directive == directive) {
return true;
}
}
}
return false;
}
void OmpAttributeVisitor::Post(const parser::OpenMPExecutableAllocate &x) {
bool hasAllocator = false;
// TODO: Investigate whether searching the clause list can be done with
// parser::Unwrap instead of the following loop
const auto &clauseList{std::get<parser::OmpClauseList>(x.t)};
for (const auto &clause : clauseList.v) {
if (std::get_if<parser::OmpClause::Allocator>(&clause.u)) {
hasAllocator = true;
}
}
if (IsNestedInDirective(llvm::omp::Directive::OMPD_target) && !hasAllocator) {
// TODO: expand this check to exclude the case when a requires
// directive with the dynamic_allocators clause is present
// in the same compilation unit (OMP5.0 2.11.3).
context_.Say(x.source,
"ALLOCATE directives that appear in a TARGET region "
"must specify an allocator clause"_err_en_US);
}
const auto &allocateStmt =
std::get<parser::Statement<parser::AllocateStmt>>(x.t).statement;
if (const auto &list{std::get<std::optional<parser::OmpObjectList>>(x.t)}) {
CheckAllNamesInAllocateStmt(
std::get<parser::Verbatim>(x.t).source, *list, allocateStmt);
}
if (const auto &subDirs{
std::get<std::optional<std::list<parser::OpenMPDeclarativeAllocate>>>(
x.t)}) {
for (const auto &dalloc : *subDirs) {
CheckAllNamesInAllocateStmt(std::get<parser::Verbatim>(dalloc.t).source,
std::get<parser::OmpObjectList>(dalloc.t), allocateStmt);
}
}
PopContext();
}
void OmpAttributeVisitor::Post(const parser::OpenMPAllocatorsConstruct &x) {
const auto &dir{std::get<parser::Verbatim>(x.t)};
const auto &clauseList{std::get<parser::OmpClauseList>(x.t)};
for (const auto &clause : clauseList.v) {
if (const auto *alloc{
std::get_if<parser::OmpClause::Allocate>(&clause.u)}) {
CheckAllNamesInAllocateStmt(dir.source,
std::get<parser::OmpObjectList>(alloc->v.t),
std::get<parser::Statement<parser::AllocateStmt>>(x.t).statement);
const auto &allocMod{
std::get<std::optional<parser::OmpAllocateClause::AllocateModifier>>(
alloc->v.t)};
// TODO: As with allocate directive, exclude the case when a requires
// directive with the dynamic_allocators clause is present in
// the same compilation unit (OMP5.0 2.11.3).
if (IsNestedInDirective(llvm::omp::Directive::OMPD_target) &&
(!allocMod.has_value() ||
std::holds_alternative<
parser::OmpAllocateClause::AllocateModifier::Align>(
allocMod->u))) {
context_.Say(x.source,
"ALLOCATORS directives that appear in a TARGET region "
"must specify an allocator"_err_en_US);
}
}
}
PopContext();
}
// For OpenMP constructs, check all the data-refs within the constructs
// and adjust the symbol for each Name if necessary
void OmpAttributeVisitor::Post(const parser::Name &name) {
auto *symbol{name.symbol};
auto IsPrivatizable = [](const Symbol *sym) {
return !IsProcedure(*sym) && !IsNamedConstant(*sym) &&
!sym->owner().IsDerivedType() &&
sym->owner().kind() != Scope::Kind::ImpliedDos &&
!sym->detailsIf<semantics::AssocEntityDetails>() &&
!sym->detailsIf<semantics::NamelistDetails>();
};
if (symbol && !dirContext_.empty() && GetContext().withinConstruct) {
// Exclude construct-names
if (auto *details{symbol->detailsIf<semantics::MiscDetails>()}) {
if (details->kind() == semantics::MiscDetails::Kind::ConstructName) {
return;
}
}
if (IsPrivatizable(symbol) && !IsObjectWithDSA(*symbol)) {
// TODO: create a separate function to go through the rules for
// predetermined, explicitly determined, and implicitly
// determined data-sharing attributes (2.15.1.1).
if (Symbol * found{currScope().FindSymbol(name.source)}) {
if (symbol != found) {
name.symbol = found; // adjust the symbol within region
} else if (GetContext().defaultDSA == Symbol::Flag::OmpNone &&
!symbol->test(Symbol::Flag::OmpThreadprivate) &&
// Exclude indices of sequential loops that are privatised in
// the scope of the parallel region, and not in this scope.
// TODO: check whether this should be caught in IsObjectWithDSA
!symbol->test(Symbol::Flag::OmpPrivate)) {
context_.Say(name.source,
"The DEFAULT(NONE) clause requires that '%s' must be listed in "
"a data-sharing attribute clause"_err_en_US,
symbol->name());
}
}
}
if (Symbol * found{currScope().FindSymbol(name.source)}) {
if (found->test(semantics::Symbol::Flag::OmpThreadprivate))
return;
}
if (!IsPrivatizable(symbol)) {
return;
}
// Implicitly determined DSAs
// OMP 5.2 5.1.1 - Variables Referenced in a Construct
Symbol *lastDeclSymbol = nullptr;
std::optional<Symbol::Flag> prevDSA;
for (int dirDepth{0}; dirDepth < (int)dirContext_.size(); ++dirDepth) {
DirContext &dirContext = dirContext_[dirDepth];
std::optional<Symbol::Flag> dsa;
for (auto symMap : dirContext.objectWithDSA) {
// if the `symbol` already has a data-sharing attribute
if (symMap.first->name() == name.symbol->name()) {
dsa = symMap.second;
break;
}
}
// When handling each implicit rule for a given symbol, one of the
// following 3 actions may be taken:
// 1. Declare a new private symbol.
// 2. Create a new association symbol with no flags, that will represent
// a shared symbol in the current scope. Note that symbols without
// any private flags are considered as shared.
// 3. Use the last declared private symbol, by inserting a new symbol
// in the scope being processed, associated with it.
// If no private symbol was declared previously, then no association
// is needed and the symbol from the enclosing scope will be
// inherited by the current one.
//
// Because of how symbols are collected in lowering, not inserting a new
// symbol in the last case could lead to the conclusion that a symbol
// from an enclosing construct was declared in the current construct,
// which would result in wrong privatization code being generated.
// Consider the following example:
//
// !$omp parallel default(private) ! p1
// !$omp parallel default(private) shared(x) ! p2
// x = 10
// !$omp end parallel
// !$omp end parallel
//
// If a new x symbol was not inserted in the inner parallel construct
// (p2), it would use the x symbol definition from the enclosing scope.
// Then, when p2's default symbols were collected in lowering, the x
// symbol from the outer parallel construct (p1) would be collected, as
// it would have the private flag set.
// This would make x appear to be defined in p2, causing it to be
// privatized in p2 and its privatization in p1 to be skipped.
auto makePrivateSymbol = [&](Symbol::Flag flag) {
Symbol *hostSymbol =
lastDeclSymbol ? lastDeclSymbol : &symbol->GetUltimate();
lastDeclSymbol = DeclarePrivateAccessEntity(
*hostSymbol, flag, context_.FindScope(dirContext.directiveSource));
return lastDeclSymbol;
};
auto makeSharedSymbol = [&]() {
Symbol *hostSymbol =
lastDeclSymbol ? lastDeclSymbol : &symbol->GetUltimate();
MakeAssocSymbol(symbol->name(), *hostSymbol,
context_.FindScope(dirContext.directiveSource));
};
auto useLastDeclSymbol = [&]() {
if (lastDeclSymbol)
MakeAssocSymbol(symbol->name(), *lastDeclSymbol,
context_.FindScope(dirContext.directiveSource));
};
bool taskGenDir = llvm::omp::taskGeneratingSet.test(dirContext.directive);
bool targetDir = llvm::omp::allTargetSet.test(dirContext.directive);
bool parallelDir = llvm::omp::allParallelSet.test(dirContext.directive);
bool teamsDir = llvm::omp::allTeamsSet.test(dirContext.directive);
if (dsa.has_value()) {
if (dsa.value() == Symbol::Flag::OmpShared &&
(parallelDir || taskGenDir || teamsDir))
makeSharedSymbol();
// Private symbols will have been declared already.
prevDSA = dsa;
continue;
}
if (dirContext.defaultDSA == Symbol::Flag::OmpPrivate ||
dirContext.defaultDSA == Symbol::Flag::OmpFirstPrivate ||
dirContext.defaultDSA == Symbol::Flag::OmpShared) {
// 1) default
// Allowed only with parallel, teams and task generating constructs.
assert(parallelDir || taskGenDir || teamsDir);
if (dirContext.defaultDSA != Symbol::Flag::OmpShared)
makePrivateSymbol(dirContext.defaultDSA);
else
makeSharedSymbol();
dsa = dirContext.defaultDSA;
} else if (parallelDir) {
// 2) parallel -> shared
makeSharedSymbol();
dsa = Symbol::Flag::OmpShared;
} else if (!taskGenDir && !targetDir) {
// 3) enclosing context
useLastDeclSymbol();
dsa = prevDSA;
} else if (targetDir) {
// TODO 4) not mapped target variable -> firstprivate
dsa = prevDSA;
} else if (taskGenDir) {
// TODO 5) dummy arg in orphaned taskgen construct -> firstprivate
if (prevDSA == Symbol::Flag::OmpShared) {
// 6) shared in enclosing context -> shared
makeSharedSymbol();
dsa = Symbol::Flag::OmpShared;
} else {
// 7) firstprivate
dsa = Symbol::Flag::OmpFirstPrivate;
makePrivateSymbol(*dsa)->set(Symbol::Flag::OmpImplicit);
}
}
prevDSA = dsa;
}
} // within OpenMP construct
}
Symbol *OmpAttributeVisitor::ResolveName(const parser::Name *name) {
if (auto *resolvedSymbol{
name ? GetContext().scope.FindSymbol(name->source) : nullptr}) {
name->symbol = resolvedSymbol;
return resolvedSymbol;
} else {
return nullptr;
}
}
void OmpAttributeVisitor::ResolveOmpName(
const parser::Name &name, Symbol::Flag ompFlag) {
if (ResolveName(&name)) {
if (auto *resolvedSymbol{ResolveOmp(name, ompFlag, currScope())}) {
if (dataSharingAttributeFlags.test(ompFlag)) {
AddToContextObjectWithDSA(*resolvedSymbol, ompFlag);
}
}
} else if (ompFlag == Symbol::Flag::OmpCriticalLock) {
const auto pair{
GetContext().scope.try_emplace(name.source, Attrs{}, UnknownDetails{})};
CHECK(pair.second);
name.symbol = &pair.first->second.get();
}
}
void OmpAttributeVisitor::ResolveOmpNameList(
const std::list<parser::Name> &nameList, Symbol::Flag ompFlag) {
for (const auto &name : nameList) {
ResolveOmpName(name, ompFlag);
}
}
Symbol *OmpAttributeVisitor::ResolveOmpCommonBlockName(
const parser::Name *name) {
if (!name) {
return nullptr;
}
if (auto *cb{GetProgramUnitOrBlockConstructContaining(GetContext().scope)
.FindCommonBlock(name->source)}) {
name->symbol = cb;
return cb;
}
return nullptr;
}
// Use this function over ResolveOmpName when an omp object's scope needs
// resolving, it's symbol flag isn't important and a simple check for resolution
// failure is desired. Using ResolveOmpName means needing to work with the
// context to check for failure, whereas here a pointer comparison is all that's
// needed.
Symbol *OmpAttributeVisitor::ResolveOmpObjectScope(const parser::Name *name) {
// TODO: Investigate whether the following block can be replaced by, or
// included in, the ResolveOmpName function
if (auto *prev{name ? GetContext().scope.parent().FindSymbol(name->source)
: nullptr}) {
name->symbol = prev;
return nullptr;
}
// TODO: Investigate whether the following block can be replaced by, or
// included in, the ResolveOmpName function
if (auto *ompSymbol{
name ? GetContext().scope.FindSymbol(name->source) : nullptr}) {
name->symbol = ompSymbol;
return ompSymbol;
}
return nullptr;
}
void OmpAttributeVisitor::ResolveOmpObjectList(
const parser::OmpObjectList &ompObjectList, Symbol::Flag ompFlag) {
for (const auto &ompObject : ompObjectList.v) {
ResolveOmpObject(ompObject, ompFlag);
}
}
void OmpAttributeVisitor::ResolveOmpObject(
const parser::OmpObject &ompObject, Symbol::Flag ompFlag) {
common::visit(
common::visitors{
[&](const parser::Designator &designator) {
if (const auto *name{
semantics::getDesignatorNameIfDataRef(designator)}) {
if (auto *symbol{ResolveOmp(*name, ompFlag, currScope())}) {
auto checkExclusivelists =
[&](const Symbol *symbol1, Symbol::Flag firstOmpFlag,
Symbol *symbol2, Symbol::Flag secondOmpFlag) {
if ((symbol1->test(firstOmpFlag) &&
symbol2->test(secondOmpFlag)) ||
(symbol1->test(secondOmpFlag) &&
symbol2->test(firstOmpFlag))) {
context_.Say(designator.source,
"Variable '%s' may not "
"appear on both %s and %s "
"clauses on a %s construct"_err_en_US,
symbol2->name(),
const_cast<Symbol *>(symbol1)->OmpFlagToClauseName(
firstOmpFlag),
symbol2->OmpFlagToClauseName(secondOmpFlag),
parser::ToUpperCaseLetters(
llvm::omp::getOpenMPDirectiveName(
GetContext().directive)
.str()));
}
};
if (dataCopyingAttributeFlags.test(ompFlag)) {
CheckDataCopyingClause(*name, *symbol, ompFlag);
} else {
AddToContextObjectWithDSA(*symbol, ompFlag);
if (dataSharingAttributeFlags.test(ompFlag)) {
CheckMultipleAppearances(*name, *symbol, ompFlag);
}
if (privateDataSharingAttributeFlags.test(ompFlag)) {
CheckObjectInNamelist(*name, *symbol, ompFlag);
}
if (ompFlag == Symbol::Flag::OmpAllocate) {
AddAllocateName(name);
}
}
if (ompFlag == Symbol::Flag::OmpDeclarativeAllocateDirective &&
IsAllocatable(*symbol) &&
!IsNestedInDirective(llvm::omp::Directive::OMPD_allocate)) {
context_.Say(designator.source,
"List items specified in the ALLOCATE directive must not "
"have the ALLOCATABLE attribute unless the directive is "
"associated with an ALLOCATE statement"_err_en_US);
}
if ((ompFlag == Symbol::Flag::OmpDeclarativeAllocateDirective ||
ompFlag ==
Symbol::Flag::OmpExecutableAllocateDirective) &&
ResolveOmpObjectScope(name) == nullptr) {
context_.Say(designator.source, // 2.15.3
"List items must be declared in the same scoping unit "
"in which the %s directive appears"_err_en_US,
parser::ToUpperCaseLetters(
llvm::omp::getOpenMPDirectiveName(
GetContext().directive)
.str()));
}
if (GetContext().directive ==
llvm::omp::Directive::OMPD_target_data) {
checkExclusivelists(symbol, Symbol::Flag::OmpUseDevicePtr,
symbol, Symbol::Flag::OmpUseDeviceAddr);
}
if (llvm::omp::allDistributeSet.test(GetContext().directive)) {
checkExclusivelists(symbol, Symbol::Flag::OmpFirstPrivate,
symbol, Symbol::Flag::OmpLastPrivate);
}
if (llvm::omp::allTargetSet.test(GetContext().directive)) {
checkExclusivelists(symbol, Symbol::Flag::OmpIsDevicePtr,
symbol, Symbol::Flag::OmpHasDeviceAddr);
const auto *hostAssocSym{symbol};
if (!(symbol->test(Symbol::Flag::OmpIsDevicePtr) ||
symbol->test(Symbol::Flag::OmpHasDeviceAddr))) {
if (const auto *details{
symbol->detailsIf<HostAssocDetails>()}) {
hostAssocSym = &details->symbol();
}
}
Symbol::Flag dataMappingAttributeFlags[] = {
Symbol::Flag::OmpMapTo, Symbol::Flag::OmpMapFrom,
Symbol::Flag::OmpMapToFrom, Symbol::Flag::OmpMapAlloc,
Symbol::Flag::OmpMapRelease, Symbol::Flag::OmpMapDelete,
Symbol::Flag::OmpIsDevicePtr,
Symbol::Flag::OmpHasDeviceAddr};
Symbol::Flag dataSharingAttributeFlags[] = {
Symbol::Flag::OmpPrivate, Symbol::Flag::OmpFirstPrivate,
Symbol::Flag::OmpLastPrivate, Symbol::Flag::OmpShared,
Symbol::Flag::OmpLinear};
for (Symbol::Flag ompFlag1 : dataMappingAttributeFlags) {
for (Symbol::Flag ompFlag2 : dataSharingAttributeFlags) {
checkExclusivelists(
hostAssocSym, ompFlag1, symbol, ompFlag2);
}
}
}
}
} else {
// Array sections to be changed to substrings as needed
if (AnalyzeExpr(context_, designator)) {
if (std::holds_alternative<parser::Substring>(designator.u)) {
context_.Say(designator.source,
"Substrings are not allowed on OpenMP "
"directives or clauses"_err_en_US);
}
}
// other checks, more TBD
}
},
[&](const parser::Name &name) { // common block
if (auto *symbol{ResolveOmpCommonBlockName(&name)}) {
if (!dataCopyingAttributeFlags.test(ompFlag)) {
CheckMultipleAppearances(
name, *symbol, Symbol::Flag::OmpCommonBlock);
}
// 2.15.3 When a named common block appears in a list, it has the
// same meaning as if every explicit member of the common block
// appeared in the list
auto &details{symbol->get<CommonBlockDetails>()};
unsigned index{0};
for (auto &object : details.objects()) {
if (auto *resolvedObject{
ResolveOmp(*object, ompFlag, currScope())}) {
if (dataCopyingAttributeFlags.test(ompFlag)) {
CheckDataCopyingClause(name, *resolvedObject, ompFlag);
} else {
AddToContextObjectWithDSA(*resolvedObject, ompFlag);
}
details.replace_object(*resolvedObject, index);
}
index++;
}
} else {
context_.Say(name.source, // 2.15.3
"COMMON block must be declared in the same scoping unit "
"in which the OpenMP directive or clause appears"_err_en_US);
}
},
},
ompObject.u);
}
Symbol *OmpAttributeVisitor::ResolveOmp(
const parser::Name &name, Symbol::Flag ompFlag, Scope &scope) {
if (ompFlagsRequireNewSymbol.test(ompFlag)) {
return DeclarePrivateAccessEntity(name, ompFlag, scope);
} else {
return DeclareOrMarkOtherAccessEntity(name, ompFlag);
}
}
Symbol *OmpAttributeVisitor::ResolveOmp(
Symbol &symbol, Symbol::Flag ompFlag, Scope &scope) {
if (ompFlagsRequireNewSymbol.test(ompFlag)) {
return DeclarePrivateAccessEntity(symbol, ompFlag, scope);
} else {
return DeclareOrMarkOtherAccessEntity(symbol, ompFlag);
}
}
Symbol *OmpAttributeVisitor::DeclareOrMarkOtherAccessEntity(
const parser::Name &name, Symbol::Flag ompFlag) {
Symbol *prev{currScope().FindSymbol(name.source)};
if (!name.symbol || !prev) {
return nullptr;
} else if (prev != name.symbol) {
name.symbol = prev;
}
return DeclareOrMarkOtherAccessEntity(*prev, ompFlag);
}
Symbol *OmpAttributeVisitor::DeclareOrMarkOtherAccessEntity(
Symbol &object, Symbol::Flag ompFlag) {
if (ompFlagsRequireMark.test(ompFlag)) {
object.set(ompFlag);
}
return &object;
}
static bool WithMultipleAppearancesOmpException(
const Symbol &symbol, Symbol::Flag flag) {
return (flag == Symbol::Flag::OmpFirstPrivate &&
symbol.test(Symbol::Flag::OmpLastPrivate)) ||
(flag == Symbol::Flag::OmpLastPrivate &&
symbol.test(Symbol::Flag::OmpFirstPrivate));
}
void OmpAttributeVisitor::CheckMultipleAppearances(
const parser::Name &name, const Symbol &symbol, Symbol::Flag ompFlag) {
const auto *target{&symbol};
if (ompFlagsRequireNewSymbol.test(ompFlag)) {
if (const auto *details{symbol.detailsIf<HostAssocDetails>()}) {
target = &details->symbol();
}
}
if (HasDataSharingAttributeObject(*target) &&
!WithMultipleAppearancesOmpException(symbol, ompFlag)) {
context_.Say(name.source,
"'%s' appears in more than one data-sharing clause "
"on the same OpenMP directive"_err_en_US,
name.ToString());
} else {
AddDataSharingAttributeObject(*target);
if (privateDataSharingAttributeFlags.test(ompFlag)) {
AddPrivateDataSharingAttributeObjects(*target);
}
}
}
void ResolveAccParts(SemanticsContext &context, const parser::ProgramUnit &node,
Scope *topScope) {
if (context.IsEnabled(common::LanguageFeature::OpenACC)) {
AccAttributeVisitor{context, topScope}.Walk(node);
}
}
void ResolveOmpParts(
SemanticsContext &context, const parser::ProgramUnit &node) {
if (context.IsEnabled(common::LanguageFeature::OpenMP)) {
OmpAttributeVisitor{context}.Walk(node);
if (!context.AnyFatalError()) {
// The data-sharing attribute of the loop iteration variable for a
// sequential loop (2.15.1.1) can only be determined when visiting
// the corresponding DoConstruct, a second walk is to adjust the
// symbols for all the data-refs of that loop iteration variable
// prior to the DoConstruct.
OmpAttributeVisitor{context}.Walk(node);
}
}
}
void ResolveOmpTopLevelParts(
SemanticsContext &context, const parser::Program &program) {
if (!context.IsEnabled(common::LanguageFeature::OpenMP)) {
return;
}
// Gather REQUIRES clauses from all non-module top-level program unit symbols,
// combine them together ensuring compatibility and apply them to all these
// program units. Modules are skipped because their REQUIRES clauses should be
// propagated via USE statements instead.
WithOmpDeclarative::RequiresFlags combinedFlags;
std::optional<common::OmpAtomicDefaultMemOrderType> combinedMemOrder;
// Function to go through non-module top level program units and extract
// REQUIRES information to be processed by a function-like argument.
auto processProgramUnits{[&](auto processFn) {
for (const parser::ProgramUnit &unit : program.v) {
if (!std::holds_alternative<common::Indirection<parser::Module>>(
unit.u) &&
!std::holds_alternative<common::Indirection<parser::Submodule>>(
unit.u) &&
!std::holds_alternative<
common::Indirection<parser::CompilerDirective>>(unit.u)) {
Symbol *symbol{common::visit(
[&context](auto &x) {
Scope *scope = GetScope(context, x.value());
return scope ? scope->symbol() : nullptr;
},
unit.u)};
// FIXME There is no symbol defined for MainProgram units in certain
// circumstances, so REQUIRES information has no place to be stored in
// these cases.
if (!symbol) {
continue;
}
common::visit(
[&](auto &details) {
if constexpr (std::is_convertible_v<decltype(&details),
WithOmpDeclarative *>) {
processFn(*symbol, details);
}
},
symbol->details());
}
}
}};
// Combine global REQUIRES information from all program units except modules
// and submodules.
processProgramUnits([&](Symbol &symbol, WithOmpDeclarative &details) {
if (const WithOmpDeclarative::RequiresFlags *
flags{details.ompRequires()}) {
combinedFlags |= *flags;
}
if (const common::OmpAtomicDefaultMemOrderType *
memOrder{details.ompAtomicDefaultMemOrder()}) {
if (combinedMemOrder && *combinedMemOrder != *memOrder) {
context.Say(symbol.scope()->sourceRange(),
"Conflicting '%s' REQUIRES clauses found in compilation "
"unit"_err_en_US,
parser::ToUpperCaseLetters(llvm::omp::getOpenMPClauseName(
llvm::omp::Clause::OMPC_atomic_default_mem_order)
.str()));
}
combinedMemOrder = *memOrder;
}
});
// Update all program units except modules and submodules with the combined
// global REQUIRES information.
processProgramUnits([&](Symbol &, WithOmpDeclarative &details) {
if (combinedFlags.any()) {
details.set_ompRequires(combinedFlags);
}
if (combinedMemOrder) {
details.set_ompAtomicDefaultMemOrder(*combinedMemOrder);
}
});
}
static bool IsSymbolInCommonBlock(const Symbol &symbol) {
// TODO Improve the performance of this predicate function.
// Going through all symbols sequentially, in all common blocks, can be
// slow when there are many symbols. A possible optimization is to add
// an OmpInCommonBlock flag to Symbol, to make it possible to quickly
// test if a given symbol is in a common block.
for (const auto &cb : symbol.owner().commonBlocks()) {
if (IsCommonBlockContaining(cb.second.get(), symbol)) {
return true;
}
}
return false;
}
static bool IsSymbolThreadprivate(const Symbol &symbol) {
if (const auto *details{symbol.detailsIf<HostAssocDetails>()}) {
return details->symbol().test(Symbol::Flag::OmpThreadprivate);
}
return symbol.test(Symbol::Flag::OmpThreadprivate);
}
static bool IsSymbolPrivate(const Symbol &symbol) {
if (symbol.test(Symbol::Flag::OmpPrivate) ||
symbol.test(Symbol::Flag::OmpFirstPrivate)) {
return true;
}
// A symbol that has not gone through constructs that may privatize the
// original symbol may be predetermined as private.
// (OMP 5.2 5.1.1 - Variables Referenced in a Construct)
if (symbol == symbol.GetUltimate()) {
switch (symbol.owner().kind()) {
case Scope::Kind::MainProgram:
case Scope::Kind::Subprogram:
case Scope::Kind::BlockConstruct:
return !symbol.attrs().test(Attr::SAVE) &&
!symbol.attrs().test(Attr::PARAMETER) && !IsAssumedShape(symbol) &&
!IsSymbolInCommonBlock(symbol);
default:
return false;
}
}
return false;
}
void OmpAttributeVisitor::CheckDataCopyingClause(
const parser::Name &name, const Symbol &symbol, Symbol::Flag ompFlag) {
if (ompFlag == Symbol::Flag::OmpCopyIn) {
// List of items/objects that can appear in a 'copyin' clause must be
// 'threadprivate'
if (!IsSymbolThreadprivate(symbol)) {
context_.Say(name.source,
"Non-THREADPRIVATE object '%s' in COPYIN clause"_err_en_US,
symbol.name());
}
} else if (ompFlag == Symbol::Flag::OmpCopyPrivate &&
GetContext().directive == llvm::omp::Directive::OMPD_single) {
// A list item that appears in a 'copyprivate' clause may not appear on a
// 'private' or 'firstprivate' clause on a single construct
if (IsObjectWithDSA(symbol) &&
(symbol.test(Symbol::Flag::OmpPrivate) ||
symbol.test(Symbol::Flag::OmpFirstPrivate))) {
context_.Say(name.source,
"COPYPRIVATE variable '%s' may not appear on a PRIVATE or "
"FIRSTPRIVATE clause on a SINGLE construct"_err_en_US,
symbol.name());
} else if (!IsSymbolThreadprivate(symbol) && !IsSymbolPrivate(symbol)) {
// List of items/objects that can appear in a 'copyprivate' clause must be
// either 'private' or 'threadprivate' in enclosing context.
context_.Say(name.source,
"COPYPRIVATE variable '%s' is not PRIVATE or THREADPRIVATE in "
"outer context"_err_en_US,
symbol.name());
}
}
}
void OmpAttributeVisitor::CheckObjectInNamelist(
const parser::Name &name, const Symbol &symbol, Symbol::Flag ompFlag) {
const auto &ultimateSymbol{symbol.GetUltimate()};
llvm::StringRef clauseName{"PRIVATE"};
if (ompFlag == Symbol::Flag::OmpFirstPrivate) {
clauseName = "FIRSTPRIVATE";
} else if (ompFlag == Symbol::Flag::OmpLastPrivate) {
clauseName = "LASTPRIVATE";
}
if (ultimateSymbol.test(Symbol::Flag::InNamelist)) {
context_.Say(name.source,
"Variable '%s' in NAMELIST cannot be in a %s clause"_err_en_US,
name.ToString(), clauseName.str());
}
}
void OmpAttributeVisitor::CheckSourceLabel(const parser::Label &label) {
// Get the context to check if the statement causing a jump to the 'label' is
// in an enclosing OpenMP construct
std::optional<DirContext> thisContext{GetContextIf()};
sourceLabels_.emplace(
label, std::make_pair(currentStatementSource_, thisContext));
// Check if the statement with 'label' to which a jump is being introduced
// has already been encountered
auto it{targetLabels_.find(label)};
if (it != targetLabels_.end()) {
// Check if both the statement with 'label' and the statement that causes a
// jump to the 'label' are in the same scope
CheckLabelContext(currentStatementSource_, it->second.first, thisContext,
it->second.second);
}
}
// Check for invalid branch into or out of OpenMP structured blocks
void OmpAttributeVisitor::CheckLabelContext(const parser::CharBlock source,
const parser::CharBlock target, std::optional<DirContext> sourceContext,
std::optional<DirContext> targetContext) {
if (targetContext &&
(!sourceContext ||
(sourceContext->scope != targetContext->scope &&
!DoesScopeContain(
&targetContext->scope, sourceContext->scope)))) {
context_
.Say(source, "invalid branch into an OpenMP structured block"_err_en_US)
.Attach(target, "In the enclosing %s directive branched into"_en_US,
parser::ToUpperCaseLetters(
llvm::omp::getOpenMPDirectiveName(targetContext->directive)
.str()));
}
if (sourceContext &&
(!targetContext ||
(sourceContext->scope != targetContext->scope &&
!DoesScopeContain(
&sourceContext->scope, targetContext->scope)))) {
context_
.Say(source,
"invalid branch leaving an OpenMP structured block"_err_en_US)
.Attach(target, "Outside the enclosing %s directive"_en_US,
parser::ToUpperCaseLetters(
llvm::omp::getOpenMPDirectiveName(sourceContext->directive)
.str()));
}
}
// Goes through the names in an OmpObjectList and checks if each name appears
// in the given allocate statement
void OmpAttributeVisitor::CheckAllNamesInAllocateStmt(
const parser::CharBlock &source, const parser::OmpObjectList &ompObjectList,
const parser::AllocateStmt &allocate) {
for (const auto &obj : ompObjectList.v) {
if (const auto *d{std::get_if<parser::Designator>(&obj.u)}) {
if (const auto *ref{std::get_if<parser::DataRef>(&d->u)}) {
if (const auto *n{std::get_if<parser::Name>(&ref->u)}) {
CheckNameInAllocateStmt(source, *n, allocate);
}
}
}
}
}
void OmpAttributeVisitor::CheckNameInAllocateStmt(
const parser::CharBlock &source, const parser::Name &name,
const parser::AllocateStmt &allocate) {
for (const auto &allocation :
std::get<std::list<parser::Allocation>>(allocate.t)) {
const auto &allocObj = std::get<parser::AllocateObject>(allocation.t);
if (const auto *n{std::get_if<parser::Name>(&allocObj.u)}) {
if (n->source == name.source) {
return;
}
}
}
context_.Say(source,
"Object '%s' in %s directive not "
"found in corresponding ALLOCATE statement"_err_en_US,
name.ToString(),
parser::ToUpperCaseLetters(
llvm::omp::getOpenMPDirectiveName(GetContext().directive).str()));
}
void OmpAttributeVisitor::AddOmpRequiresToScope(Scope &scope,
WithOmpDeclarative::RequiresFlags flags,
std::optional<common::OmpAtomicDefaultMemOrderType> memOrder) {
Scope *scopeIter = &scope;
do {
if (Symbol * symbol{scopeIter->symbol()}) {
common::visit(
[&](auto &details) {
// Store clauses information into the symbol for the parent and
// enclosing modules, programs, functions and subroutines.
if constexpr (std::is_convertible_v<decltype(&details),
WithOmpDeclarative *>) {
if (flags.any()) {
if (const WithOmpDeclarative::RequiresFlags *
otherFlags{details.ompRequires()}) {
flags |= *otherFlags;
}
details.set_ompRequires(flags);
}
if (memOrder) {
if (details.has_ompAtomicDefaultMemOrder() &&
*details.ompAtomicDefaultMemOrder() != *memOrder) {
context_.Say(scopeIter->sourceRange(),
"Conflicting '%s' REQUIRES clauses found in compilation "
"unit"_err_en_US,
parser::ToUpperCaseLetters(llvm::omp::getOpenMPClauseName(
llvm::omp::Clause::OMPC_atomic_default_mem_order)
.str()));
}
details.set_ompAtomicDefaultMemOrder(*memOrder);
}
}
},
symbol->details());
}
scopeIter = &scopeIter->parent();
} while (!scopeIter->IsGlobal());
}
void OmpAttributeVisitor::IssueNonConformanceWarning(
llvm::omp::Directive D, parser::CharBlock source) {
std::string warnStr = "";
std::string dirName = llvm::omp::getOpenMPDirectiveName(D).str();
switch (D) {
case llvm::omp::OMPD_master:
warnStr = "OpenMP directive '" + dirName +
"' has been deprecated, please use 'masked' instead.";
break;
case llvm::omp::OMPD_target_loop:
default:
warnStr = "OpenMP directive '" + dirName + "' has been deprecated.";
}
if (context_.ShouldWarn(common::UsageWarning::OpenMPUsage)) {
context_.Say(source, "%s"_warn_en_US, warnStr);
}
}
} // namespace Fortran::semantics