llvm-project/flang/lib/Frontend/FrontendActions.cpp
Andrzej Warzynski 38101b4e95 [flang][driver] Add support for -S and implement -c/-emit-obj
This patch adds support for:
  * `-S` in Flang's compiler and frontend drivers,
and implements:
  * `-emit-obj` in Flang's frontend driver and `-c` in Flang's compiler
    driver (this is consistent with Clang).
(these options were already available before, but only as placeholders).
The semantics of these options in Clang and Flang are identical.

The `EmitObjAction` frontend action is renamed as `BackendAction`. This
new name more accurately reflects the fact that this action will
primarily run the code-gen/backend pipeline in LLVM. It also makes more
sense as an action implementing both `-emit-obj` and `-S` (originally,
it was just `-emit-obj`).

`tripleName` from FirContext.cpp is deleted and, when a target triple is
required, `mlir::LLVM::LLVMDialect::getTargetTripleAttrName()` is used
instead. In practice, this means that `fir.triple` is replaced with
`llvm.target_triple`. The former was effectively ignored. The latter is
used when lowering from the LLVM dialect in MLIR to LLVM IR (i.e. it's
embedded in the generated LLVM IR module). The driver can then re-use
it when configuring the backend. With this change, the LLVM IR files
generated by e.g. `tco` will from now on contain the correct target
triple.

The code-gen.f90 test is replaced with code-gen-x86.f90 and
code-gen-aarch64.f90. With 2 seperate files we can verify that
`--target` is correctly taken into account. LIT configuration is updated
to enable e.g.:
```
! REQUIRES: aarch64-registered-target
```

Differential Revision: https://reviews.llvm.org/D120568
2022-03-09 15:48:09 +00:00

607 lines
20 KiB
C++

//===--- FrontendActions.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Frontend/FrontendActions.h"
#include "flang/Common/default-kinds.h"
#include "flang/Frontend/CompilerInstance.h"
#include "flang/Frontend/FrontendOptions.h"
#include "flang/Frontend/PreprocessorOptions.h"
#include "flang/Lower/Bridge.h"
#include "flang/Lower/PFTBuilder.h"
#include "flang/Lower/Support/Verifier.h"
#include "flang/Optimizer/Support/FIRContext.h"
#include "flang/Optimizer/Support/InitFIR.h"
#include "flang/Optimizer/Support/KindMapping.h"
#include "flang/Optimizer/Support/Utils.h"
#include "flang/Parser/dump-parse-tree.h"
#include "flang/Parser/parsing.h"
#include "flang/Parser/provenance.h"
#include "flang/Parser/source.h"
#include "flang/Parser/unparse.h"
#include "flang/Semantics/runtime-type-info.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/unparse-with-symbols.h"
#include "mlir/IR/Dialect.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetMachine.h"
#include <clang/Basic/Diagnostic.h>
#include <memory>
using namespace Fortran::frontend;
//===----------------------------------------------------------------------===//
// Custom BeginSourceFileAction
//===----------------------------------------------------------------------===//
bool PrescanAction::BeginSourceFileAction() { return RunPrescan(); }
bool PrescanAndParseAction::BeginSourceFileAction() {
return RunPrescan() && RunParse();
}
bool PrescanAndSemaAction::BeginSourceFileAction() {
return RunPrescan() && RunParse() && RunSemanticChecks() &&
GenerateRtTypeTables();
}
bool PrescanAndSemaDebugAction::BeginSourceFileAction() {
// This is a "debug" action for development purposes. To facilitate this, the
// semantic checks are made to succeed unconditionally to prevent this action
// from exiting early (i.e. in the presence of semantic errors). We should
// never do this in actions intended for end-users or otherwise regular
// compiler workflows!
return RunPrescan() && RunParse() && (RunSemanticChecks() || true) &&
(GenerateRtTypeTables() || true);
}
bool CodeGenAction::BeginSourceFileAction() {
bool res = RunPrescan() && RunParse() && RunSemanticChecks();
if (!res)
return res;
CompilerInstance &ci = this->instance();
// Load the MLIR dialects required by Flang
mlir::DialectRegistry registry;
mlirCtx = std::make_unique<mlir::MLIRContext>(registry);
fir::support::registerNonCodegenDialects(registry);
fir::support::loadNonCodegenDialects(*mlirCtx);
// Create a LoweringBridge
const common::IntrinsicTypeDefaultKinds &defKinds =
ci.invocation().semanticsContext().defaultKinds();
fir::KindMapping kindMap(mlirCtx.get(),
llvm::ArrayRef<fir::KindTy>{fir::fromDefaultKinds(defKinds)});
lower::LoweringBridge lb = Fortran::lower::LoweringBridge::create(*mlirCtx,
defKinds, ci.invocation().semanticsContext().intrinsics(),
ci.parsing().allCooked(), ci.invocation().targetOpts().triple, kindMap);
// Create a parse tree and lower it to FIR
Fortran::parser::Program &parseTree{*ci.parsing().parseTree()};
lb.lower(parseTree, ci.invocation().semanticsContext());
mlirModule = std::make_unique<mlir::ModuleOp>(lb.getModule());
// Run the default passes.
mlir::PassManager pm(mlirCtx.get(), mlir::OpPassManager::Nesting::Implicit);
pm.enableVerifier(/*verifyPasses=*/true);
pm.addPass(std::make_unique<Fortran::lower::VerifierPass>());
if (mlir::failed(pm.run(*mlirModule))) {
unsigned diagID =
ci.diagnostics().getCustomDiagID(clang::DiagnosticsEngine::Error,
"verification of lowering to FIR failed");
ci.diagnostics().Report(diagID);
return false;
}
return true;
}
//===----------------------------------------------------------------------===//
// Custom ExecuteAction
//===----------------------------------------------------------------------===//
void InputOutputTestAction::ExecuteAction() {
CompilerInstance &ci = instance();
// Create a stream for errors
std::string buf;
llvm::raw_string_ostream error_stream{buf};
// Read the input file
Fortran::parser::AllSources &allSources{ci.allSources()};
std::string path{GetCurrentFileOrBufferName()};
const Fortran::parser::SourceFile *sf;
if (path == "-")
sf = allSources.ReadStandardInput(error_stream);
else
sf = allSources.Open(path, error_stream, std::optional<std::string>{"."s});
llvm::ArrayRef<char> fileContent = sf->content();
// Output file descriptor to receive the contents of the input file.
std::unique_ptr<llvm::raw_ostream> os;
// Copy the contents from the input file to the output file
if (!ci.IsOutputStreamNull()) {
// An output stream (outputStream_) was set earlier
ci.WriteOutputStream(fileContent.data());
} else {
// No pre-set output stream - create an output file
os = ci.CreateDefaultOutputFile(
/*binary=*/true, GetCurrentFileOrBufferName(), "txt");
if (!os)
return;
(*os) << fileContent.data();
}
}
void PrintPreprocessedAction::ExecuteAction() {
std::string buf;
llvm::raw_string_ostream outForPP{buf};
// Format or dump the prescanner's output
CompilerInstance &ci = this->instance();
if (ci.invocation().preprocessorOpts().noReformat) {
ci.parsing().DumpCookedChars(outForPP);
} else {
ci.parsing().EmitPreprocessedSource(
outForPP, !ci.invocation().preprocessorOpts().noLineDirectives);
}
// Print diagnostics from the prescanner
ci.parsing().messages().Emit(llvm::errs(), ci.allCookedSources());
// If a pre-defined output stream exists, dump the preprocessed content there
if (!ci.IsOutputStreamNull()) {
// Send the output to the pre-defined output buffer.
ci.WriteOutputStream(outForPP.str());
return;
}
// Create a file and save the preprocessed output there
std::unique_ptr<llvm::raw_pwrite_stream> os{ci.CreateDefaultOutputFile(
/*Binary=*/true, /*InFile=*/GetCurrentFileOrBufferName())};
if (!os) {
return;
}
(*os) << outForPP.str();
}
void DebugDumpProvenanceAction::ExecuteAction() {
this->instance().parsing().DumpProvenance(llvm::outs());
}
void ParseSyntaxOnlyAction::ExecuteAction() {
}
void DebugUnparseNoSemaAction::ExecuteAction() {
auto &invoc = this->instance().invocation();
auto &parseTree{instance().parsing().parseTree()};
// TODO: Options should come from CompilerInvocation
Unparse(llvm::outs(), *parseTree,
/*encoding=*/Fortran::parser::Encoding::UTF_8,
/*capitalizeKeywords=*/true, /*backslashEscapes=*/false,
/*preStatement=*/nullptr,
invoc.useAnalyzedObjectsForUnparse() ? &invoc.asFortran() : nullptr);
}
void DebugUnparseAction::ExecuteAction() {
auto &invoc = this->instance().invocation();
auto &parseTree{instance().parsing().parseTree()};
CompilerInstance &ci = this->instance();
auto os{ci.CreateDefaultOutputFile(
/*Binary=*/false, /*InFile=*/GetCurrentFileOrBufferName())};
// TODO: Options should come from CompilerInvocation
Unparse(*os, *parseTree,
/*encoding=*/Fortran::parser::Encoding::UTF_8,
/*capitalizeKeywords=*/true, /*backslashEscapes=*/false,
/*preStatement=*/nullptr,
invoc.useAnalyzedObjectsForUnparse() ? &invoc.asFortran() : nullptr);
// Report fatal semantic errors
reportFatalSemanticErrors();
}
void DebugUnparseWithSymbolsAction::ExecuteAction() {
auto &parseTree{*instance().parsing().parseTree()};
Fortran::semantics::UnparseWithSymbols(
llvm::outs(), parseTree, /*encoding=*/Fortran::parser::Encoding::UTF_8);
// Report fatal semantic errors
reportFatalSemanticErrors();
}
void DebugDumpSymbolsAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
if (!ci.getRtTyTables().schemata) {
unsigned DiagID =
ci.diagnostics().getCustomDiagID(clang::DiagnosticsEngine::Error,
"could not find module file for __fortran_type_info");
ci.diagnostics().Report(DiagID);
llvm::errs() << "\n";
return;
}
// Dump symbols
ci.semantics().DumpSymbols(llvm::outs());
}
void DebugDumpAllAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
// Dump parse tree
auto &parseTree{instance().parsing().parseTree()};
llvm::outs() << "========================";
llvm::outs() << " Flang: parse tree dump ";
llvm::outs() << "========================\n";
Fortran::parser::DumpTree(
llvm::outs(), parseTree, &ci.invocation().asFortran());
if (!ci.getRtTyTables().schemata) {
unsigned DiagID =
ci.diagnostics().getCustomDiagID(clang::DiagnosticsEngine::Error,
"could not find module file for __fortran_type_info");
ci.diagnostics().Report(DiagID);
llvm::errs() << "\n";
return;
}
// Dump symbols
llvm::outs() << "=====================";
llvm::outs() << " Flang: symbols dump ";
llvm::outs() << "=====================\n";
ci.semantics().DumpSymbols(llvm::outs());
}
void DebugDumpParseTreeNoSemaAction::ExecuteAction() {
auto &parseTree{instance().parsing().parseTree()};
// Dump parse tree
Fortran::parser::DumpTree(
llvm::outs(), parseTree, &this->instance().invocation().asFortran());
}
void DebugDumpParseTreeAction::ExecuteAction() {
auto &parseTree{instance().parsing().parseTree()};
// Dump parse tree
Fortran::parser::DumpTree(
llvm::outs(), parseTree, &this->instance().invocation().asFortran());
// Report fatal semantic errors
reportFatalSemanticErrors();
}
void DebugMeasureParseTreeAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
// Parse. In case of failure, report and return.
ci.parsing().Parse(llvm::outs());
if (!ci.parsing().messages().empty() &&
(ci.invocation().warnAsErr() ||
ci.parsing().messages().AnyFatalError())) {
unsigned diagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Could not parse %0");
ci.diagnostics().Report(diagID) << GetCurrentFileOrBufferName();
ci.parsing().messages().Emit(
llvm::errs(), this->instance().allCookedSources());
return;
}
// Report the diagnostics from parsing
ci.parsing().messages().Emit(llvm::errs(), ci.allCookedSources());
auto &parseTree{*ci.parsing().parseTree()};
// Measure the parse tree
MeasurementVisitor visitor;
Fortran::parser::Walk(parseTree, visitor);
llvm::outs() << "Parse tree comprises " << visitor.objects
<< " objects and occupies " << visitor.bytes
<< " total bytes.\n";
}
void DebugPreFIRTreeAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
// Report and exit if fatal semantic errors are present
if (reportFatalSemanticErrors()) {
return;
}
auto &parseTree{*ci.parsing().parseTree()};
// Dump pre-FIR tree
if (auto ast{Fortran::lower::createPFT(
parseTree, ci.invocation().semanticsContext())}) {
Fortran::lower::dumpPFT(llvm::outs(), *ast);
} else {
unsigned diagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Pre FIR Tree is NULL.");
ci.diagnostics().Report(diagID);
}
}
void DebugDumpParsingLogAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
ci.parsing().Parse(llvm::errs());
ci.parsing().DumpParsingLog(llvm::outs());
}
void GetDefinitionAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
// Report and exit if fatal semantic errors are present
if (reportFatalSemanticErrors()) {
return;
}
parser::AllCookedSources &cs = ci.allCookedSources();
unsigned diagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Symbol not found");
auto gdv = ci.invocation().frontendOpts().getDefVals;
auto charBlock{cs.GetCharBlockFromLineAndColumns(
gdv.line, gdv.startColumn, gdv.endColumn)};
if (!charBlock) {
ci.diagnostics().Report(diagID);
return;
}
llvm::outs() << "String range: >" << charBlock->ToString() << "<\n";
auto *symbol{ci.invocation()
.semanticsContext()
.FindScope(*charBlock)
.FindSymbol(*charBlock)};
if (!symbol) {
ci.diagnostics().Report(diagID);
return;
}
llvm::outs() << "Found symbol name: " << symbol->name().ToString() << "\n";
auto sourceInfo{cs.GetSourcePositionRange(symbol->name())};
if (!sourceInfo) {
llvm_unreachable(
"Failed to obtain SourcePosition."
"TODO: Please, write a test and replace this with a diagnostic!");
return;
}
llvm::outs() << "Found symbol name: " << symbol->name().ToString() << "\n";
llvm::outs() << symbol->name().ToString() << ": "
<< sourceInfo->first.file.path() << ", "
<< sourceInfo->first.line << ", " << sourceInfo->first.column
<< "-" << sourceInfo->second.column << "\n";
}
void GetSymbolsSourcesAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
// Report and exit if fatal semantic errors are present
if (reportFatalSemanticErrors()) {
return;
}
ci.semantics().DumpSymbolsSources(llvm::outs());
}
#include "flang/Tools/CLOptions.inc"
// Lower the previously generated MLIR module into an LLVM IR module
void CodeGenAction::GenerateLLVMIR() {
assert(mlirModule && "The MLIR module has not been generated yet.");
CompilerInstance &ci = this->instance();
fir::support::loadDialects(*mlirCtx);
fir::support::registerLLVMTranslation(*mlirCtx);
// Set-up the MLIR pass manager
mlir::PassManager pm(mlirCtx.get(), mlir::OpPassManager::Nesting::Implicit);
pm.addPass(std::make_unique<Fortran::lower::VerifierPass>());
pm.enableVerifier(/*verifyPasses=*/true);
// Create the pass pipeline
fir::createMLIRToLLVMPassPipeline(pm);
// Run the pass manager
if (!mlir::succeeded(pm.run(*mlirModule))) {
unsigned diagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Lowering to LLVM IR failed");
ci.diagnostics().Report(diagID);
}
// Translate to LLVM IR
llvm::Optional<llvm::StringRef> moduleName = mlirModule->getName();
llvmCtx = std::make_unique<llvm::LLVMContext>();
llvmModule = mlir::translateModuleToLLVMIR(
*mlirModule, *llvmCtx, moduleName ? *moduleName : "FIRModule");
if (!llvmModule) {
unsigned diagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "failed to create the LLVM module");
ci.diagnostics().Report(diagID);
return;
}
}
void EmitLLVMAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
GenerateLLVMIR();
// If set, use the predefined outupt stream to print the generated module.
if (!ci.IsOutputStreamNull()) {
llvmModule->print(
ci.GetOutputStream(), /*AssemblyAnnotationWriter=*/nullptr);
return;
}
// No predefined output stream was set. Create an output file and dump the
// generated module there.
std::unique_ptr<llvm::raw_ostream> os = ci.CreateDefaultOutputFile(
/*Binary=*/false, /*InFile=*/GetCurrentFileOrBufferName(), "ll");
if (!os) {
unsigned diagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "failed to create the output file");
ci.diagnostics().Report(diagID);
return;
}
llvmModule->print(*os, /*AssemblyAnnotationWriter=*/nullptr);
}
void EmitMLIRAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
// Print the output. If a pre-defined output stream exists, dump the MLIR
// content there.
if (!ci.IsOutputStreamNull()) {
mlirModule->print(ci.GetOutputStream());
return;
}
// ... otherwise, print to a file.
std::unique_ptr<llvm::raw_pwrite_stream> os{ci.CreateDefaultOutputFile(
/*Binary=*/true, /*InFile=*/GetCurrentFileOrBufferName(), "mlir")};
if (!os) {
unsigned diagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "failed to create the output file");
ci.diagnostics().Report(diagID);
return;
}
mlirModule->print(*os);
}
void BackendAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
// Generate an LLVM module if it's not already present (it will already be
// present if the input file is an LLVM IR/BC file).
if (!llvmModule)
GenerateLLVMIR();
// Create `Target`
std::string error;
const std::string &theTriple = llvmModule->getTargetTriple();
const llvm::Target *theTarget =
llvm::TargetRegistry::lookupTarget(theTriple, error);
// TODO: Make this a diagnostic once `flang-new` can consume LLVM IR files
// (in which users could use unsupported triples)
assert(theTarget && "Failed to create Target");
// Create `TargetMachine`
std::unique_ptr<llvm::TargetMachine> TM;
TM.reset(theTarget->createTargetMachine(theTriple, /*CPU=*/"",
/*Features=*/"", llvm::TargetOptions(), llvm::None));
assert(TM && "Failed to create TargetMachine");
llvmModule->setDataLayout(TM->createDataLayout());
// If the output stream is a file, generate it and define the corresponding
// output stream. If a pre-defined output stream is available, we will use
// that instead.
//
// NOTE: `os` is a smart pointer that will be destroyed at the end of this
// method. However, it won't be written to until `CodeGenPasses` is
// destroyed. By defining `os` before `CodeGenPasses`, we make sure that the
// output stream won't be destroyed before it is written to. This only
// applies when an output file is used (i.e. there is no pre-defined output
// stream).
// TODO: Revisit once the new PM is ready (i.e. when `CodeGenPasses` is
// updated to use it).
std::unique_ptr<llvm::raw_pwrite_stream> os;
if (ci.IsOutputStreamNull()) {
// Get the output buffer/file
switch (action) {
case BackendActionTy::Backend_EmitAssembly:
os = ci.CreateDefaultOutputFile(
/*Binary=*/false, /*InFile=*/GetCurrentFileOrBufferName(), "s");
break;
case BackendActionTy::Backend_EmitObj:
os = ci.CreateDefaultOutputFile(
/*Binary=*/true, /*InFile=*/GetCurrentFileOrBufferName(), "o");
break;
}
if (!os) {
unsigned diagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "failed to create the output file");
ci.diagnostics().Report(diagID);
return;
}
}
// Create an LLVM code-gen pass pipeline. Currently only the legacy pass
// manager is supported.
// TODO: Switch to the new PM once it's available in the backend.
llvm::legacy::PassManager CodeGenPasses;
CodeGenPasses.add(
createTargetTransformInfoWrapperPass(TM->getTargetIRAnalysis()));
llvm::Triple triple(theTriple);
std::unique_ptr<llvm::TargetLibraryInfoImpl> TLII =
std::make_unique<llvm::TargetLibraryInfoImpl>(triple);
assert(TLII && "Failed to create TargetLibraryInfo");
CodeGenPasses.add(new llvm::TargetLibraryInfoWrapperPass(*TLII));
llvm::CodeGenFileType cgft = (action == BackendActionTy::Backend_EmitAssembly)
? llvm::CodeGenFileType::CGFT_AssemblyFile
: llvm::CodeGenFileType::CGFT_ObjectFile;
if (TM->addPassesToEmitFile(CodeGenPasses,
ci.IsOutputStreamNull() ? *os : ci.GetOutputStream(), nullptr,
cgft)) {
unsigned diagID =
ci.diagnostics().getCustomDiagID(clang::DiagnosticsEngine::Error,
"emission of this file type is not supported");
ci.diagnostics().Report(diagID);
return;
}
// Run the code-gen passes
CodeGenPasses.run(*llvmModule);
}
void InitOnlyAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
unsigned DiagID =
ci.diagnostics().getCustomDiagID(clang::DiagnosticsEngine::Warning,
"Use `-init-only` for testing purposes only");
ci.diagnostics().Report(DiagID);
}
void PluginParseTreeAction::ExecuteAction() {}
void DebugDumpPFTAction::ExecuteAction() {
CompilerInstance &ci = this->instance();
if (auto ast = Fortran::lower::createPFT(
*ci.parsing().parseTree(), ci.semantics().context())) {
Fortran::lower::dumpPFT(llvm::outs(), *ast);
return;
}
unsigned DiagID = ci.diagnostics().getCustomDiagID(
clang::DiagnosticsEngine::Error, "Pre FIR Tree is NULL.");
ci.diagnostics().Report(DiagID);
}