mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-04 21:46:05 +00:00

Even with the `-u __safestack_init` link order fixed on Solaris, there are still several safestack test issues left: - While 540fd42c755f20f7b79c6c79493ec36d8cb9b3d3 enabled safestack on Solaris in the driver unconditionally, it ignored that Solaris also exists on SPARC and forgot to enable SPARC support for the runtime lib. This patch fixes that. - The tests fail to link with undefined references to `__sanitizer_internal_memset` etc in `safestack.cpp.o` and `interception_linux.cpp.o`. These are from indirectly including `sanitizer_redefine_builtins.h`. Instead of using the implementations from `sanitizer_common` as was done in [[safestack] Various Solaris fixes](https://github.com/llvm/llvm-project/pull/98469), this patch disables the interception as discussed in [Revert "[safestack] Various Solaris fixes"](https://github.com/llvm/llvm-project/pull/98541). A similar issue affects 32-bit Linux/sparc where compiling `safestack.cpp` with `-ftrivial-auto-var-init=pattern` causes the compiler to generate calls to `memset` to initialize a `pthread_attr_t` which is larger than can be handled inline. This is avoided by defining `SANITIZER_COMMON_NO_REDEFINE_BUILTINS` in `safestack.cpp` and also adding definitions of the interceptors that just forward to `libc` for the benefit of `interception_linux.cpp`. - The `pthread*.c` tests `FAIL` with ``` safestack CHECK failed: /vol/llvm/src/llvm-project/local/compiler-rt/lib/safestack/safestack.cpp:227 size ``` The problem is that `pthread_attr_init` initializes the `stacksize` attribute to 0, signifying the default. Unless explicitly overridded, it stays that way. I think this is allowed by XPG7. Since safestack cannot deal with this, I set `size` to the defaults documented in `pthread_create(3C)`. Unfortunately, there's no macro for those values outside of private `libc` headers. - The Solaris `syscall` interface isn't stable. This is not just a theoretical concern, but the syscalls have changed incompatibly several times in the past. Therefore this patch switches the implementations of `TgKill` (where `SYS_lwp_kill` doesn't exist on Solaris 11.4 anyway), `Mmap`, `Munmap`, and `Mprotect` to the same `_REAL*` solution already used in `sanitizer_solaris.cpp`. With those changes, safestack compiles and all tests `PASS`, so the tests are re-enabled for good. Tested on `amd64-pc-solaris2.11`, `sparcv9-sun-solaris2.11`, `x86_64-pc-linux-gnu`, and `sparc64-unknown-linux-gnu`.
347 lines
12 KiB
C++
347 lines
12 KiB
C++
//===-- safestack.cpp -----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the runtime support for the safe stack protection
|
|
// mechanism. The runtime manages allocation/deallocation of the unsafe stack
|
|
// for the main thread, as well as all pthreads that are created/destroyed
|
|
// during program execution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define SANITIZER_COMMON_NO_REDEFINE_BUILTINS
|
|
|
|
#include "safestack_platform.h"
|
|
#include "safestack_util.h"
|
|
#include "sanitizer_common/sanitizer_internal_defs.h"
|
|
|
|
#include <errno.h>
|
|
#include <string.h>
|
|
#include <sys/resource.h>
|
|
|
|
#include "interception/interception.h"
|
|
|
|
// interception.h drags in sanitizer_redefine_builtins.h, which in turn
|
|
// creates references to __sanitizer_internal_memcpy etc. The interceptors
|
|
// aren't needed here, so just forward to libc.
|
|
extern "C" {
|
|
SANITIZER_INTERFACE_ATTRIBUTE void *__sanitizer_internal_memcpy(void *dest,
|
|
const void *src,
|
|
size_t n) {
|
|
return memcpy(dest, src, n);
|
|
}
|
|
|
|
SANITIZER_INTERFACE_ATTRIBUTE void *__sanitizer_internal_memmove(
|
|
void *dest, const void *src, size_t n) {
|
|
return memmove(dest, src, n);
|
|
}
|
|
|
|
SANITIZER_INTERFACE_ATTRIBUTE void *__sanitizer_internal_memset(void *s, int c,
|
|
size_t n) {
|
|
return memset(s, c, n);
|
|
}
|
|
} // extern "C"
|
|
|
|
using namespace safestack;
|
|
|
|
// TODO: To make accessing the unsafe stack pointer faster, we plan to
|
|
// eventually store it directly in the thread control block data structure on
|
|
// platforms where this structure is pointed to by %fs or %gs. This is exactly
|
|
// the same mechanism as currently being used by the traditional stack
|
|
// protector pass to store the stack guard (see getStackCookieLocation()
|
|
// function above). Doing so requires changing the tcbhead_t struct in glibc
|
|
// on Linux and tcb struct in libc on FreeBSD.
|
|
//
|
|
// For now, store it in a thread-local variable.
|
|
extern "C" {
|
|
__attribute__((visibility(
|
|
"default"))) __thread void *__safestack_unsafe_stack_ptr = nullptr;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// TODO: The runtime library does not currently protect the safe stack beyond
|
|
// relying on the system-enforced ASLR. The protection of the (safe) stack can
|
|
// be provided by three alternative features:
|
|
//
|
|
// 1) Protection via hardware segmentation on x86-32 and some x86-64
|
|
// architectures: the (safe) stack segment (implicitly accessed via the %ss
|
|
// segment register) can be separated from the data segment (implicitly
|
|
// accessed via the %ds segment register). Dereferencing a pointer to the safe
|
|
// segment would result in a segmentation fault.
|
|
//
|
|
// 2) Protection via software fault isolation: memory writes that are not meant
|
|
// to access the safe stack can be prevented from doing so through runtime
|
|
// instrumentation. One way to do it is to allocate the safe stack(s) in the
|
|
// upper half of the userspace and bitmask the corresponding upper bit of the
|
|
// memory addresses of memory writes that are not meant to access the safe
|
|
// stack.
|
|
//
|
|
// 3) Protection via information hiding on 64 bit architectures: the location
|
|
// of the safe stack(s) can be randomized through secure mechanisms, and the
|
|
// leakage of the stack pointer can be prevented. Currently, libc can leak the
|
|
// stack pointer in several ways (e.g. in longjmp, signal handling, user-level
|
|
// context switching related functions, etc.). These can be fixed in libc and
|
|
// in other low-level libraries, by either eliminating the escaping/dumping of
|
|
// the stack pointer (i.e., %rsp) when that's possible, or by using
|
|
// encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret
|
|
// we control and protect better, as is already done for setjmp in glibc.)
|
|
// Furthermore, a static machine code level verifier can be ran after code
|
|
// generation to make sure that the stack pointer is never written to memory,
|
|
// or if it is, its written on the safe stack.
|
|
//
|
|
// Finally, while the Unsafe Stack pointer is currently stored in a thread
|
|
// local variable, with libc support it could be stored in the TCB (thread
|
|
// control block) as well, eliminating another level of indirection and making
|
|
// such accesses faster. Alternatively, dedicating a separate register for
|
|
// storing it would also be possible.
|
|
|
|
/// Minimum stack alignment for the unsafe stack.
|
|
const unsigned kStackAlign = 16;
|
|
|
|
/// Default size of the unsafe stack. This value is only used if the stack
|
|
/// size rlimit is set to infinity.
|
|
const unsigned kDefaultUnsafeStackSize = 0x2800000;
|
|
|
|
// Per-thread unsafe stack information. It's not frequently accessed, so there
|
|
// it can be kept out of the tcb in normal thread-local variables.
|
|
__thread void *unsafe_stack_start = nullptr;
|
|
__thread size_t unsafe_stack_size = 0;
|
|
__thread size_t unsafe_stack_guard = 0;
|
|
|
|
inline void *unsafe_stack_alloc(size_t size, size_t guard) {
|
|
SFS_CHECK(size + guard >= size);
|
|
void *addr = Mmap(nullptr, size + guard, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANON, -1, 0);
|
|
SFS_CHECK(MAP_FAILED != addr);
|
|
Mprotect(addr, guard, PROT_NONE);
|
|
return (char *)addr + guard;
|
|
}
|
|
|
|
inline void unsafe_stack_setup(void *start, size_t size, size_t guard) {
|
|
SFS_CHECK((char *)start + size >= (char *)start);
|
|
SFS_CHECK((char *)start + guard >= (char *)start);
|
|
void *stack_ptr = (char *)start + size;
|
|
SFS_CHECK((((size_t)stack_ptr) & (kStackAlign - 1)) == 0);
|
|
|
|
__safestack_unsafe_stack_ptr = stack_ptr;
|
|
unsafe_stack_start = start;
|
|
unsafe_stack_size = size;
|
|
unsafe_stack_guard = guard;
|
|
}
|
|
|
|
/// Thread data for the cleanup handler
|
|
pthread_key_t thread_cleanup_key;
|
|
|
|
/// Safe stack per-thread information passed to the thread_start function
|
|
struct tinfo {
|
|
void *(*start_routine)(void *);
|
|
void *start_routine_arg;
|
|
|
|
void *unsafe_stack_start;
|
|
size_t unsafe_stack_size;
|
|
size_t unsafe_stack_guard;
|
|
};
|
|
|
|
/// Wrap the thread function in order to deallocate the unsafe stack when the
|
|
/// thread terminates by returning from its main function.
|
|
void *thread_start(void *arg) {
|
|
struct tinfo *tinfo = (struct tinfo *)arg;
|
|
|
|
void *(*start_routine)(void *) = tinfo->start_routine;
|
|
void *start_routine_arg = tinfo->start_routine_arg;
|
|
|
|
// Setup the unsafe stack; this will destroy tinfo content
|
|
unsafe_stack_setup(tinfo->unsafe_stack_start, tinfo->unsafe_stack_size,
|
|
tinfo->unsafe_stack_guard);
|
|
|
|
// Make sure out thread-specific destructor will be called
|
|
pthread_setspecific(thread_cleanup_key, (void *)1);
|
|
|
|
return start_routine(start_routine_arg);
|
|
}
|
|
|
|
/// Linked list used to store exiting threads stack/thread information.
|
|
struct thread_stack_ll {
|
|
struct thread_stack_ll *next;
|
|
void *stack_base;
|
|
size_t size;
|
|
pid_t pid;
|
|
ThreadId tid;
|
|
};
|
|
|
|
/// Linked list of unsafe stacks for threads that are exiting. We delay
|
|
/// unmapping them until the thread exits.
|
|
thread_stack_ll *thread_stacks = nullptr;
|
|
pthread_mutex_t thread_stacks_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
/// Thread-specific data destructor. We want to free the unsafe stack only after
|
|
/// this thread is terminated. libc can call functions in safestack-instrumented
|
|
/// code (like free) after thread-specific data destructors have run.
|
|
void thread_cleanup_handler(void *_iter) {
|
|
SFS_CHECK(unsafe_stack_start != nullptr);
|
|
pthread_setspecific(thread_cleanup_key, NULL);
|
|
|
|
pthread_mutex_lock(&thread_stacks_mutex);
|
|
// Temporary list to hold the previous threads stacks so we don't hold the
|
|
// thread_stacks_mutex for long.
|
|
thread_stack_ll *temp_stacks = thread_stacks;
|
|
thread_stacks = nullptr;
|
|
pthread_mutex_unlock(&thread_stacks_mutex);
|
|
|
|
pid_t pid = getpid();
|
|
ThreadId tid = GetTid();
|
|
|
|
// Free stacks for dead threads
|
|
thread_stack_ll **stackp = &temp_stacks;
|
|
while (*stackp) {
|
|
thread_stack_ll *stack = *stackp;
|
|
if (stack->pid != pid ||
|
|
(-1 == TgKill(stack->pid, stack->tid, 0) && errno == ESRCH)) {
|
|
Munmap(stack->stack_base, stack->size);
|
|
*stackp = stack->next;
|
|
free(stack);
|
|
} else
|
|
stackp = &stack->next;
|
|
}
|
|
|
|
thread_stack_ll *cur_stack =
|
|
(thread_stack_ll *)malloc(sizeof(thread_stack_ll));
|
|
cur_stack->stack_base = (char *)unsafe_stack_start - unsafe_stack_guard;
|
|
cur_stack->size = unsafe_stack_size + unsafe_stack_guard;
|
|
cur_stack->pid = pid;
|
|
cur_stack->tid = tid;
|
|
|
|
pthread_mutex_lock(&thread_stacks_mutex);
|
|
// Merge thread_stacks with the current thread's stack and any remaining
|
|
// temp_stacks
|
|
*stackp = thread_stacks;
|
|
cur_stack->next = temp_stacks;
|
|
thread_stacks = cur_stack;
|
|
pthread_mutex_unlock(&thread_stacks_mutex);
|
|
|
|
unsafe_stack_start = nullptr;
|
|
}
|
|
|
|
void EnsureInterceptorsInitialized();
|
|
|
|
/// Intercept thread creation operation to allocate and setup the unsafe stack
|
|
INTERCEPTOR(int, pthread_create, pthread_t *thread,
|
|
const pthread_attr_t *attr,
|
|
void *(*start_routine)(void*), void *arg) {
|
|
EnsureInterceptorsInitialized();
|
|
size_t size = 0;
|
|
size_t guard = 0;
|
|
|
|
if (attr) {
|
|
pthread_attr_getstacksize(attr, &size);
|
|
pthread_attr_getguardsize(attr, &guard);
|
|
} else {
|
|
// get pthread default stack size
|
|
pthread_attr_t tmpattr;
|
|
pthread_attr_init(&tmpattr);
|
|
pthread_attr_getstacksize(&tmpattr, &size);
|
|
pthread_attr_getguardsize(&tmpattr, &guard);
|
|
pthread_attr_destroy(&tmpattr);
|
|
}
|
|
|
|
#if SANITIZER_SOLARIS
|
|
// Solaris pthread_attr_init initializes stacksize to 0 (the default), so
|
|
// hardcode the actual values as documented in pthread_create(3C).
|
|
if (size == 0)
|
|
# if defined(_LP64)
|
|
size = 2 * 1024 * 1024;
|
|
# else
|
|
size = 1024 * 1024;
|
|
# endif
|
|
#endif
|
|
|
|
SFS_CHECK(size);
|
|
size = RoundUpTo(size, kStackAlign);
|
|
|
|
void *addr = unsafe_stack_alloc(size, guard);
|
|
// Put tinfo at the end of the buffer. guard may be not page aligned.
|
|
// If that is so then some bytes after addr can be mprotected.
|
|
struct tinfo *tinfo =
|
|
(struct tinfo *)(((char *)addr) + size - sizeof(struct tinfo));
|
|
tinfo->start_routine = start_routine;
|
|
tinfo->start_routine_arg = arg;
|
|
tinfo->unsafe_stack_start = addr;
|
|
tinfo->unsafe_stack_size = size;
|
|
tinfo->unsafe_stack_guard = guard;
|
|
|
|
return REAL(pthread_create)(thread, attr, thread_start, tinfo);
|
|
}
|
|
|
|
pthread_mutex_t interceptor_init_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
bool interceptors_inited = false;
|
|
|
|
void EnsureInterceptorsInitialized() {
|
|
MutexLock lock(interceptor_init_mutex);
|
|
if (interceptors_inited)
|
|
return;
|
|
|
|
// Initialize pthread interceptors for thread allocation
|
|
INTERCEPT_FUNCTION(pthread_create);
|
|
|
|
interceptors_inited = true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
extern "C" __attribute__((visibility("default")))
|
|
#if !SANITIZER_CAN_USE_PREINIT_ARRAY
|
|
// On ELF platforms, the constructor is invoked using .preinit_array (see below)
|
|
__attribute__((constructor(0)))
|
|
#endif
|
|
void __safestack_init() {
|
|
// Determine the stack size for the main thread.
|
|
size_t size = kDefaultUnsafeStackSize;
|
|
size_t guard = 4096;
|
|
|
|
struct rlimit limit;
|
|
if (getrlimit(RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != RLIM_INFINITY)
|
|
size = limit.rlim_cur;
|
|
|
|
// Allocate unsafe stack for main thread
|
|
void *addr = unsafe_stack_alloc(size, guard);
|
|
unsafe_stack_setup(addr, size, guard);
|
|
|
|
// Setup the cleanup handler
|
|
pthread_key_create(&thread_cleanup_key, thread_cleanup_handler);
|
|
}
|
|
|
|
#if SANITIZER_CAN_USE_PREINIT_ARRAY
|
|
// On ELF platforms, run safestack initialization before any other constructors.
|
|
// On other platforms we use the constructor attribute to arrange to run our
|
|
// initialization early.
|
|
extern "C" {
|
|
__attribute__((section(".preinit_array"),
|
|
used)) void (*__safestack_preinit)(void) = __safestack_init;
|
|
}
|
|
#endif
|
|
|
|
extern "C"
|
|
__attribute__((visibility("default"))) void *__get_unsafe_stack_bottom() {
|
|
return unsafe_stack_start;
|
|
}
|
|
|
|
extern "C"
|
|
__attribute__((visibility("default"))) void *__get_unsafe_stack_top() {
|
|
return (char*)unsafe_stack_start + unsafe_stack_size;
|
|
}
|
|
|
|
extern "C"
|
|
__attribute__((visibility("default"))) void *__get_unsafe_stack_start() {
|
|
return unsafe_stack_start;
|
|
}
|
|
|
|
extern "C"
|
|
__attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() {
|
|
return __safestack_unsafe_stack_ptr;
|
|
}
|