llvm-project/clang/lib/CodeGen/CGCoroutine.cpp
Xun Li 5faba87938 Revert "[Coroutines] Set presplit attribute in Clang instead of CoroEarly pass"
This reverts commit fa6b54c44ab1d5f579304eadb7ac8bd7e72d0e77.
The commited patch broke mlir tests. It seems that mlir tests depend on coroutine function properties set in CoroEarly pass.
2021-04-18 17:22:28 -07:00

772 lines
28 KiB
C++

//===----- CGCoroutine.cpp - Emit LLVM Code for C++ coroutines ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with C++ code generation of coroutines.
//
//===----------------------------------------------------------------------===//
#include "CGCleanup.h"
#include "CodeGenFunction.h"
#include "llvm/ADT/ScopeExit.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtVisitor.h"
using namespace clang;
using namespace CodeGen;
using llvm::Value;
using llvm::BasicBlock;
namespace {
enum class AwaitKind { Init, Normal, Yield, Final };
static constexpr llvm::StringLiteral AwaitKindStr[] = {"init", "await", "yield",
"final"};
}
struct clang::CodeGen::CGCoroData {
// What is the current await expression kind and how many
// await/yield expressions were encountered so far.
// These are used to generate pretty labels for await expressions in LLVM IR.
AwaitKind CurrentAwaitKind = AwaitKind::Init;
unsigned AwaitNum = 0;
unsigned YieldNum = 0;
// How many co_return statements are in the coroutine. Used to decide whether
// we need to add co_return; equivalent at the end of the user authored body.
unsigned CoreturnCount = 0;
// A branch to this block is emitted when coroutine needs to suspend.
llvm::BasicBlock *SuspendBB = nullptr;
// The promise type's 'unhandled_exception' handler, if it defines one.
Stmt *ExceptionHandler = nullptr;
// A temporary i1 alloca that stores whether 'await_resume' threw an
// exception. If it did, 'true' is stored in this variable, and the coroutine
// body must be skipped. If the promise type does not define an exception
// handler, this is null.
llvm::Value *ResumeEHVar = nullptr;
// Stores the jump destination just before the coroutine memory is freed.
// This is the destination that every suspend point jumps to for the cleanup
// branch.
CodeGenFunction::JumpDest CleanupJD;
// Stores the jump destination just before the final suspend. The co_return
// statements jumps to this point after calling return_xxx promise member.
CodeGenFunction::JumpDest FinalJD;
// Stores the llvm.coro.id emitted in the function so that we can supply it
// as the first argument to coro.begin, coro.alloc and coro.free intrinsics.
// Note: llvm.coro.id returns a token that cannot be directly expressed in a
// builtin.
llvm::CallInst *CoroId = nullptr;
// Stores the llvm.coro.begin emitted in the function so that we can replace
// all coro.frame intrinsics with direct SSA value of coro.begin that returns
// the address of the coroutine frame of the current coroutine.
llvm::CallInst *CoroBegin = nullptr;
// Stores the last emitted coro.free for the deallocate expressions, we use it
// to wrap dealloc code with if(auto mem = coro.free) dealloc(mem).
llvm::CallInst *LastCoroFree = nullptr;
// If coro.id came from the builtin, remember the expression to give better
// diagnostic. If CoroIdExpr is nullptr, the coro.id was created by
// EmitCoroutineBody.
CallExpr const *CoroIdExpr = nullptr;
};
// Defining these here allows to keep CGCoroData private to this file.
clang::CodeGen::CodeGenFunction::CGCoroInfo::CGCoroInfo() {}
CodeGenFunction::CGCoroInfo::~CGCoroInfo() {}
static void createCoroData(CodeGenFunction &CGF,
CodeGenFunction::CGCoroInfo &CurCoro,
llvm::CallInst *CoroId,
CallExpr const *CoroIdExpr = nullptr) {
if (CurCoro.Data) {
if (CurCoro.Data->CoroIdExpr)
CGF.CGM.Error(CoroIdExpr->getBeginLoc(),
"only one __builtin_coro_id can be used in a function");
else if (CoroIdExpr)
CGF.CGM.Error(CoroIdExpr->getBeginLoc(),
"__builtin_coro_id shall not be used in a C++ coroutine");
else
llvm_unreachable("EmitCoroutineBodyStatement called twice?");
return;
}
CurCoro.Data = std::unique_ptr<CGCoroData>(new CGCoroData);
CurCoro.Data->CoroId = CoroId;
CurCoro.Data->CoroIdExpr = CoroIdExpr;
}
// Synthesize a pretty name for a suspend point.
static SmallString<32> buildSuspendPrefixStr(CGCoroData &Coro, AwaitKind Kind) {
unsigned No = 0;
switch (Kind) {
case AwaitKind::Init:
case AwaitKind::Final:
break;
case AwaitKind::Normal:
No = ++Coro.AwaitNum;
break;
case AwaitKind::Yield:
No = ++Coro.YieldNum;
break;
}
SmallString<32> Prefix(AwaitKindStr[static_cast<unsigned>(Kind)]);
if (No > 1) {
Twine(No).toVector(Prefix);
}
return Prefix;
}
static bool memberCallExpressionCanThrow(const Expr *E) {
if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
if (const auto *Proto =
CE->getMethodDecl()->getType()->getAs<FunctionProtoType>())
if (isNoexceptExceptionSpec(Proto->getExceptionSpecType()) &&
Proto->canThrow() == CT_Cannot)
return false;
return true;
}
// Emit suspend expression which roughly looks like:
//
// auto && x = CommonExpr();
// if (!x.await_ready()) {
// llvm_coro_save();
// x.await_suspend(...); (*)
// llvm_coro_suspend(); (**)
// }
// x.await_resume();
//
// where the result of the entire expression is the result of x.await_resume()
//
// (*) If x.await_suspend return type is bool, it allows to veto a suspend:
// if (x.await_suspend(...))
// llvm_coro_suspend();
//
// (**) llvm_coro_suspend() encodes three possible continuations as
// a switch instruction:
//
// %where-to = call i8 @llvm.coro.suspend(...)
// switch i8 %where-to, label %coro.ret [ ; jump to epilogue to suspend
// i8 0, label %yield.ready ; go here when resumed
// i8 1, label %yield.cleanup ; go here when destroyed
// ]
//
// See llvm's docs/Coroutines.rst for more details.
//
namespace {
struct LValueOrRValue {
LValue LV;
RValue RV;
};
}
static LValueOrRValue emitSuspendExpression(CodeGenFunction &CGF, CGCoroData &Coro,
CoroutineSuspendExpr const &S,
AwaitKind Kind, AggValueSlot aggSlot,
bool ignoreResult, bool forLValue) {
auto *E = S.getCommonExpr();
auto Binder =
CodeGenFunction::OpaqueValueMappingData::bind(CGF, S.getOpaqueValue(), E);
auto UnbindOnExit = llvm::make_scope_exit([&] { Binder.unbind(CGF); });
auto Prefix = buildSuspendPrefixStr(Coro, Kind);
BasicBlock *ReadyBlock = CGF.createBasicBlock(Prefix + Twine(".ready"));
BasicBlock *SuspendBlock = CGF.createBasicBlock(Prefix + Twine(".suspend"));
BasicBlock *CleanupBlock = CGF.createBasicBlock(Prefix + Twine(".cleanup"));
// If expression is ready, no need to suspend.
CGF.EmitBranchOnBoolExpr(S.getReadyExpr(), ReadyBlock, SuspendBlock, 0);
// Otherwise, emit suspend logic.
CGF.EmitBlock(SuspendBlock);
auto &Builder = CGF.Builder;
llvm::Function *CoroSave = CGF.CGM.getIntrinsic(llvm::Intrinsic::coro_save);
auto *NullPtr = llvm::ConstantPointerNull::get(CGF.CGM.Int8PtrTy);
auto *SaveCall = Builder.CreateCall(CoroSave, {NullPtr});
auto *SuspendRet = CGF.EmitScalarExpr(S.getSuspendExpr());
if (SuspendRet != nullptr && SuspendRet->getType()->isIntegerTy(1)) {
// Veto suspension if requested by bool returning await_suspend.
BasicBlock *RealSuspendBlock =
CGF.createBasicBlock(Prefix + Twine(".suspend.bool"));
CGF.Builder.CreateCondBr(SuspendRet, RealSuspendBlock, ReadyBlock);
CGF.EmitBlock(RealSuspendBlock);
}
// Emit the suspend point.
const bool IsFinalSuspend = (Kind == AwaitKind::Final);
llvm::Function *CoroSuspend =
CGF.CGM.getIntrinsic(llvm::Intrinsic::coro_suspend);
auto *SuspendResult = Builder.CreateCall(
CoroSuspend, {SaveCall, Builder.getInt1(IsFinalSuspend)});
// Create a switch capturing three possible continuations.
auto *Switch = Builder.CreateSwitch(SuspendResult, Coro.SuspendBB, 2);
Switch->addCase(Builder.getInt8(0), ReadyBlock);
Switch->addCase(Builder.getInt8(1), CleanupBlock);
// Emit cleanup for this suspend point.
CGF.EmitBlock(CleanupBlock);
CGF.EmitBranchThroughCleanup(Coro.CleanupJD);
// Emit await_resume expression.
CGF.EmitBlock(ReadyBlock);
// Exception handling requires additional IR. If the 'await_resume' function
// is marked as 'noexcept', we avoid generating this additional IR.
CXXTryStmt *TryStmt = nullptr;
if (Coro.ExceptionHandler && Kind == AwaitKind::Init &&
memberCallExpressionCanThrow(S.getResumeExpr())) {
Coro.ResumeEHVar =
CGF.CreateTempAlloca(Builder.getInt1Ty(), Prefix + Twine("resume.eh"));
Builder.CreateFlagStore(true, Coro.ResumeEHVar);
auto Loc = S.getResumeExpr()->getExprLoc();
auto *Catch = new (CGF.getContext())
CXXCatchStmt(Loc, /*exDecl=*/nullptr, Coro.ExceptionHandler);
auto *TryBody =
CompoundStmt::Create(CGF.getContext(), S.getResumeExpr(), Loc, Loc);
TryStmt = CXXTryStmt::Create(CGF.getContext(), Loc, TryBody, Catch);
CGF.EnterCXXTryStmt(*TryStmt);
}
LValueOrRValue Res;
if (forLValue)
Res.LV = CGF.EmitLValue(S.getResumeExpr());
else
Res.RV = CGF.EmitAnyExpr(S.getResumeExpr(), aggSlot, ignoreResult);
if (TryStmt) {
Builder.CreateFlagStore(false, Coro.ResumeEHVar);
CGF.ExitCXXTryStmt(*TryStmt);
}
return Res;
}
RValue CodeGenFunction::EmitCoawaitExpr(const CoawaitExpr &E,
AggValueSlot aggSlot,
bool ignoreResult) {
return emitSuspendExpression(*this, *CurCoro.Data, E,
CurCoro.Data->CurrentAwaitKind, aggSlot,
ignoreResult, /*forLValue*/false).RV;
}
RValue CodeGenFunction::EmitCoyieldExpr(const CoyieldExpr &E,
AggValueSlot aggSlot,
bool ignoreResult) {
return emitSuspendExpression(*this, *CurCoro.Data, E, AwaitKind::Yield,
aggSlot, ignoreResult, /*forLValue*/false).RV;
}
void CodeGenFunction::EmitCoreturnStmt(CoreturnStmt const &S) {
++CurCoro.Data->CoreturnCount;
const Expr *RV = S.getOperand();
if (RV && RV->getType()->isVoidType() && !isa<InitListExpr>(RV)) {
// Make sure to evaluate the non initlist expression of a co_return
// with a void expression for side effects.
RunCleanupsScope cleanupScope(*this);
EmitIgnoredExpr(RV);
}
EmitStmt(S.getPromiseCall());
EmitBranchThroughCleanup(CurCoro.Data->FinalJD);
}
#ifndef NDEBUG
static QualType getCoroutineSuspendExprReturnType(const ASTContext &Ctx,
const CoroutineSuspendExpr *E) {
const auto *RE = E->getResumeExpr();
// Is it possible for RE to be a CXXBindTemporaryExpr wrapping
// a MemberCallExpr?
assert(isa<CallExpr>(RE) && "unexpected suspend expression type");
return cast<CallExpr>(RE)->getCallReturnType(Ctx);
}
#endif
LValue
CodeGenFunction::EmitCoawaitLValue(const CoawaitExpr *E) {
assert(getCoroutineSuspendExprReturnType(getContext(), E)->isReferenceType() &&
"Can't have a scalar return unless the return type is a "
"reference type!");
return emitSuspendExpression(*this, *CurCoro.Data, *E,
CurCoro.Data->CurrentAwaitKind, AggValueSlot::ignored(),
/*ignoreResult*/false, /*forLValue*/true).LV;
}
LValue
CodeGenFunction::EmitCoyieldLValue(const CoyieldExpr *E) {
assert(getCoroutineSuspendExprReturnType(getContext(), E)->isReferenceType() &&
"Can't have a scalar return unless the return type is a "
"reference type!");
return emitSuspendExpression(*this, *CurCoro.Data, *E,
AwaitKind::Yield, AggValueSlot::ignored(),
/*ignoreResult*/false, /*forLValue*/true).LV;
}
// Hunts for the parameter reference in the parameter copy/move declaration.
namespace {
struct GetParamRef : public StmtVisitor<GetParamRef> {
public:
DeclRefExpr *Expr = nullptr;
GetParamRef() {}
void VisitDeclRefExpr(DeclRefExpr *E) {
assert(Expr == nullptr && "multilple declref in param move");
Expr = E;
}
void VisitStmt(Stmt *S) {
for (auto *C : S->children()) {
if (C)
Visit(C);
}
}
};
}
// This class replaces references to parameters to their copies by changing
// the addresses in CGF.LocalDeclMap and restoring back the original values in
// its destructor.
namespace {
struct ParamReferenceReplacerRAII {
CodeGenFunction::DeclMapTy SavedLocals;
CodeGenFunction::DeclMapTy& LocalDeclMap;
ParamReferenceReplacerRAII(CodeGenFunction::DeclMapTy &LocalDeclMap)
: LocalDeclMap(LocalDeclMap) {}
void addCopy(DeclStmt const *PM) {
// Figure out what param it refers to.
assert(PM->isSingleDecl());
VarDecl const*VD = static_cast<VarDecl const*>(PM->getSingleDecl());
Expr const *InitExpr = VD->getInit();
GetParamRef Visitor;
Visitor.Visit(const_cast<Expr*>(InitExpr));
assert(Visitor.Expr);
DeclRefExpr *DREOrig = Visitor.Expr;
auto *PD = DREOrig->getDecl();
auto it = LocalDeclMap.find(PD);
assert(it != LocalDeclMap.end() && "parameter is not found");
SavedLocals.insert({ PD, it->second });
auto copyIt = LocalDeclMap.find(VD);
assert(copyIt != LocalDeclMap.end() && "parameter copy is not found");
it->second = copyIt->getSecond();
}
~ParamReferenceReplacerRAII() {
for (auto&& SavedLocal : SavedLocals) {
LocalDeclMap.insert({SavedLocal.first, SavedLocal.second});
}
}
};
}
// For WinEH exception representation backend needs to know what funclet coro.end
// belongs to. That information is passed in a funclet bundle.
static SmallVector<llvm::OperandBundleDef, 1>
getBundlesForCoroEnd(CodeGenFunction &CGF) {
SmallVector<llvm::OperandBundleDef, 1> BundleList;
if (llvm::Instruction *EHPad = CGF.CurrentFuncletPad)
BundleList.emplace_back("funclet", EHPad);
return BundleList;
}
namespace {
// We will insert coro.end to cut any of the destructors for objects that
// do not need to be destroyed once the coroutine is resumed.
// See llvm/docs/Coroutines.rst for more details about coro.end.
struct CallCoroEnd final : public EHScopeStack::Cleanup {
void Emit(CodeGenFunction &CGF, Flags flags) override {
auto &CGM = CGF.CGM;
auto *NullPtr = llvm::ConstantPointerNull::get(CGF.Int8PtrTy);
llvm::Function *CoroEndFn = CGM.getIntrinsic(llvm::Intrinsic::coro_end);
// See if we have a funclet bundle to associate coro.end with. (WinEH)
auto Bundles = getBundlesForCoroEnd(CGF);
auto *CoroEnd = CGF.Builder.CreateCall(
CoroEndFn, {NullPtr, CGF.Builder.getTrue()}, Bundles);
if (Bundles.empty()) {
// Otherwise, (landingpad model), create a conditional branch that leads
// either to a cleanup block or a block with EH resume instruction.
auto *ResumeBB = CGF.getEHResumeBlock(/*isCleanup=*/true);
auto *CleanupContBB = CGF.createBasicBlock("cleanup.cont");
CGF.Builder.CreateCondBr(CoroEnd, ResumeBB, CleanupContBB);
CGF.EmitBlock(CleanupContBB);
}
}
};
}
namespace {
// Make sure to call coro.delete on scope exit.
struct CallCoroDelete final : public EHScopeStack::Cleanup {
Stmt *Deallocate;
// Emit "if (coro.free(CoroId, CoroBegin)) Deallocate;"
// Note: That deallocation will be emitted twice: once for a normal exit and
// once for exceptional exit. This usage is safe because Deallocate does not
// contain any declarations. The SubStmtBuilder::makeNewAndDeleteExpr()
// builds a single call to a deallocation function which is safe to emit
// multiple times.
void Emit(CodeGenFunction &CGF, Flags) override {
// Remember the current point, as we are going to emit deallocation code
// first to get to coro.free instruction that is an argument to a delete
// call.
BasicBlock *SaveInsertBlock = CGF.Builder.GetInsertBlock();
auto *FreeBB = CGF.createBasicBlock("coro.free");
CGF.EmitBlock(FreeBB);
CGF.EmitStmt(Deallocate);
auto *AfterFreeBB = CGF.createBasicBlock("after.coro.free");
CGF.EmitBlock(AfterFreeBB);
// We should have captured coro.free from the emission of deallocate.
auto *CoroFree = CGF.CurCoro.Data->LastCoroFree;
if (!CoroFree) {
CGF.CGM.Error(Deallocate->getBeginLoc(),
"Deallocation expressoin does not refer to coro.free");
return;
}
// Get back to the block we were originally and move coro.free there.
auto *InsertPt = SaveInsertBlock->getTerminator();
CoroFree->moveBefore(InsertPt);
CGF.Builder.SetInsertPoint(InsertPt);
// Add if (auto *mem = coro.free) Deallocate;
auto *NullPtr = llvm::ConstantPointerNull::get(CGF.Int8PtrTy);
auto *Cond = CGF.Builder.CreateICmpNE(CoroFree, NullPtr);
CGF.Builder.CreateCondBr(Cond, FreeBB, AfterFreeBB);
// No longer need old terminator.
InsertPt->eraseFromParent();
CGF.Builder.SetInsertPoint(AfterFreeBB);
}
explicit CallCoroDelete(Stmt *DeallocStmt) : Deallocate(DeallocStmt) {}
};
}
namespace {
struct GetReturnObjectManager {
CodeGenFunction &CGF;
CGBuilderTy &Builder;
const CoroutineBodyStmt &S;
Address GroActiveFlag;
CodeGenFunction::AutoVarEmission GroEmission;
GetReturnObjectManager(CodeGenFunction &CGF, const CoroutineBodyStmt &S)
: CGF(CGF), Builder(CGF.Builder), S(S), GroActiveFlag(Address::invalid()),
GroEmission(CodeGenFunction::AutoVarEmission::invalid()) {}
// The gro variable has to outlive coroutine frame and coroutine promise, but,
// it can only be initialized after coroutine promise was created, thus, we
// split its emission in two parts. EmitGroAlloca emits an alloca and sets up
// cleanups. Later when coroutine promise is available we initialize the gro
// and sets the flag that the cleanup is now active.
void EmitGroAlloca() {
auto *GroDeclStmt = dyn_cast<DeclStmt>(S.getResultDecl());
if (!GroDeclStmt) {
// If get_return_object returns void, no need to do an alloca.
return;
}
auto *GroVarDecl = cast<VarDecl>(GroDeclStmt->getSingleDecl());
// Set GRO flag that it is not initialized yet
GroActiveFlag =
CGF.CreateTempAlloca(Builder.getInt1Ty(), CharUnits::One(), "gro.active");
Builder.CreateStore(Builder.getFalse(), GroActiveFlag);
GroEmission = CGF.EmitAutoVarAlloca(*GroVarDecl);
// Remember the top of EHStack before emitting the cleanup.
auto old_top = CGF.EHStack.stable_begin();
CGF.EmitAutoVarCleanups(GroEmission);
auto top = CGF.EHStack.stable_begin();
// Make the cleanup conditional on gro.active
for (auto b = CGF.EHStack.find(top), e = CGF.EHStack.find(old_top);
b != e; b++) {
if (auto *Cleanup = dyn_cast<EHCleanupScope>(&*b)) {
assert(!Cleanup->hasActiveFlag() && "cleanup already has active flag?");
Cleanup->setActiveFlag(GroActiveFlag);
Cleanup->setTestFlagInEHCleanup();
Cleanup->setTestFlagInNormalCleanup();
}
}
}
void EmitGroInit() {
if (!GroActiveFlag.isValid()) {
// No Gro variable was allocated. Simply emit the call to
// get_return_object.
CGF.EmitStmt(S.getResultDecl());
return;
}
CGF.EmitAutoVarInit(GroEmission);
Builder.CreateStore(Builder.getTrue(), GroActiveFlag);
}
};
}
static void emitBodyAndFallthrough(CodeGenFunction &CGF,
const CoroutineBodyStmt &S, Stmt *Body) {
CGF.EmitStmt(Body);
const bool CanFallthrough = CGF.Builder.GetInsertBlock();
if (CanFallthrough)
if (Stmt *OnFallthrough = S.getFallthroughHandler())
CGF.EmitStmt(OnFallthrough);
}
void CodeGenFunction::EmitCoroutineBody(const CoroutineBodyStmt &S) {
auto *NullPtr = llvm::ConstantPointerNull::get(Builder.getInt8PtrTy());
auto &TI = CGM.getContext().getTargetInfo();
unsigned NewAlign = TI.getNewAlign() / TI.getCharWidth();
auto *EntryBB = Builder.GetInsertBlock();
auto *AllocBB = createBasicBlock("coro.alloc");
auto *InitBB = createBasicBlock("coro.init");
auto *FinalBB = createBasicBlock("coro.final");
auto *RetBB = createBasicBlock("coro.ret");
auto *CoroId = Builder.CreateCall(
CGM.getIntrinsic(llvm::Intrinsic::coro_id),
{Builder.getInt32(NewAlign), NullPtr, NullPtr, NullPtr});
createCoroData(*this, CurCoro, CoroId);
CurCoro.Data->SuspendBB = RetBB;
assert(ShouldEmitLifetimeMarkers &&
"Must emit lifetime intrinsics for coroutines");
// Backend is allowed to elide memory allocations, to help it, emit
// auto mem = coro.alloc() ? 0 : ... allocation code ...;
auto *CoroAlloc = Builder.CreateCall(
CGM.getIntrinsic(llvm::Intrinsic::coro_alloc), {CoroId});
Builder.CreateCondBr(CoroAlloc, AllocBB, InitBB);
EmitBlock(AllocBB);
auto *AllocateCall = EmitScalarExpr(S.getAllocate());
auto *AllocOrInvokeContBB = Builder.GetInsertBlock();
// Handle allocation failure if 'ReturnStmtOnAllocFailure' was provided.
if (auto *RetOnAllocFailure = S.getReturnStmtOnAllocFailure()) {
auto *RetOnFailureBB = createBasicBlock("coro.ret.on.failure");
// See if allocation was successful.
auto *NullPtr = llvm::ConstantPointerNull::get(Int8PtrTy);
auto *Cond = Builder.CreateICmpNE(AllocateCall, NullPtr);
Builder.CreateCondBr(Cond, InitBB, RetOnFailureBB);
// If not, return OnAllocFailure object.
EmitBlock(RetOnFailureBB);
EmitStmt(RetOnAllocFailure);
}
else {
Builder.CreateBr(InitBB);
}
EmitBlock(InitBB);
// Pass the result of the allocation to coro.begin.
auto *Phi = Builder.CreatePHI(VoidPtrTy, 2);
Phi->addIncoming(NullPtr, EntryBB);
Phi->addIncoming(AllocateCall, AllocOrInvokeContBB);
auto *CoroBegin = Builder.CreateCall(
CGM.getIntrinsic(llvm::Intrinsic::coro_begin), {CoroId, Phi});
CurCoro.Data->CoroBegin = CoroBegin;
GetReturnObjectManager GroManager(*this, S);
GroManager.EmitGroAlloca();
CurCoro.Data->CleanupJD = getJumpDestInCurrentScope(RetBB);
{
CGDebugInfo *DI = getDebugInfo();
ParamReferenceReplacerRAII ParamReplacer(LocalDeclMap);
CodeGenFunction::RunCleanupsScope ResumeScope(*this);
EHStack.pushCleanup<CallCoroDelete>(NormalAndEHCleanup, S.getDeallocate());
// Create mapping between parameters and copy-params for coroutine function.
auto ParamMoves = S.getParamMoves();
assert(
(ParamMoves.size() == 0 || (ParamMoves.size() == FnArgs.size())) &&
"ParamMoves and FnArgs should be the same size for coroutine function");
if (ParamMoves.size() == FnArgs.size() && DI)
for (const auto Pair : llvm::zip(FnArgs, ParamMoves))
DI->getCoroutineParameterMappings().insert(
{std::get<0>(Pair), std::get<1>(Pair)});
// Create parameter copies. We do it before creating a promise, since an
// evolution of coroutine TS may allow promise constructor to observe
// parameter copies.
for (auto *PM : S.getParamMoves()) {
EmitStmt(PM);
ParamReplacer.addCopy(cast<DeclStmt>(PM));
// TODO: if(CoroParam(...)) need to surround ctor and dtor
// for the copy, so that llvm can elide it if the copy is
// not needed.
}
EmitStmt(S.getPromiseDeclStmt());
Address PromiseAddr = GetAddrOfLocalVar(S.getPromiseDecl());
auto *PromiseAddrVoidPtr =
new llvm::BitCastInst(PromiseAddr.getPointer(), VoidPtrTy, "", CoroId);
// Update CoroId to refer to the promise. We could not do it earlier because
// promise local variable was not emitted yet.
CoroId->setArgOperand(1, PromiseAddrVoidPtr);
// Now we have the promise, initialize the GRO
GroManager.EmitGroInit();
EHStack.pushCleanup<CallCoroEnd>(EHCleanup);
CurCoro.Data->CurrentAwaitKind = AwaitKind::Init;
CurCoro.Data->ExceptionHandler = S.getExceptionHandler();
EmitStmt(S.getInitSuspendStmt());
CurCoro.Data->FinalJD = getJumpDestInCurrentScope(FinalBB);
CurCoro.Data->CurrentAwaitKind = AwaitKind::Normal;
if (CurCoro.Data->ExceptionHandler) {
// If we generated IR to record whether an exception was thrown from
// 'await_resume', then use that IR to determine whether the coroutine
// body should be skipped.
// If we didn't generate the IR (perhaps because 'await_resume' was marked
// as 'noexcept'), then we skip this check.
BasicBlock *ContBB = nullptr;
if (CurCoro.Data->ResumeEHVar) {
BasicBlock *BodyBB = createBasicBlock("coro.resumed.body");
ContBB = createBasicBlock("coro.resumed.cont");
Value *SkipBody = Builder.CreateFlagLoad(CurCoro.Data->ResumeEHVar,
"coro.resumed.eh");
Builder.CreateCondBr(SkipBody, ContBB, BodyBB);
EmitBlock(BodyBB);
}
auto Loc = S.getBeginLoc();
CXXCatchStmt Catch(Loc, /*exDecl=*/nullptr,
CurCoro.Data->ExceptionHandler);
auto *TryStmt =
CXXTryStmt::Create(getContext(), Loc, S.getBody(), &Catch);
EnterCXXTryStmt(*TryStmt);
emitBodyAndFallthrough(*this, S, TryStmt->getTryBlock());
ExitCXXTryStmt(*TryStmt);
if (ContBB)
EmitBlock(ContBB);
}
else {
emitBodyAndFallthrough(*this, S, S.getBody());
}
// See if we need to generate final suspend.
const bool CanFallthrough = Builder.GetInsertBlock();
const bool HasCoreturns = CurCoro.Data->CoreturnCount > 0;
if (CanFallthrough || HasCoreturns) {
EmitBlock(FinalBB);
CurCoro.Data->CurrentAwaitKind = AwaitKind::Final;
EmitStmt(S.getFinalSuspendStmt());
} else {
// We don't need FinalBB. Emit it to make sure the block is deleted.
EmitBlock(FinalBB, /*IsFinished=*/true);
}
}
EmitBlock(RetBB);
// Emit coro.end before getReturnStmt (and parameter destructors), since
// resume and destroy parts of the coroutine should not include them.
llvm::Function *CoroEnd = CGM.getIntrinsic(llvm::Intrinsic::coro_end);
Builder.CreateCall(CoroEnd, {NullPtr, Builder.getFalse()});
if (Stmt *Ret = S.getReturnStmt())
EmitStmt(Ret);
}
// Emit coroutine intrinsic and patch up arguments of the token type.
RValue CodeGenFunction::EmitCoroutineIntrinsic(const CallExpr *E,
unsigned int IID) {
SmallVector<llvm::Value *, 8> Args;
switch (IID) {
default:
break;
// The coro.frame builtin is replaced with an SSA value of the coro.begin
// intrinsic.
case llvm::Intrinsic::coro_frame: {
if (CurCoro.Data && CurCoro.Data->CoroBegin) {
return RValue::get(CurCoro.Data->CoroBegin);
}
CGM.Error(E->getBeginLoc(), "this builtin expect that __builtin_coro_begin "
"has been used earlier in this function");
auto NullPtr = llvm::ConstantPointerNull::get(Builder.getInt8PtrTy());
return RValue::get(NullPtr);
}
// The following three intrinsics take a token parameter referring to a token
// returned by earlier call to @llvm.coro.id. Since we cannot represent it in
// builtins, we patch it up here.
case llvm::Intrinsic::coro_alloc:
case llvm::Intrinsic::coro_begin:
case llvm::Intrinsic::coro_free: {
if (CurCoro.Data && CurCoro.Data->CoroId) {
Args.push_back(CurCoro.Data->CoroId);
break;
}
CGM.Error(E->getBeginLoc(), "this builtin expect that __builtin_coro_id has"
" been used earlier in this function");
// Fallthrough to the next case to add TokenNone as the first argument.
LLVM_FALLTHROUGH;
}
// @llvm.coro.suspend takes a token parameter. Add token 'none' as the first
// argument.
case llvm::Intrinsic::coro_suspend:
Args.push_back(llvm::ConstantTokenNone::get(getLLVMContext()));
break;
}
for (const Expr *Arg : E->arguments())
Args.push_back(EmitScalarExpr(Arg));
llvm::Function *F = CGM.getIntrinsic(IID);
llvm::CallInst *Call = Builder.CreateCall(F, Args);
// Note: The following code is to enable to emit coro.id and coro.begin by
// hand to experiment with coroutines in C.
// If we see @llvm.coro.id remember it in the CoroData. We will update
// coro.alloc, coro.begin and coro.free intrinsics to refer to it.
if (IID == llvm::Intrinsic::coro_id) {
createCoroData(*this, CurCoro, Call, E);
}
else if (IID == llvm::Intrinsic::coro_begin) {
if (CurCoro.Data)
CurCoro.Data->CoroBegin = Call;
}
else if (IID == llvm::Intrinsic::coro_free) {
// Remember the last coro_free as we need it to build the conditional
// deletion of the coroutine frame.
if (CurCoro.Data)
CurCoro.Data->LastCoroFree = Call;
}
return RValue::get(Call);
}