llvm-project/clang/lib/AST/DynamicRecursiveASTVisitor.cpp
Aaron Ballman 2f48ca3aec Revert "Silence MSVC warnings; NFC"
This reverts commit 44c0719e77b37374c89b7fc1320664ebb404323d.

It broke several -Werror bots because of misuse of override.
2025-01-30 12:23:18 -05:00

374 lines
16 KiB
C++

//=== DynamicRecursiveASTVisitor.cpp - Dynamic AST Visitor Implementation -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements DynamicRecursiveASTVisitor in terms of the CRTP-based
// RecursiveASTVisitor.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/DynamicRecursiveASTVisitor.h"
#include "clang/AST/RecursiveASTVisitor.h"
using namespace clang;
// The implementation of DRAV deserves some explanation:
//
// We want to implement DynamicRecursiveASTVisitor without having to inherit or
// reference RecursiveASTVisitor in any way in the header: if we instantiate
// RAV in the header, then every user of (or rather every file that uses) DRAV
// still has to instantiate a RAV, which gets us nowhere. Moreover, even just
// including RecursiveASTVisitor.h would probably cause some amount of slowdown
// because we'd have to parse a huge template. For these reasons, the fact that
// DRAV is implemented using a RAV is solely an implementation detail.
//
// As for the implementation itself, DRAV by default acts exactly like a RAV
// that overrides none of RAV's functions. There are two parts to this:
//
// 1. Any function in DRAV has to act like the corresponding function in RAV,
// unless overridden by a derived class, of course.
//
// 2. Any call to a function by the RAV implementation that DRAV allows to be
// overridden must be transformed to a virtual call on the user-provided
// DRAV object: if some function in RAV calls e.g. TraverseCallExpr()
// during traversal, then the derived class's TraverseCallExpr() must be
// called (provided it overrides TraverseCallExpr()).
//
// The 'Impl' class is a helper that connects the two implementations; it is
// a wrapper around a reference to a DRAV that is itself a RecursiveASTVisitor.
// It overrides every function in RAV *that is virtual in DRAV* to perform a
// virtual call on its DRAV reference. This accomplishes point 2 above.
//
// Point 1 is accomplished by, first, having the base class implementation of
// each of the virtual functions construct an Impl object (which is actually
// just a no-op), passing in itself so that any virtual calls use the right
// vtable. Secondly, it then calls RAV's implementation of that same function
// *on Impl* (using a qualified call so that we actually call into the RAV
// implementation instead of Impl's version of that same function); this way,
// we both execute RAV's implementation for this function only and ensure that
// calls to subsequent functions call into Impl via CRTP (and Impl then calls
// back into DRAV and so on).
//
// While this ends up constructing a lot of Impl instances (almost one per
// function call), this doesn't really matter since Impl just holds a single
// pointer, and everything in this file should get inlined into all the DRAV
// functions here anyway.
//
//===----------------------------------------------------------------------===//
//
// The following illustrates how a call to an (overridden) function is actually
// resolved: given some class 'Derived' that derives from DRAV and overrides
// TraverseStmt(), if we are traversing some AST, and TraverseStmt() is called
// by the RAV implementation, the following happens:
//
// 1. Impl::TraverseStmt() overrides RAV::TraverseStmt() via CRTP, so the
// former is called.
//
// 2. Impl::TraverseStmt() performs a virtual call to the visitor (which is
// an instance to Derived), so Derived::TraverseStmt() is called.
//
// End result: Derived::TraverseStmt() is executed.
//
// Suppose some other function, e.g. TraverseCallExpr(), which is NOT overridden
// by Derived is called, we get:
//
// 1. Impl::TraverseCallExpr() overrides RAV::TraverseCallExpr() via CRTP,
// so the former is called.
//
// 2. Impl::TraverseCallExpr() performs a virtual call, but since Derived
// does not override that function, DRAV::TraverseCallExpr() is called.
//
// 3. DRAV::TraverseCallExpr() creates a new instance of Impl, passing in
// itself (this doesn't change that the pointer is an instance of Derived);
// it then calls RAV::TraverseCallExpr() on the Impl object, which actually
// ends up executing RAV's implementation because we used a qualified
// function call.
//
// End result: RAV::TraverseCallExpr() is executed,
namespace {
template <bool Const> struct Impl : RecursiveASTVisitor<Impl<Const>> {
DynamicRecursiveASTVisitorBase<Const> &Visitor;
Impl(DynamicRecursiveASTVisitorBase<Const> &Visitor) : Visitor(Visitor) {}
bool shouldVisitTemplateInstantiations() const {
return Visitor.ShouldVisitTemplateInstantiations;
}
bool shouldWalkTypesOfTypeLocs() const {
return Visitor.ShouldWalkTypesOfTypeLocs;
}
bool shouldVisitImplicitCode() const {
return Visitor.ShouldVisitImplicitCode;
}
bool shouldVisitLambdaBody() const { return Visitor.ShouldVisitLambdaBody; }
// Supporting post-order would be very hard because of quirks of the
// RAV implementation that only work with CRTP. It also is only used
// by less than 5 visitors in the entire code base.
bool shouldTraversePostOrder() const { return false; }
bool TraverseAST(ASTContext &AST) { return Visitor.TraverseAST(AST); }
bool TraverseAttr(Attr *At) { return Visitor.TraverseAttr(At); }
bool TraverseDecl(Decl *D) { return Visitor.TraverseDecl(D); }
bool TraverseType(QualType T) { return Visitor.TraverseType(T); }
bool TraverseTypeLoc(TypeLoc TL) { return Visitor.TraverseTypeLoc(TL); }
bool TraverseStmt(Stmt *S) { return Visitor.TraverseStmt(S); }
bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
return Visitor.TraverseConstructorInitializer(Init);
}
bool TraverseTemplateArgument(const TemplateArgument &Arg) {
return Visitor.TraverseTemplateArgument(Arg);
}
bool TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc) {
return Visitor.TraverseTemplateArgumentLoc(ArgLoc);
}
bool TraverseTemplateName(TemplateName Template) {
return Visitor.TraverseTemplateName(Template);
}
bool TraverseObjCProtocolLoc(ObjCProtocolLoc ProtocolLoc) {
return Visitor.TraverseObjCProtocolLoc(ProtocolLoc);
}
bool TraverseTypeConstraint(const TypeConstraint *C) {
return Visitor.TraverseTypeConstraint(C);
}
bool TraverseConceptRequirement(concepts::Requirement *R) {
return Visitor.TraverseConceptRequirement(R);
}
bool TraverseConceptTypeRequirement(concepts::TypeRequirement *R) {
return Visitor.TraverseConceptTypeRequirement(R);
}
bool TraverseConceptExprRequirement(concepts::ExprRequirement *R) {
return Visitor.TraverseConceptExprRequirement(R);
}
bool TraverseConceptNestedRequirement(concepts::NestedRequirement *R) {
return Visitor.TraverseConceptNestedRequirement(R);
}
bool TraverseConceptReference(ConceptReference *CR) {
return Visitor.TraverseConceptReference(CR);
}
bool TraverseCXXBaseSpecifier(const CXXBaseSpecifier &Base) {
return Visitor.TraverseCXXBaseSpecifier(Base);
}
bool TraverseDeclarationNameInfo(DeclarationNameInfo NameInfo) {
return Visitor.TraverseDeclarationNameInfo(NameInfo);
}
bool TraverseLambdaCapture(LambdaExpr *LE, const LambdaCapture *C,
Expr *Init) {
return Visitor.TraverseLambdaCapture(LE, C, Init);
}
bool TraverseNestedNameSpecifier(NestedNameSpecifier *NNS) {
return Visitor.TraverseNestedNameSpecifier(NNS);
}
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS) {
return Visitor.TraverseNestedNameSpecifierLoc(NNS);
}
bool VisitConceptReference(ConceptReference *CR) {
return Visitor.VisitConceptReference(CR);
}
bool dataTraverseStmtPre(Stmt *S) { return Visitor.dataTraverseStmtPre(S); }
bool dataTraverseStmtPost(Stmt *S) { return Visitor.dataTraverseStmtPost(S); }
// TraverseStmt() always passes in a queue, so we have no choice but to
// accept it as a parameter here.
bool dataTraverseNode(
Stmt *S,
typename RecursiveASTVisitor<Impl>::DataRecursionQueue * = nullptr) {
// But since we don't support postorder traversal, we don't need it, so
// simply discard it here. This way, derived classes don't need to worry
// about including it as a parameter that they never use.
return Visitor.dataTraverseNode(S);
}
/// Visit a node.
bool VisitAttr(Attr *A) { return Visitor.VisitAttr(A); }
bool VisitDecl(Decl *D) { return Visitor.VisitDecl(D); }
bool VisitStmt(Stmt *S) { return Visitor.VisitStmt(S); }
bool VisitType(Type *T) { return Visitor.VisitType(T); }
bool VisitTypeLoc(TypeLoc TL) { return Visitor.VisitTypeLoc(TL); }
#define DEF_TRAVERSE_TMPL_INST(kind) \
bool TraverseTemplateInstantiations(kind##TemplateDecl *D) { \
return Visitor.TraverseTemplateInstantiations(D); \
}
DEF_TRAVERSE_TMPL_INST(Class)
DEF_TRAVERSE_TMPL_INST(Var)
DEF_TRAVERSE_TMPL_INST(Function)
#undef DEF_TRAVERSE_TMPL_INST
// Decls.
#define ABSTRACT_DECL(DECL)
#define DECL(CLASS, BASE) \
bool Traverse##CLASS##Decl(CLASS##Decl *D) { \
return Visitor.Traverse##CLASS##Decl(D); \
}
#include "clang/AST/DeclNodes.inc"
#define DECL(CLASS, BASE) \
bool Visit##CLASS##Decl(CLASS##Decl *D) { \
return Visitor.Visit##CLASS##Decl(D); \
}
#include "clang/AST/DeclNodes.inc"
// Stmts.
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) \
bool Traverse##CLASS(CLASS *S) { return Visitor.Traverse##CLASS(S); }
#include "clang/AST/StmtNodes.inc"
#define STMT(CLASS, PARENT) \
bool Visit##CLASS(CLASS *S) { return Visitor.Visit##CLASS(S); }
#include "clang/AST/StmtNodes.inc"
// Types.
#define ABSTRACT_TYPE(CLASS, BASE)
#define TYPE(CLASS, BASE) \
bool Traverse##CLASS##Type(CLASS##Type *T) { \
return Visitor.Traverse##CLASS##Type(T); \
}
#include "clang/AST/TypeNodes.inc"
#define TYPE(CLASS, BASE) \
bool Visit##CLASS##Type(CLASS##Type *T) { \
return Visitor.Visit##CLASS##Type(T); \
}
#include "clang/AST/TypeNodes.inc"
// TypeLocs.
#define ABSTRACT_TYPELOC(CLASS, BASE)
#define TYPELOC(CLASS, BASE) \
bool Traverse##CLASS##TypeLoc(CLASS##TypeLoc TL) { \
return Visitor.Traverse##CLASS##TypeLoc(TL); \
}
#include "clang/AST/TypeLocNodes.def"
#define TYPELOC(CLASS, BASE) \
bool Visit##CLASS##TypeLoc(CLASS##TypeLoc TL) { \
return Visitor.Visit##CLASS##TypeLoc(TL); \
}
#include "clang/AST/TypeLocNodes.def"
};
} // namespace
template <bool Const> void DynamicRecursiveASTVisitorBase<Const>::anchor() {}
// Helper macros to forward a call to the base implementation since that
// ends up getting very verbose otherwise.
// This calls the RecursiveASTVisitor implementation of the same function,
// stripping any 'const' that the DRAV implementation may have added since
// the RAV implementation largely doesn't use 'const'.
#define FORWARD_TO_BASE(Function, Type, RefOrPointer) \
template <bool Const> \
bool DynamicRecursiveASTVisitorBase<Const>::Function( \
MaybeConst<Type> RefOrPointer Param) { \
return Impl<Const>(*this).RecursiveASTVisitor<Impl<Const>>::Function( \
const_cast<Type RefOrPointer>(Param)); \
}
// Same as 'FORWARD_TO_BASE', but doesn't change the parameter type in any way.
#define FORWARD_TO_BASE_EXACT(Function, Type) \
template <bool Const> \
bool DynamicRecursiveASTVisitorBase<Const>::Function(Type Param) { \
return Impl<Const>(*this).RecursiveASTVisitor<Impl<Const>>::Function( \
Param); \
}
FORWARD_TO_BASE(TraverseAST, ASTContext, &)
FORWARD_TO_BASE(TraverseAttr, Attr, *)
FORWARD_TO_BASE(TraverseConstructorInitializer, CXXCtorInitializer, *)
FORWARD_TO_BASE(TraverseDecl, Decl, *)
FORWARD_TO_BASE(TraverseStmt, Stmt, *)
FORWARD_TO_BASE(TraverseNestedNameSpecifier, NestedNameSpecifier, *)
FORWARD_TO_BASE(TraverseTemplateInstantiations, ClassTemplateDecl, *)
FORWARD_TO_BASE(TraverseTemplateInstantiations, VarTemplateDecl, *)
FORWARD_TO_BASE(TraverseTemplateInstantiations, FunctionTemplateDecl, *)
FORWARD_TO_BASE(TraverseConceptRequirement, concepts::Requirement, *)
FORWARD_TO_BASE(TraverseConceptTypeRequirement, concepts::TypeRequirement, *)
FORWARD_TO_BASE(TraverseConceptExprRequirement, concepts::ExprRequirement, *)
FORWARD_TO_BASE(TraverseConceptReference, ConceptReference, *)
FORWARD_TO_BASE(TraverseConceptNestedRequirement,
concepts::NestedRequirement, *)
FORWARD_TO_BASE_EXACT(TraverseCXXBaseSpecifier, const CXXBaseSpecifier &)
FORWARD_TO_BASE_EXACT(TraverseDeclarationNameInfo, DeclarationNameInfo)
FORWARD_TO_BASE_EXACT(TraverseTemplateArgument, const TemplateArgument &)
FORWARD_TO_BASE_EXACT(TraverseTemplateArguments, ArrayRef<TemplateArgument>)
FORWARD_TO_BASE_EXACT(TraverseTemplateArgumentLoc, const TemplateArgumentLoc &)
FORWARD_TO_BASE_EXACT(TraverseTemplateName, TemplateName)
FORWARD_TO_BASE_EXACT(TraverseType, QualType)
FORWARD_TO_BASE_EXACT(TraverseTypeLoc, TypeLoc)
FORWARD_TO_BASE_EXACT(TraverseTypeConstraint, const TypeConstraint *)
FORWARD_TO_BASE_EXACT(TraverseObjCProtocolLoc, ObjCProtocolLoc)
FORWARD_TO_BASE_EXACT(TraverseNestedNameSpecifierLoc, NestedNameSpecifierLoc)
template <bool Const>
bool DynamicRecursiveASTVisitorBase<Const>::TraverseLambdaCapture(
MaybeConst<LambdaExpr> *LE, const LambdaCapture *C,
MaybeConst<Expr> *Init) {
return Impl<Const>(*this)
.RecursiveASTVisitor<Impl<Const>>::TraverseLambdaCapture(
const_cast<LambdaExpr *>(LE), C, const_cast<Expr *>(Init));
}
template <bool Const>
bool DynamicRecursiveASTVisitorBase<Const>::dataTraverseNode(
MaybeConst<Stmt> *S) {
return Impl<Const>(*this).RecursiveASTVisitor<Impl<Const>>::dataTraverseNode(
const_cast<Stmt *>(S), nullptr);
}
// Declare Traverse*() for and friends all concrete Decl classes.
#define ABSTRACT_DECL(DECL)
#define DECL(CLASS, BASE) \
FORWARD_TO_BASE(Traverse##CLASS##Decl, CLASS##Decl, *) \
FORWARD_TO_BASE(WalkUpFrom##CLASS##Decl, CLASS##Decl, *)
#include "clang/AST/DeclNodes.inc"
// Declare Traverse*() and friends for all concrete Stmt classes.
#define ABSTRACT_STMT(STMT)
#define STMT(CLASS, PARENT) FORWARD_TO_BASE(Traverse##CLASS, CLASS, *)
#include "clang/AST/StmtNodes.inc"
#define STMT(CLASS, PARENT) FORWARD_TO_BASE(WalkUpFrom##CLASS, CLASS, *)
#include "clang/AST/StmtNodes.inc"
// Declare Traverse*() and friends for all concrete Type classes.
#define ABSTRACT_TYPE(CLASS, BASE)
#define TYPE(CLASS, BASE) \
FORWARD_TO_BASE(Traverse##CLASS##Type, CLASS##Type, *) \
FORWARD_TO_BASE(WalkUpFrom##CLASS##Type, CLASS##Type, *)
#include "clang/AST/TypeNodes.inc"
#define ABSTRACT_TYPELOC(CLASS, BASE)
#define TYPELOC(CLASS, BASE) \
FORWARD_TO_BASE_EXACT(Traverse##CLASS##TypeLoc, CLASS##TypeLoc)
#include "clang/AST/TypeLocNodes.def"
#define TYPELOC(CLASS, BASE) \
FORWARD_TO_BASE_EXACT(WalkUpFrom##CLASS##TypeLoc, CLASS##TypeLoc)
#include "clang/AST/TypeLocNodes.def"
namespace clang {
template class DynamicRecursiveASTVisitorBase<false>;
template class DynamicRecursiveASTVisitorBase<true>;
} // namespace clang