llvm-project/llvm/lib/CodeGen/MLRegallocEvictAdvisor.cpp
Mircea Trofin c35ad9ee4f [mlgo] Support exposing more features than those supported by models
This allows the compiler to support more features than those supported by a
model. The only requirement (development mode only) is that the new
features must be appended at the end of the list of features requested
from the model. The support is transparent to compiler code: for
unsupported features, we provide a valid buffer to copy their values;
it's just that this buffer is disconnected from the model, so insofar
as the model is concerned (AOT or development mode), these features don't
exist. The buffers are allocated at setup - meaning, at steady state,
there is no extra allocation (maintaining the current invariant). These
buffers has 2 roles: one, keep the compiler code simple. Second, allow
logging their values in development mode. The latter allows retraining
a model supporting the larger feature set starting from traces produced
with the old model.

For release mode (AOT-ed models), this decouples compiler evolution from
model evolution, which we want in scenarios where the toolchain is
frequently rebuilt and redeployed: we can first deploy the new features,
and continue working with the older model, until a new model is made
available, which can then be picked up the next time the compiler is built.

Differential Revision: https://reviews.llvm.org/D124565
2022-05-09 18:01:21 -07:00

911 lines
36 KiB
C++

//===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the ML eviction advisor and reward injection pass
//
//===----------------------------------------------------------------------===//
#include "AllocationOrder.h"
#include "RegAllocEvictionAdvisor.h"
#include "RegAllocGreedy.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MLModelRunner.h"
#include "llvm/Analysis/TensorSpec.h"
#if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TF_API)
#include "llvm/Analysis/ModelUnderTrainingRunner.h"
#include "llvm/Analysis/NoInferenceModelRunner.h"
#endif
#include "llvm/Analysis/ReleaseModeModelRunner.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveRegMatrix.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <array>
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "ml-regalloc"
// Generated header in release (AOT) mode
#if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
#include "RegallocEvictModel.h"
using CompiledModelType = RegallocEvictModel;
#else
using CompiledModelType = NoopSavedModelImpl;
#endif
// Options that only make sense in development mode
#ifdef LLVM_HAVE_TF_API
#include "RegAllocScore.h"
#include "llvm/Analysis/Utils/TFUtils.h"
static cl::opt<std::string> TrainingLog(
"regalloc-training-log", cl::Hidden,
cl::desc("Training log for the register allocator eviction model"));
static cl::opt<std::string> ModelUnderTraining(
"regalloc-model", cl::Hidden,
cl::desc("The model being trained for register allocation eviction"));
#endif // #ifdef LLVM_HAVE_TF_API
extern cl::opt<unsigned> EvictInterferenceCutoff;
/// The score injection pass.
/// This pass calculates the score for a function and inserts it in the log, but
/// this happens only in development mode. It's a no-op otherwise.
namespace llvm {
class RegAllocScoring : public MachineFunctionPass {
public:
static char ID;
RegAllocScoring() : MachineFunctionPass(ID) {
initializeRegAllocScoringPass(*PassRegistry::getPassRegistry());
}
~RegAllocScoring() override = default;
StringRef getPassName() const override {
return "Register Allocation Pass Scoring";
}
/// RegAllocReward analysis usage.
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<AAResultsWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// Performs this pass
bool runOnMachineFunction(MachineFunction &) override;
};
char RegAllocScoring::ID = 0;
FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); }
} // namespace llvm
INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass",
"Register Allocation Scoring Pass", false, false)
// ===================================
// Common ML Advisor declarations
// ===================================
namespace {
// This is the maximum number of interfererring ranges. That's the number of
// distinct AllocationOrder values, which comes from MCRegisterClass::RegsSize.
// For X86, that's 32.
// TODO: find a way to get this, statically, in a programmatic way.
static const int64_t MaxInterferences = 32;
// Logically, we can think of the feature set given to the evaluator as a 2D
// matrix. The rows are the features (see next). The columns correspond to the
// interferences. We treat the candidate virt reg as an 'interference', too, as
// its feature set is the same as that of the interferring ranges. So we'll have
// MaxInterferences + 1 columns and by convention, we will use the last column
// for the virt reg seeking allocation.
static const int64_t CandidateVirtRegPos = MaxInterferences;
static const int64_t NumberOfInterferences = CandidateVirtRegPos + 1;
// Most features are as described above, so we'll reuse this vector in defining
// them.
static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences};
// --------------
// Features table
// --------------
// For each interfering live range (incl. the candidate) we collect a number of
// features. However, because the features are of different types (and because
// of ML best practices), we organize the tensors per feature, not per
// candidate. Each such tensor has a scalar value corresponding to the
// interferring live range at that position, in the order in AllocationOrder.
// The last position corresponds to the virt reg seeking allocation.
// Exception to all that is the progression feature, which is just a scalar (see
// its documentation for details).
// Note on naming: the "_by_max" are normalized using the largest value of that
// tensor, as observed in the current decision making stage (i.e. for the
// current call to the advisor's tryFindEvictionCandidate)
//
// The feature list format: type, name, shape, documentation.
// Note: we can really just use int64 and float, hence the modeling of some
// bools as int64 values.
#define RA_EVICT_FEATURES_LIST(M) \
M(int64_t, mask, PerLiveRangeShape, \
"boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \
"it " \
"can't be evicted)") \
M(int64_t, is_free, PerLiveRangeShape, \
"boolean values, 1 if this phys reg is actually free (no interferences)") \
M(float, nr_urgent, PerLiveRangeShape, \
"number of 'urgent' intervals, normalized. Urgent are those that are OK " \
"to break cascades") \
M(float, nr_broken_hints, PerLiveRangeShape, \
"if this position were evicted, how many broken hints would there be") \
M(int64_t, is_hint, PerLiveRangeShape, \
"is this a preferred phys reg for the candidate") \
M(int64_t, is_local, PerLiveRangeShape, \
"is this live range local to a basic block") \
M(float, nr_rematerializable, PerLiveRangeShape, \
"nr rematerializable ranges") \
M(float, nr_defs_and_uses, PerLiveRangeShape, \
"bb freq - weighed nr defs and uses") \
M(float, weighed_reads_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of reads, normalized") \
M(float, weighed_writes_by_max, PerLiveRangeShape, \
"bb feq - weighed nr of writes, normalized") \
M(float, weighed_read_writes_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of uses that are both read and writes, normalized") \
M(float, weighed_indvars_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of uses that are indvars, normalized") \
M(float, hint_weights_by_max, PerLiveRangeShape, \
"bb freq - weighed nr of uses that are hints, normalized") \
M(float, start_bb_freq_by_max, PerLiveRangeShape, \
"the freq in the start block, normalized") \
M(float, end_bb_freq_by_max, PerLiveRangeShape, \
"freq of end block, normalized") \
M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \
"hottest BB freq, normalized") \
M(float, liverange_size, PerLiveRangeShape, \
"size (instr index diff) of the LR") \
M(float, use_def_density, PerLiveRangeShape, \
"the max weight, as computed by the manual heuristic") \
M(int64_t, max_stage, PerLiveRangeShape, \
"largest stage of an interval in this LR") \
M(int64_t, min_stage, PerLiveRangeShape, \
"lowest stage of an interval in this LR") \
M(float, progress, {1}, "ratio of current queue size to initial size")
// The model learns to pick one of the mask == 1 interferences. This is the name
// of the output tensor.
// The contract with the model is that the output will be guaranteed to be to a
// mask == 1 position.
// Using a macro here to avoid 'not used' warnings (and keep cond compilation to
// a minimum)
#define DecisionName "index_to_evict"
// Named features index.
enum FeatureIDs {
#define _FEATURE_IDX(_, name, __, ___) name,
RA_EVICT_FEATURES_LIST(_FEATURE_IDX)
#undef _FEATURE_IDX
FeatureCount
};
// The ML advisor will typically have a sparse input to the evaluator, because
// various phys regs won't be available. It's easier (maintenance-wise) to
// bulk-reset the state of the evaluator each time we are about to use it again.
template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) {
size_t Ret = sizeof(T);
for (const auto V : Shape)
Ret *= V;
return Ret;
}
void resetInputs(MLModelRunner &Runner) {
#define _RESET(TYPE, NAME, SHAPE, __) \
std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \
getTotalSize<TYPE>(SHAPE));
RA_EVICT_FEATURES_LIST(_RESET)
#undef _RESET
}
// Per-live interval components that get aggregated into the feature values that
// will be passed to the evaluator.
struct LIFeatureComponents {
double R = 0;
double W = 0;
double RW = 0;
double IndVarUpdates = 0;
double HintWeights = 0.0;
int64_t NrDefsAndUses = 0;
float HottestBlockFreq = 0.0;
bool IsRemat = false;
};
using CandidateRegList =
std::array<std::pair<MCRegister, bool>, NumberOfInterferences>;
using FeaturesListNormalizer = std::array<float, FeatureIDs::FeatureCount>;
/// The ML evictor (commonalities between release and development mode)
class MLEvictAdvisor : public RegAllocEvictionAdvisor {
public:
MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI,
const MachineLoopInfo &Loops);
protected:
const RegAllocEvictionAdvisor &getDefaultAdvisor() const {
return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor);
}
// The assumption is that if the Runner could not be constructed, we emit-ed
// error, and we shouldn't be asking for it here.
const MLModelRunner &getRunner() const { return *Runner; }
/// This just calls Evaluate on the Runner, but in the development mode case,
/// if we're just capturing the log of the default advisor, it needs to call
/// the latter instead, so we need to pass all the necessary parameters for
/// it. In the development case, it will also log.
virtual int64_t
tryFindEvictionCandidatePosition(const LiveInterval &VirtReg,
const AllocationOrder &Order,
unsigned OrderLimit, uint8_t CostPerUseLimit,
const SmallVirtRegSet &FixedRegisters) const;
/// Load the features of the given VirtReg (allocated or not) at column Pos,
/// but if that can't be evicted, return false instead.
bool
loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg,
bool IsHint, const SmallVirtRegSet &FixedRegisters,
std::array<float, FeatureIDs::FeatureCount> &Largest,
size_t Pos) const;
private:
static float getInitialQueueSize(const MachineFunction &MF);
MCRegister tryFindEvictionCandidate(
const LiveInterval &VirtReg, const AllocationOrder &Order,
uint8_t CostPerUseLimit,
const SmallVirtRegSet &FixedRegisters) const override;
void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals,
std::array<float, FeatureIDs::FeatureCount> &Largest,
size_t Pos, int64_t IsHint, int64_t LocalIntfsCount,
float NrUrgent) const;
// Point-in-time: we didn't learn this, so we always delegate to the default.
bool canEvictHintInterference(
const LiveInterval &VirtReg, MCRegister PhysReg,
const SmallVirtRegSet &FixedRegisters) const override {
return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg,
FixedRegisters);
}
const LIFeatureComponents &
getLIFeatureComponents(const LiveInterval &LI) const;
// Hold on to a default advisor for:
// 1) the implementation of canEvictHintInterference, because we didn't learn
// that nuance yet;
// 2) for bootstrapping (logging) in the development mode case.
const DefaultEvictionAdvisor DefaultAdvisor;
MLModelRunner *const Runner;
const MachineBlockFrequencyInfo &MBFI;
const MachineLoopInfo &Loops;
// Indices of those features we don't want to normalize.
// This could be static and shared, but its initialization is non-trivial.
std::bitset<FeatureIDs::FeatureCount> DoNotNormalize;
const float InitialQSize;
using RegID = unsigned;
mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures;
};
#define _DECL_FEATURES(type, name, shape, _) \
TensorSpec::createSpec<type>(#name, shape),
static const std::vector<TensorSpec> InputFeatures{
{RA_EVICT_FEATURES_LIST(_DECL_FEATURES)},
};
#undef _DECL_FEATURES
// ===================================
// Release (AOT) - specifics
// ===================================
class ReleaseModeEvictionAdvisorAnalysis final
: public RegAllocEvictionAdvisorAnalysis {
public:
ReleaseModeEvictionAdvisorAnalysis()
: RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) {}
// support for isa<> and dyn_cast.
static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
return R->getAdvisorMode() == AdvisorMode::Release;
}
private:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<MachineLoopInfo>();
RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
}
std::unique_ptr<RegAllocEvictionAdvisor>
getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
if (!Runner)
Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
MF.getFunction().getContext(), InputFeatures, DecisionName);
return std::make_unique<MLEvictAdvisor>(
MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
getAnalysis<MachineLoopInfo>());
}
std::unique_ptr<ReleaseModeModelRunner<CompiledModelType>> Runner;
};
// ===================================
// Development mode-specifics
// ===================================
//
// Features we log
#ifdef LLVM_HAVE_TF_API
static const TensorSpec Output =
TensorSpec::createSpec<int64_t>(DecisionName, {1});
static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
// Features we bind on the model. The tensor names have a prefix, and we also
// need to include some tensors that are expected to be present by the training
// algo.
// TODO: can we just get rid of these?
#define _DECL_TRAIN_FEATURES(type, name, shape, _) \
TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
static const std::vector<TensorSpec> TrainingInputFeatures{
{RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES)
TensorSpec::createSpec<float>("action_discount", {1}),
TensorSpec::createSpec<int32_t>("action_step_type", {1}),
TensorSpec::createSpec<float>("action_reward", {1})}};
#undef _DECL_TRAIN_FEATURES
class DevelopmentModeEvictAdvisor : public MLEvictAdvisor {
public:
DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
MLModelRunner *Runner,
const MachineBlockFrequencyInfo &MBFI,
const MachineLoopInfo &Loops, Logger *Log)
: MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {}
private:
int64_t tryFindEvictionCandidatePosition(
const LiveInterval &VirtReg, const AllocationOrder &Order,
unsigned OrderLimit, uint8_t CostPerUseLimit,
const SmallVirtRegSet &FixedRegisters) const override;
Logger *const Log;
};
class DevelopmentModeEvictionAdvisorAnalysis final
: public RegAllocEvictionAdvisorAnalysis {
public:
DevelopmentModeEvictionAdvisorAnalysis()
: RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) {}
// support for isa<> and dyn_cast.
static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
return R->getAdvisorMode() == AdvisorMode::Development;
}
/// get the logger for the given function, or nullptr if we didn't collect
/// one. This is used to inject the score by the RegAllocScoring pass.
Logger *getLogger(const MachineFunction &MF) const {
auto I = LogMap.find(MF.getName());
if (I == LogMap.end())
return nullptr;
return I->second.get();
}
private:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addRequired<MachineLoopInfo>();
RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
}
// Save all the logs (when requested).
bool doFinalization(Module &M) override {
if (TrainingLog.empty())
return false;
std::error_code EC;
auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
if (EC) {
M.getContext().emitError(EC.message() + ":" + TrainingLog);
return false;
}
Logger::flushLogs(*OS, LogMap);
return false;
}
std::unique_ptr<RegAllocEvictionAdvisor>
getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
LLVMContext &Ctx = MF.getFunction().getContext();
if (ModelUnderTraining.empty() && TrainingLog.empty()) {
Ctx.emitError("Regalloc development mode should be requested with at "
"least logging enabled and/or a training model");
return nullptr;
}
if (!Runner) {
if (ModelUnderTraining.empty())
Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures);
else
Runner = ModelUnderTrainingRunner::createAndEnsureValid(
Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures);
if (!Runner) {
Ctx.emitError("Regalloc: could not set up the model runner");
return nullptr;
}
}
Logger *Log = nullptr;
if (!TrainingLog.empty()) {
std::vector<LoggedFeatureSpec> LFS;
for (const auto &FS : InputFeatures)
LFS.push_back({FS, None});
if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get()))
if (MUTR->outputLoggedFeatureSpecs().size() > 1)
append_range(LFS, drop_begin(MUTR->outputLoggedFeatureSpecs()));
// We always log the output; in particular, if we're not evaluating, we
// don't have an output spec json file. That's why we handle the
// 'normal' output separately.
LFS.push_back({Output, None});
auto I = LogMap.insert(std::make_pair(
MF.getFunction().getName(),
std::make_unique<Logger>(LFS, Reward, /*IncludeReward*/ true)));
assert(I.second);
Log = I.first->second.get();
}
return std::make_unique<DevelopmentModeEvictAdvisor>(
MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
getAnalysis<MachineLoopInfo>(), Log);
}
std::unique_ptr<MLModelRunner> Runner;
StringMap<std::unique_ptr<Logger>> LogMap;
};
#endif //#ifdef LLVM_HAVE_TF_API
} // namespace
float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) {
auto &MRI = MF.getRegInfo();
float Ret = 0.0;
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
Register Reg = Register::index2VirtReg(I);
if (MRI.reg_nodbg_empty(Reg))
continue;
++Ret;
}
return Ret;
}
MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
MLModelRunner *Runner,
const MachineBlockFrequencyInfo &MBFI,
const MachineLoopInfo &Loops)
: RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA),
Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops),
InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) {
assert(this->Runner);
DoNotNormalize.set(FeatureIDs::mask);
DoNotNormalize.set(FeatureIDs::is_free);
DoNotNormalize.set(FeatureIDs::is_hint);
DoNotNormalize.set(FeatureIDs::is_local);
DoNotNormalize.set(FeatureIDs::min_stage);
DoNotNormalize.set(FeatureIDs::max_stage);
DoNotNormalize.set(FeatureIDs::progress);
}
int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition(
const LiveInterval &, const AllocationOrder &, unsigned, uint8_t,
const SmallVirtRegSet &) const {
int64_t Ret = Runner->evaluate<int64_t>();
assert(Ret >= 0);
assert(Ret <= CandidateVirtRegPos);
return Ret;
}
bool MLEvictAdvisor::loadInterferenceFeatures(
const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
const SmallVirtRegSet &FixedRegisters, FeaturesListNormalizer &Largest,
size_t Pos) const {
// It is only possible to evict virtual register interference.
if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) {
// leave unavailable
return false;
}
const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
int64_t LocalIntfs = 0;
float NrUrgent = 0.0f;
// The cascade tracking is the same as in the default advisor
unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg());
SmallVector<const LiveInterval *, MaxInterferences> InterferingIntervals;
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
// Different from the default heuristic, we don't make any assumptions about
// what having more than 10 results in the query may mean.
const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff);
if (IFIntervals.empty() && InterferingIntervals.empty())
continue;
if (IFIntervals.size() >= EvictInterferenceCutoff)
return false;
InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end());
for (const LiveInterval *Intf : reverse(IFIntervals)) {
assert(Register::isVirtualRegister(Intf->reg()) &&
"Only expecting virtual register interference from query");
// This is the same set of legality checks as in the default case: don't
// try to evict fixed regs or 'done' ones. Also don't break cascades,
// except in the urgent case, with the same nuances used in the default
// heuristic.
// We could try sharing this between the advisors, but it may end up
// more complex than it is right now.
if (FixedRegisters.count(Intf->reg()))
return false;
if (RA.getExtraInfo().getStage(*Intf) == RS_Done)
return false;
bool Urgent =
!VirtReg.isSpillable() &&
(Intf->isSpillable() ||
RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
RegClassInfo.getNumAllocatableRegs(
MRI->getRegClass(Intf->reg())));
// Only evict older cascades or live ranges without a cascade.
unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg());
if (Cascade <= IntfCascade) {
if (!Urgent)
return false;
++NrUrgent;
}
LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
(!EnableLocalReassign || !canReassign(*Intf, PhysReg)));
}
}
// OK, so if we made it this far, this LR is an eviction candidate, load its
// features.
extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs,
NrUrgent);
return true;
}
MCRegister MLEvictAdvisor::tryFindEvictionCandidate(
const LiveInterval &VirtReg, const AllocationOrder &Order,
uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const {
auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit);
if (!MaybeOrderLimit)
return MCRegister::NoRegister;
unsigned OrderLimit = *MaybeOrderLimit;
// The heuristic sets initial costs such as, if CostPerUseLimit is
// max<uint8_t>, then any of the costs of the legally-evictable intervals
// would be lower. When that happens, one of those will be selected.
// Therefore, we allow the candidate be selected, unless the candidate is
// unspillable, in which case it would be incorrect to not find a register for
// it.
const bool MustFindEviction =
(!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u));
// Number of available candidates - if 0, no need to continue.
size_t Available = 0;
// Make sure we don't have leftover partial state from an attempt where we had
// no available candidates and bailed out early.
resetInputs(*Runner);
// Track the index->register mapping because AllocationOrder doesn't do that
// and we'd have to scan it.
// Also track their mask, to write asserts/debug.
CandidateRegList Regs;
Regs.fill({0, false});
// Track the largest value of features seen during this eviction session. We
// only normalize (some of) the float features, but it's just simpler to
// dimension 'Largest' to all the features, especially since we have the
// 'DoNotNormalize' list.
FeaturesListNormalizer Largest;
Largest.fill(0.0);
// Same overal idea as in the default eviction policy - we visit the values of
// AllocationOrder one at a time. If it's not legally available, we mask off
// the corresponding feature column (==do nothing because we already reset all
// the features to 0)
// Use Pos to capture the column we load features at - in AllocationOrder
// order.
size_t Pos = 0;
for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
++I, ++Pos) {
MCRegister PhysReg = *I;
assert(!Regs[Pos].second);
assert(PhysReg);
if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) {
continue;
}
if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters,
Largest, Pos)) {
++Available;
Regs[Pos] = std::make_pair(PhysReg, true);
}
}
if (Available == 0) {
// Nothing to decide, nothing to learn.
assert(!MustFindEviction);
return MCRegister::NoRegister;
}
const size_t ValidPosLimit = Pos;
// If we must find eviction, the candidate should be masked out of the
// decision making process.
Regs[CandidateVirtRegPos].second = !MustFindEviction;
if (!MustFindEviction)
extractFeatures(SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest,
CandidateVirtRegPos, /*IsHint*/ 0, /*LocalIntfsCount*/ 0,
/*NrUrgent*/ 0.0);
assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had "
"nothing to allocate initially.");
// Normalize the features.
for (auto &V : Largest)
V = V ? V : 1.0;
for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount;
++FeatureIndex) {
if (DoNotNormalize.test(FeatureIndex))
continue;
for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) {
Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex];
}
}
*Runner->getTensor<float>(FeatureIDs::progress) =
static_cast<float>(RA.getQueueSize()) / InitialQSize;
// Get a decision.
size_t CandidatePos = tryFindEvictionCandidatePosition(
VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
// The contract with the ML side is that CandidatePos is mask == 1 (i.e.
// Regs[CandidatePos].second)
assert(Regs[CandidatePos].second);
if (CandidatePos == CandidateVirtRegPos) {
assert(!MustFindEviction);
return MCRegister::NoRegister;
}
assert(CandidatePos < ValidPosLimit);
(void)ValidPosLimit;
return Regs[CandidatePos].first;
}
const LIFeatureComponents &
MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const {
RegID ID = LI.reg().id();
LIFeatureComponents Empty;
auto I = CachedFeatures.insert(std::make_pair(ID, Empty));
LIFeatureComponents &Ret = I.first->getSecond();
if (!I.second)
return Ret;
SmallPtrSet<MachineInstr *, 8> Visited;
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
for (MachineRegisterInfo::reg_instr_nodbg_iterator
I = MRI->reg_instr_nodbg_begin(LI.reg()),
E = MRI->reg_instr_nodbg_end();
I != E;) {
MachineInstr *MI = &*(I++);
++Ret.NrDefsAndUses;
if (!Visited.insert(MI).second)
continue;
if (MI->isIdentityCopy() || MI->isImplicitDef())
continue;
bool Reads, Writes;
std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent());
Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq);
Ret.R += (Reads && !Writes) * Freq;
Ret.W += (!Reads && Writes) * Freq;
Ret.RW += (Reads && Writes) * Freq;
auto *MBB = MI->getParent();
auto *Loop = Loops.getLoopFor(MBB);
bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB))
Ret.IndVarUpdates += Freq;
if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI))
Ret.HintWeights += Freq;
}
Ret.IsRemat = VirtRegAuxInfo::isRematerializable(
LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo());
return Ret;
}
// Overall, this currently mimics what we do for weight calculation, but instead
// of accummulating the various features, we keep them separate.
void MLEvictAdvisor::extractFeatures(
const SmallVectorImpl<const LiveInterval *> &Intervals,
std::array<float, FeatureIDs::FeatureCount> &Largest, size_t Pos,
int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent) const {
int64_t NrDefsAndUses = 0;
int64_t NrBrokenHints = 0;
double R = 0.0;
double W = 0.0;
double RW = 0.0;
double IndVarUpdates = 0.0;
double HintWeights = 0.0;
float StartBBFreq = 0.0;
float EndBBFreq = 0.0;
float HottestBlockFreq = 0.0;
int32_t NrRematerializable = 0;
float TotalWeight = 0.0;
SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex();
SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex();
int64_t MaxStage = 0;
int64_t MinStage =
Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max();
for (const auto *L : Intervals) {
const LiveInterval &LI = *L;
MaxStage = std::max<int64_t>(
MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
MinStage = std::min<int64_t>(
MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
TotalWeight = std::max(TotalWeight, LI.weight());
if (LI.beginIndex() < StartSI)
StartSI = LI.beginIndex();
if (LI.endIndex() > EndSI)
EndSI = LI.endIndex();
const LIFeatureComponents &LIFC = getLIFeatureComponents(LI);
NrBrokenHints += VRM->hasPreferredPhys(LI.reg());
NrDefsAndUses += LIFC.NrDefsAndUses;
HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq);
R += LIFC.R;
W += LIFC.W;
RW += LIFC.RW;
IndVarUpdates += LIFC.IndVarUpdates;
HintWeights += LIFC.HintWeights;
NrRematerializable += LIFC.IsRemat;
}
size_t Size = 0;
if (!Intervals.empty()) {
StartBBFreq =
MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI));
if (EndSI >= LIS->getSlotIndexes()->getLastIndex())
EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex();
EndBBFreq =
MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI));
Size = StartSI.distance(EndSI);
}
// Set the features at the column 'Pos'.
#define SET(ID, TYPE, VAL) \
do { \
Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \
if (!DoNotNormalize.test(FeatureIDs::ID)) \
Largest[FeatureIDs::ID] = \
std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \
} while (false)
SET(mask, int64_t, 1);
SET(is_free, int64_t, Intervals.empty());
SET(nr_urgent, float, NrUrgent);
SET(nr_broken_hints, float, NrBrokenHints);
SET(is_hint, int64_t, IsHint);
SET(is_local, int64_t, LocalIntfsCount);
SET(nr_rematerializable, float, NrRematerializable);
SET(nr_defs_and_uses, float, NrDefsAndUses);
SET(weighed_reads_by_max, float, R);
SET(weighed_writes_by_max, float, W);
SET(weighed_read_writes_by_max, float, RW);
SET(weighed_indvars_by_max, float, IndVarUpdates);
SET(hint_weights_by_max, float, HintWeights);
SET(start_bb_freq_by_max, float, StartBBFreq);
SET(end_bb_freq_by_max, float, EndBBFreq);
SET(hottest_bb_freq_by_max, float, HottestBlockFreq);
SET(liverange_size, float, Size);
SET(use_def_density, float, TotalWeight);
SET(max_stage, int64_t, MaxStage);
SET(min_stage, int64_t, MinStage);
#undef SET
}
// Development mode-specific implementations
#ifdef LLVM_HAVE_TF_API
RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() {
return new DevelopmentModeEvictionAdvisorAnalysis();
}
int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition(
const LiveInterval &VirtReg, const AllocationOrder &Order,
unsigned OrderLimit, uint8_t CostPerUseLimit,
const SmallVirtRegSet &FixedRegisters) const {
int64_t Ret = 0;
if (isa<ModelUnderTrainingRunner>(getRunner())) {
Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition(
VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
} else {
MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate(
VirtReg, Order, CostPerUseLimit, FixedRegisters);
// Find the index of the selected PhysReg. We need it for logging, otherwise
// this is wasted cycles (but so would starting development mode without a
// model nor logging)
if (!PhysReg)
Ret = CandidateVirtRegPos;
else
for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit);
I != E; ++I, ++Ret)
if (*I == PhysReg)
break;
}
if (TrainingLog.empty())
return Ret;
size_t CurrentFeature = 0;
for (; CurrentFeature < FeatureIDs::FeatureCount; ++CurrentFeature) {
Log->logSpecifiedTensorValue(
CurrentFeature, reinterpret_cast<const char *>(
getRunner().getTensorUntyped(CurrentFeature)));
}
if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner()))
for (size_t I = 1; I < MUTR->outputLoggedFeatureSpecs().size();
++I, ++CurrentFeature)
Log->logSpecifiedTensorValue(
CurrentFeature,
reinterpret_cast<const char *>(
MUTR->lastEvaluationResult()->getUntypedTensorValue(I)));
// The output is right after the features and the extra outputs
Log->logInt64Value(CurrentFeature, &Ret);
return Ret;
}
bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) {
if (auto *DevModeAnalysis = dyn_cast<DevelopmentModeEvictionAdvisorAnalysis>(
&getAnalysis<RegAllocEvictionAdvisorAnalysis>()))
if (auto *Log = DevModeAnalysis->getLogger(MF))
Log->logFloatFinalReward(static_cast<float>(
calculateRegAllocScore(
MF, getAnalysis<MachineBlockFrequencyInfo>(),
getAnalysis<AAResultsWrapperPass>().getAAResults())
.getScore()));
return false;
}
#endif // #ifdef LLVM_HAVE_TF_API
RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() {
return new ReleaseModeEvictionAdvisorAnalysis();
}
// In all cases except development mode, we don't need scoring.
#if !defined(LLVM_HAVE_TF_API)
bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; }
#endif