Arseniy Zaostrovnykh dd331082e7
[analyzer][NFC] Factor out SymbolManager::get<*> (#121781)
Replace the family of `SymbolManager::get*Symbol(...)` member functions
with a single generic `SymbolManager::get<*>` member function.
2025-01-10 08:21:00 +01:00

415 lines
12 KiB
C++

//===- SymbolManager.h - Management of Symbolic Values --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines SymbolManager, a class that manages symbolic values
// created for use by ExprEngine and related classes.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/StmtObjC.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace clang;
using namespace ento;
void SymExpr::anchor() {}
StringRef SymbolConjured::getKindStr() const { return "conj_$"; }
StringRef SymbolDerived::getKindStr() const { return "derived_$"; }
StringRef SymbolExtent::getKindStr() const { return "extent_$"; }
StringRef SymbolMetadata::getKindStr() const { return "meta_$"; }
StringRef SymbolRegionValue::getKindStr() const { return "reg_$"; }
LLVM_DUMP_METHOD void SymExpr::dump() const { dumpToStream(llvm::errs()); }
void BinarySymExpr::dumpToStreamImpl(raw_ostream &OS, const SymExpr *Sym) {
OS << '(';
Sym->dumpToStream(OS);
OS << ')';
}
void BinarySymExpr::dumpToStreamImpl(raw_ostream &OS,
const llvm::APSInt &Value) {
if (Value.isUnsigned())
OS << Value.getZExtValue();
else
OS << Value.getSExtValue();
if (Value.isUnsigned())
OS << 'U';
}
void BinarySymExpr::dumpToStreamImpl(raw_ostream &OS,
BinaryOperator::Opcode Op) {
OS << ' ' << BinaryOperator::getOpcodeStr(Op) << ' ';
}
void SymbolCast::dumpToStream(raw_ostream &os) const {
os << '(' << ToTy << ") (";
Operand->dumpToStream(os);
os << ')';
}
void UnarySymExpr::dumpToStream(raw_ostream &os) const {
os << UnaryOperator::getOpcodeStr(Op);
bool Binary = isa<BinarySymExpr>(Operand);
if (Binary)
os << '(';
Operand->dumpToStream(os);
if (Binary)
os << ')';
}
void SymbolConjured::dumpToStream(raw_ostream &os) const {
os << getKindStr() << getSymbolID() << '{' << T << ", LC" << LCtx->getID();
if (S)
os << ", S" << S->getID(LCtx->getDecl()->getASTContext());
else
os << ", no stmt";
os << ", #" << Count << '}';
}
void SymbolDerived::dumpToStream(raw_ostream &os) const {
os << getKindStr() << getSymbolID() << '{' << getParentSymbol() << ','
<< getRegion() << '}';
}
void SymbolExtent::dumpToStream(raw_ostream &os) const {
os << getKindStr() << getSymbolID() << '{' << getRegion() << '}';
}
void SymbolMetadata::dumpToStream(raw_ostream &os) const {
os << getKindStr() << getSymbolID() << '{' << getRegion() << ',' << T << '}';
}
void SymbolData::anchor() {}
void SymbolRegionValue::dumpToStream(raw_ostream &os) const {
os << getKindStr() << getSymbolID() << '<' << getType() << ' ' << R << '>';
}
bool SymExpr::symbol_iterator::operator==(const symbol_iterator &X) const {
return itr == X.itr;
}
bool SymExpr::symbol_iterator::operator!=(const symbol_iterator &X) const {
return itr != X.itr;
}
SymExpr::symbol_iterator::symbol_iterator(const SymExpr *SE) {
itr.push_back(SE);
}
SymExpr::symbol_iterator &SymExpr::symbol_iterator::operator++() {
assert(!itr.empty() && "attempting to iterate on an 'end' iterator");
expand();
return *this;
}
SymbolRef SymExpr::symbol_iterator::operator*() {
assert(!itr.empty() && "attempting to dereference an 'end' iterator");
return itr.back();
}
void SymExpr::symbol_iterator::expand() {
const SymExpr *SE = itr.pop_back_val();
switch (SE->getKind()) {
case SymExpr::SymbolRegionValueKind:
case SymExpr::SymbolConjuredKind:
case SymExpr::SymbolDerivedKind:
case SymExpr::SymbolExtentKind:
case SymExpr::SymbolMetadataKind:
return;
case SymExpr::SymbolCastKind:
itr.push_back(cast<SymbolCast>(SE)->getOperand());
return;
case SymExpr::UnarySymExprKind:
itr.push_back(cast<UnarySymExpr>(SE)->getOperand());
return;
case SymExpr::SymIntExprKind:
itr.push_back(cast<SymIntExpr>(SE)->getLHS());
return;
case SymExpr::IntSymExprKind:
itr.push_back(cast<IntSymExpr>(SE)->getRHS());
return;
case SymExpr::SymSymExprKind: {
const auto *x = cast<SymSymExpr>(SE);
itr.push_back(x->getLHS());
itr.push_back(x->getRHS());
return;
}
}
llvm_unreachable("unhandled expansion case");
}
QualType SymbolConjured::getType() const {
return T;
}
QualType SymbolDerived::getType() const {
return R->getValueType();
}
QualType SymbolExtent::getType() const {
ASTContext &Ctx = R->getMemRegionManager().getContext();
return Ctx.getSizeType();
}
QualType SymbolMetadata::getType() const {
return T;
}
QualType SymbolRegionValue::getType() const {
return R->getValueType();
}
bool SymbolManager::canSymbolicate(QualType T) {
T = T.getCanonicalType();
if (Loc::isLocType(T))
return true;
if (T->isIntegralOrEnumerationType())
return true;
if (T->isRecordType() && !T->isUnionType())
return true;
return false;
}
void SymbolManager::addSymbolDependency(const SymbolRef Primary,
const SymbolRef Dependent) {
auto &dependencies = SymbolDependencies[Primary];
if (!dependencies) {
dependencies = std::make_unique<SymbolRefSmallVectorTy>();
}
dependencies->push_back(Dependent);
}
const SymbolRefSmallVectorTy *SymbolManager::getDependentSymbols(
const SymbolRef Primary) {
SymbolDependTy::const_iterator I = SymbolDependencies.find(Primary);
if (I == SymbolDependencies.end())
return nullptr;
return I->second.get();
}
void SymbolReaper::markDependentsLive(SymbolRef sym) {
// Do not mark dependents more then once.
SymbolMapTy::iterator LI = TheLiving.find(sym);
assert(LI != TheLiving.end() && "The primary symbol is not live.");
if (LI->second == HaveMarkedDependents)
return;
LI->second = HaveMarkedDependents;
if (const SymbolRefSmallVectorTy *Deps = SymMgr.getDependentSymbols(sym)) {
for (const auto I : *Deps) {
if (TheLiving.contains(I))
continue;
markLive(I);
}
}
}
void SymbolReaper::markLive(SymbolRef sym) {
TheLiving[sym] = NotProcessed;
markDependentsLive(sym);
}
void SymbolReaper::markLive(const MemRegion *region) {
LiveRegionRoots.insert(region->getBaseRegion());
markElementIndicesLive(region);
}
void SymbolReaper::markLazilyCopied(const clang::ento::MemRegion *region) {
LazilyCopiedRegionRoots.insert(region->getBaseRegion());
}
void SymbolReaper::markElementIndicesLive(const MemRegion *region) {
for (auto SR = dyn_cast<SubRegion>(region); SR;
SR = dyn_cast<SubRegion>(SR->getSuperRegion())) {
if (const auto ER = dyn_cast<ElementRegion>(SR)) {
SVal Idx = ER->getIndex();
for (SymbolRef Sym : Idx.symbols())
markLive(Sym);
}
}
}
void SymbolReaper::markInUse(SymbolRef sym) {
if (isa<SymbolMetadata>(sym))
MetadataInUse.insert(sym);
}
bool SymbolReaper::isLiveRegion(const MemRegion *MR) {
// TODO: For now, liveness of a memory region is equivalent to liveness of its
// base region. In fact we can do a bit better: say, if a particular FieldDecl
// is not used later in the path, we can diagnose a leak of a value within
// that field earlier than, say, the variable that contains the field dies.
MR = MR->getBaseRegion();
if (LiveRegionRoots.count(MR))
return true;
if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
return isLive(SR->getSymbol());
if (const auto *VR = dyn_cast<VarRegion>(MR))
return isLive(VR, true);
// FIXME: This is a gross over-approximation. What we really need is a way to
// tell if anything still refers to this region. Unlike SymbolicRegions,
// AllocaRegions don't have associated symbols, though, so we don't actually
// have a way to track their liveness.
return isa<AllocaRegion, CXXThisRegion, MemSpaceRegion, CodeTextRegion>(MR);
}
bool SymbolReaper::isLazilyCopiedRegion(const MemRegion *MR) const {
// TODO: See comment in isLiveRegion.
return LazilyCopiedRegionRoots.count(MR->getBaseRegion());
}
bool SymbolReaper::isReadableRegion(const MemRegion *MR) {
return isLiveRegion(MR) || isLazilyCopiedRegion(MR);
}
bool SymbolReaper::isLive(SymbolRef sym) {
if (TheLiving.count(sym)) {
markDependentsLive(sym);
return true;
}
bool KnownLive;
switch (sym->getKind()) {
case SymExpr::SymbolRegionValueKind:
KnownLive = isReadableRegion(cast<SymbolRegionValue>(sym)->getRegion());
break;
case SymExpr::SymbolConjuredKind:
KnownLive = false;
break;
case SymExpr::SymbolDerivedKind:
KnownLive = isLive(cast<SymbolDerived>(sym)->getParentSymbol());
break;
case SymExpr::SymbolExtentKind:
KnownLive = isLiveRegion(cast<SymbolExtent>(sym)->getRegion());
break;
case SymExpr::SymbolMetadataKind:
KnownLive = MetadataInUse.count(sym) &&
isLiveRegion(cast<SymbolMetadata>(sym)->getRegion());
if (KnownLive)
MetadataInUse.erase(sym);
break;
case SymExpr::SymIntExprKind:
KnownLive = isLive(cast<SymIntExpr>(sym)->getLHS());
break;
case SymExpr::IntSymExprKind:
KnownLive = isLive(cast<IntSymExpr>(sym)->getRHS());
break;
case SymExpr::SymSymExprKind:
KnownLive = isLive(cast<SymSymExpr>(sym)->getLHS()) &&
isLive(cast<SymSymExpr>(sym)->getRHS());
break;
case SymExpr::SymbolCastKind:
KnownLive = isLive(cast<SymbolCast>(sym)->getOperand());
break;
case SymExpr::UnarySymExprKind:
KnownLive = isLive(cast<UnarySymExpr>(sym)->getOperand());
break;
}
if (KnownLive)
markLive(sym);
return KnownLive;
}
bool
SymbolReaper::isLive(const Expr *ExprVal, const LocationContext *ELCtx) const {
if (LCtx == nullptr)
return false;
if (LCtx != ELCtx) {
// If the reaper's location context is a parent of the expression's
// location context, then the expression value is now "out of scope".
if (LCtx->isParentOf(ELCtx))
return false;
return true;
}
// If no statement is provided, everything in this and parent contexts is
// live.
if (!Loc)
return true;
return LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, ExprVal);
}
bool SymbolReaper::isLive(const VarRegion *VR, bool includeStoreBindings) const{
const StackFrameContext *VarContext = VR->getStackFrame();
if (!VarContext)
return true;
if (!LCtx)
return false;
const StackFrameContext *CurrentContext = LCtx->getStackFrame();
if (VarContext == CurrentContext) {
// If no statement is provided, everything is live.
if (!Loc)
return true;
// Anonymous parameters of an inheriting constructor are live for the entire
// duration of the constructor.
if (isa<CXXInheritedCtorInitExpr>(Loc))
return true;
if (LCtx->getAnalysis<RelaxedLiveVariables>()->isLive(Loc, VR->getDecl()))
return true;
if (!includeStoreBindings)
return false;
unsigned &cachedQuery =
const_cast<SymbolReaper *>(this)->includedRegionCache[VR];
if (cachedQuery) {
return cachedQuery == 1;
}
// Query the store to see if the region occurs in any live bindings.
if (Store store = reapedStore.getStore()) {
bool hasRegion =
reapedStore.getStoreManager().includedInBindings(store, VR);
cachedQuery = hasRegion ? 1 : 2;
return hasRegion;
}
return false;
}
return VarContext->isParentOf(CurrentContext);
}