llvm-project/mlir/lib/IR/Operation.cpp
Jacques Pienaar 829733af4a [mlir] Fix SameOperandsAndResultType to check encoding.
Encoding was accidentally left out here even though it forms part of the type.
This is small tightening step and I'll look at follow on to tighten more.

Differential Revision: https://reviews.llvm.org/D140445
2022-12-21 09:49:18 -08:00

1221 lines
45 KiB
C++

//===- Operation.cpp - Operation support code -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Operation.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/FoldInterfaces.h"
#include "llvm/ADT/StringExtras.h"
#include <numeric>
using namespace mlir;
//===----------------------------------------------------------------------===//
// Operation
//===----------------------------------------------------------------------===//
/// Create a new Operation from operation state.
Operation *Operation::create(const OperationState &state) {
return create(state.location, state.name, state.types, state.operands,
state.attributes.getDictionary(state.getContext()),
state.successors, state.regions);
}
/// Create a new Operation with the specific fields.
Operation *Operation::create(Location location, OperationName name,
TypeRange resultTypes, ValueRange operands,
NamedAttrList &&attributes, BlockRange successors,
RegionRange regions) {
unsigned numRegions = regions.size();
Operation *op = create(location, name, resultTypes, operands,
std::move(attributes), successors, numRegions);
for (unsigned i = 0; i < numRegions; ++i)
if (regions[i])
op->getRegion(i).takeBody(*regions[i]);
return op;
}
/// Overload of create that takes an existing DictionaryAttr to avoid
/// unnecessarily uniquing a list of attributes.
Operation *Operation::create(Location location, OperationName name,
TypeRange resultTypes, ValueRange operands,
NamedAttrList &&attributes, BlockRange successors,
unsigned numRegions) {
assert(llvm::all_of(resultTypes, [](Type t) { return t; }) &&
"unexpected null result type");
// We only need to allocate additional memory for a subset of results.
unsigned numTrailingResults = OpResult::getNumTrailing(resultTypes.size());
unsigned numInlineResults = OpResult::getNumInline(resultTypes.size());
unsigned numSuccessors = successors.size();
unsigned numOperands = operands.size();
unsigned numResults = resultTypes.size();
// If the operation is known to have no operands, don't allocate an operand
// storage.
bool needsOperandStorage =
operands.empty() ? !name.hasTrait<OpTrait::ZeroOperands>() : true;
// Compute the byte size for the operation and the operand storage. This takes
// into account the size of the operation, its trailing objects, and its
// prefixed objects.
size_t byteSize =
totalSizeToAlloc<detail::OperandStorage, BlockOperand, Region, OpOperand>(
needsOperandStorage ? 1 : 0, numSuccessors, numRegions, numOperands);
size_t prefixByteSize = llvm::alignTo(
Operation::prefixAllocSize(numTrailingResults, numInlineResults),
alignof(Operation));
char *mallocMem = reinterpret_cast<char *>(malloc(byteSize + prefixByteSize));
void *rawMem = mallocMem + prefixByteSize;
// Populate default attributes.
if (Optional<RegisteredOperationName> info = name.getRegisteredInfo())
info->populateDefaultAttrs(attributes);
// Create the new Operation.
Operation *op = ::new (rawMem) Operation(
location, name, numResults, numSuccessors, numRegions,
attributes.getDictionary(location.getContext()), needsOperandStorage);
assert((numSuccessors == 0 || op->mightHaveTrait<OpTrait::IsTerminator>()) &&
"unexpected successors in a non-terminator operation");
// Initialize the results.
auto resultTypeIt = resultTypes.begin();
for (unsigned i = 0; i < numInlineResults; ++i, ++resultTypeIt)
new (op->getInlineOpResult(i)) detail::InlineOpResult(*resultTypeIt, i);
for (unsigned i = 0; i < numTrailingResults; ++i, ++resultTypeIt) {
new (op->getOutOfLineOpResult(i))
detail::OutOfLineOpResult(*resultTypeIt, i);
}
// Initialize the regions.
for (unsigned i = 0; i != numRegions; ++i)
new (&op->getRegion(i)) Region(op);
// Initialize the operands.
if (needsOperandStorage) {
new (&op->getOperandStorage()) detail::OperandStorage(
op, op->getTrailingObjects<OpOperand>(), operands);
}
// Initialize the successors.
auto blockOperands = op->getBlockOperands();
for (unsigned i = 0; i != numSuccessors; ++i)
new (&blockOperands[i]) BlockOperand(op, successors[i]);
return op;
}
Operation::Operation(Location location, OperationName name, unsigned numResults,
unsigned numSuccessors, unsigned numRegions,
DictionaryAttr attributes, bool hasOperandStorage)
: location(location), numResults(numResults), numSuccs(numSuccessors),
numRegions(numRegions), hasOperandStorage(hasOperandStorage), name(name),
attrs(attributes) {
assert(attributes && "unexpected null attribute dictionary");
#ifndef NDEBUG
if (!getDialect() && !getContext()->allowsUnregisteredDialects())
llvm::report_fatal_error(
name.getStringRef() +
" created with unregistered dialect. If this is intended, please call "
"allowUnregisteredDialects() on the MLIRContext, or use "
"-allow-unregistered-dialect with the MLIR tool used.");
#endif
}
// Operations are deleted through the destroy() member because they are
// allocated via malloc.
Operation::~Operation() {
assert(block == nullptr && "operation destroyed but still in a block");
#ifndef NDEBUG
if (!use_empty()) {
{
InFlightDiagnostic diag =
emitOpError("operation destroyed but still has uses");
for (Operation *user : getUsers())
diag.attachNote(user->getLoc()) << "- use: " << *user << "\n";
}
llvm::report_fatal_error("operation destroyed but still has uses");
}
#endif
// Explicitly run the destructors for the operands.
if (hasOperandStorage)
getOperandStorage().~OperandStorage();
// Explicitly run the destructors for the successors.
for (auto &successor : getBlockOperands())
successor.~BlockOperand();
// Explicitly destroy the regions.
for (auto &region : getRegions())
region.~Region();
}
/// Destroy this operation or one of its subclasses.
void Operation::destroy() {
// Operations may have additional prefixed allocation, which needs to be
// accounted for here when computing the address to free.
char *rawMem = reinterpret_cast<char *>(this) -
llvm::alignTo(prefixAllocSize(), alignof(Operation));
this->~Operation();
free(rawMem);
}
/// Return true if this operation is a proper ancestor of the `other`
/// operation.
bool Operation::isProperAncestor(Operation *other) {
while ((other = other->getParentOp()))
if (this == other)
return true;
return false;
}
/// Replace any uses of 'from' with 'to' within this operation.
void Operation::replaceUsesOfWith(Value from, Value to) {
if (from == to)
return;
for (auto &operand : getOpOperands())
if (operand.get() == from)
operand.set(to);
}
/// Replace the current operands of this operation with the ones provided in
/// 'operands'.
void Operation::setOperands(ValueRange operands) {
if (LLVM_LIKELY(hasOperandStorage))
return getOperandStorage().setOperands(this, operands);
assert(operands.empty() && "setting operands without an operand storage");
}
/// Replace the operands beginning at 'start' and ending at 'start' + 'length'
/// with the ones provided in 'operands'. 'operands' may be smaller or larger
/// than the range pointed to by 'start'+'length'.
void Operation::setOperands(unsigned start, unsigned length,
ValueRange operands) {
assert((start + length) <= getNumOperands() &&
"invalid operand range specified");
if (LLVM_LIKELY(hasOperandStorage))
return getOperandStorage().setOperands(this, start, length, operands);
assert(operands.empty() && "setting operands without an operand storage");
}
/// Insert the given operands into the operand list at the given 'index'.
void Operation::insertOperands(unsigned index, ValueRange operands) {
if (LLVM_LIKELY(hasOperandStorage))
return setOperands(index, /*length=*/0, operands);
assert(operands.empty() && "inserting operands without an operand storage");
}
//===----------------------------------------------------------------------===//
// Diagnostics
//===----------------------------------------------------------------------===//
/// Emit an error about fatal conditions with this operation, reporting up to
/// any diagnostic handlers that may be listening.
InFlightDiagnostic Operation::emitError(const Twine &message) {
InFlightDiagnostic diag = mlir::emitError(getLoc(), message);
if (getContext()->shouldPrintOpOnDiagnostic()) {
diag.attachNote(getLoc())
.append("see current operation: ")
.appendOp(*this, OpPrintingFlags().printGenericOpForm());
}
return diag;
}
/// Emit a warning about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic Operation::emitWarning(const Twine &message) {
InFlightDiagnostic diag = mlir::emitWarning(getLoc(), message);
if (getContext()->shouldPrintOpOnDiagnostic())
diag.attachNote(getLoc()) << "see current operation: " << *this;
return diag;
}
/// Emit a remark about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic Operation::emitRemark(const Twine &message) {
InFlightDiagnostic diag = mlir::emitRemark(getLoc(), message);
if (getContext()->shouldPrintOpOnDiagnostic())
diag.attachNote(getLoc()) << "see current operation: " << *this;
return diag;
}
//===----------------------------------------------------------------------===//
// Operation Ordering
//===----------------------------------------------------------------------===//
constexpr unsigned Operation::kInvalidOrderIdx;
constexpr unsigned Operation::kOrderStride;
/// Given an operation 'other' that is within the same parent block, return
/// whether the current operation is before 'other' in the operation list
/// of the parent block.
/// Note: This function has an average complexity of O(1), but worst case may
/// take O(N) where N is the number of operations within the parent block.
bool Operation::isBeforeInBlock(Operation *other) {
assert(block && "Operations without parent blocks have no order.");
assert(other && other->block == block &&
"Expected other operation to have the same parent block.");
// If the order of the block is already invalid, directly recompute the
// parent.
if (!block->isOpOrderValid()) {
block->recomputeOpOrder();
} else {
// Update the order either operation if necessary.
updateOrderIfNecessary();
other->updateOrderIfNecessary();
}
return orderIndex < other->orderIndex;
}
/// Update the order index of this operation of this operation if necessary,
/// potentially recomputing the order of the parent block.
void Operation::updateOrderIfNecessary() {
assert(block && "expected valid parent");
// If the order is valid for this operation there is nothing to do.
if (hasValidOrder())
return;
Operation *blockFront = &block->front();
Operation *blockBack = &block->back();
// This method is expected to only be invoked on blocks with more than one
// operation.
assert(blockFront != blockBack && "expected more than one operation");
// If the operation is at the end of the block.
if (this == blockBack) {
Operation *prevNode = getPrevNode();
if (!prevNode->hasValidOrder())
return block->recomputeOpOrder();
// Add the stride to the previous operation.
orderIndex = prevNode->orderIndex + kOrderStride;
return;
}
// If this is the first operation try to use the next operation to compute the
// ordering.
if (this == blockFront) {
Operation *nextNode = getNextNode();
if (!nextNode->hasValidOrder())
return block->recomputeOpOrder();
// There is no order to give this operation.
if (nextNode->orderIndex == 0)
return block->recomputeOpOrder();
// If we can't use the stride, just take the middle value left. This is safe
// because we know there is at least one valid index to assign to.
if (nextNode->orderIndex <= kOrderStride)
orderIndex = (nextNode->orderIndex / 2);
else
orderIndex = kOrderStride;
return;
}
// Otherwise, this operation is between two others. Place this operation in
// the middle of the previous and next if possible.
Operation *prevNode = getPrevNode(), *nextNode = getNextNode();
if (!prevNode->hasValidOrder() || !nextNode->hasValidOrder())
return block->recomputeOpOrder();
unsigned prevOrder = prevNode->orderIndex, nextOrder = nextNode->orderIndex;
// Check to see if there is a valid order between the two.
if (prevOrder + 1 == nextOrder)
return block->recomputeOpOrder();
orderIndex = prevOrder + ((nextOrder - prevOrder) / 2);
}
//===----------------------------------------------------------------------===//
// ilist_traits for Operation
//===----------------------------------------------------------------------===//
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getNodePtr(pointer n) -> node_type * {
return NodeAccess::getNodePtr<OptionsT>(n);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getNodePtr(const_pointer n)
-> const node_type * {
return NodeAccess::getNodePtr<OptionsT>(n);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getValuePtr(node_type *n) -> pointer {
return NodeAccess::getValuePtr<OptionsT>(n);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getValuePtr(const node_type *n)
-> const_pointer {
return NodeAccess::getValuePtr<OptionsT>(n);
}
void llvm::ilist_traits<::mlir::Operation>::deleteNode(Operation *op) {
op->destroy();
}
Block *llvm::ilist_traits<::mlir::Operation>::getContainingBlock() {
size_t offset(size_t(&((Block *)nullptr->*Block::getSublistAccess(nullptr))));
iplist<Operation> *anchor(static_cast<iplist<Operation> *>(this));
return reinterpret_cast<Block *>(reinterpret_cast<char *>(anchor) - offset);
}
/// This is a trait method invoked when an operation is added to a block. We
/// keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::addNodeToList(Operation *op) {
assert(!op->getBlock() && "already in an operation block!");
op->block = getContainingBlock();
// Invalidate the order on the operation.
op->orderIndex = Operation::kInvalidOrderIdx;
}
/// This is a trait method invoked when an operation is removed from a block.
/// We keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::removeNodeFromList(Operation *op) {
assert(op->block && "not already in an operation block!");
op->block = nullptr;
}
/// This is a trait method invoked when an operation is moved from one block
/// to another. We keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::transferNodesFromList(
ilist_traits<Operation> &otherList, op_iterator first, op_iterator last) {
Block *curParent = getContainingBlock();
// Invalidate the ordering of the parent block.
curParent->invalidateOpOrder();
// If we are transferring operations within the same block, the block
// pointer doesn't need to be updated.
if (curParent == otherList.getContainingBlock())
return;
// Update the 'block' member of each operation.
for (; first != last; ++first)
first->block = curParent;
}
/// Remove this operation (and its descendants) from its Block and delete
/// all of them.
void Operation::erase() {
if (auto *parent = getBlock())
parent->getOperations().erase(this);
else
destroy();
}
/// Remove the operation from its parent block, but don't delete it.
void Operation::remove() {
if (Block *parent = getBlock())
parent->getOperations().remove(this);
}
/// Unlink this operation from its current block and insert it right before
/// `existingOp` which may be in the same or another block in the same
/// function.
void Operation::moveBefore(Operation *existingOp) {
moveBefore(existingOp->getBlock(), existingOp->getIterator());
}
/// Unlink this operation from its current basic block and insert it right
/// before `iterator` in the specified basic block.
void Operation::moveBefore(Block *block,
llvm::iplist<Operation>::iterator iterator) {
block->getOperations().splice(iterator, getBlock()->getOperations(),
getIterator());
}
/// Unlink this operation from its current block and insert it right after
/// `existingOp` which may be in the same or another block in the same function.
void Operation::moveAfter(Operation *existingOp) {
moveAfter(existingOp->getBlock(), existingOp->getIterator());
}
/// Unlink this operation from its current block and insert it right after
/// `iterator` in the specified block.
void Operation::moveAfter(Block *block,
llvm::iplist<Operation>::iterator iterator) {
assert(iterator != block->end() && "cannot move after end of block");
moveBefore(block, std::next(iterator));
}
/// This drops all operand uses from this operation, which is an essential
/// step in breaking cyclic dependences between references when they are to
/// be deleted.
void Operation::dropAllReferences() {
for (auto &op : getOpOperands())
op.drop();
for (auto &region : getRegions())
region.dropAllReferences();
for (auto &dest : getBlockOperands())
dest.drop();
}
/// This drops all uses of any values defined by this operation or its nested
/// regions, wherever they are located.
void Operation::dropAllDefinedValueUses() {
dropAllUses();
for (auto &region : getRegions())
for (auto &block : region)
block.dropAllDefinedValueUses();
}
void Operation::setSuccessor(Block *block, unsigned index) {
assert(index < getNumSuccessors());
getBlockOperands()[index].set(block);
}
/// Attempt to fold this operation using the Op's registered foldHook.
LogicalResult Operation::fold(ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &results) {
// If we have a registered operation definition matching this one, use it to
// try to constant fold the operation.
Optional<RegisteredOperationName> info = getRegisteredInfo();
if (info && succeeded(info->foldHook(this, operands, results)))
return success();
// Otherwise, fall back on the dialect hook to handle it.
Dialect *dialect = getDialect();
if (!dialect)
return failure();
auto *interface = dyn_cast<DialectFoldInterface>(dialect);
if (!interface)
return failure();
return interface->fold(this, operands, results);
}
/// Emit an error with the op name prefixed, like "'dim' op " which is
/// convenient for verifiers.
InFlightDiagnostic Operation::emitOpError(const Twine &message) {
return emitError() << "'" << getName() << "' op " << message;
}
//===----------------------------------------------------------------------===//
// Operation Cloning
//===----------------------------------------------------------------------===//
Operation::CloneOptions::CloneOptions()
: cloneRegionsFlag(false), cloneOperandsFlag(false) {}
Operation::CloneOptions::CloneOptions(bool cloneRegions, bool cloneOperands)
: cloneRegionsFlag(cloneRegions), cloneOperandsFlag(cloneOperands) {}
Operation::CloneOptions Operation::CloneOptions::all() {
return CloneOptions().cloneRegions().cloneOperands();
}
Operation::CloneOptions &Operation::CloneOptions::cloneRegions(bool enable) {
cloneRegionsFlag = enable;
return *this;
}
Operation::CloneOptions &Operation::CloneOptions::cloneOperands(bool enable) {
cloneOperandsFlag = enable;
return *this;
}
/// Create a deep copy of this operation but keep the operation regions empty.
/// Operands are remapped using `mapper` (if present), and `mapper` is updated
/// to contain the results. The `mapResults` flag specifies whether the results
/// of the cloned operation should be added to the map.
Operation *Operation::cloneWithoutRegions(BlockAndValueMapping &mapper) {
return clone(mapper, CloneOptions::all().cloneRegions(false));
}
Operation *Operation::cloneWithoutRegions() {
BlockAndValueMapping mapper;
return cloneWithoutRegions(mapper);
}
/// Create a deep copy of this operation, remapping any operands that use
/// values outside of the operation using the map that is provided (leaving
/// them alone if no entry is present). Replaces references to cloned
/// sub-operations to the corresponding operation that is copied, and adds
/// those mappings to the map.
Operation *Operation::clone(BlockAndValueMapping &mapper,
CloneOptions options) {
SmallVector<Value, 8> operands;
SmallVector<Block *, 2> successors;
// Remap the operands.
if (options.shouldCloneOperands()) {
operands.reserve(getNumOperands());
for (auto opValue : getOperands())
operands.push_back(mapper.lookupOrDefault(opValue));
}
// Remap the successors.
successors.reserve(getNumSuccessors());
for (Block *successor : getSuccessors())
successors.push_back(mapper.lookupOrDefault(successor));
// Create the new operation.
auto *newOp = create(getLoc(), getName(), getResultTypes(), operands, attrs,
successors, getNumRegions());
// Clone the regions.
if (options.shouldCloneRegions()) {
for (unsigned i = 0; i != numRegions; ++i)
getRegion(i).cloneInto(&newOp->getRegion(i), mapper);
}
// Remember the mapping of any results.
for (unsigned i = 0, e = getNumResults(); i != e; ++i)
mapper.map(getResult(i), newOp->getResult(i));
return newOp;
}
Operation *Operation::clone(CloneOptions options) {
BlockAndValueMapping mapper;
return clone(mapper, options);
}
//===----------------------------------------------------------------------===//
// OpState trait class.
//===----------------------------------------------------------------------===//
// The fallback for the parser is to try for a dialect operation parser.
// Otherwise, reject the custom assembly form.
ParseResult OpState::parse(OpAsmParser &parser, OperationState &result) {
if (auto parseFn = result.name.getDialect()->getParseOperationHook(
result.name.getStringRef()))
return (*parseFn)(parser, result);
return parser.emitError(parser.getNameLoc(), "has no custom assembly form");
}
// The fallback for the printer is to try for a dialect operation printer.
// Otherwise, it prints the generic form.
void OpState::print(Operation *op, OpAsmPrinter &p, StringRef defaultDialect) {
if (auto printFn = op->getDialect()->getOperationPrinter(op)) {
printOpName(op, p, defaultDialect);
printFn(op, p);
} else {
p.printGenericOp(op);
}
}
/// Print an operation name, eliding the dialect prefix if necessary and doesn't
/// lead to ambiguities.
void OpState::printOpName(Operation *op, OpAsmPrinter &p,
StringRef defaultDialect) {
StringRef name = op->getName().getStringRef();
if (name.startswith((defaultDialect + ".").str()) && name.count('.') == 1)
name = name.drop_front(defaultDialect.size() + 1);
p.getStream() << name;
}
/// Emit an error about fatal conditions with this operation, reporting up to
/// any diagnostic handlers that may be listening.
InFlightDiagnostic OpState::emitError(const Twine &message) {
return getOperation()->emitError(message);
}
/// Emit an error with the op name prefixed, like "'dim' op " which is
/// convenient for verifiers.
InFlightDiagnostic OpState::emitOpError(const Twine &message) {
return getOperation()->emitOpError(message);
}
/// Emit a warning about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic OpState::emitWarning(const Twine &message) {
return getOperation()->emitWarning(message);
}
/// Emit a remark about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic OpState::emitRemark(const Twine &message) {
return getOperation()->emitRemark(message);
}
//===----------------------------------------------------------------------===//
// Op Trait implementations
//===----------------------------------------------------------------------===//
OpFoldResult OpTrait::impl::foldIdempotent(Operation *op) {
if (op->getNumOperands() == 1) {
auto *argumentOp = op->getOperand(0).getDefiningOp();
if (argumentOp && op->getName() == argumentOp->getName()) {
// Replace the outer operation output with the inner operation.
return op->getOperand(0);
}
} else if (op->getOperand(0) == op->getOperand(1)) {
return op->getOperand(0);
}
return {};
}
OpFoldResult OpTrait::impl::foldInvolution(Operation *op) {
auto *argumentOp = op->getOperand(0).getDefiningOp();
if (argumentOp && op->getName() == argumentOp->getName()) {
// Replace the outer involutions output with inner's input.
return argumentOp->getOperand(0);
}
return {};
}
LogicalResult OpTrait::impl::verifyZeroOperands(Operation *op) {
if (op->getNumOperands() != 0)
return op->emitOpError() << "requires zero operands";
return success();
}
LogicalResult OpTrait::impl::verifyOneOperand(Operation *op) {
if (op->getNumOperands() != 1)
return op->emitOpError() << "requires a single operand";
return success();
}
LogicalResult OpTrait::impl::verifyNOperands(Operation *op,
unsigned numOperands) {
if (op->getNumOperands() != numOperands) {
return op->emitOpError() << "expected " << numOperands
<< " operands, but found " << op->getNumOperands();
}
return success();
}
LogicalResult OpTrait::impl::verifyAtLeastNOperands(Operation *op,
unsigned numOperands) {
if (op->getNumOperands() < numOperands)
return op->emitOpError()
<< "expected " << numOperands << " or more operands, but found "
<< op->getNumOperands();
return success();
}
/// If this is a vector type, or a tensor type, return the scalar element type
/// that it is built around, otherwise return the type unmodified.
static Type getTensorOrVectorElementType(Type type) {
if (auto vec = type.dyn_cast<VectorType>())
return vec.getElementType();
// Look through tensor<vector<...>> to find the underlying element type.
if (auto tensor = type.dyn_cast<TensorType>())
return getTensorOrVectorElementType(tensor.getElementType());
return type;
}
LogicalResult OpTrait::impl::verifyIsIdempotent(Operation *op) {
// FIXME: Add back check for no side effects on operation.
// Currently adding it would cause the shared library build
// to fail since there would be a dependency of IR on SideEffectInterfaces
// which is cyclical.
return success();
}
LogicalResult OpTrait::impl::verifyIsInvolution(Operation *op) {
// FIXME: Add back check for no side effects on operation.
// Currently adding it would cause the shared library build
// to fail since there would be a dependency of IR on SideEffectInterfaces
// which is cyclical.
return success();
}
LogicalResult
OpTrait::impl::verifyOperandsAreSignlessIntegerLike(Operation *op) {
for (auto opType : op->getOperandTypes()) {
auto type = getTensorOrVectorElementType(opType);
if (!type.isSignlessIntOrIndex())
return op->emitOpError() << "requires an integer or index type";
}
return success();
}
LogicalResult OpTrait::impl::verifyOperandsAreFloatLike(Operation *op) {
for (auto opType : op->getOperandTypes()) {
auto type = getTensorOrVectorElementType(opType);
if (!type.isa<FloatType>())
return op->emitOpError("requires a float type");
}
return success();
}
LogicalResult OpTrait::impl::verifySameTypeOperands(Operation *op) {
// Zero or one operand always have the "same" type.
unsigned nOperands = op->getNumOperands();
if (nOperands < 2)
return success();
auto type = op->getOperand(0).getType();
for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1))
if (opType != type)
return op->emitOpError() << "requires all operands to have the same type";
return success();
}
LogicalResult OpTrait::impl::verifyZeroRegions(Operation *op) {
if (op->getNumRegions() != 0)
return op->emitOpError() << "requires zero regions";
return success();
}
LogicalResult OpTrait::impl::verifyOneRegion(Operation *op) {
if (op->getNumRegions() != 1)
return op->emitOpError() << "requires one region";
return success();
}
LogicalResult OpTrait::impl::verifyNRegions(Operation *op,
unsigned numRegions) {
if (op->getNumRegions() != numRegions)
return op->emitOpError() << "expected " << numRegions << " regions";
return success();
}
LogicalResult OpTrait::impl::verifyAtLeastNRegions(Operation *op,
unsigned numRegions) {
if (op->getNumRegions() < numRegions)
return op->emitOpError() << "expected " << numRegions << " or more regions";
return success();
}
LogicalResult OpTrait::impl::verifyZeroResults(Operation *op) {
if (op->getNumResults() != 0)
return op->emitOpError() << "requires zero results";
return success();
}
LogicalResult OpTrait::impl::verifyOneResult(Operation *op) {
if (op->getNumResults() != 1)
return op->emitOpError() << "requires one result";
return success();
}
LogicalResult OpTrait::impl::verifyNResults(Operation *op,
unsigned numOperands) {
if (op->getNumResults() != numOperands)
return op->emitOpError() << "expected " << numOperands << " results";
return success();
}
LogicalResult OpTrait::impl::verifyAtLeastNResults(Operation *op,
unsigned numOperands) {
if (op->getNumResults() < numOperands)
return op->emitOpError()
<< "expected " << numOperands << " or more results";
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsShape(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)))
return failure();
if (failed(verifyCompatibleShapes(op->getOperandTypes())))
return op->emitOpError() << "requires the same shape for all operands";
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsAndResultShape(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)) ||
failed(verifyAtLeastNResults(op, 1)))
return failure();
SmallVector<Type, 8> types(op->getOperandTypes());
types.append(llvm::to_vector<4>(op->getResultTypes()));
if (failed(verifyCompatibleShapes(types)))
return op->emitOpError()
<< "requires the same shape for all operands and results";
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsElementType(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)))
return failure();
auto elementType = getElementTypeOrSelf(op->getOperand(0));
for (auto operand : llvm::drop_begin(op->getOperands(), 1)) {
if (getElementTypeOrSelf(operand) != elementType)
return op->emitOpError("requires the same element type for all operands");
}
return success();
}
LogicalResult
OpTrait::impl::verifySameOperandsAndResultElementType(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)) ||
failed(verifyAtLeastNResults(op, 1)))
return failure();
auto elementType = getElementTypeOrSelf(op->getResult(0));
// Verify result element type matches first result's element type.
for (auto result : llvm::drop_begin(op->getResults(), 1)) {
if (getElementTypeOrSelf(result) != elementType)
return op->emitOpError(
"requires the same element type for all operands and results");
}
// Verify operand's element type matches first result's element type.
for (auto operand : op->getOperands()) {
if (getElementTypeOrSelf(operand) != elementType)
return op->emitOpError(
"requires the same element type for all operands and results");
}
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsAndResultType(Operation *op) {
if (failed(verifyAtLeastNOperands(op, 1)) ||
failed(verifyAtLeastNResults(op, 1)))
return failure();
auto type = op->getResult(0).getType();
auto elementType = getElementTypeOrSelf(type);
Attribute encoding = nullptr;
if (auto rankedType = dyn_cast<RankedTensorType>(type))
encoding = rankedType.getEncoding();
for (auto resultType : llvm::drop_begin(op->getResultTypes())) {
if (getElementTypeOrSelf(resultType) != elementType ||
failed(verifyCompatibleShape(resultType, type)))
return op->emitOpError()
<< "requires the same type for all operands and results";
if (encoding)
if (auto rankedType = dyn_cast<RankedTensorType>(resultType);
encoding != rankedType.getEncoding())
return op->emitOpError()
<< "requires the same encoding for all operands and results";
}
for (auto opType : op->getOperandTypes()) {
if (getElementTypeOrSelf(opType) != elementType ||
failed(verifyCompatibleShape(opType, type)))
return op->emitOpError()
<< "requires the same type for all operands and results";
if (encoding)
if (auto rankedType = dyn_cast<RankedTensorType>(opType);
encoding != rankedType.getEncoding())
return op->emitOpError()
<< "requires the same encoding for all operands and results";
}
return success();
}
LogicalResult OpTrait::impl::verifyIsTerminator(Operation *op) {
Block *block = op->getBlock();
// Verify that the operation is at the end of the respective parent block.
if (!block || &block->back() != op)
return op->emitOpError("must be the last operation in the parent block");
return success();
}
static LogicalResult verifyTerminatorSuccessors(Operation *op) {
auto *parent = op->getParentRegion();
// Verify that the operands lines up with the BB arguments in the successor.
for (Block *succ : op->getSuccessors())
if (succ->getParent() != parent)
return op->emitError("reference to block defined in another region");
return success();
}
LogicalResult OpTrait::impl::verifyZeroSuccessors(Operation *op) {
if (op->getNumSuccessors() != 0) {
return op->emitOpError("requires 0 successors but found ")
<< op->getNumSuccessors();
}
return success();
}
LogicalResult OpTrait::impl::verifyOneSuccessor(Operation *op) {
if (op->getNumSuccessors() != 1) {
return op->emitOpError("requires 1 successor but found ")
<< op->getNumSuccessors();
}
return verifyTerminatorSuccessors(op);
}
LogicalResult OpTrait::impl::verifyNSuccessors(Operation *op,
unsigned numSuccessors) {
if (op->getNumSuccessors() != numSuccessors) {
return op->emitOpError("requires ")
<< numSuccessors << " successors but found "
<< op->getNumSuccessors();
}
return verifyTerminatorSuccessors(op);
}
LogicalResult OpTrait::impl::verifyAtLeastNSuccessors(Operation *op,
unsigned numSuccessors) {
if (op->getNumSuccessors() < numSuccessors) {
return op->emitOpError("requires at least ")
<< numSuccessors << " successors but found "
<< op->getNumSuccessors();
}
return verifyTerminatorSuccessors(op);
}
LogicalResult OpTrait::impl::verifyResultsAreBoolLike(Operation *op) {
for (auto resultType : op->getResultTypes()) {
auto elementType = getTensorOrVectorElementType(resultType);
bool isBoolType = elementType.isInteger(1);
if (!isBoolType)
return op->emitOpError() << "requires a bool result type";
}
return success();
}
LogicalResult OpTrait::impl::verifyResultsAreFloatLike(Operation *op) {
for (auto resultType : op->getResultTypes())
if (!getTensorOrVectorElementType(resultType).isa<FloatType>())
return op->emitOpError() << "requires a floating point type";
return success();
}
LogicalResult
OpTrait::impl::verifyResultsAreSignlessIntegerLike(Operation *op) {
for (auto resultType : op->getResultTypes())
if (!getTensorOrVectorElementType(resultType).isSignlessIntOrIndex())
return op->emitOpError() << "requires an integer or index type";
return success();
}
LogicalResult OpTrait::impl::verifyValueSizeAttr(Operation *op,
StringRef attrName,
StringRef valueGroupName,
size_t expectedCount) {
auto sizeAttr = op->getAttrOfType<DenseI32ArrayAttr>(attrName);
if (!sizeAttr)
return op->emitOpError("requires dense i32 array attribute '")
<< attrName << "'";
ArrayRef<int32_t> sizes = sizeAttr.asArrayRef();
if (llvm::any_of(sizes, [](int32_t element) { return element < 0; }))
return op->emitOpError("'")
<< attrName << "' attribute cannot have negative elements";
size_t totalCount =
std::accumulate(sizes.begin(), sizes.end(), 0,
[](unsigned all, int32_t one) { return all + one; });
if (totalCount != expectedCount)
return op->emitOpError()
<< valueGroupName << " count (" << expectedCount
<< ") does not match with the total size (" << totalCount
<< ") specified in attribute '" << attrName << "'";
return success();
}
LogicalResult OpTrait::impl::verifyOperandSizeAttr(Operation *op,
StringRef attrName) {
return verifyValueSizeAttr(op, attrName, "operand", op->getNumOperands());
}
LogicalResult OpTrait::impl::verifyResultSizeAttr(Operation *op,
StringRef attrName) {
return verifyValueSizeAttr(op, attrName, "result", op->getNumResults());
}
LogicalResult OpTrait::impl::verifyNoRegionArguments(Operation *op) {
for (Region &region : op->getRegions()) {
if (region.empty())
continue;
if (region.getNumArguments() != 0) {
if (op->getNumRegions() > 1)
return op->emitOpError("region #")
<< region.getRegionNumber() << " should have no arguments";
return op->emitOpError("region should have no arguments");
}
}
return success();
}
LogicalResult OpTrait::impl::verifyElementwise(Operation *op) {
auto isMappableType = [](Type type) {
return type.isa<VectorType, TensorType>();
};
auto resultMappableTypes = llvm::to_vector<1>(
llvm::make_filter_range(op->getResultTypes(), isMappableType));
auto operandMappableTypes = llvm::to_vector<2>(
llvm::make_filter_range(op->getOperandTypes(), isMappableType));
// If the op only has scalar operand/result types, then we have nothing to
// check.
if (resultMappableTypes.empty() && operandMappableTypes.empty())
return success();
if (!resultMappableTypes.empty() && operandMappableTypes.empty())
return op->emitOpError("if a result is non-scalar, then at least one "
"operand must be non-scalar");
assert(!operandMappableTypes.empty());
if (resultMappableTypes.empty())
return op->emitOpError("if an operand is non-scalar, then there must be at "
"least one non-scalar result");
if (resultMappableTypes.size() != op->getNumResults())
return op->emitOpError(
"if an operand is non-scalar, then all results must be non-scalar");
SmallVector<Type, 4> types = llvm::to_vector<2>(
llvm::concat<Type>(operandMappableTypes, resultMappableTypes));
TypeID expectedBaseTy = types.front().getTypeID();
if (!llvm::all_of(types,
[&](Type t) { return t.getTypeID() == expectedBaseTy; }) ||
failed(verifyCompatibleShapes(types))) {
return op->emitOpError() << "all non-scalar operands/results must have the "
"same shape and base type";
}
return success();
}
/// Check for any values used by operations regions attached to the
/// specified "IsIsolatedFromAbove" operation defined outside of it.
LogicalResult OpTrait::impl::verifyIsIsolatedFromAbove(Operation *isolatedOp) {
assert(isolatedOp->hasTrait<OpTrait::IsIsolatedFromAbove>() &&
"Intended to check IsolatedFromAbove ops");
// List of regions to analyze. Each region is processed independently, with
// respect to the common `limit` region, so we can look at them in any order.
// Therefore, use a simple vector and push/pop back the current region.
SmallVector<Region *, 8> pendingRegions;
for (auto &region : isolatedOp->getRegions()) {
pendingRegions.push_back(&region);
// Traverse all operations in the region.
while (!pendingRegions.empty()) {
for (Operation &op : pendingRegions.pop_back_val()->getOps()) {
for (Value operand : op.getOperands()) {
// Check that any value that is used by an operation is defined in the
// same region as either an operation result.
auto *operandRegion = operand.getParentRegion();
if (!operandRegion)
return op.emitError("operation's operand is unlinked");
if (!region.isAncestor(operandRegion)) {
return op.emitOpError("using value defined outside the region")
.attachNote(isolatedOp->getLoc())
<< "required by region isolation constraints";
}
}
// Schedule any regions in the operation for further checking. Don't
// recurse into other IsolatedFromAbove ops, because they will check
// themselves.
if (op.getNumRegions() &&
!op.hasTrait<OpTrait::IsIsolatedFromAbove>()) {
for (Region &subRegion : op.getRegions())
pendingRegions.push_back(&subRegion);
}
}
}
}
return success();
}
bool OpTrait::hasElementwiseMappableTraits(Operation *op) {
return op->hasTrait<Elementwise>() && op->hasTrait<Scalarizable>() &&
op->hasTrait<Vectorizable>() && op->hasTrait<Tensorizable>();
}
//===----------------------------------------------------------------------===//
// CastOpInterface
//===----------------------------------------------------------------------===//
/// Attempt to fold the given cast operation.
LogicalResult
impl::foldCastInterfaceOp(Operation *op, ArrayRef<Attribute> attrOperands,
SmallVectorImpl<OpFoldResult> &foldResults) {
OperandRange operands = op->getOperands();
if (operands.empty())
return failure();
ResultRange results = op->getResults();
// Check for the case where the input and output types match 1-1.
if (operands.getTypes() == results.getTypes()) {
foldResults.append(operands.begin(), operands.end());
return success();
}
return failure();
}
/// Attempt to verify the given cast operation.
LogicalResult impl::verifyCastInterfaceOp(
Operation *op, function_ref<bool(TypeRange, TypeRange)> areCastCompatible) {
auto resultTypes = op->getResultTypes();
if (resultTypes.empty())
return op->emitOpError()
<< "expected at least one result for cast operation";
auto operandTypes = op->getOperandTypes();
if (!areCastCompatible(operandTypes, resultTypes)) {
InFlightDiagnostic diag = op->emitOpError("operand type");
if (operandTypes.empty())
diag << "s []";
else if (llvm::size(operandTypes) == 1)
diag << " " << *operandTypes.begin();
else
diag << "s " << operandTypes;
return diag << " and result type" << (resultTypes.size() == 1 ? " " : "s ")
<< resultTypes << " are cast incompatible";
}
return success();
}
//===----------------------------------------------------------------------===//
// Misc. utils
//===----------------------------------------------------------------------===//
/// Insert an operation, generated by `buildTerminatorOp`, at the end of the
/// region's only block if it does not have a terminator already. If the region
/// is empty, insert a new block first. `buildTerminatorOp` should return the
/// terminator operation to insert.
void impl::ensureRegionTerminator(
Region &region, OpBuilder &builder, Location loc,
function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) {
OpBuilder::InsertionGuard guard(builder);
if (region.empty())
builder.createBlock(&region);
Block &block = region.back();
if (!block.empty() && block.back().hasTrait<OpTrait::IsTerminator>())
return;
builder.setInsertionPointToEnd(&block);
builder.insert(buildTerminatorOp(builder, loc));
}
/// Create a simple OpBuilder and forward to the OpBuilder version of this
/// function.
void impl::ensureRegionTerminator(
Region &region, Builder &builder, Location loc,
function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) {
OpBuilder opBuilder(builder.getContext());
ensureRegionTerminator(region, opBuilder, loc, buildTerminatorOp);
}