mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-26 07:26:09 +00:00
6975 lines
207 KiB
C++
6975 lines
207 KiB
C++
//===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Compiler.h"
|
|
#include "ByteCodeEmitter.h"
|
|
#include "Context.h"
|
|
#include "FixedPoint.h"
|
|
#include "Floating.h"
|
|
#include "Function.h"
|
|
#include "InterpShared.h"
|
|
#include "PrimType.h"
|
|
#include "Program.h"
|
|
#include "clang/AST/Attr.h"
|
|
|
|
using namespace clang;
|
|
using namespace clang::interp;
|
|
|
|
using APSInt = llvm::APSInt;
|
|
|
|
namespace clang {
|
|
namespace interp {
|
|
|
|
static std::optional<bool> getBoolValue(const Expr *E) {
|
|
if (const auto *CE = dyn_cast_if_present<ConstantExpr>(E);
|
|
CE && CE->hasAPValueResult() &&
|
|
CE->getResultAPValueKind() == APValue::ValueKind::Int) {
|
|
return CE->getResultAsAPSInt().getBoolValue();
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Scope used to handle temporaries in toplevel variable declarations.
|
|
template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
|
|
public:
|
|
DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
|
|
: LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P),
|
|
OldInitializingDecl(Ctx->InitializingDecl) {
|
|
Ctx->InitializingDecl = VD;
|
|
Ctx->InitStack.push_back(InitLink::Decl(VD));
|
|
}
|
|
|
|
void addExtended(const Scope::Local &Local) override {
|
|
return this->addLocal(Local);
|
|
}
|
|
|
|
~DeclScope() {
|
|
this->Ctx->InitializingDecl = OldInitializingDecl;
|
|
this->Ctx->InitStack.pop_back();
|
|
}
|
|
|
|
private:
|
|
Program::DeclScope Scope;
|
|
const ValueDecl *OldInitializingDecl;
|
|
};
|
|
|
|
/// Scope used to handle initialization methods.
|
|
template <class Emitter> class OptionScope final {
|
|
public:
|
|
/// Root constructor, compiling or discarding primitives.
|
|
OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
|
|
bool NewInitializing)
|
|
: Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
|
|
OldInitializing(Ctx->Initializing) {
|
|
Ctx->DiscardResult = NewDiscardResult;
|
|
Ctx->Initializing = NewInitializing;
|
|
}
|
|
|
|
~OptionScope() {
|
|
Ctx->DiscardResult = OldDiscardResult;
|
|
Ctx->Initializing = OldInitializing;
|
|
}
|
|
|
|
private:
|
|
/// Parent context.
|
|
Compiler<Emitter> *Ctx;
|
|
/// Old discard flag to restore.
|
|
bool OldDiscardResult;
|
|
bool OldInitializing;
|
|
};
|
|
|
|
template <class Emitter>
|
|
bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
|
|
switch (Kind) {
|
|
case K_This:
|
|
return Ctx->emitThis(E);
|
|
case K_Field:
|
|
// We're assuming there's a base pointer on the stack already.
|
|
return Ctx->emitGetPtrFieldPop(Offset, E);
|
|
case K_Temp:
|
|
return Ctx->emitGetPtrLocal(Offset, E);
|
|
case K_Decl:
|
|
return Ctx->visitDeclRef(D, E);
|
|
case K_Elem:
|
|
if (!Ctx->emitConstUint32(Offset, E))
|
|
return false;
|
|
return Ctx->emitArrayElemPtrPopUint32(E);
|
|
case K_RVO:
|
|
return Ctx->emitRVOPtr(E);
|
|
case K_InitList:
|
|
return true;
|
|
default:
|
|
llvm_unreachable("Unhandled InitLink kind");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Scope managing label targets.
|
|
template <class Emitter> class LabelScope {
|
|
public:
|
|
virtual ~LabelScope() {}
|
|
|
|
protected:
|
|
LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
|
|
/// Compiler instance.
|
|
Compiler<Emitter> *Ctx;
|
|
};
|
|
|
|
/// Sets the context for break/continue statements.
|
|
template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
|
|
public:
|
|
using LabelTy = typename Compiler<Emitter>::LabelTy;
|
|
using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
|
|
|
|
LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
|
|
: LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
|
|
OldContinueLabel(Ctx->ContinueLabel),
|
|
OldBreakVarScope(Ctx->BreakVarScope),
|
|
OldContinueVarScope(Ctx->ContinueVarScope) {
|
|
this->Ctx->BreakLabel = BreakLabel;
|
|
this->Ctx->ContinueLabel = ContinueLabel;
|
|
this->Ctx->BreakVarScope = this->Ctx->VarScope;
|
|
this->Ctx->ContinueVarScope = this->Ctx->VarScope;
|
|
}
|
|
|
|
~LoopScope() {
|
|
this->Ctx->BreakLabel = OldBreakLabel;
|
|
this->Ctx->ContinueLabel = OldContinueLabel;
|
|
this->Ctx->ContinueVarScope = OldContinueVarScope;
|
|
this->Ctx->BreakVarScope = OldBreakVarScope;
|
|
}
|
|
|
|
private:
|
|
OptLabelTy OldBreakLabel;
|
|
OptLabelTy OldContinueLabel;
|
|
VariableScope<Emitter> *OldBreakVarScope;
|
|
VariableScope<Emitter> *OldContinueVarScope;
|
|
};
|
|
|
|
// Sets the context for a switch scope, mapping labels.
|
|
template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
|
|
public:
|
|
using LabelTy = typename Compiler<Emitter>::LabelTy;
|
|
using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
|
|
using CaseMap = typename Compiler<Emitter>::CaseMap;
|
|
|
|
SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
|
|
OptLabelTy DefaultLabel)
|
|
: LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
|
|
OldDefaultLabel(this->Ctx->DefaultLabel),
|
|
OldCaseLabels(std::move(this->Ctx->CaseLabels)),
|
|
OldLabelVarScope(Ctx->BreakVarScope) {
|
|
this->Ctx->BreakLabel = BreakLabel;
|
|
this->Ctx->DefaultLabel = DefaultLabel;
|
|
this->Ctx->CaseLabels = std::move(CaseLabels);
|
|
this->Ctx->BreakVarScope = this->Ctx->VarScope;
|
|
}
|
|
|
|
~SwitchScope() {
|
|
this->Ctx->BreakLabel = OldBreakLabel;
|
|
this->Ctx->DefaultLabel = OldDefaultLabel;
|
|
this->Ctx->CaseLabels = std::move(OldCaseLabels);
|
|
this->Ctx->BreakVarScope = OldLabelVarScope;
|
|
}
|
|
|
|
private:
|
|
OptLabelTy OldBreakLabel;
|
|
OptLabelTy OldDefaultLabel;
|
|
CaseMap OldCaseLabels;
|
|
VariableScope<Emitter> *OldLabelVarScope;
|
|
};
|
|
|
|
template <class Emitter> class StmtExprScope final {
|
|
public:
|
|
StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
|
|
Ctx->InStmtExpr = true;
|
|
}
|
|
|
|
~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
|
|
|
|
private:
|
|
Compiler<Emitter> *Ctx;
|
|
bool OldFlag;
|
|
};
|
|
|
|
} // namespace interp
|
|
} // namespace clang
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
|
|
const Expr *SubExpr = CE->getSubExpr();
|
|
|
|
if (DiscardResult)
|
|
return this->delegate(SubExpr);
|
|
|
|
switch (CE->getCastKind()) {
|
|
case CK_LValueToRValue: {
|
|
std::optional<PrimType> SubExprT = classify(SubExpr->getType());
|
|
// Prepare storage for the result.
|
|
if (!Initializing && !SubExprT) {
|
|
std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
|
|
if (!LocalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*LocalIndex, CE))
|
|
return false;
|
|
}
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
|
|
if (SubExprT)
|
|
return this->emitLoadPop(*SubExprT, CE);
|
|
|
|
// If the subexpr type is not primitive, we need to perform a copy here.
|
|
// This happens for example in C when dereferencing a pointer of struct
|
|
// type.
|
|
return this->emitMemcpy(CE);
|
|
}
|
|
|
|
case CK_DerivedToBaseMemberPointer: {
|
|
assert(classifyPrim(CE->getType()) == PT_MemberPtr);
|
|
assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
|
|
const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
|
|
const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
|
|
|
|
unsigned DerivedOffset =
|
|
Ctx.collectBaseOffset(ToMP->getMostRecentCXXRecordDecl(),
|
|
FromMP->getMostRecentCXXRecordDecl());
|
|
|
|
if (!this->delegate(SubExpr))
|
|
return false;
|
|
|
|
return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
|
|
}
|
|
|
|
case CK_BaseToDerivedMemberPointer: {
|
|
assert(classifyPrim(CE) == PT_MemberPtr);
|
|
assert(classifyPrim(SubExpr) == PT_MemberPtr);
|
|
const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
|
|
const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
|
|
|
|
unsigned DerivedOffset =
|
|
Ctx.collectBaseOffset(FromMP->getMostRecentCXXRecordDecl(),
|
|
ToMP->getMostRecentCXXRecordDecl());
|
|
|
|
if (!this->delegate(SubExpr))
|
|
return false;
|
|
return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
|
|
}
|
|
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_DerivedToBase: {
|
|
if (!this->delegate(SubExpr))
|
|
return false;
|
|
|
|
const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
|
|
if (const auto *PT = dyn_cast<PointerType>(Ty))
|
|
return PT->getPointeeType()->getAsCXXRecordDecl();
|
|
return Ty->getAsCXXRecordDecl();
|
|
};
|
|
|
|
// FIXME: We can express a series of non-virtual casts as a single
|
|
// GetPtrBasePop op.
|
|
QualType CurType = SubExpr->getType();
|
|
for (const CXXBaseSpecifier *B : CE->path()) {
|
|
if (B->isVirtual()) {
|
|
if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
|
|
return false;
|
|
CurType = B->getType();
|
|
} else {
|
|
unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
|
|
if (!this->emitGetPtrBasePop(
|
|
DerivedOffset, /*NullOK=*/CE->getType()->isPointerType(), CE))
|
|
return false;
|
|
CurType = B->getType();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
case CK_BaseToDerived: {
|
|
if (!this->delegate(SubExpr))
|
|
return false;
|
|
|
|
unsigned DerivedOffset =
|
|
collectBaseOffset(SubExpr->getType(), CE->getType());
|
|
|
|
return this->emitGetPtrDerivedPop(
|
|
DerivedOffset, /*NullOK=*/CE->getType()->isPointerType(), CE);
|
|
}
|
|
|
|
case CK_FloatingCast: {
|
|
// HLSL uses CK_FloatingCast to cast between vectors.
|
|
if (!SubExpr->getType()->isFloatingType() ||
|
|
!CE->getType()->isFloatingType())
|
|
return false;
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
|
|
return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
|
|
}
|
|
|
|
case CK_IntegralToFloating: {
|
|
std::optional<PrimType> FromT = classify(SubExpr->getType());
|
|
if (!FromT)
|
|
return false;
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
|
|
const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
|
|
return this->emitCastIntegralFloating(*FromT, TargetSemantics,
|
|
getFPOptions(CE), CE);
|
|
}
|
|
|
|
case CK_FloatingToBoolean:
|
|
case CK_FloatingToIntegral: {
|
|
|
|
std::optional<PrimType> ToT = classify(CE->getType());
|
|
|
|
if (!ToT)
|
|
return false;
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
|
|
if (ToT == PT_IntAP)
|
|
return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
|
|
getFPOptions(CE), CE);
|
|
if (ToT == PT_IntAPS)
|
|
return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
|
|
getFPOptions(CE), CE);
|
|
|
|
return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
|
|
}
|
|
|
|
case CK_NullToPointer:
|
|
case CK_NullToMemberPointer: {
|
|
if (!this->discard(SubExpr))
|
|
return false;
|
|
const Descriptor *Desc = nullptr;
|
|
const QualType PointeeType = CE->getType()->getPointeeType();
|
|
if (!PointeeType.isNull()) {
|
|
if (std::optional<PrimType> T = classify(PointeeType))
|
|
Desc = P.createDescriptor(SubExpr, *T);
|
|
else
|
|
Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
|
|
std::nullopt, true, false,
|
|
/*IsMutable=*/false, nullptr);
|
|
}
|
|
|
|
uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(CE->getType());
|
|
return this->emitNull(classifyPrim(CE->getType()), Val, Desc, CE);
|
|
}
|
|
|
|
case CK_PointerToIntegral: {
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
|
|
// If SubExpr doesn't result in a pointer, make it one.
|
|
if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
|
|
assert(isPtrType(FromT));
|
|
if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
|
|
return false;
|
|
}
|
|
|
|
PrimType T = classifyPrim(CE->getType());
|
|
if (T == PT_IntAP)
|
|
return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
|
|
CE);
|
|
if (T == PT_IntAPS)
|
|
return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
|
|
CE);
|
|
return this->emitCastPointerIntegral(T, CE);
|
|
}
|
|
|
|
case CK_ArrayToPointerDecay: {
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
if (!this->emitArrayDecay(CE))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
case CK_IntegralToPointer: {
|
|
QualType IntType = SubExpr->getType();
|
|
assert(IntType->isIntegralOrEnumerationType());
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
// FIXME: I think the discard is wrong since the int->ptr cast might cause a
|
|
// diagnostic.
|
|
PrimType T = classifyPrim(IntType);
|
|
QualType PtrType = CE->getType();
|
|
const Descriptor *Desc;
|
|
if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
|
|
Desc = P.createDescriptor(SubExpr, *T);
|
|
else if (PtrType->getPointeeType()->isVoidType())
|
|
Desc = nullptr;
|
|
else
|
|
Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
|
|
Descriptor::InlineDescMD, true, false,
|
|
/*IsMutable=*/false, nullptr);
|
|
|
|
if (!this->emitGetIntPtr(T, Desc, CE))
|
|
return false;
|
|
|
|
PrimType DestPtrT = classifyPrim(PtrType);
|
|
if (DestPtrT == PT_Ptr)
|
|
return true;
|
|
|
|
// In case we're converting the integer to a non-Pointer.
|
|
return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
|
|
}
|
|
|
|
case CK_AtomicToNonAtomic:
|
|
case CK_ConstructorConversion:
|
|
case CK_FunctionToPointerDecay:
|
|
case CK_NonAtomicToAtomic:
|
|
case CK_NoOp:
|
|
case CK_UserDefinedConversion:
|
|
case CK_AddressSpaceConversion:
|
|
case CK_CPointerToObjCPointerCast:
|
|
return this->delegate(SubExpr);
|
|
|
|
case CK_BitCast: {
|
|
// Reject bitcasts to atomic types.
|
|
if (CE->getType()->isAtomicType()) {
|
|
if (!this->discard(SubExpr))
|
|
return false;
|
|
return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
|
|
}
|
|
QualType SubExprTy = SubExpr->getType();
|
|
std::optional<PrimType> FromT = classify(SubExprTy);
|
|
// Casts from integer/vector to vector.
|
|
if (CE->getType()->isVectorType())
|
|
return this->emitBuiltinBitCast(CE);
|
|
|
|
std::optional<PrimType> ToT = classify(CE->getType());
|
|
if (!FromT || !ToT)
|
|
return false;
|
|
|
|
assert(isPtrType(*FromT));
|
|
assert(isPtrType(*ToT));
|
|
if (FromT == ToT) {
|
|
if (CE->getType()->isVoidPointerType())
|
|
return this->delegate(SubExpr);
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
if (CE->getType()->isFunctionPointerType())
|
|
return true;
|
|
if (FromT == PT_Ptr)
|
|
return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
|
|
return true;
|
|
}
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
return this->emitDecayPtr(*FromT, *ToT, CE);
|
|
}
|
|
|
|
case CK_LValueToRValueBitCast:
|
|
return this->emitBuiltinBitCast(CE);
|
|
|
|
case CK_IntegralToBoolean:
|
|
case CK_FixedPointToBoolean:
|
|
case CK_BooleanToSignedIntegral:
|
|
case CK_IntegralCast: {
|
|
std::optional<PrimType> FromT = classify(SubExpr->getType());
|
|
std::optional<PrimType> ToT = classify(CE->getType());
|
|
|
|
if (!FromT || !ToT)
|
|
return false;
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
|
|
// Possibly diagnose casts to enum types if the target type does not
|
|
// have a fixed size.
|
|
if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
|
|
if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
|
|
ET && !ET->getDecl()->isFixed()) {
|
|
if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
auto maybeNegate = [&]() -> bool {
|
|
if (CE->getCastKind() == CK_BooleanToSignedIntegral)
|
|
return this->emitNeg(*ToT, CE);
|
|
return true;
|
|
};
|
|
|
|
if (ToT == PT_IntAP)
|
|
return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
|
|
maybeNegate();
|
|
if (ToT == PT_IntAPS)
|
|
return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
|
|
maybeNegate();
|
|
|
|
if (FromT == ToT)
|
|
return true;
|
|
if (!this->emitCast(*FromT, *ToT, CE))
|
|
return false;
|
|
|
|
return maybeNegate();
|
|
}
|
|
|
|
case CK_PointerToBoolean:
|
|
case CK_MemberPointerToBoolean: {
|
|
PrimType PtrT = classifyPrim(SubExpr->getType());
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
return this->emitIsNonNull(PtrT, CE);
|
|
}
|
|
|
|
case CK_IntegralComplexToBoolean:
|
|
case CK_FloatingComplexToBoolean: {
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
return this->emitComplexBoolCast(SubExpr);
|
|
}
|
|
|
|
case CK_IntegralComplexToReal:
|
|
case CK_FloatingComplexToReal:
|
|
return this->emitComplexReal(SubExpr);
|
|
|
|
case CK_IntegralRealToComplex:
|
|
case CK_FloatingRealToComplex: {
|
|
// We're creating a complex value here, so we need to
|
|
// allocate storage for it.
|
|
if (!Initializing) {
|
|
std::optional<unsigned> LocalIndex = allocateTemporary(CE);
|
|
if (!LocalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*LocalIndex, CE))
|
|
return false;
|
|
}
|
|
|
|
// Init the complex value to {SubExpr, 0}.
|
|
if (!this->visitArrayElemInit(0, SubExpr))
|
|
return false;
|
|
// Zero-init the second element.
|
|
PrimType T = classifyPrim(SubExpr->getType());
|
|
if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
|
|
return false;
|
|
return this->emitInitElem(T, 1, SubExpr);
|
|
}
|
|
|
|
case CK_IntegralComplexCast:
|
|
case CK_FloatingComplexCast:
|
|
case CK_IntegralComplexToFloatingComplex:
|
|
case CK_FloatingComplexToIntegralComplex: {
|
|
assert(CE->getType()->isAnyComplexType());
|
|
assert(SubExpr->getType()->isAnyComplexType());
|
|
if (!Initializing) {
|
|
std::optional<unsigned> LocalIndex = allocateLocal(CE);
|
|
if (!LocalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*LocalIndex, CE))
|
|
return false;
|
|
}
|
|
|
|
// Location for the SubExpr.
|
|
// Since SubExpr is of complex type, visiting it results in a pointer
|
|
// anyway, so we just create a temporary pointer variable.
|
|
unsigned SubExprOffset =
|
|
allocateLocalPrimitive(SubExpr, PT_Ptr, /*IsConst=*/true);
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
|
|
return false;
|
|
|
|
PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
|
|
QualType DestElemType =
|
|
CE->getType()->getAs<ComplexType>()->getElementType();
|
|
PrimType DestElemT = classifyPrim(DestElemType);
|
|
// Cast both elements individually.
|
|
for (unsigned I = 0; I != 2; ++I) {
|
|
if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
|
|
return false;
|
|
if (!this->emitArrayElemPop(SourceElemT, I, CE))
|
|
return false;
|
|
|
|
// Do the cast.
|
|
if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
|
|
return false;
|
|
|
|
// Save the value.
|
|
if (!this->emitInitElem(DestElemT, I, CE))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case CK_VectorSplat: {
|
|
assert(!classify(CE->getType()));
|
|
assert(classify(SubExpr->getType()));
|
|
assert(CE->getType()->isVectorType());
|
|
|
|
if (!Initializing) {
|
|
std::optional<unsigned> LocalIndex = allocateLocal(CE);
|
|
if (!LocalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*LocalIndex, CE))
|
|
return false;
|
|
}
|
|
|
|
const auto *VT = CE->getType()->getAs<VectorType>();
|
|
PrimType ElemT = classifyPrim(SubExpr->getType());
|
|
unsigned ElemOffset =
|
|
allocateLocalPrimitive(SubExpr, ElemT, /*IsConst=*/true);
|
|
|
|
// Prepare a local variable for the scalar value.
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
|
|
return false;
|
|
|
|
if (!this->emitSetLocal(ElemT, ElemOffset, CE))
|
|
return false;
|
|
|
|
for (unsigned I = 0; I != VT->getNumElements(); ++I) {
|
|
if (!this->emitGetLocal(ElemT, ElemOffset, CE))
|
|
return false;
|
|
if (!this->emitInitElem(ElemT, I, CE))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
case CK_HLSLVectorTruncation: {
|
|
assert(SubExpr->getType()->isVectorType());
|
|
if (std::optional<PrimType> ResultT = classify(CE)) {
|
|
assert(!DiscardResult);
|
|
// Result must be either a float or integer. Take the first element.
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
return this->emitArrayElemPop(*ResultT, 0, CE);
|
|
}
|
|
// Otherwise, this truncates from one vector type to another.
|
|
assert(CE->getType()->isVectorType());
|
|
|
|
if (!Initializing) {
|
|
std::optional<unsigned> LocalIndex = allocateTemporary(CE);
|
|
if (!LocalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*LocalIndex, CE))
|
|
return false;
|
|
}
|
|
unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
|
|
assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
|
|
ToSize, CE);
|
|
};
|
|
|
|
case CK_IntegralToFixedPoint: {
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
|
|
auto Sem =
|
|
Ctx.getASTContext().getFixedPointSemantics(CE->getType()).toOpaqueInt();
|
|
return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()),
|
|
Sem, CE);
|
|
}
|
|
case CK_FloatingToFixedPoint: {
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
|
|
auto Sem =
|
|
Ctx.getASTContext().getFixedPointSemantics(CE->getType()).toOpaqueInt();
|
|
return this->emitCastFloatingFixedPoint(Sem, CE);
|
|
}
|
|
case CK_FixedPointToFloating: {
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
|
|
return this->emitCastFixedPointFloating(TargetSemantics, CE);
|
|
}
|
|
case CK_FixedPointToIntegral: {
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE);
|
|
}
|
|
case CK_FixedPointCast: {
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
auto Sem =
|
|
Ctx.getASTContext().getFixedPointSemantics(CE->getType()).toOpaqueInt();
|
|
return this->emitCastFixedPoint(Sem, CE);
|
|
}
|
|
|
|
case CK_ToVoid:
|
|
return discard(SubExpr);
|
|
|
|
default:
|
|
return this->emitInvalid(CE);
|
|
}
|
|
llvm_unreachable("Unhandled clang::CastKind enum");
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
return this->emitConst(LE->getValue(), LE);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
return this->emitConstFloat(E->getValue(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
|
|
assert(E->getType()->isAnyComplexType());
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
if (!Initializing) {
|
|
std::optional<unsigned> LocalIndex = allocateTemporary(E);
|
|
if (!LocalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*LocalIndex, E))
|
|
return false;
|
|
}
|
|
|
|
const Expr *SubExpr = E->getSubExpr();
|
|
PrimType SubExprT = classifyPrim(SubExpr->getType());
|
|
|
|
if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
|
|
return false;
|
|
if (!this->emitInitElem(SubExprT, 0, SubExpr))
|
|
return false;
|
|
return this->visitArrayElemInit(1, SubExpr);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) {
|
|
assert(E->getType()->isFixedPointType());
|
|
assert(classifyPrim(E) == PT_FixedPoint);
|
|
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
|
|
APInt Value = E->getValue();
|
|
return this->emitConstFixedPoint(FixedPoint(Value, Sem), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
|
|
return this->delegate(E->getSubExpr());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
|
|
// Need short-circuiting for these.
|
|
if (BO->isLogicalOp() && !BO->getType()->isVectorType())
|
|
return this->VisitLogicalBinOp(BO);
|
|
|
|
const Expr *LHS = BO->getLHS();
|
|
const Expr *RHS = BO->getRHS();
|
|
|
|
// Handle comma operators. Just discard the LHS
|
|
// and delegate to RHS.
|
|
if (BO->isCommaOp()) {
|
|
if (!this->discard(LHS))
|
|
return false;
|
|
if (RHS->getType()->isVoidType())
|
|
return this->discard(RHS);
|
|
|
|
return this->delegate(RHS);
|
|
}
|
|
|
|
if (BO->getType()->isAnyComplexType())
|
|
return this->VisitComplexBinOp(BO);
|
|
if (BO->getType()->isVectorType())
|
|
return this->VisitVectorBinOp(BO);
|
|
if ((LHS->getType()->isAnyComplexType() ||
|
|
RHS->getType()->isAnyComplexType()) &&
|
|
BO->isComparisonOp())
|
|
return this->emitComplexComparison(LHS, RHS, BO);
|
|
if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType())
|
|
return this->VisitFixedPointBinOp(BO);
|
|
|
|
if (BO->isPtrMemOp()) {
|
|
if (!this->visit(LHS))
|
|
return false;
|
|
|
|
if (!this->visit(RHS))
|
|
return false;
|
|
|
|
if (!this->emitToMemberPtr(BO))
|
|
return false;
|
|
|
|
if (classifyPrim(BO) == PT_MemberPtr)
|
|
return true;
|
|
|
|
if (!this->emitCastMemberPtrPtr(BO))
|
|
return false;
|
|
return DiscardResult ? this->emitPopPtr(BO) : true;
|
|
}
|
|
|
|
// Typecheck the args.
|
|
std::optional<PrimType> LT = classify(LHS);
|
|
std::optional<PrimType> RT = classify(RHS);
|
|
std::optional<PrimType> T = classify(BO->getType());
|
|
|
|
// Special case for C++'s three-way/spaceship operator <=>, which
|
|
// returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
|
|
// have a PrimType).
|
|
if (!T && BO->getOpcode() == BO_Cmp) {
|
|
if (DiscardResult)
|
|
return true;
|
|
const ComparisonCategoryInfo *CmpInfo =
|
|
Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
|
|
assert(CmpInfo);
|
|
|
|
// We need a temporary variable holding our return value.
|
|
if (!Initializing) {
|
|
std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
|
|
if (!this->emitGetPtrLocal(*ResultIndex, BO))
|
|
return false;
|
|
}
|
|
|
|
if (!visit(LHS) || !visit(RHS))
|
|
return false;
|
|
|
|
return this->emitCMP3(*LT, CmpInfo, BO);
|
|
}
|
|
|
|
if (!LT || !RT || !T)
|
|
return false;
|
|
|
|
// Pointer arithmetic special case.
|
|
if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
|
|
if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
|
|
return this->VisitPointerArithBinOp(BO);
|
|
}
|
|
|
|
// Assignments require us to evalute the RHS first.
|
|
if (BO->getOpcode() == BO_Assign) {
|
|
// We don't support assignments in C.
|
|
if (!Ctx.getLangOpts().CPlusPlus)
|
|
return this->emitInvalid(BO);
|
|
|
|
if (!visit(RHS) || !visit(LHS))
|
|
return false;
|
|
if (!this->emitFlip(*LT, *RT, BO))
|
|
return false;
|
|
} else {
|
|
if (!visit(LHS) || !visit(RHS))
|
|
return false;
|
|
}
|
|
|
|
// For languages such as C, cast the result of one
|
|
// of our comparision opcodes to T (which is usually int).
|
|
auto MaybeCastToBool = [this, T, BO](bool Result) {
|
|
if (!Result)
|
|
return false;
|
|
if (DiscardResult)
|
|
return this->emitPop(*T, BO);
|
|
if (T != PT_Bool)
|
|
return this->emitCast(PT_Bool, *T, BO);
|
|
return true;
|
|
};
|
|
|
|
auto Discard = [this, T, BO](bool Result) {
|
|
if (!Result)
|
|
return false;
|
|
return DiscardResult ? this->emitPop(*T, BO) : true;
|
|
};
|
|
|
|
switch (BO->getOpcode()) {
|
|
case BO_EQ:
|
|
return MaybeCastToBool(this->emitEQ(*LT, BO));
|
|
case BO_NE:
|
|
return MaybeCastToBool(this->emitNE(*LT, BO));
|
|
case BO_LT:
|
|
return MaybeCastToBool(this->emitLT(*LT, BO));
|
|
case BO_LE:
|
|
return MaybeCastToBool(this->emitLE(*LT, BO));
|
|
case BO_GT:
|
|
return MaybeCastToBool(this->emitGT(*LT, BO));
|
|
case BO_GE:
|
|
return MaybeCastToBool(this->emitGE(*LT, BO));
|
|
case BO_Sub:
|
|
if (BO->getType()->isFloatingType())
|
|
return Discard(this->emitSubf(getFPOptions(BO), BO));
|
|
return Discard(this->emitSub(*T, BO));
|
|
case BO_Add:
|
|
if (BO->getType()->isFloatingType())
|
|
return Discard(this->emitAddf(getFPOptions(BO), BO));
|
|
return Discard(this->emitAdd(*T, BO));
|
|
case BO_Mul:
|
|
if (BO->getType()->isFloatingType())
|
|
return Discard(this->emitMulf(getFPOptions(BO), BO));
|
|
return Discard(this->emitMul(*T, BO));
|
|
case BO_Rem:
|
|
return Discard(this->emitRem(*T, BO));
|
|
case BO_Div:
|
|
if (BO->getType()->isFloatingType())
|
|
return Discard(this->emitDivf(getFPOptions(BO), BO));
|
|
return Discard(this->emitDiv(*T, BO));
|
|
case BO_Assign:
|
|
if (DiscardResult)
|
|
return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
|
|
: this->emitStorePop(*T, BO);
|
|
if (LHS->refersToBitField()) {
|
|
if (!this->emitStoreBitField(*T, BO))
|
|
return false;
|
|
} else {
|
|
if (!this->emitStore(*T, BO))
|
|
return false;
|
|
}
|
|
// Assignments aren't necessarily lvalues in C.
|
|
// Load from them in that case.
|
|
if (!BO->isLValue())
|
|
return this->emitLoadPop(*T, BO);
|
|
return true;
|
|
case BO_And:
|
|
return Discard(this->emitBitAnd(*T, BO));
|
|
case BO_Or:
|
|
return Discard(this->emitBitOr(*T, BO));
|
|
case BO_Shl:
|
|
return Discard(this->emitShl(*LT, *RT, BO));
|
|
case BO_Shr:
|
|
return Discard(this->emitShr(*LT, *RT, BO));
|
|
case BO_Xor:
|
|
return Discard(this->emitBitXor(*T, BO));
|
|
case BO_LOr:
|
|
case BO_LAnd:
|
|
llvm_unreachable("Already handled earlier");
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled binary op");
|
|
}
|
|
|
|
/// Perform addition/subtraction of a pointer and an integer or
|
|
/// subtraction of two pointers.
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
|
|
BinaryOperatorKind Op = E->getOpcode();
|
|
const Expr *LHS = E->getLHS();
|
|
const Expr *RHS = E->getRHS();
|
|
|
|
if ((Op != BO_Add && Op != BO_Sub) ||
|
|
(!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
|
|
return false;
|
|
|
|
std::optional<PrimType> LT = classify(LHS);
|
|
std::optional<PrimType> RT = classify(RHS);
|
|
|
|
if (!LT || !RT)
|
|
return false;
|
|
|
|
// Visit the given pointer expression and optionally convert to a PT_Ptr.
|
|
auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
|
|
if (!this->visit(E))
|
|
return false;
|
|
if (T != PT_Ptr)
|
|
return this->emitDecayPtr(T, PT_Ptr, E);
|
|
return true;
|
|
};
|
|
|
|
if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
|
|
if (Op != BO_Sub)
|
|
return false;
|
|
|
|
assert(E->getType()->isIntegerType());
|
|
if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
|
|
return false;
|
|
|
|
PrimType IntT = classifyPrim(E->getType());
|
|
if (!this->emitSubPtr(IntT, E))
|
|
return false;
|
|
return DiscardResult ? this->emitPop(IntT, E) : true;
|
|
}
|
|
|
|
PrimType OffsetType;
|
|
if (LHS->getType()->isIntegerType()) {
|
|
if (!visitAsPointer(RHS, *RT))
|
|
return false;
|
|
if (!this->visit(LHS))
|
|
return false;
|
|
OffsetType = *LT;
|
|
} else if (RHS->getType()->isIntegerType()) {
|
|
if (!visitAsPointer(LHS, *LT))
|
|
return false;
|
|
if (!this->visit(RHS))
|
|
return false;
|
|
OffsetType = *RT;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Do the operation and optionally transform to
|
|
// result pointer type.
|
|
if (Op == BO_Add) {
|
|
if (!this->emitAddOffset(OffsetType, E))
|
|
return false;
|
|
|
|
if (classifyPrim(E) != PT_Ptr)
|
|
return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
|
|
return true;
|
|
} else if (Op == BO_Sub) {
|
|
if (!this->emitSubOffset(OffsetType, E))
|
|
return false;
|
|
|
|
if (classifyPrim(E) != PT_Ptr)
|
|
return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
|
|
assert(E->isLogicalOp());
|
|
BinaryOperatorKind Op = E->getOpcode();
|
|
const Expr *LHS = E->getLHS();
|
|
const Expr *RHS = E->getRHS();
|
|
std::optional<PrimType> T = classify(E->getType());
|
|
|
|
if (Op == BO_LOr) {
|
|
// Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
|
|
LabelTy LabelTrue = this->getLabel();
|
|
LabelTy LabelEnd = this->getLabel();
|
|
|
|
if (!this->visitBool(LHS))
|
|
return false;
|
|
if (!this->jumpTrue(LabelTrue))
|
|
return false;
|
|
|
|
if (!this->visitBool(RHS))
|
|
return false;
|
|
if (!this->jump(LabelEnd))
|
|
return false;
|
|
|
|
this->emitLabel(LabelTrue);
|
|
this->emitConstBool(true, E);
|
|
this->fallthrough(LabelEnd);
|
|
this->emitLabel(LabelEnd);
|
|
|
|
} else {
|
|
assert(Op == BO_LAnd);
|
|
// Logical AND.
|
|
// Visit LHS. Only visit RHS if LHS was TRUE.
|
|
LabelTy LabelFalse = this->getLabel();
|
|
LabelTy LabelEnd = this->getLabel();
|
|
|
|
if (!this->visitBool(LHS))
|
|
return false;
|
|
if (!this->jumpFalse(LabelFalse))
|
|
return false;
|
|
|
|
if (!this->visitBool(RHS))
|
|
return false;
|
|
if (!this->jump(LabelEnd))
|
|
return false;
|
|
|
|
this->emitLabel(LabelFalse);
|
|
this->emitConstBool(false, E);
|
|
this->fallthrough(LabelEnd);
|
|
this->emitLabel(LabelEnd);
|
|
}
|
|
|
|
if (DiscardResult)
|
|
return this->emitPopBool(E);
|
|
|
|
// For C, cast back to integer type.
|
|
assert(T);
|
|
if (T != PT_Bool)
|
|
return this->emitCast(PT_Bool, *T, E);
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
|
|
// Prepare storage for result.
|
|
if (!Initializing) {
|
|
std::optional<unsigned> LocalIndex = allocateTemporary(E);
|
|
if (!LocalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*LocalIndex, E))
|
|
return false;
|
|
}
|
|
|
|
// Both LHS and RHS might _not_ be of complex type, but one of them
|
|
// needs to be.
|
|
const Expr *LHS = E->getLHS();
|
|
const Expr *RHS = E->getRHS();
|
|
|
|
PrimType ResultElemT = this->classifyComplexElementType(E->getType());
|
|
unsigned ResultOffset = ~0u;
|
|
if (!DiscardResult)
|
|
ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, /*IsConst=*/true);
|
|
|
|
// Save result pointer in ResultOffset
|
|
if (!this->DiscardResult) {
|
|
if (!this->emitDupPtr(E))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
|
|
return false;
|
|
}
|
|
QualType LHSType = LHS->getType();
|
|
if (const auto *AT = LHSType->getAs<AtomicType>())
|
|
LHSType = AT->getValueType();
|
|
QualType RHSType = RHS->getType();
|
|
if (const auto *AT = RHSType->getAs<AtomicType>())
|
|
RHSType = AT->getValueType();
|
|
|
|
bool LHSIsComplex = LHSType->isAnyComplexType();
|
|
unsigned LHSOffset;
|
|
bool RHSIsComplex = RHSType->isAnyComplexType();
|
|
|
|
// For ComplexComplex Mul, we have special ops to make their implementation
|
|
// easier.
|
|
BinaryOperatorKind Op = E->getOpcode();
|
|
if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
|
|
assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
|
|
classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
|
|
PrimType ElemT =
|
|
classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
|
|
if (!this->visit(LHS))
|
|
return false;
|
|
if (!this->visit(RHS))
|
|
return false;
|
|
return this->emitMulc(ElemT, E);
|
|
}
|
|
|
|
if (Op == BO_Div && RHSIsComplex) {
|
|
QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
|
|
PrimType ElemT = classifyPrim(ElemQT);
|
|
// If the LHS is not complex, we still need to do the full complex
|
|
// division, so just stub create a complex value and stub it out with
|
|
// the LHS and a zero.
|
|
|
|
if (!LHSIsComplex) {
|
|
// This is using the RHS type for the fake-complex LHS.
|
|
std::optional<unsigned> LocalIndex = allocateTemporary(RHS);
|
|
if (!LocalIndex)
|
|
return false;
|
|
LHSOffset = *LocalIndex;
|
|
|
|
if (!this->emitGetPtrLocal(LHSOffset, E))
|
|
return false;
|
|
|
|
if (!this->visit(LHS))
|
|
return false;
|
|
// real is LHS
|
|
if (!this->emitInitElem(ElemT, 0, E))
|
|
return false;
|
|
// imag is zero
|
|
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
|
|
return false;
|
|
if (!this->emitInitElem(ElemT, 1, E))
|
|
return false;
|
|
} else {
|
|
if (!this->visit(LHS))
|
|
return false;
|
|
}
|
|
|
|
if (!this->visit(RHS))
|
|
return false;
|
|
return this->emitDivc(ElemT, E);
|
|
}
|
|
|
|
// Evaluate LHS and save value to LHSOffset.
|
|
if (LHSType->isAnyComplexType()) {
|
|
LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true);
|
|
if (!this->visit(LHS))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
|
|
return false;
|
|
} else {
|
|
PrimType LHST = classifyPrim(LHSType);
|
|
LHSOffset = this->allocateLocalPrimitive(LHS, LHST, /*IsConst=*/true);
|
|
if (!this->visit(LHS))
|
|
return false;
|
|
if (!this->emitSetLocal(LHST, LHSOffset, E))
|
|
return false;
|
|
}
|
|
|
|
// Same with RHS.
|
|
unsigned RHSOffset;
|
|
if (RHSType->isAnyComplexType()) {
|
|
RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true);
|
|
if (!this->visit(RHS))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
|
|
return false;
|
|
} else {
|
|
PrimType RHST = classifyPrim(RHSType);
|
|
RHSOffset = this->allocateLocalPrimitive(RHS, RHST, /*IsConst=*/true);
|
|
if (!this->visit(RHS))
|
|
return false;
|
|
if (!this->emitSetLocal(RHST, RHSOffset, E))
|
|
return false;
|
|
}
|
|
|
|
// For both LHS and RHS, either load the value from the complex pointer, or
|
|
// directly from the local variable. For index 1 (i.e. the imaginary part),
|
|
// just load 0 and do the operation anyway.
|
|
auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
|
|
unsigned ElemIndex, unsigned Offset,
|
|
const Expr *E) -> bool {
|
|
if (IsComplex) {
|
|
if (!this->emitGetLocal(PT_Ptr, Offset, E))
|
|
return false;
|
|
return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
|
|
ElemIndex, E);
|
|
}
|
|
if (ElemIndex == 0 || !LoadZero)
|
|
return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
|
|
return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
|
|
E);
|
|
};
|
|
|
|
// Now we can get pointers to the LHS and RHS from the offsets above.
|
|
for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
|
|
// Result pointer for the store later.
|
|
if (!this->DiscardResult) {
|
|
if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
|
|
return false;
|
|
}
|
|
|
|
// The actual operation.
|
|
switch (Op) {
|
|
case BO_Add:
|
|
if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
|
|
return false;
|
|
|
|
if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
|
|
return false;
|
|
if (ResultElemT == PT_Float) {
|
|
if (!this->emitAddf(getFPOptions(E), E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitAdd(ResultElemT, E))
|
|
return false;
|
|
}
|
|
break;
|
|
case BO_Sub:
|
|
if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
|
|
return false;
|
|
|
|
if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
|
|
return false;
|
|
if (ResultElemT == PT_Float) {
|
|
if (!this->emitSubf(getFPOptions(E), E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitSub(ResultElemT, E))
|
|
return false;
|
|
}
|
|
break;
|
|
case BO_Mul:
|
|
if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
|
|
return false;
|
|
|
|
if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
|
|
return false;
|
|
|
|
if (ResultElemT == PT_Float) {
|
|
if (!this->emitMulf(getFPOptions(E), E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitMul(ResultElemT, E))
|
|
return false;
|
|
}
|
|
break;
|
|
case BO_Div:
|
|
assert(!RHSIsComplex);
|
|
if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
|
|
return false;
|
|
|
|
if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
|
|
return false;
|
|
|
|
if (ResultElemT == PT_Float) {
|
|
if (!this->emitDivf(getFPOptions(E), E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitDiv(ResultElemT, E))
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (!this->DiscardResult) {
|
|
// Initialize array element with the value we just computed.
|
|
if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitPop(ResultElemT, E))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
|
|
assert(!E->isCommaOp() &&
|
|
"Comma op should be handled in VisitBinaryOperator");
|
|
assert(E->getType()->isVectorType());
|
|
assert(E->getLHS()->getType()->isVectorType());
|
|
assert(E->getRHS()->getType()->isVectorType());
|
|
|
|
// Prepare storage for result.
|
|
if (!Initializing && !E->isCompoundAssignmentOp()) {
|
|
std::optional<unsigned> LocalIndex = allocateTemporary(E);
|
|
if (!LocalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*LocalIndex, E))
|
|
return false;
|
|
}
|
|
|
|
const Expr *LHS = E->getLHS();
|
|
const Expr *RHS = E->getRHS();
|
|
const auto *VecTy = E->getType()->getAs<VectorType>();
|
|
auto Op = E->isCompoundAssignmentOp()
|
|
? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
|
|
: E->getOpcode();
|
|
|
|
PrimType ElemT = this->classifyVectorElementType(LHS->getType());
|
|
PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
|
|
PrimType ResultElemT = this->classifyVectorElementType(E->getType());
|
|
|
|
// Evaluate LHS and save value to LHSOffset.
|
|
unsigned LHSOffset =
|
|
this->allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true);
|
|
if (!this->visit(LHS))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
|
|
return false;
|
|
|
|
// Evaluate RHS and save value to RHSOffset.
|
|
unsigned RHSOffset =
|
|
this->allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true);
|
|
if (!this->visit(RHS))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
|
|
return false;
|
|
|
|
if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
|
|
return false;
|
|
|
|
// BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
|
|
// integer promotion.
|
|
bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
|
|
QualType PromotTy =
|
|
Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
|
|
PrimType PromotT = classifyPrim(PromotTy);
|
|
PrimType OpT = NeedIntPromot ? PromotT : ElemT;
|
|
|
|
auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
|
|
if (!this->emitGetLocal(PT_Ptr, Offset, E))
|
|
return false;
|
|
if (!this->emitArrayElemPop(ElemT, Index, E))
|
|
return false;
|
|
if (E->isLogicalOp()) {
|
|
if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
|
|
return false;
|
|
if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
|
|
return false;
|
|
} else if (NeedIntPromot) {
|
|
if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
#define EMIT_ARITH_OP(OP) \
|
|
{ \
|
|
if (ElemT == PT_Float) { \
|
|
if (!this->emit##OP##f(getFPOptions(E), E)) \
|
|
return false; \
|
|
} else { \
|
|
if (!this->emit##OP(ElemT, E)) \
|
|
return false; \
|
|
} \
|
|
break; \
|
|
}
|
|
|
|
for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
|
|
if (!getElem(LHSOffset, ElemT, I))
|
|
return false;
|
|
if (!getElem(RHSOffset, RHSElemT, I))
|
|
return false;
|
|
switch (Op) {
|
|
case BO_Add:
|
|
EMIT_ARITH_OP(Add)
|
|
case BO_Sub:
|
|
EMIT_ARITH_OP(Sub)
|
|
case BO_Mul:
|
|
EMIT_ARITH_OP(Mul)
|
|
case BO_Div:
|
|
EMIT_ARITH_OP(Div)
|
|
case BO_Rem:
|
|
if (!this->emitRem(ElemT, E))
|
|
return false;
|
|
break;
|
|
case BO_And:
|
|
if (!this->emitBitAnd(OpT, E))
|
|
return false;
|
|
break;
|
|
case BO_Or:
|
|
if (!this->emitBitOr(OpT, E))
|
|
return false;
|
|
break;
|
|
case BO_Xor:
|
|
if (!this->emitBitXor(OpT, E))
|
|
return false;
|
|
break;
|
|
case BO_Shl:
|
|
if (!this->emitShl(OpT, RHSElemT, E))
|
|
return false;
|
|
break;
|
|
case BO_Shr:
|
|
if (!this->emitShr(OpT, RHSElemT, E))
|
|
return false;
|
|
break;
|
|
case BO_EQ:
|
|
if (!this->emitEQ(ElemT, E))
|
|
return false;
|
|
break;
|
|
case BO_NE:
|
|
if (!this->emitNE(ElemT, E))
|
|
return false;
|
|
break;
|
|
case BO_LE:
|
|
if (!this->emitLE(ElemT, E))
|
|
return false;
|
|
break;
|
|
case BO_LT:
|
|
if (!this->emitLT(ElemT, E))
|
|
return false;
|
|
break;
|
|
case BO_GE:
|
|
if (!this->emitGE(ElemT, E))
|
|
return false;
|
|
break;
|
|
case BO_GT:
|
|
if (!this->emitGT(ElemT, E))
|
|
return false;
|
|
break;
|
|
case BO_LAnd:
|
|
// a && b is equivalent to a!=0 & b!=0
|
|
if (!this->emitBitAnd(ResultElemT, E))
|
|
return false;
|
|
break;
|
|
case BO_LOr:
|
|
// a || b is equivalent to a!=0 | b!=0
|
|
if (!this->emitBitOr(ResultElemT, E))
|
|
return false;
|
|
break;
|
|
default:
|
|
return this->emitInvalid(E);
|
|
}
|
|
|
|
// The result of the comparison is a vector of the same width and number
|
|
// of elements as the comparison operands with a signed integral element
|
|
// type.
|
|
//
|
|
// https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
|
|
if (E->isComparisonOp()) {
|
|
if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
|
|
return false;
|
|
if (!this->emitNeg(ResultElemT, E))
|
|
return false;
|
|
}
|
|
|
|
// If we performed an integer promotion, we need to cast the compute result
|
|
// into result vector element type.
|
|
if (NeedIntPromot &&
|
|
!this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
|
|
return false;
|
|
|
|
// Initialize array element with the value we just computed.
|
|
if (!this->emitInitElem(ResultElemT, I, E))
|
|
return false;
|
|
}
|
|
|
|
if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) {
|
|
const Expr *LHS = E->getLHS();
|
|
const Expr *RHS = E->getRHS();
|
|
const ASTContext &ASTCtx = Ctx.getASTContext();
|
|
|
|
assert(LHS->getType()->isFixedPointType() ||
|
|
RHS->getType()->isFixedPointType());
|
|
|
|
auto LHSSema = ASTCtx.getFixedPointSemantics(LHS->getType());
|
|
auto LHSSemaInt = LHSSema.toOpaqueInt();
|
|
auto RHSSema = ASTCtx.getFixedPointSemantics(RHS->getType());
|
|
auto RHSSemaInt = RHSSema.toOpaqueInt();
|
|
|
|
if (!this->visit(LHS))
|
|
return false;
|
|
if (!LHS->getType()->isFixedPointType()) {
|
|
if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()),
|
|
LHSSemaInt, E))
|
|
return false;
|
|
}
|
|
|
|
if (!this->visit(RHS))
|
|
return false;
|
|
if (!RHS->getType()->isFixedPointType()) {
|
|
if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()),
|
|
RHSSemaInt, E))
|
|
return false;
|
|
}
|
|
|
|
// Convert the result to the target semantics.
|
|
auto ConvertResult = [&](bool R) -> bool {
|
|
if (!R)
|
|
return false;
|
|
auto ResultSema = ASTCtx.getFixedPointSemantics(E->getType()).toOpaqueInt();
|
|
auto CommonSema = LHSSema.getCommonSemantics(RHSSema).toOpaqueInt();
|
|
if (ResultSema != CommonSema)
|
|
return this->emitCastFixedPoint(ResultSema, E);
|
|
return true;
|
|
};
|
|
|
|
auto MaybeCastToBool = [&](bool Result) {
|
|
if (!Result)
|
|
return false;
|
|
PrimType T = classifyPrim(E);
|
|
if (DiscardResult)
|
|
return this->emitPop(T, E);
|
|
if (T != PT_Bool)
|
|
return this->emitCast(PT_Bool, T, E);
|
|
return true;
|
|
};
|
|
|
|
switch (E->getOpcode()) {
|
|
case BO_EQ:
|
|
return MaybeCastToBool(this->emitEQFixedPoint(E));
|
|
case BO_NE:
|
|
return MaybeCastToBool(this->emitNEFixedPoint(E));
|
|
case BO_LT:
|
|
return MaybeCastToBool(this->emitLTFixedPoint(E));
|
|
case BO_LE:
|
|
return MaybeCastToBool(this->emitLEFixedPoint(E));
|
|
case BO_GT:
|
|
return MaybeCastToBool(this->emitGTFixedPoint(E));
|
|
case BO_GE:
|
|
return MaybeCastToBool(this->emitGEFixedPoint(E));
|
|
case BO_Add:
|
|
return ConvertResult(this->emitAddFixedPoint(E));
|
|
case BO_Sub:
|
|
return ConvertResult(this->emitSubFixedPoint(E));
|
|
case BO_Mul:
|
|
return ConvertResult(this->emitMulFixedPoint(E));
|
|
case BO_Div:
|
|
return ConvertResult(this->emitDivFixedPoint(E));
|
|
case BO_Shl:
|
|
return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E));
|
|
case BO_Shr:
|
|
return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E));
|
|
|
|
default:
|
|
return this->emitInvalid(E);
|
|
}
|
|
|
|
llvm_unreachable("unhandled binop opcode");
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) {
|
|
const Expr *SubExpr = E->getSubExpr();
|
|
assert(SubExpr->getType()->isFixedPointType());
|
|
|
|
switch (E->getOpcode()) {
|
|
case UO_Plus:
|
|
return this->delegate(SubExpr);
|
|
case UO_Minus:
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
return this->emitNegFixedPoint(E);
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled unary opcode");
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitImplicitValueInitExpr(
|
|
const ImplicitValueInitExpr *E) {
|
|
QualType QT = E->getType();
|
|
|
|
if (std::optional<PrimType> T = classify(QT))
|
|
return this->visitZeroInitializer(*T, QT, E);
|
|
|
|
if (QT->isRecordType()) {
|
|
const RecordDecl *RD = QT->getAsRecordDecl();
|
|
assert(RD);
|
|
if (RD->isInvalidDecl())
|
|
return false;
|
|
|
|
if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
|
|
CXXRD && CXXRD->getNumVBases() > 0) {
|
|
// TODO: Diagnose.
|
|
return false;
|
|
}
|
|
|
|
const Record *R = getRecord(QT);
|
|
if (!R)
|
|
return false;
|
|
|
|
assert(Initializing);
|
|
return this->visitZeroRecordInitializer(R, E);
|
|
}
|
|
|
|
if (QT->isIncompleteArrayType())
|
|
return true;
|
|
|
|
if (QT->isArrayType())
|
|
return this->visitZeroArrayInitializer(QT, E);
|
|
|
|
if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
|
|
assert(Initializing);
|
|
QualType ElemQT = ComplexTy->getElementType();
|
|
PrimType ElemT = classifyPrim(ElemQT);
|
|
for (unsigned I = 0; I < 2; ++I) {
|
|
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
|
|
return false;
|
|
if (!this->emitInitElem(ElemT, I, E))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (const auto *VecT = E->getType()->getAs<VectorType>()) {
|
|
unsigned NumVecElements = VecT->getNumElements();
|
|
QualType ElemQT = VecT->getElementType();
|
|
PrimType ElemT = classifyPrim(ElemQT);
|
|
|
|
for (unsigned I = 0; I < NumVecElements; ++I) {
|
|
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
|
|
return false;
|
|
if (!this->emitInitElem(ElemT, I, E))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
|
|
const Expr *LHS = E->getLHS();
|
|
const Expr *RHS = E->getRHS();
|
|
const Expr *Index = E->getIdx();
|
|
const Expr *Base = E->getBase();
|
|
|
|
if (DiscardResult)
|
|
return this->discard(LHS) && this->discard(RHS);
|
|
|
|
// C++17's rules require us to evaluate the LHS first, regardless of which
|
|
// side is the base.
|
|
bool Success = true;
|
|
for (const Expr *SubExpr : {LHS, RHS}) {
|
|
if (!this->visit(SubExpr)) {
|
|
Success = false;
|
|
continue;
|
|
}
|
|
|
|
// Expand the base if this is a subscript on a
|
|
// pointer expression.
|
|
if (SubExpr == Base && Base->getType()->isPointerType()) {
|
|
if (!this->emitExpandPtr(E))
|
|
Success = false;
|
|
}
|
|
}
|
|
|
|
if (!Success)
|
|
return false;
|
|
|
|
std::optional<PrimType> IndexT = classify(Index->getType());
|
|
// In error-recovery cases, the index expression has a dependent type.
|
|
if (!IndexT)
|
|
return this->emitError(E);
|
|
// If the index is first, we need to change that.
|
|
if (LHS == Index) {
|
|
if (!this->emitFlip(PT_Ptr, *IndexT, E))
|
|
return false;
|
|
}
|
|
|
|
return this->emitArrayElemPtrPop(*IndexT, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
|
|
const Expr *ArrayFiller, const Expr *E) {
|
|
InitLinkScope<Emitter> ILS(this, InitLink::InitList());
|
|
|
|
QualType QT = E->getType();
|
|
if (const auto *AT = QT->getAs<AtomicType>())
|
|
QT = AT->getValueType();
|
|
|
|
if (QT->isVoidType()) {
|
|
if (Inits.size() == 0)
|
|
return true;
|
|
return this->emitInvalid(E);
|
|
}
|
|
|
|
// Handle discarding first.
|
|
if (DiscardResult) {
|
|
for (const Expr *Init : Inits) {
|
|
if (!this->discard(Init))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Primitive values.
|
|
if (std::optional<PrimType> T = classify(QT)) {
|
|
assert(!DiscardResult);
|
|
if (Inits.size() == 0)
|
|
return this->visitZeroInitializer(*T, QT, E);
|
|
assert(Inits.size() == 1);
|
|
return this->delegate(Inits[0]);
|
|
}
|
|
|
|
if (QT->isRecordType()) {
|
|
const Record *R = getRecord(QT);
|
|
|
|
if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
|
|
return this->delegate(Inits[0]);
|
|
|
|
auto initPrimitiveField = [=](const Record::Field *FieldToInit,
|
|
const Expr *Init, PrimType T) -> bool {
|
|
InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
|
|
InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
|
|
if (!this->visit(Init))
|
|
return false;
|
|
|
|
if (FieldToInit->isBitField())
|
|
return this->emitInitBitField(T, FieldToInit, E);
|
|
return this->emitInitField(T, FieldToInit->Offset, E);
|
|
};
|
|
|
|
auto initCompositeField = [=](const Record::Field *FieldToInit,
|
|
const Expr *Init) -> bool {
|
|
InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
|
|
InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
|
|
|
|
// Non-primitive case. Get a pointer to the field-to-initialize
|
|
// on the stack and recurse into visitInitializer().
|
|
if (!this->emitGetPtrField(FieldToInit->Offset, Init))
|
|
return false;
|
|
if (!this->visitInitializer(Init))
|
|
return false;
|
|
return this->emitPopPtr(E);
|
|
};
|
|
|
|
if (R->isUnion()) {
|
|
if (Inits.size() == 0) {
|
|
if (!this->visitZeroRecordInitializer(R, E))
|
|
return false;
|
|
} else {
|
|
const Expr *Init = Inits[0];
|
|
const FieldDecl *FToInit = nullptr;
|
|
if (const auto *ILE = dyn_cast<InitListExpr>(E))
|
|
FToInit = ILE->getInitializedFieldInUnion();
|
|
else
|
|
FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
|
|
|
|
const Record::Field *FieldToInit = R->getField(FToInit);
|
|
if (std::optional<PrimType> T = classify(Init)) {
|
|
if (!initPrimitiveField(FieldToInit, Init, *T))
|
|
return false;
|
|
} else {
|
|
if (!initCompositeField(FieldToInit, Init))
|
|
return false;
|
|
}
|
|
}
|
|
return this->emitFinishInit(E);
|
|
}
|
|
|
|
assert(!R->isUnion());
|
|
unsigned InitIndex = 0;
|
|
for (const Expr *Init : Inits) {
|
|
// Skip unnamed bitfields.
|
|
while (InitIndex < R->getNumFields() &&
|
|
R->getField(InitIndex)->isUnnamedBitField())
|
|
++InitIndex;
|
|
|
|
if (std::optional<PrimType> T = classify(Init)) {
|
|
const Record::Field *FieldToInit = R->getField(InitIndex);
|
|
if (!initPrimitiveField(FieldToInit, Init, *T))
|
|
return false;
|
|
++InitIndex;
|
|
} else {
|
|
// Initializer for a direct base class.
|
|
if (const Record::Base *B = R->getBase(Init->getType())) {
|
|
if (!this->emitGetPtrBase(B->Offset, Init))
|
|
return false;
|
|
|
|
if (!this->visitInitializer(Init))
|
|
return false;
|
|
|
|
if (!this->emitFinishInitPop(E))
|
|
return false;
|
|
// Base initializers don't increase InitIndex, since they don't count
|
|
// into the Record's fields.
|
|
} else {
|
|
const Record::Field *FieldToInit = R->getField(InitIndex);
|
|
if (!initCompositeField(FieldToInit, Init))
|
|
return false;
|
|
++InitIndex;
|
|
}
|
|
}
|
|
}
|
|
return this->emitFinishInit(E);
|
|
}
|
|
|
|
if (QT->isArrayType()) {
|
|
if (Inits.size() == 1 && QT == Inits[0]->getType())
|
|
return this->delegate(Inits[0]);
|
|
|
|
unsigned ElementIndex = 0;
|
|
for (const Expr *Init : Inits) {
|
|
if (const auto *EmbedS =
|
|
dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
|
|
PrimType TargetT = classifyPrim(Init->getType());
|
|
|
|
auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
|
|
PrimType InitT = classifyPrim(Init->getType());
|
|
if (!this->visit(Init))
|
|
return false;
|
|
if (InitT != TargetT) {
|
|
if (!this->emitCast(InitT, TargetT, E))
|
|
return false;
|
|
}
|
|
return this->emitInitElem(TargetT, ElemIndex, Init);
|
|
};
|
|
if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
|
|
return false;
|
|
} else {
|
|
if (!this->visitArrayElemInit(ElementIndex, Init))
|
|
return false;
|
|
++ElementIndex;
|
|
}
|
|
}
|
|
|
|
// Expand the filler expression.
|
|
// FIXME: This should go away.
|
|
if (ArrayFiller) {
|
|
const ConstantArrayType *CAT =
|
|
Ctx.getASTContext().getAsConstantArrayType(QT);
|
|
uint64_t NumElems = CAT->getZExtSize();
|
|
|
|
for (; ElementIndex != NumElems; ++ElementIndex) {
|
|
if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return this->emitFinishInit(E);
|
|
}
|
|
|
|
if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
|
|
unsigned NumInits = Inits.size();
|
|
|
|
if (NumInits == 1)
|
|
return this->delegate(Inits[0]);
|
|
|
|
QualType ElemQT = ComplexTy->getElementType();
|
|
PrimType ElemT = classifyPrim(ElemQT);
|
|
if (NumInits == 0) {
|
|
// Zero-initialize both elements.
|
|
for (unsigned I = 0; I < 2; ++I) {
|
|
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
|
|
return false;
|
|
if (!this->emitInitElem(ElemT, I, E))
|
|
return false;
|
|
}
|
|
} else if (NumInits == 2) {
|
|
unsigned InitIndex = 0;
|
|
for (const Expr *Init : Inits) {
|
|
if (!this->visit(Init))
|
|
return false;
|
|
|
|
if (!this->emitInitElem(ElemT, InitIndex, E))
|
|
return false;
|
|
++InitIndex;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (const auto *VecT = QT->getAs<VectorType>()) {
|
|
unsigned NumVecElements = VecT->getNumElements();
|
|
assert(NumVecElements >= Inits.size());
|
|
|
|
QualType ElemQT = VecT->getElementType();
|
|
PrimType ElemT = classifyPrim(ElemQT);
|
|
|
|
// All initializer elements.
|
|
unsigned InitIndex = 0;
|
|
for (const Expr *Init : Inits) {
|
|
if (!this->visit(Init))
|
|
return false;
|
|
|
|
// If the initializer is of vector type itself, we have to deconstruct
|
|
// that and initialize all the target fields from the initializer fields.
|
|
if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
|
|
if (!this->emitCopyArray(ElemT, 0, InitIndex,
|
|
InitVecT->getNumElements(), E))
|
|
return false;
|
|
InitIndex += InitVecT->getNumElements();
|
|
} else {
|
|
if (!this->emitInitElem(ElemT, InitIndex, E))
|
|
return false;
|
|
++InitIndex;
|
|
}
|
|
}
|
|
|
|
assert(InitIndex <= NumVecElements);
|
|
|
|
// Fill the rest with zeroes.
|
|
for (; InitIndex != NumVecElements; ++InitIndex) {
|
|
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
|
|
return false;
|
|
if (!this->emitInitElem(ElemT, InitIndex, E))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Pointer to the array(not the element!) must be on the stack when calling
|
|
/// this.
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
|
|
const Expr *Init) {
|
|
if (std::optional<PrimType> T = classify(Init->getType())) {
|
|
// Visit the primitive element like normal.
|
|
if (!this->visit(Init))
|
|
return false;
|
|
return this->emitInitElem(*T, ElemIndex, Init);
|
|
}
|
|
|
|
InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
|
|
// Advance the pointer currently on the stack to the given
|
|
// dimension.
|
|
if (!this->emitConstUint32(ElemIndex, Init))
|
|
return false;
|
|
if (!this->emitArrayElemPtrUint32(Init))
|
|
return false;
|
|
if (!this->visitInitializer(Init))
|
|
return false;
|
|
return this->emitFinishInitPop(Init);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
|
|
return this->visitInitList(E->inits(), E->getArrayFiller(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXParenListInitExpr(
|
|
const CXXParenListInitExpr *E) {
|
|
return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
|
|
const SubstNonTypeTemplateParmExpr *E) {
|
|
return this->delegate(E->getReplacement());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
|
|
std::optional<PrimType> T = classify(E->getType());
|
|
if (T && E->hasAPValueResult()) {
|
|
// Try to emit the APValue directly, without visiting the subexpr.
|
|
// This will only fail if we can't emit the APValue, so won't emit any
|
|
// diagnostics or any double values.
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
if (this->visitAPValue(E->getAPValueResult(), *T, E))
|
|
return true;
|
|
}
|
|
return this->delegate(E->getSubExpr());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
|
|
auto It = E->begin();
|
|
return this->visit(*It);
|
|
}
|
|
|
|
static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
|
|
UnaryExprOrTypeTrait Kind) {
|
|
bool AlignOfReturnsPreferred =
|
|
ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
|
|
|
|
// C++ [expr.alignof]p3:
|
|
// When alignof is applied to a reference type, the result is the
|
|
// alignment of the referenced type.
|
|
if (const auto *Ref = T->getAs<ReferenceType>())
|
|
T = Ref->getPointeeType();
|
|
|
|
if (T.getQualifiers().hasUnaligned())
|
|
return CharUnits::One();
|
|
|
|
// __alignof is defined to return the preferred alignment.
|
|
// Before 8, clang returned the preferred alignment for alignof and
|
|
// _Alignof as well.
|
|
if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
|
|
return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
|
|
|
|
return ASTCtx.getTypeAlignInChars(T);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
|
|
const UnaryExprOrTypeTraitExpr *E) {
|
|
UnaryExprOrTypeTrait Kind = E->getKind();
|
|
const ASTContext &ASTCtx = Ctx.getASTContext();
|
|
|
|
if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
|
|
QualType ArgType = E->getTypeOfArgument();
|
|
|
|
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
|
|
// the result is the size of the referenced type."
|
|
if (const auto *Ref = ArgType->getAs<ReferenceType>())
|
|
ArgType = Ref->getPointeeType();
|
|
|
|
CharUnits Size;
|
|
if (ArgType->isVoidType() || ArgType->isFunctionType())
|
|
Size = CharUnits::One();
|
|
else {
|
|
if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
|
|
return this->emitInvalid(E);
|
|
|
|
if (Kind == UETT_SizeOf)
|
|
Size = ASTCtx.getTypeSizeInChars(ArgType);
|
|
else
|
|
Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
|
|
}
|
|
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
return this->emitConst(Size.getQuantity(), E);
|
|
}
|
|
|
|
if (Kind == UETT_CountOf) {
|
|
QualType Ty = E->getTypeOfArgument();
|
|
assert(Ty->isArrayType());
|
|
|
|
// We don't need to worry about array element qualifiers, so getting the
|
|
// unsafe array type is fine.
|
|
if (const auto *CAT =
|
|
dyn_cast<ConstantArrayType>(Ty->getAsArrayTypeUnsafe())) {
|
|
if (DiscardResult)
|
|
return true;
|
|
return this->emitConst(CAT->getSize(), E);
|
|
}
|
|
|
|
assert(!Ty->isConstantSizeType());
|
|
|
|
// If it's a variable-length array type, we need to check whether it is a
|
|
// multidimensional array. If so, we need to check the size expression of
|
|
// the VLA to see if it's a constant size. If so, we can return that value.
|
|
const auto *VAT = ASTCtx.getAsVariableArrayType(Ty);
|
|
assert(VAT);
|
|
if (VAT->getElementType()->isArrayType()) {
|
|
std::optional<APSInt> Res =
|
|
VAT->getSizeExpr()->getIntegerConstantExpr(ASTCtx);
|
|
if (Res) {
|
|
if (DiscardResult)
|
|
return true;
|
|
return this->emitConst(*Res, E);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
|
|
CharUnits Size;
|
|
|
|
if (E->isArgumentType()) {
|
|
QualType ArgType = E->getTypeOfArgument();
|
|
|
|
Size = AlignOfType(ArgType, ASTCtx, Kind);
|
|
} else {
|
|
// Argument is an expression, not a type.
|
|
const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
|
|
|
|
// The kinds of expressions that we have special-case logic here for
|
|
// should be kept up to date with the special checks for those
|
|
// expressions in Sema.
|
|
|
|
// alignof decl is always accepted, even if it doesn't make sense: we
|
|
// default to 1 in those cases.
|
|
if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
|
|
Size = ASTCtx.getDeclAlign(DRE->getDecl(),
|
|
/*RefAsPointee*/ true);
|
|
else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
|
|
Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
|
|
/*RefAsPointee*/ true);
|
|
else
|
|
Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
|
|
}
|
|
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
return this->emitConst(Size.getQuantity(), E);
|
|
}
|
|
|
|
if (Kind == UETT_VectorElements) {
|
|
if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
|
|
return this->emitConst(VT->getNumElements(), E);
|
|
assert(E->getTypeOfArgument()->isSizelessVectorType());
|
|
return this->emitSizelessVectorElementSize(E);
|
|
}
|
|
|
|
if (Kind == UETT_VecStep) {
|
|
if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
|
|
unsigned N = VT->getNumElements();
|
|
|
|
// The vec_step built-in functions that take a 3-component
|
|
// vector return 4. (OpenCL 1.1 spec 6.11.12)
|
|
if (N == 3)
|
|
N = 4;
|
|
|
|
return this->emitConst(N, E);
|
|
}
|
|
return this->emitConst(1, E);
|
|
}
|
|
|
|
if (Kind == UETT_OpenMPRequiredSimdAlign) {
|
|
assert(E->isArgumentType());
|
|
unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(E->getArgumentType());
|
|
|
|
return this->emitConst(ASTCtx.toCharUnitsFromBits(Bits).getQuantity(), E);
|
|
}
|
|
|
|
if (Kind == UETT_PtrAuthTypeDiscriminator) {
|
|
if (E->getArgumentType()->isDependentType())
|
|
return this->emitInvalid(E);
|
|
|
|
return this->emitConst(
|
|
const_cast<ASTContext &>(ASTCtx).getPointerAuthTypeDiscriminator(
|
|
E->getArgumentType()),
|
|
E);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
|
|
// 'Base.Member'
|
|
const Expr *Base = E->getBase();
|
|
const ValueDecl *Member = E->getMemberDecl();
|
|
|
|
if (DiscardResult)
|
|
return this->discard(Base);
|
|
|
|
// MemberExprs are almost always lvalues, in which case we don't need to
|
|
// do the load. But sometimes they aren't.
|
|
const auto maybeLoadValue = [&]() -> bool {
|
|
if (E->isGLValue())
|
|
return true;
|
|
if (std::optional<PrimType> T = classify(E))
|
|
return this->emitLoadPop(*T, E);
|
|
return false;
|
|
};
|
|
|
|
if (const auto *VD = dyn_cast<VarDecl>(Member)) {
|
|
// I am almost confident in saying that a var decl must be static
|
|
// and therefore registered as a global variable. But this will probably
|
|
// turn out to be wrong some time in the future, as always.
|
|
if (auto GlobalIndex = P.getGlobal(VD))
|
|
return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
|
|
return false;
|
|
}
|
|
|
|
if (!isa<FieldDecl>(Member)) {
|
|
if (!this->discard(Base) && !this->emitSideEffect(E))
|
|
return false;
|
|
|
|
return this->visitDeclRef(Member, E);
|
|
}
|
|
|
|
if (Initializing) {
|
|
if (!this->delegate(Base))
|
|
return false;
|
|
} else {
|
|
if (!this->visit(Base))
|
|
return false;
|
|
}
|
|
|
|
// Base above gives us a pointer on the stack.
|
|
const auto *FD = cast<FieldDecl>(Member);
|
|
const RecordDecl *RD = FD->getParent();
|
|
const Record *R = getRecord(RD);
|
|
if (!R)
|
|
return false;
|
|
const Record::Field *F = R->getField(FD);
|
|
// Leave a pointer to the field on the stack.
|
|
if (F->Decl->getType()->isReferenceType())
|
|
return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
|
|
return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
|
|
// ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
|
|
// stand-alone, e.g. via EvaluateAsInt().
|
|
if (!ArrayIndex)
|
|
return false;
|
|
return this->emitConst(*ArrayIndex, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
|
|
assert(Initializing);
|
|
assert(!DiscardResult);
|
|
|
|
// We visit the common opaque expression here once so we have its value
|
|
// cached.
|
|
if (!this->discard(E->getCommonExpr()))
|
|
return false;
|
|
|
|
// TODO: This compiles to quite a lot of bytecode if the array is larger.
|
|
// Investigate compiling this to a loop.
|
|
const Expr *SubExpr = E->getSubExpr();
|
|
size_t Size = E->getArraySize().getZExtValue();
|
|
|
|
// So, every iteration, we execute an assignment here
|
|
// where the LHS is on the stack (the target array)
|
|
// and the RHS is our SubExpr.
|
|
for (size_t I = 0; I != Size; ++I) {
|
|
ArrayIndexScope<Emitter> IndexScope(this, I);
|
|
BlockScope<Emitter> BS(this);
|
|
|
|
if (!this->visitArrayElemInit(I, SubExpr))
|
|
return false;
|
|
if (!BS.destroyLocals())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
|
|
const Expr *SourceExpr = E->getSourceExpr();
|
|
if (!SourceExpr)
|
|
return false;
|
|
|
|
if (Initializing)
|
|
return this->visitInitializer(SourceExpr);
|
|
|
|
PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
|
|
if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
|
|
return this->emitGetLocal(SubExprT, It->second, E);
|
|
|
|
if (!this->visit(SourceExpr))
|
|
return false;
|
|
|
|
// At this point we either have the evaluated source expression or a pointer
|
|
// to an object on the stack. We want to create a local variable that stores
|
|
// this value.
|
|
unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
|
|
if (!this->emitSetLocal(SubExprT, LocalIndex, E))
|
|
return false;
|
|
|
|
// Here the local variable is created but the value is removed from the stack,
|
|
// so we put it back if the caller needs it.
|
|
if (!DiscardResult) {
|
|
if (!this->emitGetLocal(SubExprT, LocalIndex, E))
|
|
return false;
|
|
}
|
|
|
|
// This is cleaned up when the local variable is destroyed.
|
|
OpaqueExprs.insert({E, LocalIndex});
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitAbstractConditionalOperator(
|
|
const AbstractConditionalOperator *E) {
|
|
const Expr *Condition = E->getCond();
|
|
const Expr *TrueExpr = E->getTrueExpr();
|
|
const Expr *FalseExpr = E->getFalseExpr();
|
|
|
|
auto visitChildExpr = [&](const Expr *E) -> bool {
|
|
LocalScope<Emitter> S(this);
|
|
if (!this->delegate(E))
|
|
return false;
|
|
return S.destroyLocals();
|
|
};
|
|
|
|
if (std::optional<bool> BoolValue = getBoolValue(Condition)) {
|
|
if (BoolValue)
|
|
return visitChildExpr(TrueExpr);
|
|
return visitChildExpr(FalseExpr);
|
|
}
|
|
|
|
bool IsBcpCall = false;
|
|
if (const auto *CE = dyn_cast<CallExpr>(Condition->IgnoreParenCasts());
|
|
CE && CE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) {
|
|
IsBcpCall = true;
|
|
}
|
|
|
|
LabelTy LabelEnd = this->getLabel(); // Label after the operator.
|
|
LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
|
|
|
|
if (IsBcpCall) {
|
|
if (!this->emitStartSpeculation(E))
|
|
return false;
|
|
}
|
|
|
|
if (!this->visitBool(Condition))
|
|
return false;
|
|
if (!this->jumpFalse(LabelFalse))
|
|
return false;
|
|
if (!visitChildExpr(TrueExpr))
|
|
return false;
|
|
if (!this->jump(LabelEnd))
|
|
return false;
|
|
this->emitLabel(LabelFalse);
|
|
if (!visitChildExpr(FalseExpr))
|
|
return false;
|
|
this->fallthrough(LabelEnd);
|
|
this->emitLabel(LabelEnd);
|
|
|
|
if (IsBcpCall)
|
|
return this->emitEndSpeculation(E);
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
if (!Initializing) {
|
|
unsigned StringIndex = P.createGlobalString(E);
|
|
return this->emitGetPtrGlobal(StringIndex, E);
|
|
}
|
|
|
|
// We are initializing an array on the stack.
|
|
const ConstantArrayType *CAT =
|
|
Ctx.getASTContext().getAsConstantArrayType(E->getType());
|
|
assert(CAT && "a string literal that's not a constant array?");
|
|
|
|
// If the initializer string is too long, a diagnostic has already been
|
|
// emitted. Read only the array length from the string literal.
|
|
unsigned ArraySize = CAT->getZExtSize();
|
|
unsigned N = std::min(ArraySize, E->getLength());
|
|
size_t CharWidth = E->getCharByteWidth();
|
|
|
|
for (unsigned I = 0; I != N; ++I) {
|
|
uint32_t CodeUnit = E->getCodeUnit(I);
|
|
|
|
if (CharWidth == 1) {
|
|
this->emitConstSint8(CodeUnit, E);
|
|
this->emitInitElemSint8(I, E);
|
|
} else if (CharWidth == 2) {
|
|
this->emitConstUint16(CodeUnit, E);
|
|
this->emitInitElemUint16(I, E);
|
|
} else if (CharWidth == 4) {
|
|
this->emitConstUint32(CodeUnit, E);
|
|
this->emitInitElemUint32(I, E);
|
|
} else {
|
|
llvm_unreachable("unsupported character width");
|
|
}
|
|
}
|
|
|
|
// Fill up the rest of the char array with NUL bytes.
|
|
for (unsigned I = N; I != ArraySize; ++I) {
|
|
if (CharWidth == 1) {
|
|
this->emitConstSint8(0, E);
|
|
this->emitInitElemSint8(I, E);
|
|
} else if (CharWidth == 2) {
|
|
this->emitConstUint16(0, E);
|
|
this->emitInitElemUint16(I, E);
|
|
} else if (CharWidth == 4) {
|
|
this->emitConstUint32(0, E);
|
|
this->emitInitElemUint32(I, E);
|
|
} else {
|
|
llvm_unreachable("unsupported character width");
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
return this->emitDummyPtr(E, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
|
|
auto &A = Ctx.getASTContext();
|
|
std::string Str;
|
|
A.getObjCEncodingForType(E->getEncodedType(), Str);
|
|
StringLiteral *SL =
|
|
StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
|
|
/*Pascal=*/false, E->getType(), E->getAtLoc());
|
|
return this->delegate(SL);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
|
|
const SYCLUniqueStableNameExpr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
assert(!Initializing);
|
|
|
|
auto &A = Ctx.getASTContext();
|
|
std::string ResultStr = E->ComputeName(A);
|
|
|
|
QualType CharTy = A.CharTy.withConst();
|
|
APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
|
|
QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
|
|
ArraySizeModifier::Normal, 0);
|
|
|
|
StringLiteral *SL =
|
|
StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
|
|
/*Pascal=*/false, ArrayTy, E->getLocation());
|
|
|
|
unsigned StringIndex = P.createGlobalString(SL);
|
|
return this->emitGetPtrGlobal(StringIndex, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
return this->emitConst(E->getValue(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
|
|
const CompoundAssignOperator *E) {
|
|
|
|
const Expr *LHS = E->getLHS();
|
|
const Expr *RHS = E->getRHS();
|
|
QualType LHSType = LHS->getType();
|
|
QualType LHSComputationType = E->getComputationLHSType();
|
|
QualType ResultType = E->getComputationResultType();
|
|
std::optional<PrimType> LT = classify(LHSComputationType);
|
|
std::optional<PrimType> RT = classify(ResultType);
|
|
|
|
assert(ResultType->isFloatingType());
|
|
|
|
if (!LT || !RT)
|
|
return false;
|
|
|
|
PrimType LHST = classifyPrim(LHSType);
|
|
|
|
// C++17 onwards require that we evaluate the RHS first.
|
|
// Compute RHS and save it in a temporary variable so we can
|
|
// load it again later.
|
|
if (!visit(RHS))
|
|
return false;
|
|
|
|
unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
|
|
if (!this->emitSetLocal(*RT, TempOffset, E))
|
|
return false;
|
|
|
|
// First, visit LHS.
|
|
if (!visit(LHS))
|
|
return false;
|
|
if (!this->emitLoad(LHST, E))
|
|
return false;
|
|
|
|
// If necessary, convert LHS to its computation type.
|
|
if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
|
|
LHSComputationType, E))
|
|
return false;
|
|
|
|
// Now load RHS.
|
|
if (!this->emitGetLocal(*RT, TempOffset, E))
|
|
return false;
|
|
|
|
switch (E->getOpcode()) {
|
|
case BO_AddAssign:
|
|
if (!this->emitAddf(getFPOptions(E), E))
|
|
return false;
|
|
break;
|
|
case BO_SubAssign:
|
|
if (!this->emitSubf(getFPOptions(E), E))
|
|
return false;
|
|
break;
|
|
case BO_MulAssign:
|
|
if (!this->emitMulf(getFPOptions(E), E))
|
|
return false;
|
|
break;
|
|
case BO_DivAssign:
|
|
if (!this->emitDivf(getFPOptions(E), E))
|
|
return false;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
|
|
return false;
|
|
|
|
if (DiscardResult)
|
|
return this->emitStorePop(LHST, E);
|
|
return this->emitStore(LHST, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
|
|
const CompoundAssignOperator *E) {
|
|
BinaryOperatorKind Op = E->getOpcode();
|
|
const Expr *LHS = E->getLHS();
|
|
const Expr *RHS = E->getRHS();
|
|
std::optional<PrimType> LT = classify(LHS->getType());
|
|
std::optional<PrimType> RT = classify(RHS->getType());
|
|
|
|
if (Op != BO_AddAssign && Op != BO_SubAssign)
|
|
return false;
|
|
|
|
if (!LT || !RT)
|
|
return false;
|
|
|
|
if (!visit(LHS))
|
|
return false;
|
|
|
|
if (!this->emitLoad(*LT, LHS))
|
|
return false;
|
|
|
|
if (!visit(RHS))
|
|
return false;
|
|
|
|
if (Op == BO_AddAssign) {
|
|
if (!this->emitAddOffset(*RT, E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitSubOffset(*RT, E))
|
|
return false;
|
|
}
|
|
|
|
if (DiscardResult)
|
|
return this->emitStorePopPtr(E);
|
|
return this->emitStorePtr(E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCompoundAssignOperator(
|
|
const CompoundAssignOperator *E) {
|
|
if (E->getType()->isVectorType())
|
|
return VisitVectorBinOp(E);
|
|
|
|
const Expr *LHS = E->getLHS();
|
|
const Expr *RHS = E->getRHS();
|
|
std::optional<PrimType> LHSComputationT =
|
|
classify(E->getComputationLHSType());
|
|
std::optional<PrimType> LT = classify(LHS->getType());
|
|
std::optional<PrimType> RT = classify(RHS->getType());
|
|
std::optional<PrimType> ResultT = classify(E->getType());
|
|
|
|
if (!Ctx.getLangOpts().CPlusPlus14)
|
|
return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
|
|
|
|
if (!LT || !RT || !ResultT || !LHSComputationT)
|
|
return false;
|
|
|
|
// Handle floating point operations separately here, since they
|
|
// require special care.
|
|
|
|
if (ResultT == PT_Float || RT == PT_Float)
|
|
return VisitFloatCompoundAssignOperator(E);
|
|
|
|
if (E->getType()->isPointerType())
|
|
return VisitPointerCompoundAssignOperator(E);
|
|
|
|
assert(!E->getType()->isPointerType() && "Handled above");
|
|
assert(!E->getType()->isFloatingType() && "Handled above");
|
|
|
|
// C++17 onwards require that we evaluate the RHS first.
|
|
// Compute RHS and save it in a temporary variable so we can
|
|
// load it again later.
|
|
// FIXME: Compound assignments are unsequenced in C, so we might
|
|
// have to figure out how to reject them.
|
|
if (!visit(RHS))
|
|
return false;
|
|
|
|
unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
|
|
|
|
if (!this->emitSetLocal(*RT, TempOffset, E))
|
|
return false;
|
|
|
|
// Get LHS pointer, load its value and cast it to the
|
|
// computation type if necessary.
|
|
if (!visit(LHS))
|
|
return false;
|
|
if (!this->emitLoad(*LT, E))
|
|
return false;
|
|
if (LT != LHSComputationT) {
|
|
if (!this->emitCast(*LT, *LHSComputationT, E))
|
|
return false;
|
|
}
|
|
|
|
// Get the RHS value on the stack.
|
|
if (!this->emitGetLocal(*RT, TempOffset, E))
|
|
return false;
|
|
|
|
// Perform operation.
|
|
switch (E->getOpcode()) {
|
|
case BO_AddAssign:
|
|
if (!this->emitAdd(*LHSComputationT, E))
|
|
return false;
|
|
break;
|
|
case BO_SubAssign:
|
|
if (!this->emitSub(*LHSComputationT, E))
|
|
return false;
|
|
break;
|
|
case BO_MulAssign:
|
|
if (!this->emitMul(*LHSComputationT, E))
|
|
return false;
|
|
break;
|
|
case BO_DivAssign:
|
|
if (!this->emitDiv(*LHSComputationT, E))
|
|
return false;
|
|
break;
|
|
case BO_RemAssign:
|
|
if (!this->emitRem(*LHSComputationT, E))
|
|
return false;
|
|
break;
|
|
case BO_ShlAssign:
|
|
if (!this->emitShl(*LHSComputationT, *RT, E))
|
|
return false;
|
|
break;
|
|
case BO_ShrAssign:
|
|
if (!this->emitShr(*LHSComputationT, *RT, E))
|
|
return false;
|
|
break;
|
|
case BO_AndAssign:
|
|
if (!this->emitBitAnd(*LHSComputationT, E))
|
|
return false;
|
|
break;
|
|
case BO_XorAssign:
|
|
if (!this->emitBitXor(*LHSComputationT, E))
|
|
return false;
|
|
break;
|
|
case BO_OrAssign:
|
|
if (!this->emitBitOr(*LHSComputationT, E))
|
|
return false;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unimplemented compound assign operator");
|
|
}
|
|
|
|
// And now cast from LHSComputationT to ResultT.
|
|
if (ResultT != LHSComputationT) {
|
|
if (!this->emitCast(*LHSComputationT, *ResultT, E))
|
|
return false;
|
|
}
|
|
|
|
// And store the result in LHS.
|
|
if (DiscardResult) {
|
|
if (LHS->refersToBitField())
|
|
return this->emitStoreBitFieldPop(*ResultT, E);
|
|
return this->emitStorePop(*ResultT, E);
|
|
}
|
|
if (LHS->refersToBitField())
|
|
return this->emitStoreBitField(*ResultT, E);
|
|
return this->emitStore(*ResultT, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
|
|
LocalScope<Emitter> ES(this);
|
|
const Expr *SubExpr = E->getSubExpr();
|
|
|
|
return this->delegate(SubExpr) && ES.destroyLocals(E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
|
|
const MaterializeTemporaryExpr *E) {
|
|
const Expr *SubExpr = E->getSubExpr();
|
|
|
|
if (Initializing) {
|
|
// We already have a value, just initialize that.
|
|
return this->delegate(SubExpr);
|
|
}
|
|
// If we don't end up using the materialized temporary anyway, don't
|
|
// bother creating it.
|
|
if (DiscardResult)
|
|
return this->discard(SubExpr);
|
|
|
|
// When we're initializing a global variable *or* the storage duration of
|
|
// the temporary is explicitly static, create a global variable.
|
|
std::optional<PrimType> SubExprT = classify(SubExpr);
|
|
bool IsStatic = E->getStorageDuration() == SD_Static;
|
|
if (IsStatic) {
|
|
std::optional<unsigned> GlobalIndex = P.createGlobal(E);
|
|
if (!GlobalIndex)
|
|
return false;
|
|
|
|
const LifetimeExtendedTemporaryDecl *TempDecl =
|
|
E->getLifetimeExtendedTemporaryDecl();
|
|
if (IsStatic)
|
|
assert(TempDecl);
|
|
|
|
if (SubExprT) {
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
if (IsStatic) {
|
|
if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
|
|
return false;
|
|
}
|
|
return this->emitGetPtrGlobal(*GlobalIndex, E);
|
|
}
|
|
|
|
if (!this->checkLiteralType(SubExpr))
|
|
return false;
|
|
// Non-primitive values.
|
|
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
|
|
return false;
|
|
if (!this->visitInitializer(SubExpr))
|
|
return false;
|
|
if (IsStatic)
|
|
return this->emitInitGlobalTempComp(TempDecl, E);
|
|
return true;
|
|
}
|
|
|
|
// For everyhing else, use local variables.
|
|
if (SubExprT) {
|
|
bool IsConst = SubExpr->getType().isConstQualified();
|
|
unsigned LocalIndex =
|
|
allocateLocalPrimitive(E, *SubExprT, IsConst, E->getExtendingDecl());
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
|
|
return false;
|
|
return this->emitGetPtrLocal(LocalIndex, E);
|
|
} else {
|
|
|
|
if (!this->checkLiteralType(SubExpr))
|
|
return false;
|
|
|
|
const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
|
|
if (std::optional<unsigned> LocalIndex =
|
|
allocateLocal(E, Inner->getType(), E->getExtendingDecl())) {
|
|
InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
|
|
if (!this->emitGetPtrLocal(*LocalIndex, E))
|
|
return false;
|
|
return this->visitInitializer(SubExpr) && this->emitFinishInit(E);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
|
|
const CXXBindTemporaryExpr *E) {
|
|
return this->delegate(E->getSubExpr());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
|
|
const Expr *Init = E->getInitializer();
|
|
if (DiscardResult)
|
|
return this->discard(Init);
|
|
|
|
if (Initializing) {
|
|
// We already have a value, just initialize that.
|
|
return this->visitInitializer(Init) && this->emitFinishInit(E);
|
|
}
|
|
|
|
std::optional<PrimType> T = classify(E->getType());
|
|
if (E->isFileScope()) {
|
|
// Avoid creating a variable if this is a primitive RValue anyway.
|
|
if (T && !E->isLValue())
|
|
return this->delegate(Init);
|
|
|
|
if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
|
|
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
|
|
return false;
|
|
|
|
if (T) {
|
|
if (!this->visit(Init))
|
|
return false;
|
|
return this->emitInitGlobal(*T, *GlobalIndex, E);
|
|
}
|
|
|
|
return this->visitInitializer(Init) && this->emitFinishInit(E);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, use a local variable.
|
|
if (T && !E->isLValue()) {
|
|
// For primitive types, we just visit the initializer.
|
|
return this->delegate(Init);
|
|
} else {
|
|
unsigned LocalIndex;
|
|
|
|
if (T)
|
|
LocalIndex = this->allocateLocalPrimitive(Init, *T, /*IsConst=*/false);
|
|
else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
|
|
LocalIndex = *MaybeIndex;
|
|
else
|
|
return false;
|
|
|
|
if (!this->emitGetPtrLocal(LocalIndex, E))
|
|
return false;
|
|
|
|
if (T) {
|
|
if (!this->visit(Init)) {
|
|
return false;
|
|
}
|
|
return this->emitInit(*T, E);
|
|
} else {
|
|
if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
if (E->isStoredAsBoolean()) {
|
|
if (E->getType()->isBooleanType())
|
|
return this->emitConstBool(E->getBoolValue(), E);
|
|
return this->emitConst(E->getBoolValue(), E);
|
|
}
|
|
PrimType T = classifyPrim(E->getType());
|
|
return this->visitAPValue(E->getAPValue(), T, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
return this->emitConst(E->getValue(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
assert(Initializing);
|
|
const Record *R = P.getOrCreateRecord(E->getLambdaClass());
|
|
if (!R)
|
|
return false;
|
|
|
|
auto *CaptureInitIt = E->capture_init_begin();
|
|
// Initialize all fields (which represent lambda captures) of the
|
|
// record with their initializers.
|
|
for (const Record::Field &F : R->fields()) {
|
|
const Expr *Init = *CaptureInitIt;
|
|
++CaptureInitIt;
|
|
|
|
if (!Init)
|
|
continue;
|
|
|
|
if (std::optional<PrimType> T = classify(Init)) {
|
|
if (!this->visit(Init))
|
|
return false;
|
|
|
|
if (!this->emitInitField(*T, F.Offset, E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitGetPtrField(F.Offset, E))
|
|
return false;
|
|
|
|
if (!this->visitInitializer(Init))
|
|
return false;
|
|
|
|
if (!this->emitPopPtr(E))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
if (!Initializing) {
|
|
unsigned StringIndex = P.createGlobalString(E->getFunctionName(), E);
|
|
return this->emitGetPtrGlobal(StringIndex, E);
|
|
}
|
|
|
|
return this->delegate(E->getFunctionName());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
|
|
if (E->getSubExpr() && !this->discard(E->getSubExpr()))
|
|
return false;
|
|
|
|
return this->emitInvalid(E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
|
|
const CXXReinterpretCastExpr *E) {
|
|
const Expr *SubExpr = E->getSubExpr();
|
|
|
|
std::optional<PrimType> FromT = classify(SubExpr);
|
|
std::optional<PrimType> ToT = classify(E);
|
|
|
|
if (!FromT || !ToT)
|
|
return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
|
|
|
|
if (FromT == PT_Ptr || ToT == PT_Ptr) {
|
|
// Both types could be PT_Ptr because their expressions are glvalues.
|
|
std::optional<PrimType> PointeeFromT;
|
|
if (SubExpr->getType()->isPointerOrReferenceType())
|
|
PointeeFromT = classify(SubExpr->getType()->getPointeeType());
|
|
else
|
|
PointeeFromT = classify(SubExpr->getType());
|
|
|
|
std::optional<PrimType> PointeeToT;
|
|
if (E->getType()->isPointerOrReferenceType())
|
|
PointeeToT = classify(E->getType()->getPointeeType());
|
|
else
|
|
PointeeToT = classify(E->getType());
|
|
|
|
bool Fatal = true;
|
|
if (PointeeToT && PointeeFromT) {
|
|
if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
|
|
Fatal = false;
|
|
}
|
|
|
|
if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
|
|
return false;
|
|
|
|
if (E->getCastKind() == CK_LValueBitCast)
|
|
return this->delegate(SubExpr);
|
|
return this->VisitCastExpr(E);
|
|
}
|
|
|
|
// Try to actually do the cast.
|
|
bool Fatal = (ToT != FromT);
|
|
if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
|
|
return false;
|
|
|
|
return this->VisitCastExpr(E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
|
|
assert(E->getType()->isBooleanType());
|
|
|
|
if (DiscardResult)
|
|
return true;
|
|
return this->emitConstBool(E->getValue(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
|
|
QualType T = E->getType();
|
|
assert(!classify(T));
|
|
|
|
if (T->isRecordType()) {
|
|
const CXXConstructorDecl *Ctor = E->getConstructor();
|
|
|
|
// Trivial copy/move constructor. Avoid copy.
|
|
if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
|
|
Ctor->isTrivial() &&
|
|
E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
|
|
T->getAsCXXRecordDecl()))
|
|
return this->visitInitializer(E->getArg(0));
|
|
|
|
// If we're discarding a construct expression, we still need
|
|
// to allocate a variable and call the constructor and destructor.
|
|
if (DiscardResult) {
|
|
if (Ctor->isTrivial())
|
|
return true;
|
|
assert(!Initializing);
|
|
std::optional<unsigned> LocalIndex = allocateLocal(E);
|
|
|
|
if (!LocalIndex)
|
|
return false;
|
|
|
|
if (!this->emitGetPtrLocal(*LocalIndex, E))
|
|
return false;
|
|
}
|
|
|
|
// Zero initialization.
|
|
if (E->requiresZeroInitialization()) {
|
|
const Record *R = getRecord(E->getType());
|
|
|
|
if (!this->visitZeroRecordInitializer(R, E))
|
|
return false;
|
|
|
|
// If the constructor is trivial anyway, we're done.
|
|
if (Ctor->isTrivial())
|
|
return true;
|
|
}
|
|
|
|
const Function *Func = getFunction(Ctor);
|
|
|
|
if (!Func)
|
|
return false;
|
|
|
|
assert(Func->hasThisPointer());
|
|
assert(!Func->hasRVO());
|
|
|
|
// The This pointer is already on the stack because this is an initializer,
|
|
// but we need to dup() so the call() below has its own copy.
|
|
if (!this->emitDupPtr(E))
|
|
return false;
|
|
|
|
// Constructor arguments.
|
|
for (const auto *Arg : E->arguments()) {
|
|
if (!this->visit(Arg))
|
|
return false;
|
|
}
|
|
|
|
if (Func->isVariadic()) {
|
|
uint32_t VarArgSize = 0;
|
|
unsigned NumParams = Func->getNumWrittenParams();
|
|
for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
|
|
VarArgSize +=
|
|
align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
|
|
}
|
|
if (!this->emitCallVar(Func, VarArgSize, E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitCall(Func, 0, E)) {
|
|
// When discarding, we don't need the result anyway, so clean up
|
|
// the instance dup we did earlier in case surrounding code wants
|
|
// to keep evaluating.
|
|
if (DiscardResult)
|
|
(void)this->emitPopPtr(E);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (DiscardResult)
|
|
return this->emitPopPtr(E);
|
|
return this->emitFinishInit(E);
|
|
}
|
|
|
|
if (T->isArrayType()) {
|
|
const ConstantArrayType *CAT =
|
|
Ctx.getASTContext().getAsConstantArrayType(E->getType());
|
|
if (!CAT)
|
|
return false;
|
|
|
|
size_t NumElems = CAT->getZExtSize();
|
|
const Function *Func = getFunction(E->getConstructor());
|
|
if (!Func)
|
|
return false;
|
|
|
|
// FIXME(perf): We're calling the constructor once per array element here,
|
|
// in the old intepreter we had a special-case for trivial constructors.
|
|
for (size_t I = 0; I != NumElems; ++I) {
|
|
if (!this->emitConstUint64(I, E))
|
|
return false;
|
|
if (!this->emitArrayElemPtrUint64(E))
|
|
return false;
|
|
|
|
// Constructor arguments.
|
|
for (const auto *Arg : E->arguments()) {
|
|
if (!this->visit(Arg))
|
|
return false;
|
|
}
|
|
|
|
if (!this->emitCall(Func, 0, E))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
const APValue Val =
|
|
E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
|
|
|
|
// Things like __builtin_LINE().
|
|
if (E->getType()->isIntegerType()) {
|
|
assert(Val.isInt());
|
|
const APSInt &I = Val.getInt();
|
|
return this->emitConst(I, E);
|
|
}
|
|
// Otherwise, the APValue is an LValue, with only one element.
|
|
// Theoretically, we don't need the APValue at all of course.
|
|
assert(E->getType()->isPointerType());
|
|
assert(Val.isLValue());
|
|
const APValue::LValueBase &Base = Val.getLValueBase();
|
|
if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
|
|
return this->visit(LValueExpr);
|
|
|
|
// Otherwise, we have a decl (which is the case for
|
|
// __builtin_source_location).
|
|
assert(Base.is<const ValueDecl *>());
|
|
assert(Val.getLValuePath().size() == 0);
|
|
const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
|
|
assert(BaseDecl);
|
|
|
|
auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
|
|
|
|
std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
|
|
if (!GlobalIndex)
|
|
return false;
|
|
|
|
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
|
|
return false;
|
|
|
|
const Record *R = getRecord(E->getType());
|
|
const APValue &V = UGCD->getValue();
|
|
for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
|
|
const Record::Field *F = R->getField(I);
|
|
const APValue &FieldValue = V.getStructField(I);
|
|
|
|
PrimType FieldT = classifyPrim(F->Decl->getType());
|
|
|
|
if (!this->visitAPValue(FieldValue, FieldT, E))
|
|
return false;
|
|
if (!this->emitInitField(FieldT, F->Offset, E))
|
|
return false;
|
|
}
|
|
|
|
// Leave the pointer to the global on the stack.
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
|
|
unsigned N = E->getNumComponents();
|
|
if (N == 0)
|
|
return false;
|
|
|
|
for (unsigned I = 0; I != N; ++I) {
|
|
const OffsetOfNode &Node = E->getComponent(I);
|
|
if (Node.getKind() == OffsetOfNode::Array) {
|
|
const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
|
|
PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
|
|
|
|
if (DiscardResult) {
|
|
if (!this->discard(ArrayIndexExpr))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
if (!this->visit(ArrayIndexExpr))
|
|
return false;
|
|
// Cast to Sint64.
|
|
if (IndexT != PT_Sint64) {
|
|
if (!this->emitCast(IndexT, PT_Sint64, E))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
PrimType T = classifyPrim(E->getType());
|
|
return this->emitOffsetOf(T, E, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
|
|
const CXXScalarValueInitExpr *E) {
|
|
QualType Ty = E->getType();
|
|
|
|
if (DiscardResult || Ty->isVoidType())
|
|
return true;
|
|
|
|
if (std::optional<PrimType> T = classify(Ty))
|
|
return this->visitZeroInitializer(*T, Ty, E);
|
|
|
|
if (const auto *CT = Ty->getAs<ComplexType>()) {
|
|
if (!Initializing) {
|
|
std::optional<unsigned> LocalIndex = allocateLocal(E);
|
|
if (!LocalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*LocalIndex, E))
|
|
return false;
|
|
}
|
|
|
|
// Initialize both fields to 0.
|
|
QualType ElemQT = CT->getElementType();
|
|
PrimType ElemT = classifyPrim(ElemQT);
|
|
|
|
for (unsigned I = 0; I != 2; ++I) {
|
|
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
|
|
return false;
|
|
if (!this->emitInitElem(ElemT, I, E))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (const auto *VT = Ty->getAs<VectorType>()) {
|
|
// FIXME: Code duplication with the _Complex case above.
|
|
if (!Initializing) {
|
|
std::optional<unsigned> LocalIndex = allocateLocal(E);
|
|
if (!LocalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*LocalIndex, E))
|
|
return false;
|
|
}
|
|
|
|
// Initialize all fields to 0.
|
|
QualType ElemQT = VT->getElementType();
|
|
PrimType ElemT = classifyPrim(ElemQT);
|
|
|
|
for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
|
|
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
|
|
return false;
|
|
if (!this->emitInitElem(ElemT, I, E))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
|
|
return this->emitConst(E->getPackLength(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitGenericSelectionExpr(
|
|
const GenericSelectionExpr *E) {
|
|
return this->delegate(E->getResultExpr());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
|
|
return this->delegate(E->getChosenSubExpr());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
return this->emitConst(E->getValue(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
|
|
const CXXInheritedCtorInitExpr *E) {
|
|
const CXXConstructorDecl *Ctor = E->getConstructor();
|
|
assert(!Ctor->isTrivial() &&
|
|
"Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
|
|
const Function *F = this->getFunction(Ctor);
|
|
assert(F);
|
|
assert(!F->hasRVO());
|
|
assert(F->hasThisPointer());
|
|
|
|
if (!this->emitDupPtr(SourceInfo{}))
|
|
return false;
|
|
|
|
// Forward all arguments of the current function (which should be a
|
|
// constructor itself) to the inherited ctor.
|
|
// This is necessary because the calling code has pushed the pointer
|
|
// of the correct base for us already, but the arguments need
|
|
// to come after.
|
|
unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
|
|
for (const ParmVarDecl *PD : Ctor->parameters()) {
|
|
PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
|
|
|
|
if (!this->emitGetParam(PT, Offset, E))
|
|
return false;
|
|
Offset += align(primSize(PT));
|
|
}
|
|
|
|
return this->emitCall(F, 0, E);
|
|
}
|
|
|
|
// FIXME: This function has become rather unwieldy, especially
|
|
// the part where we initialize an array allocation of dynamic size.
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
|
|
assert(classifyPrim(E->getType()) == PT_Ptr);
|
|
const Expr *Init = E->getInitializer();
|
|
QualType ElementType = E->getAllocatedType();
|
|
std::optional<PrimType> ElemT = classify(ElementType);
|
|
unsigned PlacementArgs = E->getNumPlacementArgs();
|
|
const FunctionDecl *OperatorNew = E->getOperatorNew();
|
|
const Expr *PlacementDest = nullptr;
|
|
bool IsNoThrow = false;
|
|
|
|
if (PlacementArgs != 0) {
|
|
// FIXME: There is no restriction on this, but it's not clear that any
|
|
// other form makes any sense. We get here for cases such as:
|
|
//
|
|
// new (std::align_val_t{N}) X(int)
|
|
//
|
|
// (which should presumably be valid only if N is a multiple of
|
|
// alignof(int), and in any case can't be deallocated unless N is
|
|
// alignof(X) and X has new-extended alignment).
|
|
if (PlacementArgs == 1) {
|
|
const Expr *Arg1 = E->getPlacementArg(0);
|
|
if (Arg1->getType()->isNothrowT()) {
|
|
if (!this->discard(Arg1))
|
|
return false;
|
|
IsNoThrow = true;
|
|
} else {
|
|
// Invalid unless we have C++26 or are in a std:: function.
|
|
if (!this->emitInvalidNewDeleteExpr(E, E))
|
|
return false;
|
|
|
|
// If we have a placement-new destination, we'll later use that instead
|
|
// of allocating.
|
|
if (OperatorNew->isReservedGlobalPlacementOperator())
|
|
PlacementDest = Arg1;
|
|
}
|
|
} else {
|
|
// Always invalid.
|
|
return this->emitInvalid(E);
|
|
}
|
|
} else if (!OperatorNew
|
|
->isUsableAsGlobalAllocationFunctionInConstantEvaluation())
|
|
return this->emitInvalidNewDeleteExpr(E, E);
|
|
|
|
const Descriptor *Desc;
|
|
if (!PlacementDest) {
|
|
if (ElemT) {
|
|
if (E->isArray())
|
|
Desc = nullptr; // We're not going to use it in this case.
|
|
else
|
|
Desc = P.createDescriptor(E, *ElemT, /*SourceTy=*/nullptr,
|
|
Descriptor::InlineDescMD,
|
|
/*IsConst=*/false, /*IsTemporary=*/false,
|
|
/*IsMutable=*/false);
|
|
} else {
|
|
Desc = P.createDescriptor(
|
|
E, ElementType.getTypePtr(),
|
|
E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
|
|
/*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
|
|
}
|
|
}
|
|
|
|
if (E->isArray()) {
|
|
std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
|
|
if (!ArraySizeExpr)
|
|
return false;
|
|
|
|
const Expr *Stripped = *ArraySizeExpr;
|
|
for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
|
|
Stripped = ICE->getSubExpr())
|
|
if (ICE->getCastKind() != CK_NoOp &&
|
|
ICE->getCastKind() != CK_IntegralCast)
|
|
break;
|
|
|
|
PrimType SizeT = classifyPrim(Stripped->getType());
|
|
|
|
// Save evaluated array size to a variable.
|
|
unsigned ArrayLen =
|
|
allocateLocalPrimitive(Stripped, SizeT, /*IsConst=*/false);
|
|
if (!this->visit(Stripped))
|
|
return false;
|
|
if (!this->emitSetLocal(SizeT, ArrayLen, E))
|
|
return false;
|
|
|
|
if (PlacementDest) {
|
|
if (!this->visit(PlacementDest))
|
|
return false;
|
|
if (!this->emitGetLocal(SizeT, ArrayLen, E))
|
|
return false;
|
|
if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitGetLocal(SizeT, ArrayLen, E))
|
|
return false;
|
|
|
|
if (ElemT) {
|
|
// N primitive elements.
|
|
if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
|
|
return false;
|
|
} else {
|
|
// N Composite elements.
|
|
if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (Init) {
|
|
QualType InitType = Init->getType();
|
|
size_t StaticInitElems = 0;
|
|
const Expr *DynamicInit = nullptr;
|
|
if (const ConstantArrayType *CAT =
|
|
Ctx.getASTContext().getAsConstantArrayType(InitType)) {
|
|
StaticInitElems = CAT->getZExtSize();
|
|
if (!this->visitInitializer(Init))
|
|
return false;
|
|
|
|
if (const auto *ILE = dyn_cast<InitListExpr>(Init);
|
|
ILE && ILE->hasArrayFiller())
|
|
DynamicInit = ILE->getArrayFiller();
|
|
}
|
|
|
|
// The initializer initializes a certain number of elements, S.
|
|
// However, the complete number of elements, N, might be larger than that.
|
|
// In this case, we need to get an initializer for the remaining elements.
|
|
// There are to cases:
|
|
// 1) For the form 'new Struct[n];', the initializer is a
|
|
// CXXConstructExpr and its type is an IncompleteArrayType.
|
|
// 2) For the form 'new Struct[n]{1,2,3}', the initializer is an
|
|
// InitListExpr and the initializer for the remaining elements
|
|
// is the array filler.
|
|
|
|
if (DynamicInit || InitType->isIncompleteArrayType()) {
|
|
const Function *CtorFunc = nullptr;
|
|
if (const auto *CE = dyn_cast<CXXConstructExpr>(Init)) {
|
|
CtorFunc = getFunction(CE->getConstructor());
|
|
if (!CtorFunc)
|
|
return false;
|
|
} else if (!DynamicInit)
|
|
DynamicInit = Init;
|
|
|
|
LabelTy EndLabel = this->getLabel();
|
|
LabelTy StartLabel = this->getLabel();
|
|
|
|
// In the nothrow case, the alloc above might have returned nullptr.
|
|
// Don't call any constructors that case.
|
|
if (IsNoThrow) {
|
|
if (!this->emitDupPtr(E))
|
|
return false;
|
|
if (!this->emitNullPtr(0, nullptr, E))
|
|
return false;
|
|
if (!this->emitEQPtr(E))
|
|
return false;
|
|
if (!this->jumpTrue(EndLabel))
|
|
return false;
|
|
}
|
|
|
|
// Create loop variables.
|
|
unsigned Iter =
|
|
allocateLocalPrimitive(Stripped, SizeT, /*IsConst=*/false);
|
|
if (!this->emitConst(StaticInitElems, SizeT, E))
|
|
return false;
|
|
if (!this->emitSetLocal(SizeT, Iter, E))
|
|
return false;
|
|
|
|
this->fallthrough(StartLabel);
|
|
this->emitLabel(StartLabel);
|
|
// Condition. Iter < ArrayLen?
|
|
if (!this->emitGetLocal(SizeT, Iter, E))
|
|
return false;
|
|
if (!this->emitGetLocal(SizeT, ArrayLen, E))
|
|
return false;
|
|
if (!this->emitLT(SizeT, E))
|
|
return false;
|
|
if (!this->jumpFalse(EndLabel))
|
|
return false;
|
|
|
|
// Pointer to the allocated array is already on the stack.
|
|
if (!this->emitGetLocal(SizeT, Iter, E))
|
|
return false;
|
|
if (!this->emitArrayElemPtr(SizeT, E))
|
|
return false;
|
|
|
|
if (isa_and_nonnull<ImplicitValueInitExpr>(DynamicInit) &&
|
|
DynamicInit->getType()->isArrayType()) {
|
|
QualType ElemType =
|
|
DynamicInit->getType()->getAsArrayTypeUnsafe()->getElementType();
|
|
PrimType InitT = classifyPrim(ElemType);
|
|
if (!this->visitZeroInitializer(InitT, ElemType, E))
|
|
return false;
|
|
if (!this->emitStorePop(InitT, E))
|
|
return false;
|
|
} else if (DynamicInit) {
|
|
if (std::optional<PrimType> InitT = classify(DynamicInit)) {
|
|
if (!this->visit(DynamicInit))
|
|
return false;
|
|
if (!this->emitStorePop(*InitT, E))
|
|
return false;
|
|
} else {
|
|
if (!this->visitInitializer(DynamicInit))
|
|
return false;
|
|
if (!this->emitPopPtr(E))
|
|
return false;
|
|
}
|
|
} else {
|
|
assert(CtorFunc);
|
|
if (!this->emitCall(CtorFunc, 0, E))
|
|
return false;
|
|
}
|
|
|
|
// ++Iter;
|
|
if (!this->emitGetPtrLocal(Iter, E))
|
|
return false;
|
|
if (!this->emitIncPop(SizeT, false, E))
|
|
return false;
|
|
|
|
if (!this->jump(StartLabel))
|
|
return false;
|
|
|
|
this->fallthrough(EndLabel);
|
|
this->emitLabel(EndLabel);
|
|
}
|
|
}
|
|
} else { // Non-array.
|
|
if (PlacementDest) {
|
|
if (!this->visit(PlacementDest))
|
|
return false;
|
|
if (!this->emitCheckNewTypeMismatch(E, E))
|
|
return false;
|
|
} else {
|
|
// Allocate just one element.
|
|
if (!this->emitAlloc(Desc, E))
|
|
return false;
|
|
}
|
|
|
|
if (Init) {
|
|
if (ElemT) {
|
|
if (!this->visit(Init))
|
|
return false;
|
|
|
|
if (!this->emitInit(*ElemT, E))
|
|
return false;
|
|
} else {
|
|
// Composite.
|
|
if (!this->visitInitializer(Init))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (DiscardResult)
|
|
return this->emitPopPtr(E);
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
|
|
const Expr *Arg = E->getArgument();
|
|
|
|
const FunctionDecl *OperatorDelete = E->getOperatorDelete();
|
|
|
|
if (!OperatorDelete->isUsableAsGlobalAllocationFunctionInConstantEvaluation())
|
|
return this->emitInvalidNewDeleteExpr(E, E);
|
|
|
|
// Arg must be an lvalue.
|
|
if (!this->visit(Arg))
|
|
return false;
|
|
|
|
return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
const Function *Func = nullptr;
|
|
if (auto F = Ctx.getOrCreateObjCBlock(E))
|
|
Func = F;
|
|
|
|
if (!Func)
|
|
return false;
|
|
return this->emitGetFnPtr(Func, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
|
|
const Type *TypeInfoType = E->getType().getTypePtr();
|
|
|
|
auto canonType = [](const Type *T) {
|
|
return T->getCanonicalTypeUnqualified().getTypePtr();
|
|
};
|
|
|
|
if (!E->isPotentiallyEvaluated()) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
if (E->isTypeOperand())
|
|
return this->emitGetTypeid(
|
|
canonType(E->getTypeOperand(Ctx.getASTContext()).getTypePtr()),
|
|
TypeInfoType, E);
|
|
|
|
return this->emitGetTypeid(
|
|
canonType(E->getExprOperand()->getType().getTypePtr()), TypeInfoType,
|
|
E);
|
|
}
|
|
|
|
// Otherwise, we need to evaluate the expression operand.
|
|
assert(E->getExprOperand());
|
|
assert(E->getExprOperand()->isLValue());
|
|
|
|
if (!Ctx.getLangOpts().CPlusPlus20 && !this->emitDiagTypeid(E))
|
|
return false;
|
|
|
|
if (!this->visit(E->getExprOperand()))
|
|
return false;
|
|
|
|
if (!this->emitGetTypeidPtr(TypeInfoType, E))
|
|
return false;
|
|
if (DiscardResult)
|
|
return this->emitPopPtr(E);
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
|
|
assert(Ctx.getLangOpts().CPlusPlus);
|
|
return this->emitConstBool(E->getValue(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
assert(!Initializing);
|
|
|
|
const MSGuidDecl *GuidDecl = E->getGuidDecl();
|
|
const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
|
|
assert(RD);
|
|
// If the definiton of the result type is incomplete, just return a dummy.
|
|
// If (and when) that is read from, we will fail, but not now.
|
|
if (!RD->isCompleteDefinition())
|
|
return this->emitDummyPtr(GuidDecl, E);
|
|
|
|
std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
|
|
if (!GlobalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
|
|
return false;
|
|
|
|
assert(this->getRecord(E->getType()));
|
|
|
|
const APValue &V = GuidDecl->getAsAPValue();
|
|
if (V.getKind() == APValue::None)
|
|
return true;
|
|
|
|
assert(V.isStruct());
|
|
assert(V.getStructNumBases() == 0);
|
|
if (!this->visitAPValueInitializer(V, E, E->getType()))
|
|
return false;
|
|
|
|
return this->emitFinishInit(E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
|
|
assert(classifyPrim(E->getType()) == PT_Bool);
|
|
if (DiscardResult)
|
|
return true;
|
|
return this->emitConstBool(E->isSatisfied(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitConceptSpecializationExpr(
|
|
const ConceptSpecializationExpr *E) {
|
|
assert(classifyPrim(E->getType()) == PT_Bool);
|
|
if (DiscardResult)
|
|
return true;
|
|
return this->emitConstBool(E->isSatisfied(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
|
|
const CXXRewrittenBinaryOperator *E) {
|
|
return this->delegate(E->getSemanticForm());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
|
|
|
|
for (const Expr *SemE : E->semantics()) {
|
|
if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
|
|
if (SemE == E->getResultExpr())
|
|
return false;
|
|
|
|
if (OVE->isUnique())
|
|
continue;
|
|
|
|
if (!this->discard(OVE))
|
|
return false;
|
|
} else if (SemE == E->getResultExpr()) {
|
|
if (!this->delegate(SemE))
|
|
return false;
|
|
} else {
|
|
if (!this->discard(SemE))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
|
|
return this->delegate(E->getSelectedExpr());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
|
|
return this->emitError(E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
|
|
assert(E->getType()->isVoidPointerType());
|
|
|
|
unsigned Offset =
|
|
allocateLocalPrimitive(E->getLabel(), PT_Ptr, /*IsConst=*/true);
|
|
|
|
return this->emitGetLocal(PT_Ptr, Offset, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
|
|
assert(Initializing);
|
|
const auto *VT = E->getType()->castAs<VectorType>();
|
|
QualType ElemType = VT->getElementType();
|
|
PrimType ElemT = classifyPrim(ElemType);
|
|
const Expr *Src = E->getSrcExpr();
|
|
QualType SrcType = Src->getType();
|
|
PrimType SrcElemT = classifyVectorElementType(SrcType);
|
|
|
|
unsigned SrcOffset =
|
|
this->allocateLocalPrimitive(Src, PT_Ptr, /*IsConst=*/true);
|
|
if (!this->visit(Src))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
|
|
return false;
|
|
|
|
for (unsigned I = 0; I != VT->getNumElements(); ++I) {
|
|
if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
|
|
return false;
|
|
if (!this->emitArrayElemPop(SrcElemT, I, E))
|
|
return false;
|
|
|
|
// Cast to the desired result element type.
|
|
if (SrcElemT != ElemT) {
|
|
if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
|
|
return false;
|
|
} else if (ElemType->isFloatingType() && SrcType != ElemType) {
|
|
const auto *TargetSemantics = &Ctx.getFloatSemantics(ElemType);
|
|
if (!this->emitCastFP(TargetSemantics, getRoundingMode(E), E))
|
|
return false;
|
|
}
|
|
if (!this->emitInitElem(ElemT, I, E))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
|
|
assert(Initializing);
|
|
assert(E->getNumSubExprs() > 2);
|
|
|
|
const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
|
|
const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
|
|
PrimType ElemT = classifyPrim(VT->getElementType());
|
|
unsigned NumInputElems = VT->getNumElements();
|
|
unsigned NumOutputElems = E->getNumSubExprs() - 2;
|
|
assert(NumOutputElems > 0);
|
|
|
|
// Save both input vectors to a local variable.
|
|
unsigned VectorOffsets[2];
|
|
for (unsigned I = 0; I != 2; ++I) {
|
|
VectorOffsets[I] =
|
|
this->allocateLocalPrimitive(Vecs[I], PT_Ptr, /*IsConst=*/true);
|
|
if (!this->visit(Vecs[I]))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
|
|
return false;
|
|
}
|
|
for (unsigned I = 0; I != NumOutputElems; ++I) {
|
|
APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
|
|
assert(ShuffleIndex >= -1);
|
|
if (ShuffleIndex == -1)
|
|
return this->emitInvalidShuffleVectorIndex(I, E);
|
|
|
|
assert(ShuffleIndex < (NumInputElems * 2));
|
|
if (!this->emitGetLocal(PT_Ptr,
|
|
VectorOffsets[ShuffleIndex >= NumInputElems], E))
|
|
return false;
|
|
unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
|
|
if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
|
|
return false;
|
|
|
|
if (!this->emitInitElem(ElemT, I, E))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitExtVectorElementExpr(
|
|
const ExtVectorElementExpr *E) {
|
|
const Expr *Base = E->getBase();
|
|
assert(
|
|
Base->getType()->isVectorType() ||
|
|
Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
|
|
|
|
SmallVector<uint32_t, 4> Indices;
|
|
E->getEncodedElementAccess(Indices);
|
|
|
|
if (Indices.size() == 1) {
|
|
if (!this->visit(Base))
|
|
return false;
|
|
|
|
if (E->isGLValue()) {
|
|
if (!this->emitConstUint32(Indices[0], E))
|
|
return false;
|
|
return this->emitArrayElemPtrPop(PT_Uint32, E);
|
|
}
|
|
// Else, also load the value.
|
|
return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
|
|
}
|
|
|
|
// Create a local variable for the base.
|
|
unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true);
|
|
if (!this->visit(Base))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
|
|
return false;
|
|
|
|
// Now the vector variable for the return value.
|
|
if (!Initializing) {
|
|
std::optional<unsigned> ResultIndex;
|
|
ResultIndex = allocateLocal(E);
|
|
if (!ResultIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*ResultIndex, E))
|
|
return false;
|
|
}
|
|
|
|
assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
|
|
|
|
PrimType ElemT =
|
|
classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
|
|
uint32_t DstIndex = 0;
|
|
for (uint32_t I : Indices) {
|
|
if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
|
|
return false;
|
|
if (!this->emitArrayElemPop(ElemT, I, E))
|
|
return false;
|
|
if (!this->emitInitElem(ElemT, DstIndex, E))
|
|
return false;
|
|
++DstIndex;
|
|
}
|
|
|
|
// Leave the result pointer on the stack.
|
|
assert(!DiscardResult);
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
|
|
const Expr *SubExpr = E->getSubExpr();
|
|
if (!E->isExpressibleAsConstantInitializer())
|
|
return this->discard(SubExpr) && this->emitInvalid(E);
|
|
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
assert(classifyPrim(E) == PT_Ptr);
|
|
return this->emitDummyPtr(E, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
|
|
const CXXStdInitializerListExpr *E) {
|
|
const Expr *SubExpr = E->getSubExpr();
|
|
const ConstantArrayType *ArrayType =
|
|
Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
|
|
const Record *R = getRecord(E->getType());
|
|
assert(Initializing);
|
|
assert(SubExpr->isGLValue());
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
if (!this->emitConstUint8(0, E))
|
|
return false;
|
|
if (!this->emitArrayElemPtrPopUint8(E))
|
|
return false;
|
|
if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
|
|
return false;
|
|
|
|
PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
|
|
if (isIntegralType(SecondFieldT)) {
|
|
if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
|
|
SecondFieldT, E))
|
|
return false;
|
|
return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
|
|
}
|
|
assert(SecondFieldT == PT_Ptr);
|
|
|
|
if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
|
|
return false;
|
|
if (!this->emitExpandPtr(E))
|
|
return false;
|
|
if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
|
|
return false;
|
|
if (!this->emitArrayElemPtrPop(PT_Uint64, E))
|
|
return false;
|
|
return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
|
|
BlockScope<Emitter> BS(this);
|
|
StmtExprScope<Emitter> SS(this);
|
|
|
|
const CompoundStmt *CS = E->getSubStmt();
|
|
const Stmt *Result = CS->getStmtExprResult();
|
|
for (const Stmt *S : CS->body()) {
|
|
if (S != Result) {
|
|
if (!this->visitStmt(S))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
assert(S == Result);
|
|
if (const Expr *ResultExpr = dyn_cast<Expr>(S))
|
|
return this->delegate(ResultExpr);
|
|
return this->emitUnsupported(E);
|
|
}
|
|
|
|
return BS.destroyLocals();
|
|
}
|
|
|
|
template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
|
|
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
|
|
/*NewInitializing=*/false);
|
|
return this->Visit(E);
|
|
}
|
|
|
|
template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
|
|
// We're basically doing:
|
|
// OptionScope<Emitter> Scope(this, DicardResult, Initializing);
|
|
// but that's unnecessary of course.
|
|
return this->Visit(E);
|
|
}
|
|
|
|
template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
|
|
if (E->getType().isNull())
|
|
return false;
|
|
|
|
if (E->getType()->isVoidType())
|
|
return this->discard(E);
|
|
|
|
// Create local variable to hold the return value.
|
|
if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
|
|
!classify(E->getType())) {
|
|
std::optional<unsigned> LocalIndex = allocateLocal(E);
|
|
if (!LocalIndex)
|
|
return false;
|
|
|
|
if (!this->emitGetPtrLocal(*LocalIndex, E))
|
|
return false;
|
|
InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
|
|
return this->visitInitializer(E);
|
|
}
|
|
|
|
// Otherwise,we have a primitive return value, produce the value directly
|
|
// and push it on the stack.
|
|
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
|
|
/*NewInitializing=*/false);
|
|
return this->Visit(E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitInitializer(const Expr *E) {
|
|
assert(!classify(E->getType()));
|
|
|
|
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
|
|
/*NewInitializing=*/true);
|
|
return this->Visit(E);
|
|
}
|
|
|
|
template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
|
|
std::optional<PrimType> T = classify(E->getType());
|
|
if (!T) {
|
|
// Convert complex values to bool.
|
|
if (E->getType()->isAnyComplexType()) {
|
|
if (!this->visit(E))
|
|
return false;
|
|
return this->emitComplexBoolCast(E);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (!this->visit(E))
|
|
return false;
|
|
|
|
if (T == PT_Bool)
|
|
return true;
|
|
|
|
// Convert pointers to bool.
|
|
if (T == PT_Ptr) {
|
|
if (!this->emitNull(*T, 0, nullptr, E))
|
|
return false;
|
|
return this->emitNE(*T, E);
|
|
}
|
|
|
|
// Or Floats.
|
|
if (T == PT_Float)
|
|
return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
|
|
|
|
// Or anything else we can.
|
|
return this->emitCast(*T, PT_Bool, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
|
|
const Expr *E) {
|
|
if (const auto *AT = QT->getAs<AtomicType>())
|
|
QT = AT->getValueType();
|
|
|
|
switch (T) {
|
|
case PT_Bool:
|
|
return this->emitZeroBool(E);
|
|
case PT_Sint8:
|
|
return this->emitZeroSint8(E);
|
|
case PT_Uint8:
|
|
return this->emitZeroUint8(E);
|
|
case PT_Sint16:
|
|
return this->emitZeroSint16(E);
|
|
case PT_Uint16:
|
|
return this->emitZeroUint16(E);
|
|
case PT_Sint32:
|
|
return this->emitZeroSint32(E);
|
|
case PT_Uint32:
|
|
return this->emitZeroUint32(E);
|
|
case PT_Sint64:
|
|
return this->emitZeroSint64(E);
|
|
case PT_Uint64:
|
|
return this->emitZeroUint64(E);
|
|
case PT_IntAP:
|
|
return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
|
|
case PT_IntAPS:
|
|
return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
|
|
case PT_Ptr:
|
|
return this->emitNullPtr(Ctx.getASTContext().getTargetNullPointerValue(QT),
|
|
nullptr, E);
|
|
case PT_MemberPtr:
|
|
return this->emitNullMemberPtr(0, nullptr, E);
|
|
case PT_Float:
|
|
return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
|
|
case PT_FixedPoint: {
|
|
auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
|
|
return this->emitConstFixedPoint(FixedPoint::zero(Sem), E);
|
|
}
|
|
llvm_unreachable("Implement");
|
|
}
|
|
llvm_unreachable("unknown primitive type");
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
|
|
const Expr *E) {
|
|
assert(E);
|
|
assert(R);
|
|
// Fields
|
|
for (const Record::Field &Field : R->fields()) {
|
|
if (Field.isUnnamedBitField())
|
|
continue;
|
|
|
|
const Descriptor *D = Field.Desc;
|
|
if (D->isPrimitive()) {
|
|
QualType QT = D->getType();
|
|
PrimType T = classifyPrim(D->getType());
|
|
if (!this->visitZeroInitializer(T, QT, E))
|
|
return false;
|
|
if (!this->emitInitField(T, Field.Offset, E))
|
|
return false;
|
|
if (R->isUnion())
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
if (!this->emitGetPtrField(Field.Offset, E))
|
|
return false;
|
|
|
|
if (D->isPrimitiveArray()) {
|
|
QualType ET = D->getElemQualType();
|
|
PrimType T = classifyPrim(ET);
|
|
for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
|
|
if (!this->visitZeroInitializer(T, ET, E))
|
|
return false;
|
|
if (!this->emitInitElem(T, I, E))
|
|
return false;
|
|
}
|
|
} else if (D->isCompositeArray()) {
|
|
// Can't be a vector or complex field.
|
|
if (!this->visitZeroArrayInitializer(D->getType(), E))
|
|
return false;
|
|
} else if (D->isRecord()) {
|
|
if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
|
|
return false;
|
|
} else
|
|
return false;
|
|
|
|
if (!this->emitFinishInitPop(E))
|
|
return false;
|
|
|
|
// C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
|
|
// object's first non-static named data member is zero-initialized
|
|
if (R->isUnion())
|
|
break;
|
|
}
|
|
|
|
for (const Record::Base &B : R->bases()) {
|
|
if (!this->emitGetPtrBase(B.Offset, E))
|
|
return false;
|
|
if (!this->visitZeroRecordInitializer(B.R, E))
|
|
return false;
|
|
if (!this->emitFinishInitPop(E))
|
|
return false;
|
|
}
|
|
|
|
// FIXME: Virtual bases.
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitZeroArrayInitializer(QualType T, const Expr *E) {
|
|
assert(T->isArrayType() || T->isAnyComplexType() || T->isVectorType());
|
|
const ArrayType *AT = T->getAsArrayTypeUnsafe();
|
|
QualType ElemType = AT->getElementType();
|
|
size_t NumElems = cast<ConstantArrayType>(AT)->getZExtSize();
|
|
|
|
if (std::optional<PrimType> ElemT = classify(ElemType)) {
|
|
for (size_t I = 0; I != NumElems; ++I) {
|
|
if (!this->visitZeroInitializer(*ElemT, ElemType, E))
|
|
return false;
|
|
if (!this->emitInitElem(*ElemT, I, E))
|
|
return false;
|
|
}
|
|
return true;
|
|
} else if (ElemType->isRecordType()) {
|
|
const Record *R = getRecord(ElemType);
|
|
|
|
for (size_t I = 0; I != NumElems; ++I) {
|
|
if (!this->emitConstUint32(I, E))
|
|
return false;
|
|
if (!this->emitArrayElemPtr(PT_Uint32, E))
|
|
return false;
|
|
if (!this->visitZeroRecordInitializer(R, E))
|
|
return false;
|
|
if (!this->emitPopPtr(E))
|
|
return false;
|
|
}
|
|
return true;
|
|
} else if (ElemType->isArrayType()) {
|
|
for (size_t I = 0; I != NumElems; ++I) {
|
|
if (!this->emitConstUint32(I, E))
|
|
return false;
|
|
if (!this->emitArrayElemPtr(PT_Uint32, E))
|
|
return false;
|
|
if (!this->visitZeroArrayInitializer(ElemType, E))
|
|
return false;
|
|
if (!this->emitPopPtr(E))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class Emitter>
|
|
template <typename T>
|
|
bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
|
|
switch (Ty) {
|
|
case PT_Sint8:
|
|
return this->emitConstSint8(Value, E);
|
|
case PT_Uint8:
|
|
return this->emitConstUint8(Value, E);
|
|
case PT_Sint16:
|
|
return this->emitConstSint16(Value, E);
|
|
case PT_Uint16:
|
|
return this->emitConstUint16(Value, E);
|
|
case PT_Sint32:
|
|
return this->emitConstSint32(Value, E);
|
|
case PT_Uint32:
|
|
return this->emitConstUint32(Value, E);
|
|
case PT_Sint64:
|
|
return this->emitConstSint64(Value, E);
|
|
case PT_Uint64:
|
|
return this->emitConstUint64(Value, E);
|
|
case PT_Bool:
|
|
return this->emitConstBool(Value, E);
|
|
case PT_Ptr:
|
|
case PT_MemberPtr:
|
|
case PT_Float:
|
|
case PT_IntAP:
|
|
case PT_IntAPS:
|
|
case PT_FixedPoint:
|
|
llvm_unreachable("Invalid integral type");
|
|
break;
|
|
}
|
|
llvm_unreachable("unknown primitive type");
|
|
}
|
|
|
|
template <class Emitter>
|
|
template <typename T>
|
|
bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
|
|
return this->emitConst(Value, classifyPrim(E->getType()), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
|
|
const Expr *E) {
|
|
if (Ty == PT_IntAPS)
|
|
return this->emitConstIntAPS(Value, E);
|
|
if (Ty == PT_IntAP)
|
|
return this->emitConstIntAP(Value, E);
|
|
|
|
if (Value.isSigned())
|
|
return this->emitConst(Value.getSExtValue(), Ty, E);
|
|
return this->emitConst(Value.getZExtValue(), Ty, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
|
|
return this->emitConst(Value, classifyPrim(E->getType()), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
unsigned Compiler<Emitter>::allocateLocalPrimitive(
|
|
DeclTy &&Src, PrimType Ty, bool IsConst, const ValueDecl *ExtendingDecl,
|
|
bool IsConstexprUnknown) {
|
|
// Make sure we don't accidentally register the same decl twice.
|
|
if (const auto *VD =
|
|
dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
|
|
assert(!P.getGlobal(VD));
|
|
assert(!Locals.contains(VD));
|
|
(void)VD;
|
|
}
|
|
|
|
// FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
|
|
// (int){12} in C. Consider using Expr::isTemporaryObject() instead
|
|
// or isa<MaterializeTemporaryExpr>().
|
|
Descriptor *D = P.createDescriptor(Src, Ty, nullptr, Descriptor::InlineDescMD,
|
|
IsConst, isa<const Expr *>(Src));
|
|
D->IsConstexprUnknown = IsConstexprUnknown;
|
|
Scope::Local Local = this->createLocal(D);
|
|
if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
|
|
Locals.insert({VD, Local});
|
|
if (ExtendingDecl)
|
|
VarScope->addExtended(Local, ExtendingDecl);
|
|
else
|
|
VarScope->add(Local, false);
|
|
return Local.Offset;
|
|
}
|
|
|
|
template <class Emitter>
|
|
std::optional<unsigned>
|
|
Compiler<Emitter>::allocateLocal(DeclTy &&Src, QualType Ty,
|
|
const ValueDecl *ExtendingDecl,
|
|
bool IsConstexprUnknown) {
|
|
// Make sure we don't accidentally register the same decl twice.
|
|
if ([[maybe_unused]] const auto *VD =
|
|
dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
|
|
assert(!P.getGlobal(VD));
|
|
assert(!Locals.contains(VD));
|
|
}
|
|
|
|
const ValueDecl *Key = nullptr;
|
|
const Expr *Init = nullptr;
|
|
bool IsTemporary = false;
|
|
if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
|
|
Key = VD;
|
|
Ty = VD->getType();
|
|
|
|
if (const auto *VarD = dyn_cast<VarDecl>(VD))
|
|
Init = VarD->getInit();
|
|
}
|
|
if (auto *E = Src.dyn_cast<const Expr *>()) {
|
|
IsTemporary = true;
|
|
if (Ty.isNull())
|
|
Ty = E->getType();
|
|
}
|
|
|
|
Descriptor *D = P.createDescriptor(
|
|
Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
|
|
IsTemporary, /*IsMutable=*/false, Init);
|
|
if (!D)
|
|
return std::nullopt;
|
|
D->IsConstexprUnknown = IsConstexprUnknown;
|
|
|
|
Scope::Local Local = this->createLocal(D);
|
|
if (Key)
|
|
Locals.insert({Key, Local});
|
|
if (ExtendingDecl)
|
|
VarScope->addExtended(Local, ExtendingDecl);
|
|
else
|
|
VarScope->add(Local, false);
|
|
return Local.Offset;
|
|
}
|
|
|
|
template <class Emitter>
|
|
std::optional<unsigned> Compiler<Emitter>::allocateTemporary(const Expr *E) {
|
|
QualType Ty = E->getType();
|
|
assert(!Ty->isRecordType());
|
|
|
|
Descriptor *D = P.createDescriptor(
|
|
E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
|
|
/*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
|
|
|
|
if (!D)
|
|
return std::nullopt;
|
|
|
|
Scope::Local Local = this->createLocal(D);
|
|
VariableScope<Emitter> *S = VarScope;
|
|
assert(S);
|
|
// Attach to topmost scope.
|
|
while (S->getParent())
|
|
S = S->getParent();
|
|
assert(S && !S->getParent());
|
|
S->addLocal(Local);
|
|
return Local.Offset;
|
|
}
|
|
|
|
template <class Emitter>
|
|
const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
|
|
if (const PointerType *PT = dyn_cast<PointerType>(Ty))
|
|
return PT->getPointeeType()->getAs<RecordType>();
|
|
return Ty->getAs<RecordType>();
|
|
}
|
|
|
|
template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
|
|
if (const auto *RecordTy = getRecordTy(Ty))
|
|
return getRecord(RecordTy->getDecl());
|
|
return nullptr;
|
|
}
|
|
|
|
template <class Emitter>
|
|
Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
|
|
return P.getOrCreateRecord(RD);
|
|
}
|
|
|
|
template <class Emitter>
|
|
const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
|
|
return Ctx.getOrCreateFunction(FD);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
|
|
LocalScope<Emitter> RootScope(this);
|
|
|
|
// If we won't destroy the toplevel scope, check for memory leaks first.
|
|
if (!DestroyToplevelScope) {
|
|
if (!this->emitCheckAllocations(E))
|
|
return false;
|
|
}
|
|
|
|
auto maybeDestroyLocals = [&]() -> bool {
|
|
if (DestroyToplevelScope)
|
|
return RootScope.destroyLocals() && this->emitCheckAllocations(E);
|
|
return this->emitCheckAllocations(E);
|
|
};
|
|
|
|
// Void expressions.
|
|
if (E->getType()->isVoidType()) {
|
|
if (!visit(E))
|
|
return false;
|
|
return this->emitRetVoid(E) && maybeDestroyLocals();
|
|
}
|
|
|
|
// Expressions with a primitive return type.
|
|
if (std::optional<PrimType> T = classify(E)) {
|
|
if (!visit(E))
|
|
return false;
|
|
|
|
return this->emitRet(*T, E) && maybeDestroyLocals();
|
|
}
|
|
|
|
// Expressions with a composite return type.
|
|
// For us, that means everything we don't
|
|
// have a PrimType for.
|
|
if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
|
|
InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalOffset));
|
|
if (!this->emitGetPtrLocal(*LocalOffset, E))
|
|
return false;
|
|
|
|
if (!visitInitializer(E))
|
|
return false;
|
|
|
|
if (!this->emitFinishInit(E))
|
|
return false;
|
|
// We are destroying the locals AFTER the Ret op.
|
|
// The Ret op needs to copy the (alive) values, but the
|
|
// destructors may still turn the entire expression invalid.
|
|
return this->emitRetValue(E) && maybeDestroyLocals();
|
|
}
|
|
|
|
return maybeDestroyLocals() && this->emitCheckAllocations(E) && false;
|
|
}
|
|
|
|
template <class Emitter>
|
|
VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD,
|
|
bool IsConstexprUnknown) {
|
|
|
|
auto R = this->visitVarDecl(VD, /*Toplevel=*/true, IsConstexprUnknown);
|
|
|
|
if (R.notCreated())
|
|
return R;
|
|
|
|
if (R)
|
|
return true;
|
|
|
|
if (!R && Context::shouldBeGloballyIndexed(VD)) {
|
|
if (auto GlobalIndex = P.getGlobal(VD)) {
|
|
Block *GlobalBlock = P.getGlobal(*GlobalIndex);
|
|
GlobalInlineDescriptor &GD =
|
|
*reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
|
|
|
|
GD.InitState = GlobalInitState::InitializerFailed;
|
|
GlobalBlock->invokeDtor();
|
|
}
|
|
}
|
|
|
|
return R;
|
|
}
|
|
|
|
/// Toplevel visitDeclAndReturn().
|
|
/// We get here from evaluateAsInitializer().
|
|
/// We need to evaluate the initializer and return its value.
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
|
|
bool ConstantContext) {
|
|
std::optional<PrimType> VarT = classify(VD->getType());
|
|
|
|
// We only create variables if we're evaluating in a constant context.
|
|
// Otherwise, just evaluate the initializer and return it.
|
|
if (!ConstantContext) {
|
|
DeclScope<Emitter> LS(this, VD);
|
|
if (!this->visit(VD->getAnyInitializer()))
|
|
return false;
|
|
return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals() &&
|
|
this->emitCheckAllocations(VD);
|
|
}
|
|
|
|
LocalScope<Emitter> VDScope(this, VD);
|
|
if (!this->visitVarDecl(VD, /*Toplevel=*/true))
|
|
return false;
|
|
|
|
if (Context::shouldBeGloballyIndexed(VD)) {
|
|
auto GlobalIndex = P.getGlobal(VD);
|
|
assert(GlobalIndex); // visitVarDecl() didn't return false.
|
|
if (VarT) {
|
|
if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
|
|
return false;
|
|
} else {
|
|
if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
|
|
return false;
|
|
}
|
|
} else {
|
|
auto Local = Locals.find(VD);
|
|
assert(Local != Locals.end()); // Same here.
|
|
if (VarT) {
|
|
if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
|
|
return false;
|
|
} else {
|
|
if (!this->emitGetPtrLocal(Local->second.Offset, VD))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Return the value.
|
|
if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
|
|
// If the Ret above failed and this is a global variable, mark it as
|
|
// uninitialized, even everything else succeeded.
|
|
if (Context::shouldBeGloballyIndexed(VD)) {
|
|
auto GlobalIndex = P.getGlobal(VD);
|
|
assert(GlobalIndex);
|
|
Block *GlobalBlock = P.getGlobal(*GlobalIndex);
|
|
GlobalInlineDescriptor &GD =
|
|
*reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
|
|
|
|
GD.InitState = GlobalInitState::InitializerFailed;
|
|
GlobalBlock->invokeDtor();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return VDScope.destroyLocals() && this->emitCheckAllocations(VD);
|
|
}
|
|
|
|
template <class Emitter>
|
|
VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
|
|
bool Toplevel,
|
|
bool IsConstexprUnknown) {
|
|
// We don't know what to do with these, so just return false.
|
|
if (VD->getType().isNull())
|
|
return false;
|
|
|
|
// This case is EvalEmitter-only. If we won't create any instructions for the
|
|
// initializer anyway, don't bother creating the variable in the first place.
|
|
if (!this->isActive())
|
|
return VarCreationState::NotCreated();
|
|
|
|
const Expr *Init = VD->getInit();
|
|
std::optional<PrimType> VarT = classify(VD->getType());
|
|
|
|
if (Init && Init->isValueDependent())
|
|
return false;
|
|
|
|
if (Context::shouldBeGloballyIndexed(VD)) {
|
|
auto checkDecl = [&]() -> bool {
|
|
bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
|
|
return !NeedsOp || this->emitCheckDecl(VD, VD);
|
|
};
|
|
|
|
auto initGlobal = [&](unsigned GlobalIndex) -> bool {
|
|
assert(Init);
|
|
|
|
if (VarT) {
|
|
if (!this->visit(Init))
|
|
return checkDecl() && false;
|
|
|
|
return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
|
|
}
|
|
|
|
if (!checkDecl())
|
|
return false;
|
|
|
|
if (!this->emitGetPtrGlobal(GlobalIndex, Init))
|
|
return false;
|
|
|
|
if (!visitInitializer(Init))
|
|
return false;
|
|
|
|
if (!this->emitFinishInit(Init))
|
|
return false;
|
|
|
|
return this->emitPopPtr(Init);
|
|
};
|
|
|
|
DeclScope<Emitter> LocalScope(this, VD);
|
|
|
|
// We've already seen and initialized this global.
|
|
if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
|
|
if (P.getPtrGlobal(*GlobalIndex).isInitialized())
|
|
return checkDecl();
|
|
|
|
// The previous attempt at initialization might've been unsuccessful,
|
|
// so let's try this one.
|
|
return Init && checkDecl() && initGlobal(*GlobalIndex);
|
|
}
|
|
|
|
std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
|
|
|
|
if (!GlobalIndex)
|
|
return false;
|
|
|
|
return !Init || (checkDecl() && initGlobal(*GlobalIndex));
|
|
} else {
|
|
InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
|
|
|
|
if (VarT) {
|
|
unsigned Offset = this->allocateLocalPrimitive(
|
|
VD, *VarT, VD->getType().isConstQualified(), nullptr,
|
|
IsConstexprUnknown);
|
|
if (Init) {
|
|
// If this is a toplevel declaration, create a scope for the
|
|
// initializer.
|
|
if (Toplevel) {
|
|
LocalScope<Emitter> Scope(this);
|
|
if (!this->visit(Init))
|
|
return false;
|
|
return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
|
|
} else {
|
|
if (!this->visit(Init))
|
|
return false;
|
|
return this->emitSetLocal(*VarT, Offset, VD);
|
|
}
|
|
}
|
|
} else {
|
|
if (std::optional<unsigned> Offset = this->allocateLocal(
|
|
VD, VD->getType(), nullptr, IsConstexprUnknown)) {
|
|
if (!Init)
|
|
return true;
|
|
|
|
if (!this->emitGetPtrLocal(*Offset, Init))
|
|
return false;
|
|
|
|
if (!visitInitializer(Init))
|
|
return false;
|
|
|
|
if (!this->emitFinishInit(Init))
|
|
return false;
|
|
|
|
return this->emitPopPtr(Init);
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
|
|
const Expr *E) {
|
|
assert(!DiscardResult);
|
|
if (Val.isInt())
|
|
return this->emitConst(Val.getInt(), ValType, E);
|
|
else if (Val.isFloat())
|
|
return this->emitConstFloat(Val.getFloat(), E);
|
|
|
|
if (Val.isLValue()) {
|
|
if (Val.isNullPointer())
|
|
return this->emitNull(ValType, 0, nullptr, E);
|
|
APValue::LValueBase Base = Val.getLValueBase();
|
|
if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
|
|
return this->visit(BaseExpr);
|
|
else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
|
|
return this->visitDeclRef(VD, E);
|
|
}
|
|
} else if (Val.isMemberPointer()) {
|
|
if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
|
|
return this->emitGetMemberPtr(MemberDecl, E);
|
|
return this->emitNullMemberPtr(0, nullptr, E);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
|
|
const Expr *E, QualType T) {
|
|
if (Val.isStruct()) {
|
|
const Record *R = this->getRecord(T);
|
|
assert(R);
|
|
for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
|
|
const APValue &F = Val.getStructField(I);
|
|
const Record::Field *RF = R->getField(I);
|
|
QualType FieldType = RF->Decl->getType();
|
|
|
|
if (std::optional<PrimType> PT = classify(FieldType)) {
|
|
if (!this->visitAPValue(F, *PT, E))
|
|
return false;
|
|
if (!this->emitInitField(*PT, RF->Offset, E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitGetPtrField(RF->Offset, E))
|
|
return false;
|
|
if (!this->visitAPValueInitializer(F, E, FieldType))
|
|
return false;
|
|
if (!this->emitPopPtr(E))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
} else if (Val.isUnion()) {
|
|
const FieldDecl *UnionField = Val.getUnionField();
|
|
const Record *R = this->getRecord(UnionField->getParent());
|
|
assert(R);
|
|
const APValue &F = Val.getUnionValue();
|
|
const Record::Field *RF = R->getField(UnionField);
|
|
PrimType T = classifyPrim(RF->Decl->getType());
|
|
if (!this->visitAPValue(F, T, E))
|
|
return false;
|
|
return this->emitInitField(T, RF->Offset, E);
|
|
} else if (Val.isArray()) {
|
|
const auto *ArrType = T->getAsArrayTypeUnsafe();
|
|
QualType ElemType = ArrType->getElementType();
|
|
for (unsigned A = 0, AN = Val.getArraySize(); A != AN; ++A) {
|
|
const APValue &Elem = Val.getArrayInitializedElt(A);
|
|
if (std::optional<PrimType> ElemT = classify(ElemType)) {
|
|
if (!this->visitAPValue(Elem, *ElemT, E))
|
|
return false;
|
|
if (!this->emitInitElem(*ElemT, A, E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitConstUint32(A, E))
|
|
return false;
|
|
if (!this->emitArrayElemPtrUint32(E))
|
|
return false;
|
|
if (!this->visitAPValueInitializer(Elem, E, ElemType))
|
|
return false;
|
|
if (!this->emitPopPtr(E))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
// TODO: Other types.
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
|
|
unsigned BuiltinID) {
|
|
|
|
if (BuiltinID == Builtin::BI__builtin_constant_p) {
|
|
// Void argument is always invalid and harder to handle later.
|
|
if (E->getArg(0)->getType()->isVoidType()) {
|
|
if (DiscardResult)
|
|
return true;
|
|
return this->emitConst(0, E);
|
|
}
|
|
|
|
if (!this->emitStartSpeculation(E))
|
|
return false;
|
|
LabelTy EndLabel = this->getLabel();
|
|
if (!this->speculate(E, EndLabel))
|
|
return false;
|
|
this->fallthrough(EndLabel);
|
|
if (!this->emitEndSpeculation(E))
|
|
return false;
|
|
if (DiscardResult)
|
|
return this->emitPop(classifyPrim(E), E);
|
|
return true;
|
|
}
|
|
|
|
const Function *Func = getFunction(E->getDirectCallee());
|
|
if (!Func)
|
|
return false;
|
|
|
|
// For these, we're expected to ultimately return an APValue pointing
|
|
// to the CallExpr. This is needed to get the correct codegen.
|
|
if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
|
|
BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
|
|
BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
|
|
BuiltinID == Builtin::BI__builtin_function_start) {
|
|
if (DiscardResult)
|
|
return true;
|
|
return this->emitDummyPtr(E, E);
|
|
}
|
|
|
|
QualType ReturnType = E->getType();
|
|
std::optional<PrimType> ReturnT = classify(E);
|
|
|
|
// Non-primitive return type. Prepare storage.
|
|
if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
|
|
std::optional<unsigned> LocalIndex = allocateLocal(E);
|
|
if (!LocalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*LocalIndex, E))
|
|
return false;
|
|
}
|
|
|
|
if (!Func->isUnevaluatedBuiltin()) {
|
|
// Put arguments on the stack.
|
|
for (const auto *Arg : E->arguments()) {
|
|
if (!this->visit(Arg))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!this->emitCallBI(Func, E, BuiltinID, E))
|
|
return false;
|
|
|
|
if (DiscardResult && !ReturnType->isVoidType()) {
|
|
assert(ReturnT);
|
|
return this->emitPop(*ReturnT, E);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
|
|
if (unsigned BuiltinID = E->getBuiltinCallee())
|
|
return VisitBuiltinCallExpr(E, BuiltinID);
|
|
|
|
const FunctionDecl *FuncDecl = E->getDirectCallee();
|
|
// Calls to replaceable operator new/operator delete.
|
|
if (FuncDecl &&
|
|
FuncDecl->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) {
|
|
if (FuncDecl->getDeclName().isAnyOperatorNew()) {
|
|
return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
|
|
} else {
|
|
assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
|
|
return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
|
|
}
|
|
}
|
|
// Explicit calls to trivial destructors
|
|
if (const auto *DD = dyn_cast_if_present<CXXDestructorDecl>(FuncDecl);
|
|
DD && DD->isTrivial()) {
|
|
const auto *MemberCall = cast<CXXMemberCallExpr>(E);
|
|
if (!this->visit(MemberCall->getImplicitObjectArgument()))
|
|
return false;
|
|
return this->emitCheckDestruction(E) && this->emitPopPtr(E);
|
|
}
|
|
|
|
QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
|
|
std::optional<PrimType> T = classify(ReturnType);
|
|
bool HasRVO = !ReturnType->isVoidType() && !T;
|
|
|
|
if (HasRVO) {
|
|
if (DiscardResult) {
|
|
// If we need to discard the return value but the function returns its
|
|
// value via an RVO pointer, we need to create one such pointer just
|
|
// for this call.
|
|
if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
|
|
if (!this->emitGetPtrLocal(*LocalIndex, E))
|
|
return false;
|
|
}
|
|
} else {
|
|
// We need the result. Prepare a pointer to return or
|
|
// dup the current one.
|
|
if (!Initializing) {
|
|
if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
|
|
if (!this->emitGetPtrLocal(*LocalIndex, E))
|
|
return false;
|
|
}
|
|
}
|
|
if (!this->emitDupPtr(E))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
SmallVector<const Expr *, 8> Args(
|
|
llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
|
|
|
|
bool IsAssignmentOperatorCall = false;
|
|
if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
|
|
OCE && OCE->isAssignmentOp()) {
|
|
// Just like with regular assignments, we need to special-case assignment
|
|
// operators here and evaluate the RHS (the second arg) before the LHS (the
|
|
// first arg). We fix this by using a Flip op later.
|
|
assert(Args.size() == 2);
|
|
IsAssignmentOperatorCall = true;
|
|
std::reverse(Args.begin(), Args.end());
|
|
}
|
|
// Calling a static operator will still
|
|
// pass the instance, but we don't need it.
|
|
// Discard it here.
|
|
if (isa<CXXOperatorCallExpr>(E)) {
|
|
if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
|
|
MD && MD->isStatic()) {
|
|
if (!this->discard(E->getArg(0)))
|
|
return false;
|
|
// Drop first arg.
|
|
Args.erase(Args.begin());
|
|
}
|
|
}
|
|
|
|
std::optional<unsigned> CalleeOffset;
|
|
// Add the (optional, implicit) This pointer.
|
|
if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
|
|
if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
|
|
// If we end up creating a CallPtr op for this, we need the base of the
|
|
// member pointer as the instance pointer, and later extract the function
|
|
// decl as the function pointer.
|
|
const Expr *Callee = E->getCallee();
|
|
CalleeOffset =
|
|
this->allocateLocalPrimitive(Callee, PT_MemberPtr, /*IsConst=*/true);
|
|
if (!this->visit(Callee))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
|
|
return false;
|
|
if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
|
|
return false;
|
|
if (!this->emitGetMemberPtrBase(E))
|
|
return false;
|
|
} else if (!this->visit(MC->getImplicitObjectArgument())) {
|
|
return false;
|
|
}
|
|
} else if (const auto *PD =
|
|
dyn_cast<CXXPseudoDestructorExpr>(E->getCallee())) {
|
|
const Expr *Base = PD->getBase();
|
|
if (!Base->isGLValue())
|
|
return this->discard(Base);
|
|
if (!this->visit(Base))
|
|
return false;
|
|
return this->emitKill(E);
|
|
} else if (!FuncDecl) {
|
|
const Expr *Callee = E->getCallee();
|
|
CalleeOffset =
|
|
this->allocateLocalPrimitive(Callee, PT_Ptr, /*IsConst=*/true);
|
|
if (!this->visit(Callee))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_Ptr, *CalleeOffset, E))
|
|
return false;
|
|
}
|
|
|
|
llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
|
|
// Put arguments on the stack.
|
|
unsigned ArgIndex = 0;
|
|
for (const auto *Arg : Args) {
|
|
if (!this->visit(Arg))
|
|
return false;
|
|
|
|
// If we know the callee already, check the known parametrs for nullability.
|
|
if (FuncDecl && NonNullArgs[ArgIndex]) {
|
|
PrimType ArgT = classify(Arg).value_or(PT_Ptr);
|
|
if (ArgT == PT_Ptr) {
|
|
if (!this->emitCheckNonNullArg(ArgT, Arg))
|
|
return false;
|
|
}
|
|
}
|
|
++ArgIndex;
|
|
}
|
|
|
|
// Undo the argument reversal we did earlier.
|
|
if (IsAssignmentOperatorCall) {
|
|
assert(Args.size() == 2);
|
|
PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
|
|
PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
|
|
if (!this->emitFlip(Arg2T, Arg1T, E))
|
|
return false;
|
|
}
|
|
|
|
if (FuncDecl) {
|
|
const Function *Func = getFunction(FuncDecl);
|
|
if (!Func)
|
|
return false;
|
|
assert(HasRVO == Func->hasRVO());
|
|
|
|
bool HasQualifier = false;
|
|
if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
|
|
HasQualifier = ME->hasQualifier();
|
|
|
|
bool IsVirtual = false;
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
|
|
IsVirtual = MD->isVirtual();
|
|
|
|
// In any case call the function. The return value will end up on the stack
|
|
// and if the function has RVO, we already have the pointer on the stack to
|
|
// write the result into.
|
|
if (IsVirtual && !HasQualifier) {
|
|
uint32_t VarArgSize = 0;
|
|
unsigned NumParams =
|
|
Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
|
|
for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
|
|
VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
|
|
|
|
if (!this->emitCallVirt(Func, VarArgSize, E))
|
|
return false;
|
|
} else if (Func->isVariadic()) {
|
|
uint32_t VarArgSize = 0;
|
|
unsigned NumParams =
|
|
Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
|
|
for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
|
|
VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
|
|
if (!this->emitCallVar(Func, VarArgSize, E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitCall(Func, 0, E))
|
|
return false;
|
|
}
|
|
} else {
|
|
// Indirect call. Visit the callee, which will leave a FunctionPointer on
|
|
// the stack. Cleanup of the returned value if necessary will be done after
|
|
// the function call completed.
|
|
|
|
// Sum the size of all args from the call expr.
|
|
uint32_t ArgSize = 0;
|
|
for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
|
|
ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
|
|
|
|
// Get the callee, either from a member pointer or function pointer saved in
|
|
// CalleeOffset.
|
|
if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
|
|
if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
|
|
return false;
|
|
if (!this->emitGetMemberPtrDecl(E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitGetLocal(PT_Ptr, *CalleeOffset, E))
|
|
return false;
|
|
}
|
|
if (!this->emitCallPtr(ArgSize, E, E))
|
|
return false;
|
|
}
|
|
|
|
// Cleanup for discarded return values.
|
|
if (DiscardResult && !ReturnType->isVoidType() && T)
|
|
return this->emitPop(*T, E);
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
|
|
SourceLocScope<Emitter> SLS(this, E);
|
|
|
|
return this->delegate(E->getExpr());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
|
|
SourceLocScope<Emitter> SLS(this, E);
|
|
|
|
return this->delegate(E->getExpr());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
return this->emitConstBool(E->getValue(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
|
|
const CXXNullPtrLiteralExpr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(E->getType());
|
|
return this->emitNullPtr(Val, nullptr, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
assert(E->getType()->isIntegerType());
|
|
|
|
PrimType T = classifyPrim(E->getType());
|
|
return this->emitZero(T, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
if (this->LambdaThisCapture.Offset > 0) {
|
|
if (this->LambdaThisCapture.IsPtr)
|
|
return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
|
|
return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
|
|
}
|
|
|
|
// In some circumstances, the 'this' pointer does not actually refer to the
|
|
// instance pointer of the current function frame, but e.g. to the declaration
|
|
// currently being initialized. Here we emit the necessary instruction(s) for
|
|
// this scenario.
|
|
if (!InitStackActive)
|
|
return this->emitThis(E);
|
|
|
|
if (!InitStack.empty()) {
|
|
// If our init stack is, for example:
|
|
// 0 Stack: 3 (decl)
|
|
// 1 Stack: 6 (init list)
|
|
// 2 Stack: 1 (field)
|
|
// 3 Stack: 6 (init list)
|
|
// 4 Stack: 1 (field)
|
|
//
|
|
// We want to find the LAST element in it that's an init list,
|
|
// which is marked with the K_InitList marker. The index right
|
|
// before that points to an init list. We need to find the
|
|
// elements before the K_InitList element that point to a base
|
|
// (e.g. a decl or This), optionally followed by field, elem, etc.
|
|
// In the example above, we want to emit elements [0..2].
|
|
unsigned StartIndex = 0;
|
|
unsigned EndIndex = 0;
|
|
// Find the init list.
|
|
for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
|
|
if (InitStack[StartIndex].Kind == InitLink::K_InitList ||
|
|
InitStack[StartIndex].Kind == InitLink::K_This) {
|
|
EndIndex = StartIndex;
|
|
--StartIndex;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Walk backwards to find the base.
|
|
for (; StartIndex > 0; --StartIndex) {
|
|
if (InitStack[StartIndex].Kind == InitLink::K_InitList)
|
|
continue;
|
|
|
|
if (InitStack[StartIndex].Kind != InitLink::K_Field &&
|
|
InitStack[StartIndex].Kind != InitLink::K_Elem)
|
|
break;
|
|
}
|
|
|
|
// Emit the instructions.
|
|
for (unsigned I = StartIndex; I != EndIndex; ++I) {
|
|
if (InitStack[I].Kind == InitLink::K_InitList)
|
|
continue;
|
|
if (!InitStack[I].template emit<Emitter>(this, E))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return this->emitThis(E);
|
|
}
|
|
|
|
template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
|
|
switch (S->getStmtClass()) {
|
|
case Stmt::CompoundStmtClass:
|
|
return visitCompoundStmt(cast<CompoundStmt>(S));
|
|
case Stmt::DeclStmtClass:
|
|
return visitDeclStmt(cast<DeclStmt>(S), /*EvaluateConditionDecl=*/true);
|
|
case Stmt::ReturnStmtClass:
|
|
return visitReturnStmt(cast<ReturnStmt>(S));
|
|
case Stmt::IfStmtClass:
|
|
return visitIfStmt(cast<IfStmt>(S));
|
|
case Stmt::WhileStmtClass:
|
|
return visitWhileStmt(cast<WhileStmt>(S));
|
|
case Stmt::DoStmtClass:
|
|
return visitDoStmt(cast<DoStmt>(S));
|
|
case Stmt::ForStmtClass:
|
|
return visitForStmt(cast<ForStmt>(S));
|
|
case Stmt::CXXForRangeStmtClass:
|
|
return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
|
|
case Stmt::BreakStmtClass:
|
|
return visitBreakStmt(cast<BreakStmt>(S));
|
|
case Stmt::ContinueStmtClass:
|
|
return visitContinueStmt(cast<ContinueStmt>(S));
|
|
case Stmt::SwitchStmtClass:
|
|
return visitSwitchStmt(cast<SwitchStmt>(S));
|
|
case Stmt::CaseStmtClass:
|
|
return visitCaseStmt(cast<CaseStmt>(S));
|
|
case Stmt::DefaultStmtClass:
|
|
return visitDefaultStmt(cast<DefaultStmt>(S));
|
|
case Stmt::AttributedStmtClass:
|
|
return visitAttributedStmt(cast<AttributedStmt>(S));
|
|
case Stmt::CXXTryStmtClass:
|
|
return visitCXXTryStmt(cast<CXXTryStmt>(S));
|
|
case Stmt::NullStmtClass:
|
|
return true;
|
|
// Always invalid statements.
|
|
case Stmt::GCCAsmStmtClass:
|
|
case Stmt::MSAsmStmtClass:
|
|
case Stmt::GotoStmtClass:
|
|
return this->emitInvalid(S);
|
|
case Stmt::LabelStmtClass:
|
|
return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
|
|
default: {
|
|
if (const auto *E = dyn_cast<Expr>(S))
|
|
return this->discard(E);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
|
|
BlockScope<Emitter> Scope(this);
|
|
for (const auto *InnerStmt : S->body())
|
|
if (!visitStmt(InnerStmt))
|
|
return false;
|
|
return Scope.destroyLocals();
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::maybeEmitDeferredVarInit(const VarDecl *VD) {
|
|
if (auto *DD = dyn_cast_if_present<DecompositionDecl>(VD)) {
|
|
for (auto *BD : DD->bindings())
|
|
if (auto *KD = BD->getHoldingVar(); KD && !this->visitVarDecl(KD))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS,
|
|
bool EvaluateConditionDecl) {
|
|
for (const auto *D : DS->decls()) {
|
|
if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, BaseUsingDecl,
|
|
FunctionDecl, NamespaceAliasDecl, UsingDirectiveDecl>(D))
|
|
continue;
|
|
|
|
const auto *VD = dyn_cast<VarDecl>(D);
|
|
if (!VD)
|
|
return false;
|
|
if (!this->visitVarDecl(VD))
|
|
return false;
|
|
|
|
// Register decomposition decl holding vars.
|
|
if (EvaluateConditionDecl && !this->maybeEmitDeferredVarInit(VD))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
|
|
if (this->InStmtExpr)
|
|
return this->emitUnsupported(RS);
|
|
|
|
if (const Expr *RE = RS->getRetValue()) {
|
|
LocalScope<Emitter> RetScope(this);
|
|
if (ReturnType) {
|
|
// Primitive types are simply returned.
|
|
if (!this->visit(RE))
|
|
return false;
|
|
this->emitCleanup();
|
|
return this->emitRet(*ReturnType, RS);
|
|
} else if (RE->getType()->isVoidType()) {
|
|
if (!this->visit(RE))
|
|
return false;
|
|
} else {
|
|
InitLinkScope<Emitter> ILS(this, InitLink::RVO());
|
|
// RVO - construct the value in the return location.
|
|
if (!this->emitRVOPtr(RE))
|
|
return false;
|
|
if (!this->visitInitializer(RE))
|
|
return false;
|
|
if (!this->emitPopPtr(RE))
|
|
return false;
|
|
|
|
this->emitCleanup();
|
|
return this->emitRetVoid(RS);
|
|
}
|
|
}
|
|
|
|
// Void return.
|
|
this->emitCleanup();
|
|
return this->emitRetVoid(RS);
|
|
}
|
|
|
|
template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
|
|
auto visitChildStmt = [&](const Stmt *S) -> bool {
|
|
LocalScope<Emitter> SScope(this);
|
|
if (!visitStmt(S))
|
|
return false;
|
|
return SScope.destroyLocals();
|
|
};
|
|
if (auto *CondInit = IS->getInit())
|
|
if (!visitStmt(CondInit))
|
|
return false;
|
|
|
|
if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
|
|
if (!visitDeclStmt(CondDecl))
|
|
return false;
|
|
|
|
// Save ourselves compiling some code and the jumps, etc. if the condition is
|
|
// stataically known to be either true or false. We could look at more cases
|
|
// here, but I think all the ones that actually happen are using a
|
|
// ConstantExpr.
|
|
if (std::optional<bool> BoolValue = getBoolValue(IS->getCond())) {
|
|
if (*BoolValue)
|
|
return visitChildStmt(IS->getThen());
|
|
else if (const Stmt *Else = IS->getElse())
|
|
return visitChildStmt(Else);
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, compile the condition.
|
|
if (IS->isNonNegatedConsteval()) {
|
|
if (!this->emitIsConstantContext(IS))
|
|
return false;
|
|
} else if (IS->isNegatedConsteval()) {
|
|
if (!this->emitIsConstantContext(IS))
|
|
return false;
|
|
if (!this->emitInv(IS))
|
|
return false;
|
|
} else {
|
|
if (!this->visitBool(IS->getCond()))
|
|
return false;
|
|
}
|
|
|
|
if (!this->maybeEmitDeferredVarInit(IS->getConditionVariable()))
|
|
return false;
|
|
|
|
if (const Stmt *Else = IS->getElse()) {
|
|
LabelTy LabelElse = this->getLabel();
|
|
LabelTy LabelEnd = this->getLabel();
|
|
if (!this->jumpFalse(LabelElse))
|
|
return false;
|
|
if (!visitChildStmt(IS->getThen()))
|
|
return false;
|
|
if (!this->jump(LabelEnd))
|
|
return false;
|
|
this->emitLabel(LabelElse);
|
|
if (!visitChildStmt(Else))
|
|
return false;
|
|
this->emitLabel(LabelEnd);
|
|
} else {
|
|
LabelTy LabelEnd = this->getLabel();
|
|
if (!this->jumpFalse(LabelEnd))
|
|
return false;
|
|
if (!visitChildStmt(IS->getThen()))
|
|
return false;
|
|
this->emitLabel(LabelEnd);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
|
|
const Expr *Cond = S->getCond();
|
|
const Stmt *Body = S->getBody();
|
|
|
|
LabelTy CondLabel = this->getLabel(); // Label before the condition.
|
|
LabelTy EndLabel = this->getLabel(); // Label after the loop.
|
|
LoopScope<Emitter> LS(this, EndLabel, CondLabel);
|
|
|
|
this->fallthrough(CondLabel);
|
|
this->emitLabel(CondLabel);
|
|
|
|
{
|
|
LocalScope<Emitter> CondScope(this);
|
|
if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
|
|
if (!visitDeclStmt(CondDecl))
|
|
return false;
|
|
|
|
if (!this->visitBool(Cond))
|
|
return false;
|
|
|
|
if (!this->maybeEmitDeferredVarInit(S->getConditionVariable()))
|
|
return false;
|
|
|
|
if (!this->jumpFalse(EndLabel))
|
|
return false;
|
|
|
|
if (!this->visitStmt(Body))
|
|
return false;
|
|
|
|
if (!CondScope.destroyLocals())
|
|
return false;
|
|
}
|
|
if (!this->jump(CondLabel))
|
|
return false;
|
|
this->fallthrough(EndLabel);
|
|
this->emitLabel(EndLabel);
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
|
|
const Expr *Cond = S->getCond();
|
|
const Stmt *Body = S->getBody();
|
|
|
|
LabelTy StartLabel = this->getLabel();
|
|
LabelTy EndLabel = this->getLabel();
|
|
LabelTy CondLabel = this->getLabel();
|
|
LoopScope<Emitter> LS(this, EndLabel, CondLabel);
|
|
|
|
this->fallthrough(StartLabel);
|
|
this->emitLabel(StartLabel);
|
|
|
|
{
|
|
LocalScope<Emitter> CondScope(this);
|
|
if (!this->visitStmt(Body))
|
|
return false;
|
|
this->fallthrough(CondLabel);
|
|
this->emitLabel(CondLabel);
|
|
if (!this->visitBool(Cond))
|
|
return false;
|
|
|
|
if (!CondScope.destroyLocals())
|
|
return false;
|
|
}
|
|
if (!this->jumpTrue(StartLabel))
|
|
return false;
|
|
|
|
this->fallthrough(EndLabel);
|
|
this->emitLabel(EndLabel);
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
|
|
// for (Init; Cond; Inc) { Body }
|
|
const Stmt *Init = S->getInit();
|
|
const Expr *Cond = S->getCond();
|
|
const Expr *Inc = S->getInc();
|
|
const Stmt *Body = S->getBody();
|
|
|
|
LabelTy EndLabel = this->getLabel();
|
|
LabelTy CondLabel = this->getLabel();
|
|
LabelTy IncLabel = this->getLabel();
|
|
LoopScope<Emitter> LS(this, EndLabel, IncLabel);
|
|
|
|
if (Init && !this->visitStmt(Init))
|
|
return false;
|
|
|
|
this->fallthrough(CondLabel);
|
|
this->emitLabel(CondLabel);
|
|
|
|
// Start of loop body.
|
|
LocalScope<Emitter> CondScope(this);
|
|
if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
|
|
if (!visitDeclStmt(CondDecl))
|
|
return false;
|
|
|
|
if (Cond) {
|
|
if (!this->visitBool(Cond))
|
|
return false;
|
|
if (!this->jumpFalse(EndLabel))
|
|
return false;
|
|
}
|
|
if (!this->maybeEmitDeferredVarInit(S->getConditionVariable()))
|
|
return false;
|
|
|
|
if (Body && !this->visitStmt(Body))
|
|
return false;
|
|
|
|
this->fallthrough(IncLabel);
|
|
this->emitLabel(IncLabel);
|
|
if (Inc && !this->discard(Inc))
|
|
return false;
|
|
|
|
if (!CondScope.destroyLocals())
|
|
return false;
|
|
if (!this->jump(CondLabel))
|
|
return false;
|
|
// End of loop body.
|
|
|
|
this->emitLabel(EndLabel);
|
|
// If we jumped out of the loop above, we still need to clean up the condition
|
|
// scope.
|
|
return CondScope.destroyLocals();
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
|
|
const Stmt *Init = S->getInit();
|
|
const Expr *Cond = S->getCond();
|
|
const Expr *Inc = S->getInc();
|
|
const Stmt *Body = S->getBody();
|
|
const Stmt *BeginStmt = S->getBeginStmt();
|
|
const Stmt *RangeStmt = S->getRangeStmt();
|
|
const Stmt *EndStmt = S->getEndStmt();
|
|
const VarDecl *LoopVar = S->getLoopVariable();
|
|
|
|
LabelTy EndLabel = this->getLabel();
|
|
LabelTy CondLabel = this->getLabel();
|
|
LabelTy IncLabel = this->getLabel();
|
|
LoopScope<Emitter> LS(this, EndLabel, IncLabel);
|
|
|
|
// Emit declarations needed in the loop.
|
|
if (Init && !this->visitStmt(Init))
|
|
return false;
|
|
if (!this->visitStmt(RangeStmt))
|
|
return false;
|
|
if (!this->visitStmt(BeginStmt))
|
|
return false;
|
|
if (!this->visitStmt(EndStmt))
|
|
return false;
|
|
|
|
// Now the condition as well as the loop variable assignment.
|
|
this->fallthrough(CondLabel);
|
|
this->emitLabel(CondLabel);
|
|
if (!this->visitBool(Cond))
|
|
return false;
|
|
if (!this->jumpFalse(EndLabel))
|
|
return false;
|
|
|
|
if (!this->visitVarDecl(LoopVar))
|
|
return false;
|
|
|
|
// Body.
|
|
{
|
|
if (!this->visitStmt(Body))
|
|
return false;
|
|
|
|
this->fallthrough(IncLabel);
|
|
this->emitLabel(IncLabel);
|
|
if (!this->discard(Inc))
|
|
return false;
|
|
}
|
|
|
|
if (!this->jump(CondLabel))
|
|
return false;
|
|
|
|
this->fallthrough(EndLabel);
|
|
this->emitLabel(EndLabel);
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
|
|
if (!BreakLabel)
|
|
return false;
|
|
|
|
for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
|
|
C = C->getParent())
|
|
C->emitDestruction();
|
|
return this->jump(*BreakLabel);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
|
|
if (!ContinueLabel)
|
|
return false;
|
|
|
|
for (VariableScope<Emitter> *C = VarScope;
|
|
C && C->getParent() != ContinueVarScope; C = C->getParent())
|
|
C->emitDestruction();
|
|
return this->jump(*ContinueLabel);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
|
|
const Expr *Cond = S->getCond();
|
|
PrimType CondT = this->classifyPrim(Cond->getType());
|
|
LocalScope<Emitter> LS(this);
|
|
|
|
LabelTy EndLabel = this->getLabel();
|
|
OptLabelTy DefaultLabel = std::nullopt;
|
|
unsigned CondVar =
|
|
this->allocateLocalPrimitive(Cond, CondT, /*IsConst=*/true);
|
|
|
|
if (const auto *CondInit = S->getInit())
|
|
if (!visitStmt(CondInit))
|
|
return false;
|
|
|
|
if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
|
|
if (!visitDeclStmt(CondDecl))
|
|
return false;
|
|
|
|
// Initialize condition variable.
|
|
if (!this->visit(Cond))
|
|
return false;
|
|
if (!this->emitSetLocal(CondT, CondVar, S))
|
|
return false;
|
|
|
|
if (!this->maybeEmitDeferredVarInit(S->getConditionVariable()))
|
|
return false;
|
|
|
|
CaseMap CaseLabels;
|
|
// Create labels and comparison ops for all case statements.
|
|
for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
|
|
SC = SC->getNextSwitchCase()) {
|
|
if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
|
|
// FIXME: Implement ranges.
|
|
if (CS->caseStmtIsGNURange())
|
|
return false;
|
|
CaseLabels[SC] = this->getLabel();
|
|
|
|
const Expr *Value = CS->getLHS();
|
|
PrimType ValueT = this->classifyPrim(Value->getType());
|
|
|
|
// Compare the case statement's value to the switch condition.
|
|
if (!this->emitGetLocal(CondT, CondVar, CS))
|
|
return false;
|
|
if (!this->visit(Value))
|
|
return false;
|
|
|
|
// Compare and jump to the case label.
|
|
if (!this->emitEQ(ValueT, S))
|
|
return false;
|
|
if (!this->jumpTrue(CaseLabels[CS]))
|
|
return false;
|
|
} else {
|
|
assert(!DefaultLabel);
|
|
DefaultLabel = this->getLabel();
|
|
}
|
|
}
|
|
|
|
// If none of the conditions above were true, fall through to the default
|
|
// statement or jump after the switch statement.
|
|
if (DefaultLabel) {
|
|
if (!this->jump(*DefaultLabel))
|
|
return false;
|
|
} else {
|
|
if (!this->jump(EndLabel))
|
|
return false;
|
|
}
|
|
|
|
SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
|
|
if (!this->visitStmt(S->getBody()))
|
|
return false;
|
|
this->emitLabel(EndLabel);
|
|
|
|
return LS.destroyLocals();
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
|
|
this->emitLabel(CaseLabels[S]);
|
|
return this->visitStmt(S->getSubStmt());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
|
|
this->emitLabel(*DefaultLabel);
|
|
return this->visitStmt(S->getSubStmt());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
|
|
if (this->Ctx.getLangOpts().CXXAssumptions &&
|
|
!this->Ctx.getLangOpts().MSVCCompat) {
|
|
for (const Attr *A : S->getAttrs()) {
|
|
auto *AA = dyn_cast<CXXAssumeAttr>(A);
|
|
if (!AA)
|
|
continue;
|
|
|
|
assert(isa<NullStmt>(S->getSubStmt()));
|
|
|
|
const Expr *Assumption = AA->getAssumption();
|
|
if (Assumption->isValueDependent())
|
|
return false;
|
|
|
|
if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
|
|
continue;
|
|
|
|
// Evaluate assumption.
|
|
if (!this->visitBool(Assumption))
|
|
return false;
|
|
|
|
if (!this->emitAssume(Assumption))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Ignore other attributes.
|
|
return this->visitStmt(S->getSubStmt());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
|
|
// Ignore all handlers.
|
|
return this->visitStmt(S->getTryBlock());
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
|
|
assert(MD->isLambdaStaticInvoker());
|
|
assert(MD->hasBody());
|
|
assert(cast<CompoundStmt>(MD->getBody())->body_empty());
|
|
|
|
const CXXRecordDecl *ClosureClass = MD->getParent();
|
|
const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
|
|
assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
|
|
const Function *Func = this->getFunction(LambdaCallOp);
|
|
if (!Func)
|
|
return false;
|
|
assert(Func->hasThisPointer());
|
|
assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
|
|
|
|
if (Func->hasRVO()) {
|
|
if (!this->emitRVOPtr(MD))
|
|
return false;
|
|
}
|
|
|
|
// The lambda call operator needs an instance pointer, but we don't have
|
|
// one here, and we don't need one either because the lambda cannot have
|
|
// any captures, as verified above. Emit a null pointer. This is then
|
|
// special-cased when interpreting to not emit any misleading diagnostics.
|
|
if (!this->emitNullPtr(0, nullptr, MD))
|
|
return false;
|
|
|
|
// Forward all arguments from the static invoker to the lambda call operator.
|
|
for (const ParmVarDecl *PVD : MD->parameters()) {
|
|
auto It = this->Params.find(PVD);
|
|
assert(It != this->Params.end());
|
|
|
|
// We do the lvalue-to-rvalue conversion manually here, so no need
|
|
// to care about references.
|
|
PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
|
|
if (!this->emitGetParam(ParamType, It->second.Offset, MD))
|
|
return false;
|
|
}
|
|
|
|
if (!this->emitCall(Func, 0, LambdaCallOp))
|
|
return false;
|
|
|
|
this->emitCleanup();
|
|
if (ReturnType)
|
|
return this->emitRet(*ReturnType, MD);
|
|
|
|
// Nothing to do, since we emitted the RVO pointer above.
|
|
return this->emitRetVoid(MD);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
|
|
if (Ctx.getLangOpts().CPlusPlus23)
|
|
return true;
|
|
|
|
if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
|
|
return true;
|
|
|
|
return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
|
|
assert(!ReturnType);
|
|
|
|
auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
|
|
const Expr *InitExpr) -> bool {
|
|
// We don't know what to do with these, so just return false.
|
|
if (InitExpr->getType().isNull())
|
|
return false;
|
|
|
|
if (std::optional<PrimType> T = this->classify(InitExpr)) {
|
|
if (!this->visit(InitExpr))
|
|
return false;
|
|
|
|
if (F->isBitField())
|
|
return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
|
|
return this->emitInitThisField(*T, FieldOffset, InitExpr);
|
|
}
|
|
// Non-primitive case. Get a pointer to the field-to-initialize
|
|
// on the stack and call visitInitialzer() for it.
|
|
InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
|
|
if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
|
|
return false;
|
|
|
|
if (!this->visitInitializer(InitExpr))
|
|
return false;
|
|
|
|
return this->emitFinishInitPop(InitExpr);
|
|
};
|
|
|
|
const RecordDecl *RD = Ctor->getParent();
|
|
const Record *R = this->getRecord(RD);
|
|
if (!R)
|
|
return false;
|
|
|
|
if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
|
|
// union copy and move ctors are special.
|
|
assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
|
|
if (!this->emitThis(Ctor))
|
|
return false;
|
|
|
|
auto PVD = Ctor->getParamDecl(0);
|
|
ParamOffset PO = this->Params[PVD]; // Must exist.
|
|
|
|
if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
|
|
return false;
|
|
|
|
return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
|
|
this->emitRetVoid(Ctor);
|
|
}
|
|
|
|
InitLinkScope<Emitter> InitScope(this, InitLink::This());
|
|
for (const auto *Init : Ctor->inits()) {
|
|
// Scope needed for the initializers.
|
|
BlockScope<Emitter> Scope(this);
|
|
|
|
const Expr *InitExpr = Init->getInit();
|
|
if (const FieldDecl *Member = Init->getMember()) {
|
|
const Record::Field *F = R->getField(Member);
|
|
|
|
if (!emitFieldInitializer(F, F->Offset, InitExpr))
|
|
return false;
|
|
} else if (const Type *Base = Init->getBaseClass()) {
|
|
const auto *BaseDecl = Base->getAsCXXRecordDecl();
|
|
assert(BaseDecl);
|
|
|
|
if (Init->isBaseVirtual()) {
|
|
assert(R->getVirtualBase(BaseDecl));
|
|
if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
|
|
return false;
|
|
|
|
} else {
|
|
// Base class initializer.
|
|
// Get This Base and call initializer on it.
|
|
const Record::Base *B = R->getBase(BaseDecl);
|
|
assert(B);
|
|
if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
|
|
return false;
|
|
}
|
|
|
|
if (!this->visitInitializer(InitExpr))
|
|
return false;
|
|
if (!this->emitFinishInitPop(InitExpr))
|
|
return false;
|
|
} else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
|
|
assert(IFD->getChainingSize() >= 2);
|
|
|
|
unsigned NestedFieldOffset = 0;
|
|
const Record::Field *NestedField = nullptr;
|
|
for (const NamedDecl *ND : IFD->chain()) {
|
|
const auto *FD = cast<FieldDecl>(ND);
|
|
const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
|
|
assert(FieldRecord);
|
|
|
|
NestedField = FieldRecord->getField(FD);
|
|
assert(NestedField);
|
|
|
|
NestedFieldOffset += NestedField->Offset;
|
|
}
|
|
assert(NestedField);
|
|
|
|
if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
|
|
return false;
|
|
|
|
// Mark all chain links as initialized.
|
|
unsigned InitFieldOffset = 0;
|
|
for (const NamedDecl *ND : IFD->chain().drop_back()) {
|
|
const auto *FD = cast<FieldDecl>(ND);
|
|
const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
|
|
assert(FieldRecord);
|
|
NestedField = FieldRecord->getField(FD);
|
|
InitFieldOffset += NestedField->Offset;
|
|
assert(NestedField);
|
|
if (!this->emitGetPtrThisField(InitFieldOffset, InitExpr))
|
|
return false;
|
|
if (!this->emitFinishInitPop(InitExpr))
|
|
return false;
|
|
}
|
|
|
|
} else {
|
|
assert(Init->isDelegatingInitializer());
|
|
if (!this->emitThis(InitExpr))
|
|
return false;
|
|
if (!this->visitInitializer(Init->getInit()))
|
|
return false;
|
|
if (!this->emitPopPtr(InitExpr))
|
|
return false;
|
|
}
|
|
|
|
if (!Scope.destroyLocals())
|
|
return false;
|
|
}
|
|
|
|
if (const auto *Body = Ctor->getBody())
|
|
if (!visitStmt(Body))
|
|
return false;
|
|
|
|
return this->emitRetVoid(SourceInfo{});
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
|
|
const RecordDecl *RD = Dtor->getParent();
|
|
const Record *R = this->getRecord(RD);
|
|
if (!R)
|
|
return false;
|
|
|
|
if (!Dtor->isTrivial() && Dtor->getBody()) {
|
|
if (!this->visitStmt(Dtor->getBody()))
|
|
return false;
|
|
}
|
|
|
|
if (!this->emitThis(Dtor))
|
|
return false;
|
|
|
|
if (!this->emitCheckDestruction(Dtor))
|
|
return false;
|
|
|
|
assert(R);
|
|
if (!R->isUnion()) {
|
|
// First, destroy all fields.
|
|
for (const Record::Field &Field : llvm::reverse(R->fields())) {
|
|
const Descriptor *D = Field.Desc;
|
|
if (!D->isPrimitive() && !D->isPrimitiveArray()) {
|
|
if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
|
|
return false;
|
|
if (!this->emitDestruction(D, SourceInfo{}))
|
|
return false;
|
|
if (!this->emitPopPtr(SourceInfo{}))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const Record::Base &Base : llvm::reverse(R->bases())) {
|
|
if (Base.R->isAnonymousUnion())
|
|
continue;
|
|
|
|
if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
|
|
return false;
|
|
if (!this->emitRecordDestruction(Base.R, {}))
|
|
return false;
|
|
if (!this->emitPopPtr(SourceInfo{}))
|
|
return false;
|
|
}
|
|
|
|
// FIXME: Virtual bases.
|
|
return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::compileUnionAssignmentOperator(
|
|
const CXXMethodDecl *MD) {
|
|
if (!this->emitThis(MD))
|
|
return false;
|
|
|
|
auto PVD = MD->getParamDecl(0);
|
|
ParamOffset PO = this->Params[PVD]; // Must exist.
|
|
|
|
if (!this->emitGetParam(PT_Ptr, PO.Offset, MD))
|
|
return false;
|
|
|
|
return this->emitMemcpy(MD) && this->emitRet(PT_Ptr, MD);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
|
|
// Classify the return type.
|
|
ReturnType = this->classify(F->getReturnType());
|
|
|
|
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
|
|
return this->compileConstructor(Ctor);
|
|
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
|
|
return this->compileDestructor(Dtor);
|
|
|
|
// Emit custom code if this is a lambda static invoker.
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(F)) {
|
|
const RecordDecl *RD = MD->getParent();
|
|
|
|
if (RD->isUnion() &&
|
|
(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))
|
|
return this->compileUnionAssignmentOperator(MD);
|
|
|
|
if (MD->isLambdaStaticInvoker())
|
|
return this->emitLambdaStaticInvokerBody(MD);
|
|
}
|
|
|
|
// Regular functions.
|
|
if (const auto *Body = F->getBody())
|
|
if (!visitStmt(Body))
|
|
return false;
|
|
|
|
// Emit a guard return to protect against a code path missing one.
|
|
if (F->getReturnType()->isVoidType())
|
|
return this->emitRetVoid(SourceInfo{});
|
|
return this->emitNoRet(SourceInfo{});
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
|
|
const Expr *SubExpr = E->getSubExpr();
|
|
if (SubExpr->getType()->isAnyComplexType())
|
|
return this->VisitComplexUnaryOperator(E);
|
|
if (SubExpr->getType()->isVectorType())
|
|
return this->VisitVectorUnaryOperator(E);
|
|
if (SubExpr->getType()->isFixedPointType())
|
|
return this->VisitFixedPointUnaryOperator(E);
|
|
std::optional<PrimType> T = classify(SubExpr->getType());
|
|
|
|
switch (E->getOpcode()) {
|
|
case UO_PostInc: { // x++
|
|
if (!Ctx.getLangOpts().CPlusPlus14)
|
|
return this->emitInvalid(E);
|
|
if (!T)
|
|
return this->emitError(E);
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
|
|
if (T == PT_Ptr) {
|
|
if (!this->emitIncPtr(E))
|
|
return false;
|
|
|
|
return DiscardResult ? this->emitPopPtr(E) : true;
|
|
}
|
|
|
|
if (T == PT_Float) {
|
|
return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
|
|
: this->emitIncf(getFPOptions(E), E);
|
|
}
|
|
|
|
return DiscardResult ? this->emitIncPop(*T, E->canOverflow(), E)
|
|
: this->emitInc(*T, E->canOverflow(), E);
|
|
}
|
|
case UO_PostDec: { // x--
|
|
if (!Ctx.getLangOpts().CPlusPlus14)
|
|
return this->emitInvalid(E);
|
|
if (!T)
|
|
return this->emitError(E);
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
|
|
if (T == PT_Ptr) {
|
|
if (!this->emitDecPtr(E))
|
|
return false;
|
|
|
|
return DiscardResult ? this->emitPopPtr(E) : true;
|
|
}
|
|
|
|
if (T == PT_Float) {
|
|
return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
|
|
: this->emitDecf(getFPOptions(E), E);
|
|
}
|
|
|
|
return DiscardResult ? this->emitDecPop(*T, E->canOverflow(), E)
|
|
: this->emitDec(*T, E->canOverflow(), E);
|
|
}
|
|
case UO_PreInc: { // ++x
|
|
if (!Ctx.getLangOpts().CPlusPlus14)
|
|
return this->emitInvalid(E);
|
|
if (!T)
|
|
return this->emitError(E);
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
|
|
if (T == PT_Ptr) {
|
|
if (!this->emitLoadPtr(E))
|
|
return false;
|
|
if (!this->emitConstUint8(1, E))
|
|
return false;
|
|
if (!this->emitAddOffsetUint8(E))
|
|
return false;
|
|
return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
|
|
}
|
|
|
|
// Post-inc and pre-inc are the same if the value is to be discarded.
|
|
if (DiscardResult) {
|
|
if (T == PT_Float)
|
|
return this->emitIncfPop(getFPOptions(E), E);
|
|
return this->emitIncPop(*T, E->canOverflow(), E);
|
|
}
|
|
|
|
if (T == PT_Float) {
|
|
const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
|
|
if (!this->emitLoadFloat(E))
|
|
return false;
|
|
if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
|
|
return false;
|
|
if (!this->emitAddf(getFPOptions(E), E))
|
|
return false;
|
|
if (!this->emitStoreFloat(E))
|
|
return false;
|
|
} else {
|
|
assert(isIntegralType(*T));
|
|
if (!this->emitPreInc(*T, E->canOverflow(), E))
|
|
return false;
|
|
}
|
|
return E->isGLValue() || this->emitLoadPop(*T, E);
|
|
}
|
|
case UO_PreDec: { // --x
|
|
if (!Ctx.getLangOpts().CPlusPlus14)
|
|
return this->emitInvalid(E);
|
|
if (!T)
|
|
return this->emitError(E);
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
|
|
if (T == PT_Ptr) {
|
|
if (!this->emitLoadPtr(E))
|
|
return false;
|
|
if (!this->emitConstUint8(1, E))
|
|
return false;
|
|
if (!this->emitSubOffsetUint8(E))
|
|
return false;
|
|
return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
|
|
}
|
|
|
|
// Post-dec and pre-dec are the same if the value is to be discarded.
|
|
if (DiscardResult) {
|
|
if (T == PT_Float)
|
|
return this->emitDecfPop(getFPOptions(E), E);
|
|
return this->emitDecPop(*T, E->canOverflow(), E);
|
|
}
|
|
|
|
if (T == PT_Float) {
|
|
const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
|
|
if (!this->emitLoadFloat(E))
|
|
return false;
|
|
if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
|
|
return false;
|
|
if (!this->emitSubf(getFPOptions(E), E))
|
|
return false;
|
|
if (!this->emitStoreFloat(E))
|
|
return false;
|
|
} else {
|
|
assert(isIntegralType(*T));
|
|
if (!this->emitPreDec(*T, E->canOverflow(), E))
|
|
return false;
|
|
}
|
|
return E->isGLValue() || this->emitLoadPop(*T, E);
|
|
}
|
|
case UO_LNot: // !x
|
|
if (!T)
|
|
return this->emitError(E);
|
|
|
|
if (DiscardResult)
|
|
return this->discard(SubExpr);
|
|
|
|
if (!this->visitBool(SubExpr))
|
|
return false;
|
|
|
|
if (!this->emitInv(E))
|
|
return false;
|
|
|
|
if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
|
|
return this->emitCast(PT_Bool, ET, E);
|
|
return true;
|
|
case UO_Minus: // -x
|
|
if (!T)
|
|
return this->emitError(E);
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
|
|
case UO_Plus: // +x
|
|
if (!T)
|
|
return this->emitError(E);
|
|
|
|
if (!this->visit(SubExpr)) // noop
|
|
return false;
|
|
return DiscardResult ? this->emitPop(*T, E) : true;
|
|
case UO_AddrOf: // &x
|
|
if (E->getType()->isMemberPointerType()) {
|
|
// C++11 [expr.unary.op]p3 has very strict rules on how the address of a
|
|
// member can be formed.
|
|
return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
|
|
}
|
|
// We should already have a pointer when we get here.
|
|
return this->delegate(SubExpr);
|
|
case UO_Deref: // *x
|
|
if (DiscardResult)
|
|
return this->discard(SubExpr);
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
|
|
if (classifyPrim(SubExpr) == PT_Ptr)
|
|
return this->emitNarrowPtr(E);
|
|
return true;
|
|
|
|
case UO_Not: // ~x
|
|
if (!T)
|
|
return this->emitError(E);
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
|
|
case UO_Real: // __real x
|
|
assert(T);
|
|
return this->delegate(SubExpr);
|
|
case UO_Imag: { // __imag x
|
|
assert(T);
|
|
if (!this->discard(SubExpr))
|
|
return false;
|
|
return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
|
|
}
|
|
case UO_Extension:
|
|
return this->delegate(SubExpr);
|
|
case UO_Coawait:
|
|
assert(false && "Unhandled opcode");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
|
|
const Expr *SubExpr = E->getSubExpr();
|
|
assert(SubExpr->getType()->isAnyComplexType());
|
|
|
|
if (DiscardResult)
|
|
return this->discard(SubExpr);
|
|
|
|
std::optional<PrimType> ResT = classify(E);
|
|
auto prepareResult = [=]() -> bool {
|
|
if (!ResT && !Initializing) {
|
|
std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
|
|
if (!LocalIndex)
|
|
return false;
|
|
return this->emitGetPtrLocal(*LocalIndex, E);
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
// The offset of the temporary, if we created one.
|
|
unsigned SubExprOffset = ~0u;
|
|
auto createTemp = [=, &SubExprOffset]() -> bool {
|
|
SubExprOffset =
|
|
this->allocateLocalPrimitive(SubExpr, PT_Ptr, /*IsConst=*/true);
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
|
|
};
|
|
|
|
PrimType ElemT = classifyComplexElementType(SubExpr->getType());
|
|
auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
|
|
if (!this->emitGetLocal(PT_Ptr, Offset, E))
|
|
return false;
|
|
return this->emitArrayElemPop(ElemT, Index, E);
|
|
};
|
|
|
|
switch (E->getOpcode()) {
|
|
case UO_Minus:
|
|
if (!prepareResult())
|
|
return false;
|
|
if (!createTemp())
|
|
return false;
|
|
for (unsigned I = 0; I != 2; ++I) {
|
|
if (!getElem(SubExprOffset, I))
|
|
return false;
|
|
if (!this->emitNeg(ElemT, E))
|
|
return false;
|
|
if (!this->emitInitElem(ElemT, I, E))
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case UO_Plus: // +x
|
|
case UO_AddrOf: // &x
|
|
case UO_Deref: // *x
|
|
return this->delegate(SubExpr);
|
|
|
|
case UO_LNot:
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
if (!this->emitComplexBoolCast(SubExpr))
|
|
return false;
|
|
if (!this->emitInv(E))
|
|
return false;
|
|
if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
|
|
return this->emitCast(PT_Bool, ET, E);
|
|
return true;
|
|
|
|
case UO_Real:
|
|
return this->emitComplexReal(SubExpr);
|
|
|
|
case UO_Imag:
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
|
|
if (SubExpr->isLValue()) {
|
|
if (!this->emitConstUint8(1, E))
|
|
return false;
|
|
return this->emitArrayElemPtrPopUint8(E);
|
|
}
|
|
|
|
// Since our _Complex implementation does not map to a primitive type,
|
|
// we sometimes have to do the lvalue-to-rvalue conversion here manually.
|
|
return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
|
|
|
|
case UO_Not: // ~x
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
// Negate the imaginary component.
|
|
if (!this->emitArrayElem(ElemT, 1, E))
|
|
return false;
|
|
if (!this->emitNeg(ElemT, E))
|
|
return false;
|
|
if (!this->emitInitElem(ElemT, 1, E))
|
|
return false;
|
|
return DiscardResult ? this->emitPopPtr(E) : true;
|
|
|
|
case UO_Extension:
|
|
return this->delegate(SubExpr);
|
|
|
|
default:
|
|
return this->emitInvalid(E);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
|
|
const Expr *SubExpr = E->getSubExpr();
|
|
assert(SubExpr->getType()->isVectorType());
|
|
|
|
if (DiscardResult)
|
|
return this->discard(SubExpr);
|
|
|
|
auto UnaryOp = E->getOpcode();
|
|
if (UnaryOp == UO_Extension)
|
|
return this->delegate(SubExpr);
|
|
|
|
if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
|
|
UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
|
|
return this->emitInvalid(E);
|
|
|
|
// Nothing to do here.
|
|
if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
|
|
return this->delegate(SubExpr);
|
|
|
|
if (!Initializing) {
|
|
std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
|
|
if (!LocalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*LocalIndex, E))
|
|
return false;
|
|
}
|
|
|
|
// The offset of the temporary, if we created one.
|
|
unsigned SubExprOffset =
|
|
this->allocateLocalPrimitive(SubExpr, PT_Ptr, /*IsConst=*/true);
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
|
|
return false;
|
|
|
|
const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
|
|
PrimType ElemT = classifyVectorElementType(SubExpr->getType());
|
|
auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
|
|
if (!this->emitGetLocal(PT_Ptr, Offset, E))
|
|
return false;
|
|
return this->emitArrayElemPop(ElemT, Index, E);
|
|
};
|
|
|
|
switch (UnaryOp) {
|
|
case UO_Minus:
|
|
for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
|
|
if (!getElem(SubExprOffset, I))
|
|
return false;
|
|
if (!this->emitNeg(ElemT, E))
|
|
return false;
|
|
if (!this->emitInitElem(ElemT, I, E))
|
|
return false;
|
|
}
|
|
break;
|
|
case UO_LNot: { // !x
|
|
// In C++, the logic operators !, &&, || are available for vectors. !v is
|
|
// equivalent to v == 0.
|
|
//
|
|
// The result of the comparison is a vector of the same width and number of
|
|
// elements as the comparison operands with a signed integral element type.
|
|
//
|
|
// https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
|
|
QualType ResultVecTy = E->getType();
|
|
PrimType ResultVecElemT =
|
|
classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
|
|
for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
|
|
if (!getElem(SubExprOffset, I))
|
|
return false;
|
|
// operator ! on vectors returns -1 for 'truth', so negate it.
|
|
if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
|
|
return false;
|
|
if (!this->emitInv(E))
|
|
return false;
|
|
if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
|
|
return false;
|
|
if (!this->emitNeg(ElemT, E))
|
|
return false;
|
|
if (ElemT != ResultVecElemT &&
|
|
!this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
|
|
return false;
|
|
if (!this->emitInitElem(ResultVecElemT, I, E))
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
case UO_Not: // ~x
|
|
for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
|
|
if (!getElem(SubExprOffset, I))
|
|
return false;
|
|
if (ElemT == PT_Bool) {
|
|
if (!this->emitInv(E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitComp(ElemT, E))
|
|
return false;
|
|
}
|
|
if (!this->emitInitElem(ElemT, I, E))
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unsupported unary operators should be handled up front");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
|
|
if (DiscardResult)
|
|
return true;
|
|
|
|
if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
|
|
return this->emitConst(ECD->getInitVal(), E);
|
|
} else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
|
|
return this->visit(BD->getBinding());
|
|
} else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
|
|
const Function *F = getFunction(FuncDecl);
|
|
return F && this->emitGetFnPtr(F, E);
|
|
} else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
|
|
if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
|
|
if (!this->emitGetPtrGlobal(*Index, E))
|
|
return false;
|
|
if (std::optional<PrimType> T = classify(E->getType())) {
|
|
if (!this->visitAPValue(TPOD->getValue(), *T, E))
|
|
return false;
|
|
return this->emitInitGlobal(*T, *Index, E);
|
|
}
|
|
return this->visitAPValueInitializer(TPOD->getValue(), E,
|
|
TPOD->getType());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// References are implemented via pointers, so when we see a DeclRefExpr
|
|
// pointing to a reference, we need to get its value directly (i.e. the
|
|
// pointer to the actual value) instead of a pointer to the pointer to the
|
|
// value.
|
|
bool IsReference = D->getType()->isReferenceType();
|
|
|
|
// Check for local/global variables and parameters.
|
|
if (auto It = Locals.find(D); It != Locals.end()) {
|
|
const unsigned Offset = It->second.Offset;
|
|
if (IsReference)
|
|
return this->emitGetLocal(classifyPrim(E), Offset, E);
|
|
return this->emitGetPtrLocal(Offset, E);
|
|
} else if (auto GlobalIndex = P.getGlobal(D)) {
|
|
if (IsReference) {
|
|
if (!Ctx.getLangOpts().CPlusPlus11)
|
|
return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
|
|
return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
|
|
}
|
|
|
|
return this->emitGetPtrGlobal(*GlobalIndex, E);
|
|
} else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
|
|
if (auto It = this->Params.find(PVD); It != this->Params.end()) {
|
|
if (IsReference || !It->second.IsPtr)
|
|
return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
|
|
|
|
return this->emitGetPtrParam(It->second.Offset, E);
|
|
}
|
|
}
|
|
|
|
// In case we need to re-visit a declaration.
|
|
auto revisit = [&](const VarDecl *VD) -> bool {
|
|
if (!this->emitPushCC(VD->hasConstantInitialization(), E))
|
|
return false;
|
|
auto VarState = this->visitDecl(VD, /*IsConstexprUnknown=*/true);
|
|
|
|
if (!this->emitPopCC(E))
|
|
return false;
|
|
|
|
if (VarState.notCreated())
|
|
return true;
|
|
if (!VarState)
|
|
return false;
|
|
// Retry.
|
|
return this->visitDeclRef(D, E);
|
|
};
|
|
|
|
// Handle lambda captures.
|
|
if (auto It = this->LambdaCaptures.find(D);
|
|
It != this->LambdaCaptures.end()) {
|
|
auto [Offset, IsPtr] = It->second;
|
|
|
|
if (IsPtr)
|
|
return this->emitGetThisFieldPtr(Offset, E);
|
|
return this->emitGetPtrThisField(Offset, E);
|
|
} else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
|
|
DRE && DRE->refersToEnclosingVariableOrCapture()) {
|
|
if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
|
|
return revisit(VD);
|
|
}
|
|
|
|
// Avoid infinite recursion.
|
|
if (D == InitializingDecl)
|
|
return this->emitDummyPtr(D, E);
|
|
|
|
// Try to lazily visit (or emit dummy pointers for) declarations
|
|
// we haven't seen yet.
|
|
// For C.
|
|
if (!Ctx.getLangOpts().CPlusPlus) {
|
|
if (const auto *VD = dyn_cast<VarDecl>(D);
|
|
VD && VD->getAnyInitializer() &&
|
|
VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
|
|
return revisit(VD);
|
|
return this->emitDummyPtr(D, E);
|
|
}
|
|
|
|
// ... and C++.
|
|
const auto *VD = dyn_cast<VarDecl>(D);
|
|
if (!VD)
|
|
return this->emitDummyPtr(D, E);
|
|
|
|
const auto typeShouldBeVisited = [&](QualType T) -> bool {
|
|
if (T.isConstant(Ctx.getASTContext()))
|
|
return true;
|
|
return T->isReferenceType();
|
|
};
|
|
|
|
// DecompositionDecls are just proxies for us.
|
|
if (isa<DecompositionDecl>(VD))
|
|
return revisit(VD);
|
|
|
|
if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
|
|
typeShouldBeVisited(VD->getType())) {
|
|
if (const Expr *Init = VD->getAnyInitializer();
|
|
Init && !Init->isValueDependent()) {
|
|
// Whether or not the evaluation is successul doesn't really matter
|
|
// here -- we will create a global variable in any case, and that
|
|
// will have the state of initializer evaluation attached.
|
|
APValue V;
|
|
SmallVector<PartialDiagnosticAt> Notes;
|
|
(void)Init->EvaluateAsInitializer(V, Ctx.getASTContext(), VD, Notes,
|
|
true);
|
|
return this->visitDeclRef(D, E);
|
|
}
|
|
return revisit(VD);
|
|
}
|
|
|
|
// FIXME: The evaluateValue() check here is a little ridiculous, since
|
|
// it will ultimately call into Context::evaluateAsInitializer(). In
|
|
// other words, we're evaluating the initializer, just to know if we can
|
|
// evaluate the initializer.
|
|
if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
|
|
VD->getInit() && !VD->getInit()->isValueDependent()) {
|
|
|
|
if (VD->evaluateValue())
|
|
return revisit(VD);
|
|
|
|
if (!D->getType()->isReferenceType())
|
|
return this->emitDummyPtr(D, E);
|
|
|
|
return this->emitInvalidDeclRef(cast<DeclRefExpr>(E),
|
|
/*InitializerFailed=*/true, E);
|
|
}
|
|
|
|
return this->emitDummyPtr(D, E);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
|
|
const auto *D = E->getDecl();
|
|
return this->visitDeclRef(D, E);
|
|
}
|
|
|
|
template <class Emitter> void Compiler<Emitter>::emitCleanup() {
|
|
for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
|
|
C->emitDestruction();
|
|
}
|
|
|
|
template <class Emitter>
|
|
unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
|
|
const QualType DerivedType) {
|
|
const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
|
|
if (const auto *R = Ty->getPointeeCXXRecordDecl())
|
|
return R;
|
|
return Ty->getAsCXXRecordDecl();
|
|
};
|
|
const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
|
|
const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
|
|
|
|
return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
|
|
}
|
|
|
|
/// Emit casts from a PrimType to another PrimType.
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
|
|
QualType ToQT, const Expr *E) {
|
|
|
|
if (FromT == PT_Float) {
|
|
// Floating to floating.
|
|
if (ToT == PT_Float) {
|
|
const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
|
|
return this->emitCastFP(ToSem, getRoundingMode(E), E);
|
|
}
|
|
|
|
if (ToT == PT_IntAP)
|
|
return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
|
|
getFPOptions(E), E);
|
|
if (ToT == PT_IntAPS)
|
|
return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
|
|
getFPOptions(E), E);
|
|
|
|
// Float to integral.
|
|
if (isIntegralType(ToT) || ToT == PT_Bool)
|
|
return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
|
|
}
|
|
|
|
if (isIntegralType(FromT) || FromT == PT_Bool) {
|
|
if (ToT == PT_IntAP)
|
|
return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
|
|
if (ToT == PT_IntAPS)
|
|
return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
|
|
|
|
// Integral to integral.
|
|
if (isIntegralType(ToT) || ToT == PT_Bool)
|
|
return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
|
|
|
|
if (ToT == PT_Float) {
|
|
// Integral to floating.
|
|
const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
|
|
return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Emits __real(SubExpr)
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
|
|
assert(SubExpr->getType()->isAnyComplexType());
|
|
|
|
if (DiscardResult)
|
|
return this->discard(SubExpr);
|
|
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
if (SubExpr->isLValue()) {
|
|
if (!this->emitConstUint8(0, SubExpr))
|
|
return false;
|
|
return this->emitArrayElemPtrPopUint8(SubExpr);
|
|
}
|
|
|
|
// Rvalue, load the actual element.
|
|
return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
|
|
0, SubExpr);
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
|
|
assert(!DiscardResult);
|
|
PrimType ElemT = classifyComplexElementType(E->getType());
|
|
// We emit the expression (__real(E) != 0 || __imag(E) != 0)
|
|
// for us, that means (bool)E[0] || (bool)E[1]
|
|
if (!this->emitArrayElem(ElemT, 0, E))
|
|
return false;
|
|
if (ElemT == PT_Float) {
|
|
if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitCast(ElemT, PT_Bool, E))
|
|
return false;
|
|
}
|
|
|
|
// We now have the bool value of E[0] on the stack.
|
|
LabelTy LabelTrue = this->getLabel();
|
|
if (!this->jumpTrue(LabelTrue))
|
|
return false;
|
|
|
|
if (!this->emitArrayElemPop(ElemT, 1, E))
|
|
return false;
|
|
if (ElemT == PT_Float) {
|
|
if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
|
|
return false;
|
|
} else {
|
|
if (!this->emitCast(ElemT, PT_Bool, E))
|
|
return false;
|
|
}
|
|
// Leave the boolean value of E[1] on the stack.
|
|
LabelTy EndLabel = this->getLabel();
|
|
this->jump(EndLabel);
|
|
|
|
this->emitLabel(LabelTrue);
|
|
if (!this->emitPopPtr(E))
|
|
return false;
|
|
if (!this->emitConstBool(true, E))
|
|
return false;
|
|
|
|
this->fallthrough(EndLabel);
|
|
this->emitLabel(EndLabel);
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
|
|
const BinaryOperator *E) {
|
|
assert(E->isComparisonOp());
|
|
assert(!Initializing);
|
|
assert(!DiscardResult);
|
|
|
|
PrimType ElemT;
|
|
bool LHSIsComplex;
|
|
unsigned LHSOffset;
|
|
if (LHS->getType()->isAnyComplexType()) {
|
|
LHSIsComplex = true;
|
|
ElemT = classifyComplexElementType(LHS->getType());
|
|
LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true);
|
|
if (!this->visit(LHS))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
|
|
return false;
|
|
} else {
|
|
LHSIsComplex = false;
|
|
PrimType LHST = classifyPrim(LHS->getType());
|
|
LHSOffset = this->allocateLocalPrimitive(LHS, LHST, /*IsConst=*/true);
|
|
if (!this->visit(LHS))
|
|
return false;
|
|
if (!this->emitSetLocal(LHST, LHSOffset, E))
|
|
return false;
|
|
}
|
|
|
|
bool RHSIsComplex;
|
|
unsigned RHSOffset;
|
|
if (RHS->getType()->isAnyComplexType()) {
|
|
RHSIsComplex = true;
|
|
ElemT = classifyComplexElementType(RHS->getType());
|
|
RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true);
|
|
if (!this->visit(RHS))
|
|
return false;
|
|
if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
|
|
return false;
|
|
} else {
|
|
RHSIsComplex = false;
|
|
PrimType RHST = classifyPrim(RHS->getType());
|
|
RHSOffset = this->allocateLocalPrimitive(RHS, RHST, /*IsConst=*/true);
|
|
if (!this->visit(RHS))
|
|
return false;
|
|
if (!this->emitSetLocal(RHST, RHSOffset, E))
|
|
return false;
|
|
}
|
|
|
|
auto getElem = [&](unsigned LocalOffset, unsigned Index,
|
|
bool IsComplex) -> bool {
|
|
if (IsComplex) {
|
|
if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
|
|
return false;
|
|
return this->emitArrayElemPop(ElemT, Index, E);
|
|
}
|
|
return this->emitGetLocal(ElemT, LocalOffset, E);
|
|
};
|
|
|
|
for (unsigned I = 0; I != 2; ++I) {
|
|
// Get both values.
|
|
if (!getElem(LHSOffset, I, LHSIsComplex))
|
|
return false;
|
|
if (!getElem(RHSOffset, I, RHSIsComplex))
|
|
return false;
|
|
// And compare them.
|
|
if (!this->emitEQ(ElemT, E))
|
|
return false;
|
|
|
|
if (!this->emitCastBoolUint8(E))
|
|
return false;
|
|
}
|
|
|
|
// We now have two bool values on the stack. Compare those.
|
|
if (!this->emitAddUint8(E))
|
|
return false;
|
|
if (!this->emitConstUint8(2, E))
|
|
return false;
|
|
|
|
if (E->getOpcode() == BO_EQ) {
|
|
if (!this->emitEQUint8(E))
|
|
return false;
|
|
} else if (E->getOpcode() == BO_NE) {
|
|
if (!this->emitNEUint8(E))
|
|
return false;
|
|
} else
|
|
return false;
|
|
|
|
// In C, this returns an int.
|
|
if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
|
|
return this->emitCast(PT_Bool, ResT, E);
|
|
return true;
|
|
}
|
|
|
|
/// When calling this, we have a pointer of the local-to-destroy
|
|
/// on the stack.
|
|
/// Emit destruction of record types (or arrays of record types).
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) {
|
|
assert(R);
|
|
assert(!R->isAnonymousUnion());
|
|
const CXXDestructorDecl *Dtor = R->getDestructor();
|
|
if (!Dtor || Dtor->isTrivial())
|
|
return true;
|
|
|
|
assert(Dtor);
|
|
const Function *DtorFunc = getFunction(Dtor);
|
|
if (!DtorFunc)
|
|
return false;
|
|
assert(DtorFunc->hasThisPointer());
|
|
assert(DtorFunc->getNumParams() == 1);
|
|
if (!this->emitDupPtr(Loc))
|
|
return false;
|
|
return this->emitCall(DtorFunc, 0, Loc);
|
|
}
|
|
/// When calling this, we have a pointer of the local-to-destroy
|
|
/// on the stack.
|
|
/// Emit destruction of record types (or arrays of record types).
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc,
|
|
SourceInfo Loc) {
|
|
assert(Desc);
|
|
assert(!Desc->isPrimitive());
|
|
assert(!Desc->isPrimitiveArray());
|
|
|
|
// Can happen if the decl is invalid.
|
|
if (Desc->isDummy())
|
|
return true;
|
|
|
|
// Arrays.
|
|
if (Desc->isArray()) {
|
|
const Descriptor *ElemDesc = Desc->ElemDesc;
|
|
assert(ElemDesc);
|
|
|
|
// Don't need to do anything for these.
|
|
if (ElemDesc->isPrimitiveArray())
|
|
return true;
|
|
|
|
// If this is an array of record types, check if we need
|
|
// to call the element destructors at all. If not, try
|
|
// to save the work.
|
|
if (const Record *ElemRecord = ElemDesc->ElemRecord) {
|
|
if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
|
|
!Dtor || Dtor->isTrivial())
|
|
return true;
|
|
}
|
|
|
|
if (unsigned N = Desc->getNumElems()) {
|
|
for (ssize_t I = N - 1; I >= 0; --I) {
|
|
if (!this->emitConstUint64(I, Loc))
|
|
return false;
|
|
if (!this->emitArrayElemPtrUint64(Loc))
|
|
return false;
|
|
if (!this->emitDestruction(ElemDesc, Loc))
|
|
return false;
|
|
if (!this->emitPopPtr(Loc))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
assert(Desc->ElemRecord);
|
|
if (Desc->ElemRecord->isAnonymousUnion())
|
|
return true;
|
|
|
|
return this->emitRecordDestruction(Desc->ElemRecord, Loc);
|
|
}
|
|
|
|
/// Create a dummy pointer for the given decl (or expr) and
|
|
/// push a pointer to it on the stack.
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::emitDummyPtr(const DeclTy &D, const Expr *E) {
|
|
assert(!DiscardResult && "Should've been checked before");
|
|
|
|
unsigned DummyID = P.getOrCreateDummy(D);
|
|
|
|
if (!this->emitGetPtrGlobal(DummyID, E))
|
|
return false;
|
|
if (E->getType()->isVoidType())
|
|
return true;
|
|
|
|
// Convert the dummy pointer to another pointer type if we have to.
|
|
if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
|
|
if (isPtrType(PT))
|
|
return this->emitDecayPtr(PT_Ptr, PT, E);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// This function is constexpr if and only if To, From, and the types of
|
|
// all subobjects of To and From are types T such that...
|
|
// (3.1) - is_union_v<T> is false;
|
|
// (3.2) - is_pointer_v<T> is false;
|
|
// (3.3) - is_member_pointer_v<T> is false;
|
|
// (3.4) - is_volatile_v<T> is false; and
|
|
// (3.5) - T has no non-static data members of reference type
|
|
template <class Emitter>
|
|
bool Compiler<Emitter>::emitBuiltinBitCast(const CastExpr *E) {
|
|
const Expr *SubExpr = E->getSubExpr();
|
|
QualType FromType = SubExpr->getType();
|
|
QualType ToType = E->getType();
|
|
std::optional<PrimType> ToT = classify(ToType);
|
|
|
|
assert(!ToType->isReferenceType());
|
|
|
|
// Prepare storage for the result in case we discard.
|
|
if (DiscardResult && !Initializing && !ToT) {
|
|
std::optional<unsigned> LocalIndex = allocateLocal(E);
|
|
if (!LocalIndex)
|
|
return false;
|
|
if (!this->emitGetPtrLocal(*LocalIndex, E))
|
|
return false;
|
|
}
|
|
|
|
// Get a pointer to the value-to-cast on the stack.
|
|
// For CK_LValueToRValueBitCast, this is always an lvalue and
|
|
// we later assume it to be one (i.e. a PT_Ptr). However,
|
|
// we call this function for other utility methods where
|
|
// a bitcast might be useful, so convert it to a PT_Ptr in that case.
|
|
if (SubExpr->isGLValue() || FromType->isVectorType()) {
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
} else if (std::optional<PrimType> FromT = classify(SubExpr)) {
|
|
unsigned TempOffset =
|
|
allocateLocalPrimitive(SubExpr, *FromT, /*IsConst=*/true);
|
|
if (!this->visit(SubExpr))
|
|
return false;
|
|
if (!this->emitSetLocal(*FromT, TempOffset, E))
|
|
return false;
|
|
if (!this->emitGetPtrLocal(TempOffset, E))
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
if (!ToT) {
|
|
if (!this->emitBitCast(E))
|
|
return false;
|
|
return DiscardResult ? this->emitPopPtr(E) : true;
|
|
}
|
|
assert(ToT);
|
|
|
|
const llvm::fltSemantics *TargetSemantics = nullptr;
|
|
if (ToT == PT_Float)
|
|
TargetSemantics = &Ctx.getFloatSemantics(ToType);
|
|
|
|
// Conversion to a primitive type. FromType can be another
|
|
// primitive type, or a record/array.
|
|
bool ToTypeIsUChar = (ToType->isSpecificBuiltinType(BuiltinType::UChar) ||
|
|
ToType->isSpecificBuiltinType(BuiltinType::Char_U));
|
|
uint32_t ResultBitWidth = std::max(Ctx.getBitWidth(ToType), 8u);
|
|
|
|
if (!this->emitBitCastPrim(*ToT, ToTypeIsUChar || ToType->isStdByteType(),
|
|
ResultBitWidth, TargetSemantics, E))
|
|
return false;
|
|
|
|
if (DiscardResult)
|
|
return this->emitPop(*ToT, E);
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace clang {
|
|
namespace interp {
|
|
|
|
template class Compiler<ByteCodeEmitter>;
|
|
template class Compiler<EvalEmitter>;
|
|
|
|
} // namespace interp
|
|
} // namespace clang
|