llvm-project/llvm/lib/ProfileData/PGOCtxProfWriter.cpp
Mircea Trofin 0668bb28cc
[ctxprof] Track unhandled call targets (#131417)
Collect profiles for functions we encounter when collecting a contextual profile, that are not associated with a call site. This is expected to happen for signal handlers, but it also - problematically - currently happens for mem{memset|copy|move|set}, which are currently inserted after profile instrumentation.

Collecting a "regular" flat profile in these cases would hide the problem - that we loose better profile opportunities.
2025-03-19 13:51:22 -07:00

300 lines
12 KiB
C++

//===- PGOCtxProfWriter.cpp - Contextual Instrumentation profile writer ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Write a contextual profile to bitstream.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/PGOCtxProfWriter.h"
#include "llvm/Bitstream/BitCodeEnums.h"
#include "llvm/ProfileData/CtxInstrContextNode.h"
#include "llvm/ProfileData/PGOCtxProfReader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::ctx_profile;
static cl::opt<bool>
IncludeEmptyOpt("ctx-prof-include-empty", cl::init(false),
cl::desc("Also write profiles with all-zero counters. "
"Intended for testing/debugging."));
PGOCtxProfileWriter::PGOCtxProfileWriter(
raw_ostream &Out, std::optional<unsigned> VersionOverride,
bool IncludeEmpty)
: Writer(Out, 0),
IncludeEmpty(IncludeEmptyOpt.getNumOccurrences() > 0 ? IncludeEmptyOpt
: IncludeEmpty) {
static_assert(ContainerMagic.size() == 4);
Out.write(ContainerMagic.data(), ContainerMagic.size());
Writer.EnterBlockInfoBlock();
{
auto DescribeBlock = [&](unsigned ID, StringRef Name) {
Writer.EmitRecord(bitc::BLOCKINFO_CODE_SETBID,
SmallVector<unsigned, 1>{ID});
Writer.EmitRecord(bitc::BLOCKINFO_CODE_BLOCKNAME,
llvm::arrayRefFromStringRef(Name));
};
SmallVector<uint64_t, 16> Data;
auto DescribeRecord = [&](unsigned RecordID, StringRef Name) {
Data.clear();
Data.push_back(RecordID);
llvm::append_range(Data, Name);
Writer.EmitRecord(bitc::BLOCKINFO_CODE_SETRECORDNAME, Data);
};
DescribeBlock(PGOCtxProfileBlockIDs::ProfileMetadataBlockID, "Metadata");
DescribeRecord(PGOCtxProfileRecords::Version, "Version");
DescribeBlock(PGOCtxProfileBlockIDs::ContextsSectionBlockID, "Contexts");
DescribeBlock(PGOCtxProfileBlockIDs::ContextRootBlockID, "Root");
DescribeRecord(PGOCtxProfileRecords::Guid, "GUID");
DescribeRecord(PGOCtxProfileRecords::TotalRootEntryCount,
"TotalRootEntryCount");
DescribeRecord(PGOCtxProfileRecords::Counters, "Counters");
DescribeBlock(PGOCtxProfileBlockIDs::UnhandledBlockID, "Unhandled");
DescribeBlock(PGOCtxProfileBlockIDs::ContextNodeBlockID, "Context");
DescribeRecord(PGOCtxProfileRecords::Guid, "GUID");
DescribeRecord(PGOCtxProfileRecords::CallsiteIndex, "CalleeIndex");
DescribeRecord(PGOCtxProfileRecords::Counters, "Counters");
DescribeBlock(PGOCtxProfileBlockIDs::FlatProfilesSectionBlockID,
"FlatProfiles");
DescribeBlock(PGOCtxProfileBlockIDs::FlatProfileBlockID, "Flat");
DescribeRecord(PGOCtxProfileRecords::Guid, "GUID");
DescribeRecord(PGOCtxProfileRecords::Counters, "Counters");
}
Writer.ExitBlock();
Writer.EnterSubblock(PGOCtxProfileBlockIDs::ProfileMetadataBlockID, CodeLen);
const auto Version = VersionOverride.value_or(CurrentVersion);
Writer.EmitRecord(PGOCtxProfileRecords::Version,
SmallVector<unsigned, 1>({Version}));
}
void PGOCtxProfileWriter::writeCounters(ArrayRef<uint64_t> Counters) {
Writer.EmitCode(bitc::UNABBREV_RECORD);
Writer.EmitVBR(PGOCtxProfileRecords::Counters, VBREncodingBits);
Writer.EmitVBR(Counters.size(), VBREncodingBits);
for (uint64_t C : Counters)
Writer.EmitVBR64(C, VBREncodingBits);
}
void PGOCtxProfileWriter::writeGuid(ctx_profile::GUID Guid) {
Writer.EmitRecord(PGOCtxProfileRecords::Guid, SmallVector<uint64_t, 1>{Guid});
}
void PGOCtxProfileWriter::writeCallsiteIndex(uint32_t CallsiteIndex) {
Writer.EmitRecord(PGOCtxProfileRecords::CallsiteIndex,
SmallVector<uint64_t, 1>{CallsiteIndex});
}
void PGOCtxProfileWriter::writeRootEntryCount(uint64_t TotalRootEntryCount) {
Writer.EmitRecord(PGOCtxProfileRecords::TotalRootEntryCount,
SmallVector<uint64_t, 1>{TotalRootEntryCount});
}
// recursively write all the subcontexts. We do need to traverse depth first to
// model the context->subcontext implicitly, and since this captures call
// stacks, we don't really need to be worried about stack overflow and we can
// keep the implementation simple.
void PGOCtxProfileWriter::writeNode(uint32_t CallsiteIndex,
const ContextNode &Node) {
// A node with no counters is an error. We don't expect this to happen from
// the runtime, rather, this is interesting for testing the reader.
if (!IncludeEmpty && (Node.counters_size() > 0 && Node.entrycount() == 0))
return;
Writer.EnterSubblock(PGOCtxProfileBlockIDs::ContextNodeBlockID, CodeLen);
writeGuid(Node.guid());
writeCallsiteIndex(CallsiteIndex);
writeCounters({Node.counters(), Node.counters_size()});
writeSubcontexts(Node);
Writer.ExitBlock();
}
void PGOCtxProfileWriter::writeSubcontexts(const ContextNode &Node) {
for (uint32_t I = 0U; I < Node.callsites_size(); ++I)
for (const auto *Subcontext = Node.subContexts()[I]; Subcontext;
Subcontext = Subcontext->next())
writeNode(I, *Subcontext);
}
void PGOCtxProfileWriter::startContextSection() {
Writer.EnterSubblock(PGOCtxProfileBlockIDs::ContextsSectionBlockID, CodeLen);
}
void PGOCtxProfileWriter::startFlatSection() {
Writer.EnterSubblock(PGOCtxProfileBlockIDs::FlatProfilesSectionBlockID,
CodeLen);
}
void PGOCtxProfileWriter::endContextSection() { Writer.ExitBlock(); }
void PGOCtxProfileWriter::endFlatSection() { Writer.ExitBlock(); }
void PGOCtxProfileWriter::writeContextual(const ContextNode &RootNode,
const ContextNode *Unhandled,
uint64_t TotalRootEntryCount) {
if (!IncludeEmpty && (!TotalRootEntryCount || (RootNode.counters_size() > 0 &&
RootNode.entrycount() == 0)))
return;
Writer.EnterSubblock(PGOCtxProfileBlockIDs::ContextRootBlockID, CodeLen);
writeGuid(RootNode.guid());
writeRootEntryCount(TotalRootEntryCount);
writeCounters({RootNode.counters(), RootNode.counters_size()});
Writer.EnterSubblock(PGOCtxProfileBlockIDs::UnhandledBlockID, CodeLen);
for (const auto *P = Unhandled; P; P = P->next())
writeFlat(P->guid(), P->counters(), P->counters_size());
Writer.ExitBlock();
writeSubcontexts(RootNode);
Writer.ExitBlock();
}
void PGOCtxProfileWriter::writeFlat(ctx_profile::GUID Guid,
const uint64_t *Buffer, size_t Size) {
Writer.EnterSubblock(PGOCtxProfileBlockIDs::FlatProfileBlockID, CodeLen);
writeGuid(Guid);
writeCounters({Buffer, Size});
Writer.ExitBlock();
}
namespace {
/// Representation of the context node suitable for yaml serialization /
/// deserialization.
using SerializableFlatProfileRepresentation =
std::pair<ctx_profile::GUID, std::vector<uint64_t>>;
struct SerializableCtxRepresentation {
ctx_profile::GUID Guid = 0;
std::vector<uint64_t> Counters;
std::vector<std::vector<SerializableCtxRepresentation>> Callsites;
};
struct SerializableRootRepresentation : public SerializableCtxRepresentation {
uint64_t TotalRootEntryCount = 0;
std::vector<SerializableFlatProfileRepresentation> Unhandled;
};
struct SerializableProfileRepresentation {
std::vector<SerializableRootRepresentation> Contexts;
std::vector<SerializableFlatProfileRepresentation> FlatProfiles;
};
ctx_profile::ContextNode *
createNode(std::vector<std::unique_ptr<char[]>> &Nodes,
const std::vector<SerializableCtxRepresentation> &DCList);
// Convert a DeserializableCtx into a ContextNode, potentially linking it to
// its sibling (e.g. callee at same callsite) "Next".
ctx_profile::ContextNode *
createNode(std::vector<std::unique_ptr<char[]>> &Nodes,
const SerializableCtxRepresentation &DC,
ctx_profile::ContextNode *Next = nullptr) {
auto AllocSize = ctx_profile::ContextNode::getAllocSize(DC.Counters.size(),
DC.Callsites.size());
auto *Mem = Nodes.emplace_back(std::make_unique<char[]>(AllocSize)).get();
std::memset(Mem, 0, AllocSize);
auto *Ret = new (Mem) ctx_profile::ContextNode(DC.Guid, DC.Counters.size(),
DC.Callsites.size(), Next);
std::memcpy(Ret->counters(), DC.Counters.data(),
sizeof(uint64_t) * DC.Counters.size());
for (const auto &[I, DCList] : llvm::enumerate(DC.Callsites))
Ret->subContexts()[I] = createNode(Nodes, DCList);
return Ret;
}
// Convert a list of SerializableCtxRepresentation into a linked list of
// ContextNodes.
ctx_profile::ContextNode *
createNode(std::vector<std::unique_ptr<char[]>> &Nodes,
const std::vector<SerializableCtxRepresentation> &DCList) {
ctx_profile::ContextNode *List = nullptr;
for (const auto &DC : DCList)
List = createNode(Nodes, DC, List);
return List;
}
} // namespace
LLVM_YAML_IS_SEQUENCE_VECTOR(SerializableCtxRepresentation)
LLVM_YAML_IS_SEQUENCE_VECTOR(std::vector<SerializableCtxRepresentation>)
LLVM_YAML_IS_SEQUENCE_VECTOR(SerializableRootRepresentation)
LLVM_YAML_IS_SEQUENCE_VECTOR(SerializableFlatProfileRepresentation)
template <> struct yaml::MappingTraits<SerializableCtxRepresentation> {
static void mapping(yaml::IO &IO, SerializableCtxRepresentation &SCR) {
IO.mapRequired("Guid", SCR.Guid);
IO.mapRequired("Counters", SCR.Counters);
IO.mapOptional("Callsites", SCR.Callsites);
}
};
template <> struct yaml::MappingTraits<SerializableRootRepresentation> {
static void mapping(yaml::IO &IO, SerializableRootRepresentation &R) {
yaml::MappingTraits<SerializableCtxRepresentation>::mapping(IO, R);
IO.mapRequired("TotalRootEntryCount", R.TotalRootEntryCount);
IO.mapOptional("Unhandled", R.Unhandled);
}
};
template <> struct yaml::MappingTraits<SerializableProfileRepresentation> {
static void mapping(yaml::IO &IO, SerializableProfileRepresentation &SPR) {
IO.mapOptional("Contexts", SPR.Contexts);
IO.mapOptional("FlatProfiles", SPR.FlatProfiles);
}
};
template <> struct yaml::MappingTraits<SerializableFlatProfileRepresentation> {
static void mapping(yaml::IO &IO,
SerializableFlatProfileRepresentation &SFPR) {
IO.mapRequired("Guid", SFPR.first);
IO.mapRequired("Counters", SFPR.second);
}
};
Error llvm::createCtxProfFromYAML(StringRef Profile, raw_ostream &Out) {
yaml::Input In(Profile);
SerializableProfileRepresentation SPR;
In >> SPR;
if (In.error())
return createStringError(In.error(), "incorrect yaml content");
std::vector<std::unique_ptr<char[]>> Nodes;
std::error_code EC;
if (EC)
return createStringError(EC, "failed to open output");
PGOCtxProfileWriter Writer(Out);
if (!SPR.Contexts.empty()) {
Writer.startContextSection();
for (const auto &DC : SPR.Contexts) {
auto *TopList = createNode(Nodes, DC);
if (!TopList)
return createStringError(
"Unexpected error converting internal structure to ctx profile");
ctx_profile::ContextNode *FirstUnhandled = nullptr;
for (const auto &U : DC.Unhandled) {
SerializableCtxRepresentation Unhandled;
Unhandled.Guid = U.first;
Unhandled.Counters = U.second;
FirstUnhandled = createNode(Nodes, Unhandled, FirstUnhandled);
}
Writer.writeContextual(*TopList, FirstUnhandled, DC.TotalRootEntryCount);
}
Writer.endContextSection();
}
if (!SPR.FlatProfiles.empty()) {
Writer.startFlatSection();
for (const auto &[Guid, Counters] : SPR.FlatProfiles)
Writer.writeFlat(Guid, Counters.data(), Counters.size());
Writer.endFlatSection();
}
if (EC)
return createStringError(EC, "failed to write output");
return Error::success();
}