llvm-project/clang/lib/Parse/ParseExprCXX.cpp
Chris Lattner 45ddec319e ParseCXXSimpleTypeSpecifier can only be called on things that are
verified to be simple type specifiers, so there is no need for it
to call TryAnnotateTypeOrScopeToken.

Make MaybeParseCXXScopeSpecifier reject ::new and ::delete with a 
hard error now that it may never be transitively called in a 
context where these are legal.  This allows me to start 
disentangling things more.

llvm-svn: 61659
2009-01-05 00:13:00 +00:00

865 lines
29 KiB
C++

//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expression parsing implementation for C++.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/Diagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/DeclSpec.h"
#include "AstGuard.h"
using namespace clang;
/// MaybeParseCXXScopeSpecifier - Parse global scope or nested-name-specifier.
/// Returns true if a nested-name-specifier was parsed from the token stream.
///
/// Note that this routine emits an error if you call it with ::new or ::delete
/// as the current tokens, so only call it in contexts where these are invalid.
///
/// '::'[opt] nested-name-specifier
/// '::'
///
/// nested-name-specifier:
/// type-name '::'
/// namespace-name '::'
/// nested-name-specifier identifier '::'
/// nested-name-specifier 'template'[opt] simple-template-id '::' [TODO]
///
bool Parser::MaybeParseCXXScopeSpecifier(CXXScopeSpec &SS,
const Token *GlobalQualifier) {
assert(getLang().CPlusPlus &&
"Call sites of this function should be guarded by checking for C++.");
if (Tok.is(tok::annot_cxxscope)) {
assert(GlobalQualifier == 0 &&
"Cannot have :: followed by a resolved annotation scope");
SS.setScopeRep(Tok.getAnnotationValue());
SS.setRange(Tok.getAnnotationRange());
ConsumeToken();
return true;
}
if (GlobalQualifier == 0 &&
Tok.isNot(tok::coloncolon) &&
(Tok.isNot(tok::identifier) || NextToken().isNot(tok::coloncolon)))
return false;
if (GlobalQualifier) {
// Pre-parsed '::'.
SS.setBeginLoc(GlobalQualifier->getLocation());
SS.setScopeRep(Actions.ActOnCXXGlobalScopeSpecifier(CurScope,
GlobalQualifier->getLocation()));
SS.setEndLoc(GlobalQualifier->getLocation());
assert(Tok.isNot(tok::kw_new) && Tok.isNot(tok::kw_delete) &&
"Never called with preparsed :: qualifier and with new/delete");
} else {
SS.setBeginLoc(Tok.getLocation());
// '::' - Global scope qualifier.
if (Tok.is(tok::coloncolon)) {
SourceLocation CCLoc = ConsumeToken();
// ::new and ::delete aren't nested-name-specifiers, and
// MaybeParseCXXScopeSpecifier is never called in a context where one could
// exist. This means that if we see it, we have a syntax error.
if (Tok.is(tok::kw_new) || Tok.is(tok::kw_delete)) {
Diag(Tok, diag::err_invalid_qualified_new_delete)
<< Tok.is(tok::kw_delete);
SS.setBeginLoc(SourceLocation());
return false;
}
// Global scope.
SS.setScopeRep(Actions.ActOnCXXGlobalScopeSpecifier(CurScope, CCLoc));
SS.setEndLoc(CCLoc);
}
}
// nested-name-specifier:
// type-name '::'
// namespace-name '::'
// nested-name-specifier identifier '::'
// nested-name-specifier 'template'[opt] simple-template-id '::' [TODO]
while (Tok.is(tok::identifier) && NextToken().is(tok::coloncolon)) {
IdentifierInfo *II = Tok.getIdentifierInfo();
SourceLocation IdLoc = ConsumeToken();
assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
SourceLocation CCLoc = ConsumeToken();
if (SS.isInvalid())
continue;
SS.setScopeRep(
Actions.ActOnCXXNestedNameSpecifier(CurScope, SS, IdLoc, CCLoc, *II));
SS.setEndLoc(CCLoc);
}
return true;
}
/// ParseCXXIdExpression - Handle id-expression.
///
/// id-expression:
/// unqualified-id
/// qualified-id
///
/// unqualified-id:
/// identifier
/// operator-function-id
/// conversion-function-id [TODO]
/// '~' class-name [TODO]
/// template-id [TODO]
///
/// qualified-id:
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
/// '::' identifier
/// '::' operator-function-id
/// '::' template-id [TODO]
///
/// nested-name-specifier:
/// type-name '::'
/// namespace-name '::'
/// nested-name-specifier identifier '::'
/// nested-name-specifier 'template'[opt] simple-template-id '::' [TODO]
///
/// NOTE: The standard specifies that, for qualified-id, the parser does not
/// expect:
///
/// '::' conversion-function-id
/// '::' '~' class-name
///
/// This may cause a slight inconsistency on diagnostics:
///
/// class C {};
/// namespace A {}
/// void f() {
/// :: A :: ~ C(); // Some Sema error about using destructor with a
/// // namespace.
/// :: ~ C(); // Some Parser error like 'unexpected ~'.
/// }
///
/// We simplify the parser a bit and make it work like:
///
/// qualified-id:
/// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
/// '::' unqualified-id
///
/// That way Sema can handle and report similar errors for namespaces and the
/// global scope.
///
Parser::OwningExprResult Parser::ParseCXXIdExpression() {
// qualified-id:
// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
// '::' unqualified-id
//
CXXScopeSpec SS;
MaybeParseCXXScopeSpecifier(SS);
// unqualified-id:
// identifier
// operator-function-id
// conversion-function-id
// '~' class-name [TODO]
// template-id [TODO]
//
switch (Tok.getKind()) {
default:
return ExprError(Diag(Tok, diag::err_expected_unqualified_id));
case tok::identifier: {
// Consume the identifier so that we can see if it is followed by a '('.
IdentifierInfo &II = *Tok.getIdentifierInfo();
SourceLocation L = ConsumeToken();
return Owned(Actions.ActOnIdentifierExpr(CurScope, L, II,
Tok.is(tok::l_paren), &SS));
}
case tok::kw_operator: {
SourceLocation OperatorLoc = Tok.getLocation();
if (OverloadedOperatorKind Op = TryParseOperatorFunctionId()) {
return Owned(Actions.ActOnCXXOperatorFunctionIdExpr(
CurScope, OperatorLoc, Op, Tok.is(tok::l_paren), SS));
} else if (TypeTy *Type = ParseConversionFunctionId()) {
return Owned(Actions.ActOnCXXConversionFunctionExpr(
CurScope, OperatorLoc, Type, Tok.is(tok::l_paren),SS));
}
// We already complained about a bad conversion-function-id,
// above.
return ExprError();
}
} // switch.
assert(0 && "The switch was supposed to take care everything.");
}
/// ParseCXXCasts - This handles the various ways to cast expressions to another
/// type.
///
/// postfix-expression: [C++ 5.2p1]
/// 'dynamic_cast' '<' type-name '>' '(' expression ')'
/// 'static_cast' '<' type-name '>' '(' expression ')'
/// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
/// 'const_cast' '<' type-name '>' '(' expression ')'
///
Parser::OwningExprResult Parser::ParseCXXCasts() {
tok::TokenKind Kind = Tok.getKind();
const char *CastName = 0; // For error messages
switch (Kind) {
default: assert(0 && "Unknown C++ cast!"); abort();
case tok::kw_const_cast: CastName = "const_cast"; break;
case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
case tok::kw_static_cast: CastName = "static_cast"; break;
}
SourceLocation OpLoc = ConsumeToken();
SourceLocation LAngleBracketLoc = Tok.getLocation();
if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
return ExprError();
TypeTy *CastTy = ParseTypeName();
SourceLocation RAngleBracketLoc = Tok.getLocation();
if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
if (Tok.isNot(tok::l_paren))
return ExprError(Diag(Tok, diag::err_expected_lparen_after) << CastName);
OwningExprResult Result(ParseSimpleParenExpression(RParenLoc));
if (!Result.isInvalid())
Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
LAngleBracketLoc, CastTy, RAngleBracketLoc,
LParenLoc, Result.release(), RParenLoc);
return move(Result);
}
/// ParseCXXTypeid - This handles the C++ typeid expression.
///
/// postfix-expression: [C++ 5.2p1]
/// 'typeid' '(' expression ')'
/// 'typeid' '(' type-id ')'
///
Parser::OwningExprResult Parser::ParseCXXTypeid() {
assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
SourceLocation OpLoc = ConsumeToken();
SourceLocation LParenLoc = Tok.getLocation();
SourceLocation RParenLoc;
// typeid expressions are always parenthesized.
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"typeid"))
return ExprError();
OwningExprResult Result(Actions);
if (isTypeIdInParens()) {
TypeTy *Ty = ParseTypeName();
// Match the ')'.
MatchRHSPunctuation(tok::r_paren, LParenLoc);
if (!Ty)
return ExprError();
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
Ty, RParenLoc);
} else {
Result = ParseExpression();
// Match the ')'.
if (Result.isInvalid())
SkipUntil(tok::r_paren);
else {
MatchRHSPunctuation(tok::r_paren, LParenLoc);
Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
Result.release(), RParenLoc);
}
}
return move(Result);
}
/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
///
/// boolean-literal: [C++ 2.13.5]
/// 'true'
/// 'false'
Parser::OwningExprResult Parser::ParseCXXBoolLiteral() {
tok::TokenKind Kind = Tok.getKind();
return Owned(Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind));
}
/// ParseThrowExpression - This handles the C++ throw expression.
///
/// throw-expression: [C++ 15]
/// 'throw' assignment-expression[opt]
Parser::OwningExprResult Parser::ParseThrowExpression() {
assert(Tok.is(tok::kw_throw) && "Not throw!");
SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
// If the current token isn't the start of an assignment-expression,
// then the expression is not present. This handles things like:
// "C ? throw : (void)42", which is crazy but legal.
switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
case tok::semi:
case tok::r_paren:
case tok::r_square:
case tok::r_brace:
case tok::colon:
case tok::comma:
return Owned(Actions.ActOnCXXThrow(ThrowLoc));
default:
OwningExprResult Expr(ParseAssignmentExpression());
if (Expr.isInvalid()) return move(Expr);
return Owned(Actions.ActOnCXXThrow(ThrowLoc, Expr.release()));
}
}
/// ParseCXXThis - This handles the C++ 'this' pointer.
///
/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
/// a non-lvalue expression whose value is the address of the object for which
/// the function is called.
Parser::OwningExprResult Parser::ParseCXXThis() {
assert(Tok.is(tok::kw_this) && "Not 'this'!");
SourceLocation ThisLoc = ConsumeToken();
return Owned(Actions.ActOnCXXThis(ThisLoc));
}
/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
///
/// postfix-expression: [C++ 5.2p1]
/// simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
/// typename-specifier '(' expression-list[opt] ')' [TODO]
///
Parser::OwningExprResult
Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
TypeTy *TypeRep = Actions.ActOnTypeName(CurScope, DeclaratorInfo).Val;
assert(Tok.is(tok::l_paren) && "Expected '('!");
SourceLocation LParenLoc = ConsumeParen();
ExprVector Exprs(Actions);
CommaLocsTy CommaLocs;
if (Tok.isNot(tok::r_paren)) {
if (ParseExpressionList(Exprs, CommaLocs)) {
SkipUntil(tok::r_paren);
return ExprError();
}
}
// Match the ')'.
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
"Unexpected number of commas!");
return Owned(Actions.ActOnCXXTypeConstructExpr(DS.getSourceRange(), TypeRep,
LParenLoc,
Exprs.take(), Exprs.size(),
&CommaLocs[0], RParenLoc));
}
/// ParseCXXCondition - if/switch/while/for condition expression.
///
/// condition:
/// expression
/// type-specifier-seq declarator '=' assignment-expression
/// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
/// '=' assignment-expression
///
Parser::OwningExprResult Parser::ParseCXXCondition() {
if (!isCXXConditionDeclaration())
return ParseExpression(); // expression
SourceLocation StartLoc = Tok.getLocation();
// type-specifier-seq
DeclSpec DS;
ParseSpecifierQualifierList(DS);
// declarator
Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
ParseDeclarator(DeclaratorInfo);
// simple-asm-expr[opt]
if (Tok.is(tok::kw_asm)) {
OwningExprResult AsmLabel(ParseSimpleAsm());
if (AsmLabel.isInvalid()) {
SkipUntil(tok::semi);
return ExprError();
}
DeclaratorInfo.setAsmLabel(AsmLabel.release());
}
// If attributes are present, parse them.
if (Tok.is(tok::kw___attribute))
DeclaratorInfo.AddAttributes(ParseAttributes());
// '=' assignment-expression
if (Tok.isNot(tok::equal))
return ExprError(Diag(Tok, diag::err_expected_equal_after_declarator));
SourceLocation EqualLoc = ConsumeToken();
OwningExprResult AssignExpr(ParseAssignmentExpression());
if (AssignExpr.isInvalid())
return ExprError();
return Owned(Actions.ActOnCXXConditionDeclarationExpr(CurScope, StartLoc,
DeclaratorInfo,EqualLoc,
AssignExpr.release()));
}
/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
/// This should only be called when the current token is known to be part of
/// simple-type-specifier.
///
/// simple-type-specifier:
/// '::'[opt] nested-name-specifier[opt] type-name
/// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
/// char
/// wchar_t
/// bool
/// short
/// int
/// long
/// signed
/// unsigned
/// float
/// double
/// void
/// [GNU] typeof-specifier
/// [C++0x] auto [TODO]
///
/// type-name:
/// class-name
/// enum-name
/// typedef-name
///
void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
DS.SetRangeStart(Tok.getLocation());
const char *PrevSpec;
SourceLocation Loc = Tok.getLocation();
switch (Tok.getKind()) {
case tok::identifier: // foo::bar
case tok::coloncolon: // ::foo::bar
assert(0 && "Annotation token should already be formed!");
default:
assert(0 && "Not a simple-type-specifier token!");
abort();
// type-name
case tok::annot_qualtypename: {
DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
Tok.getAnnotationValue());
break;
}
// builtin types
case tok::kw_short:
DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
break;
case tok::kw_long:
DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
break;
case tok::kw_signed:
DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
break;
case tok::kw_unsigned:
DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
break;
case tok::kw_void:
DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
break;
case tok::kw_char:
DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
break;
case tok::kw_int:
DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
break;
case tok::kw_float:
DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
break;
case tok::kw_double:
DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
break;
case tok::kw_wchar_t:
DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
break;
case tok::kw_bool:
DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
break;
// GNU typeof support.
case tok::kw_typeof:
ParseTypeofSpecifier(DS);
DS.Finish(Diags, PP.getSourceManager(), getLang());
return;
}
if (Tok.is(tok::annot_qualtypename))
DS.SetRangeEnd(Tok.getAnnotationEndLoc());
else
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
DS.Finish(Diags, PP.getSourceManager(), getLang());
}
/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
/// [dcl.name]), which is a non-empty sequence of type-specifiers,
/// e.g., "const short int". Note that the DeclSpec is *not* finished
/// by parsing the type-specifier-seq, because these sequences are
/// typically followed by some form of declarator. Returns true and
/// emits diagnostics if this is not a type-specifier-seq, false
/// otherwise.
///
/// type-specifier-seq: [C++ 8.1]
/// type-specifier type-specifier-seq[opt]
///
bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
DS.SetRangeStart(Tok.getLocation());
const char *PrevSpec = 0;
int isInvalid = 0;
// Parse one or more of the type specifiers.
if (!MaybeParseTypeSpecifier(DS, isInvalid, PrevSpec)) {
Diag(Tok, diag::err_operator_missing_type_specifier);
return true;
}
while (MaybeParseTypeSpecifier(DS, isInvalid, PrevSpec)) ;
return false;
}
/// TryParseOperatorFunctionId - Attempts to parse a C++ overloaded
/// operator name (C++ [over.oper]). If successful, returns the
/// predefined identifier that corresponds to that overloaded
/// operator. Otherwise, returns NULL and does not consume any tokens.
///
/// operator-function-id: [C++ 13.5]
/// 'operator' operator
///
/// operator: one of
/// new delete new[] delete[]
/// + - * / % ^ & | ~
/// ! = < > += -= *= /= %=
/// ^= &= |= << >> >>= <<= == !=
/// <= >= && || ++ -- , ->* ->
/// () []
OverloadedOperatorKind Parser::TryParseOperatorFunctionId() {
assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
OverloadedOperatorKind Op = OO_None;
switch (NextToken().getKind()) {
case tok::kw_new:
ConsumeToken(); // 'operator'
ConsumeToken(); // 'new'
if (Tok.is(tok::l_square)) {
ConsumeBracket(); // '['
ExpectAndConsume(tok::r_square, diag::err_expected_rsquare); // ']'
Op = OO_Array_New;
} else {
Op = OO_New;
}
return Op;
case tok::kw_delete:
ConsumeToken(); // 'operator'
ConsumeToken(); // 'delete'
if (Tok.is(tok::l_square)) {
ConsumeBracket(); // '['
ExpectAndConsume(tok::r_square, diag::err_expected_rsquare); // ']'
Op = OO_Array_Delete;
} else {
Op = OO_Delete;
}
return Op;
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
case tok::Token: Op = OO_##Name; break;
#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
#include "clang/Basic/OperatorKinds.def"
case tok::l_paren:
ConsumeToken(); // 'operator'
ConsumeParen(); // '('
ExpectAndConsume(tok::r_paren, diag::err_expected_rparen); // ')'
return OO_Call;
case tok::l_square:
ConsumeToken(); // 'operator'
ConsumeBracket(); // '['
ExpectAndConsume(tok::r_square, diag::err_expected_rsquare); // ']'
return OO_Subscript;
default:
return OO_None;
}
ConsumeToken(); // 'operator'
ConsumeAnyToken(); // the operator itself
return Op;
}
/// ParseConversionFunctionId - Parse a C++ conversion-function-id,
/// which expresses the name of a user-defined conversion operator
/// (C++ [class.conv.fct]p1). Returns the type that this operator is
/// specifying a conversion for, or NULL if there was an error.
///
/// conversion-function-id: [C++ 12.3.2]
/// operator conversion-type-id
///
/// conversion-type-id:
/// type-specifier-seq conversion-declarator[opt]
///
/// conversion-declarator:
/// ptr-operator conversion-declarator[opt]
Parser::TypeTy *Parser::ParseConversionFunctionId() {
assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
ConsumeToken(); // 'operator'
// Parse the type-specifier-seq.
DeclSpec DS;
if (ParseCXXTypeSpecifierSeq(DS))
return 0;
// Parse the conversion-declarator, which is merely a sequence of
// ptr-operators.
Declarator D(DS, Declarator::TypeNameContext);
ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
// Finish up the type.
Action::TypeResult Result = Actions.ActOnTypeName(CurScope, D);
if (Result.isInvalid)
return 0;
else
return Result.Val;
}
/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
/// memory in a typesafe manner and call constructors.
///
/// This method is called to parse the new expression after the optional :: has
/// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
/// is its location. Otherwise, "Start" is the location of the 'new' token.
///
/// new-expression:
/// '::'[opt] 'new' new-placement[opt] new-type-id
/// new-initializer[opt]
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
/// new-initializer[opt]
///
/// new-placement:
/// '(' expression-list ')'
///
/// new-type-id:
/// type-specifier-seq new-declarator[opt]
///
/// new-declarator:
/// ptr-operator new-declarator[opt]
/// direct-new-declarator
///
/// new-initializer:
/// '(' expression-list[opt] ')'
/// [C++0x] braced-init-list [TODO]
///
Parser::OwningExprResult
Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
assert(Tok.is(tok::kw_new) && "expected 'new' token");
ConsumeToken(); // Consume 'new'
// A '(' now can be a new-placement or the '(' wrapping the type-id in the
// second form of new-expression. It can't be a new-type-id.
ExprVector PlacementArgs(Actions);
SourceLocation PlacementLParen, PlacementRParen;
bool ParenTypeId;
DeclSpec DS;
Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
if (Tok.is(tok::l_paren)) {
// If it turns out to be a placement, we change the type location.
PlacementLParen = ConsumeParen();
if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
PlacementRParen = MatchRHSPunctuation(tok::r_paren, PlacementLParen);
if (PlacementRParen.isInvalid()) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
if (PlacementArgs.empty()) {
// Reset the placement locations. There was no placement.
PlacementLParen = PlacementRParen = SourceLocation();
ParenTypeId = true;
} else {
// We still need the type.
if (Tok.is(tok::l_paren)) {
SourceLocation LParen = ConsumeParen();
ParseSpecifierQualifierList(DS);
ParseDeclarator(DeclaratorInfo);
MatchRHSPunctuation(tok::r_paren, LParen);
ParenTypeId = true;
} else {
if (ParseCXXTypeSpecifierSeq(DS))
DeclaratorInfo.setInvalidType(true);
else
ParseDeclaratorInternal(DeclaratorInfo,
&Parser::ParseDirectNewDeclarator);
ParenTypeId = false;
}
}
} else {
// A new-type-id is a simplified type-id, where essentially the
// direct-declarator is replaced by a direct-new-declarator.
if (ParseCXXTypeSpecifierSeq(DS))
DeclaratorInfo.setInvalidType(true);
else
ParseDeclaratorInternal(DeclaratorInfo,
&Parser::ParseDirectNewDeclarator);
ParenTypeId = false;
}
if (DeclaratorInfo.getInvalidType()) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
ExprVector ConstructorArgs(Actions);
SourceLocation ConstructorLParen, ConstructorRParen;
if (Tok.is(tok::l_paren)) {
ConstructorLParen = ConsumeParen();
if (Tok.isNot(tok::r_paren)) {
CommaLocsTy CommaLocs;
if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
}
ConstructorRParen = MatchRHSPunctuation(tok::r_paren, ConstructorLParen);
if (ConstructorRParen.isInvalid()) {
SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
return ExprError();
}
}
return Owned(Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
PlacementArgs.take(), PlacementArgs.size(),
PlacementRParen, ParenTypeId, DeclaratorInfo,
ConstructorLParen, ConstructorArgs.take(),
ConstructorArgs.size(), ConstructorRParen));
}
/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
/// passed to ParseDeclaratorInternal.
///
/// direct-new-declarator:
/// '[' expression ']'
/// direct-new-declarator '[' constant-expression ']'
///
void Parser::ParseDirectNewDeclarator(Declarator &D) {
// Parse the array dimensions.
bool first = true;
while (Tok.is(tok::l_square)) {
SourceLocation LLoc = ConsumeBracket();
OwningExprResult Size(first ? ParseExpression()
: ParseConstantExpression());
if (Size.isInvalid()) {
// Recover
SkipUntil(tok::r_square);
return;
}
first = false;
D.AddTypeInfo(DeclaratorChunk::getArray(0, /*static=*/false, /*star=*/false,
Size.release(), LLoc));
if (MatchRHSPunctuation(tok::r_square, LLoc).isInvalid())
return;
}
}
/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
/// This ambiguity appears in the syntax of the C++ new operator.
///
/// new-expression:
/// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
/// new-initializer[opt]
///
/// new-placement:
/// '(' expression-list ')'
///
bool Parser::ParseExpressionListOrTypeId(ExprListTy &PlacementArgs,
Declarator &D) {
// The '(' was already consumed.
if (isTypeIdInParens()) {
ParseSpecifierQualifierList(D.getMutableDeclSpec());
ParseDeclarator(D);
return D.getInvalidType();
}
// It's not a type, it has to be an expression list.
// Discard the comma locations - ActOnCXXNew has enough parameters.
CommaLocsTy CommaLocs;
return ParseExpressionList(PlacementArgs, CommaLocs);
}
/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
/// to free memory allocated by new.
///
/// This method is called to parse the 'delete' expression after the optional
/// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
/// and "Start" is its location. Otherwise, "Start" is the location of the
/// 'delete' token.
///
/// delete-expression:
/// '::'[opt] 'delete' cast-expression
/// '::'[opt] 'delete' '[' ']' cast-expression
Parser::OwningExprResult
Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
ConsumeToken(); // Consume 'delete'
// Array delete?
bool ArrayDelete = false;
if (Tok.is(tok::l_square)) {
ArrayDelete = true;
SourceLocation LHS = ConsumeBracket();
SourceLocation RHS = MatchRHSPunctuation(tok::r_square, LHS);
if (RHS.isInvalid())
return ExprError();
}
OwningExprResult Operand(ParseCastExpression(false));
if (Operand.isInvalid())
return move(Operand);
return Owned(Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete,
Operand.release()));
}