mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-25 21:06:06 +00:00

Summary: This revision implement new mechanism for DWARFRewriter. In the new mechanism, we adopt the same way with DWARFLinker did. By parsing Debug information into IR, we are allowed to handle debug information more flexible. Now the debug information updating process relies on IR and IR will be written out to binary once the updating finished. A new class was added: DIEBuilder. This class is responsible for parsing debug information and raising it to the IR level. This class is also used to write out the .debug_info and .debug_abbrev sections. Since we output brand new Abbrev section we won't need to always convert low_pc/high_pc into ranges. When conversion does happen we can also remove low_pc entry. Differential Revision: https://phabricator.intern.facebook.com/D39484421 Tasks: T117448832
1738 lines
65 KiB
C++
1738 lines
65 KiB
C++
//===- bolt/Core/DebugData.cpp - Debugging information handling -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements functions and classes for handling debug info.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Core/DebugData.h"
|
|
#include "bolt/Core/BinaryContext.h"
|
|
#include "bolt/Core/DIEBuilder.h"
|
|
#include "bolt/Rewrite/RewriteInstance.h"
|
|
#include "bolt/Utils/Utils.h"
|
|
#include "llvm/BinaryFormat/Dwarf.h"
|
|
#include "llvm/CodeGen/DIE.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugAddr.h"
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCObjectStreamer.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/EndianStream.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/SHA1.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "bolt-debug-info"
|
|
|
|
namespace opts {
|
|
extern llvm::cl::opt<unsigned> Verbosity;
|
|
} // namespace opts
|
|
|
|
namespace llvm {
|
|
class MCSymbol;
|
|
|
|
namespace bolt {
|
|
|
|
static void replaceLocValbyForm(DIEBuilder &DIEBldr, DIE &Die, DIEValue DIEVal,
|
|
dwarf::Form Format, uint64_t NewVal) {
|
|
if (Format == dwarf::DW_FORM_loclistx)
|
|
DIEBldr.replaceValue(&Die, DIEVal.getAttribute(), Format,
|
|
DIELocList(NewVal));
|
|
else
|
|
DIEBldr.replaceValue(&Die, DIEVal.getAttribute(), Format,
|
|
DIEInteger(NewVal));
|
|
}
|
|
|
|
std::optional<AttrInfo>
|
|
findAttributeInfo(const DWARFDie DIE,
|
|
const DWARFAbbreviationDeclaration *AbbrevDecl,
|
|
uint32_t Index) {
|
|
const DWARFUnit &U = *DIE.getDwarfUnit();
|
|
uint64_t Offset =
|
|
AbbrevDecl->getAttributeOffsetFromIndex(Index, DIE.getOffset(), U);
|
|
std::optional<DWARFFormValue> Value =
|
|
AbbrevDecl->getAttributeValueFromOffset(Index, Offset, U);
|
|
if (!Value)
|
|
return std::nullopt;
|
|
// AttributeSpec
|
|
const DWARFAbbreviationDeclaration::AttributeSpec *AttrVal =
|
|
AbbrevDecl->attributes().begin() + Index;
|
|
uint32_t ValSize = 0;
|
|
std::optional<int64_t> ValSizeOpt = AttrVal->getByteSize(U);
|
|
if (ValSizeOpt) {
|
|
ValSize = static_cast<uint32_t>(*ValSizeOpt);
|
|
} else {
|
|
DWARFDataExtractor DebugInfoData = U.getDebugInfoExtractor();
|
|
uint64_t NewOffset = Offset;
|
|
DWARFFormValue::skipValue(Value->getForm(), DebugInfoData, &NewOffset,
|
|
U.getFormParams());
|
|
// This includes entire size of the entry, which might not be just the
|
|
// encoding part. For example for DW_AT_loc it will include expression
|
|
// location.
|
|
ValSize = NewOffset - Offset;
|
|
}
|
|
return AttrInfo{*Value, DIE.getAbbreviationDeclarationPtr(), Offset, ValSize};
|
|
}
|
|
|
|
std::optional<AttrInfo> findAttributeInfo(const DWARFDie DIE,
|
|
dwarf::Attribute Attr) {
|
|
if (!DIE.isValid())
|
|
return std::nullopt;
|
|
const DWARFAbbreviationDeclaration *AbbrevDecl =
|
|
DIE.getAbbreviationDeclarationPtr();
|
|
if (!AbbrevDecl)
|
|
return std::nullopt;
|
|
std::optional<uint32_t> Index = AbbrevDecl->findAttributeIndex(Attr);
|
|
if (!Index)
|
|
return std::nullopt;
|
|
return findAttributeInfo(DIE, AbbrevDecl, *Index);
|
|
}
|
|
|
|
const DebugLineTableRowRef DebugLineTableRowRef::NULL_ROW{0, 0};
|
|
|
|
LLVM_ATTRIBUTE_UNUSED
|
|
static void printLE64(const std::string &S) {
|
|
for (uint32_t I = 0, Size = S.size(); I < Size; ++I) {
|
|
errs() << Twine::utohexstr(S[I]);
|
|
errs() << Twine::utohexstr((int8_t)S[I]);
|
|
}
|
|
errs() << "\n";
|
|
}
|
|
|
|
// Writes address ranges to Writer as pairs of 64-bit (address, size).
|
|
// If RelativeRange is true, assumes the address range to be written must be of
|
|
// the form (begin address, range size), otherwise (begin address, end address).
|
|
// Terminates the list by writing a pair of two zeroes.
|
|
// Returns the number of written bytes.
|
|
static uint64_t
|
|
writeAddressRanges(raw_svector_ostream &Stream,
|
|
const DebugAddressRangesVector &AddressRanges,
|
|
const bool WriteRelativeRanges = false) {
|
|
for (const DebugAddressRange &Range : AddressRanges) {
|
|
support::endian::write(Stream, Range.LowPC, support::little);
|
|
support::endian::write(
|
|
Stream, WriteRelativeRanges ? Range.HighPC - Range.LowPC : Range.HighPC,
|
|
support::little);
|
|
}
|
|
// Finish with 0 entries.
|
|
support::endian::write(Stream, 0ULL, support::little);
|
|
support::endian::write(Stream, 0ULL, support::little);
|
|
return AddressRanges.size() * 16 + 16;
|
|
}
|
|
|
|
DebugRangesSectionWriter::DebugRangesSectionWriter() {
|
|
RangesBuffer = std::make_unique<DebugBufferVector>();
|
|
RangesStream = std::make_unique<raw_svector_ostream>(*RangesBuffer);
|
|
|
|
// Add an empty range as the first entry;
|
|
SectionOffset +=
|
|
writeAddressRanges(*RangesStream.get(), DebugAddressRangesVector{});
|
|
Kind = RangesWriterKind::DebugRangesWriter;
|
|
}
|
|
|
|
uint64_t DebugRangesSectionWriter::addRanges(
|
|
DebugAddressRangesVector &&Ranges,
|
|
std::map<DebugAddressRangesVector, uint64_t> &CachedRanges) {
|
|
if (Ranges.empty())
|
|
return getEmptyRangesOffset();
|
|
|
|
const auto RI = CachedRanges.find(Ranges);
|
|
if (RI != CachedRanges.end())
|
|
return RI->second;
|
|
|
|
const uint64_t EntryOffset = addRanges(Ranges);
|
|
CachedRanges.emplace(std::move(Ranges), EntryOffset);
|
|
|
|
return EntryOffset;
|
|
}
|
|
|
|
uint64_t DebugRangesSectionWriter::addRanges(DebugAddressRangesVector &Ranges) {
|
|
if (Ranges.empty())
|
|
return getEmptyRangesOffset();
|
|
|
|
// Reading the SectionOffset and updating it should be atomic to guarantee
|
|
// unique and correct offsets in patches.
|
|
std::lock_guard<std::mutex> Lock(WriterMutex);
|
|
const uint32_t EntryOffset = SectionOffset;
|
|
SectionOffset += writeAddressRanges(*RangesStream.get(), Ranges);
|
|
|
|
return EntryOffset;
|
|
}
|
|
|
|
uint64_t DebugRangesSectionWriter::getSectionOffset() {
|
|
std::lock_guard<std::mutex> Lock(WriterMutex);
|
|
return SectionOffset;
|
|
}
|
|
|
|
DebugAddrWriter *DebugRangeListsSectionWriter::AddrWriter = nullptr;
|
|
|
|
uint64_t DebugRangeListsSectionWriter::addRanges(
|
|
DebugAddressRangesVector &&Ranges,
|
|
std::map<DebugAddressRangesVector, uint64_t> &CachedRanges) {
|
|
return addRanges(Ranges);
|
|
}
|
|
|
|
struct LocListsRangelistsHeader {
|
|
UnitLengthType UnitLength; // Size of loclist entris section, not including
|
|
// size of header.
|
|
VersionType Version;
|
|
AddressSizeType AddressSize;
|
|
SegmentSelectorType SegmentSelector;
|
|
OffsetEntryCountType OffsetEntryCount;
|
|
};
|
|
|
|
static std::unique_ptr<DebugBufferVector>
|
|
getDWARF5Header(const LocListsRangelistsHeader &Header) {
|
|
std::unique_ptr<DebugBufferVector> HeaderBuffer =
|
|
std::make_unique<DebugBufferVector>();
|
|
std::unique_ptr<raw_svector_ostream> HeaderStream =
|
|
std::make_unique<raw_svector_ostream>(*HeaderBuffer);
|
|
|
|
// 7.29 length of the set of entries for this compilation unit, not including
|
|
// the length field itself
|
|
const uint32_t HeaderSize =
|
|
getDWARF5RngListLocListHeaderSize() - sizeof(UnitLengthType);
|
|
|
|
support::endian::write(*HeaderStream, Header.UnitLength + HeaderSize,
|
|
support::little);
|
|
support::endian::write(*HeaderStream, Header.Version, support::little);
|
|
support::endian::write(*HeaderStream, Header.AddressSize, support::little);
|
|
support::endian::write(*HeaderStream, Header.SegmentSelector,
|
|
support::little);
|
|
support::endian::write(*HeaderStream, Header.OffsetEntryCount,
|
|
support::little);
|
|
return HeaderBuffer;
|
|
}
|
|
|
|
struct OffsetEntry {
|
|
uint32_t Index;
|
|
uint32_t StartOffset;
|
|
uint32_t EndOffset;
|
|
};
|
|
template <typename DebugVector, typename ListEntry, typename DebugAddressEntry>
|
|
static bool emitWithBase(raw_ostream &OS, const DebugVector &Entries,
|
|
DebugAddrWriter &AddrWriter, DWARFUnit &CU,
|
|
uint32_t &Index, const ListEntry BaseAddressx,
|
|
const ListEntry OffsetPair, const ListEntry EndOfList,
|
|
const std::function<void(uint32_t)> &Func) {
|
|
if (Entries.size() < 2)
|
|
return false;
|
|
uint64_t Base = Entries[Index].LowPC;
|
|
std::vector<OffsetEntry> Offsets;
|
|
uint8_t TempBuffer[64];
|
|
while (Index < Entries.size()) {
|
|
const DebugAddressEntry &Entry = Entries[Index];
|
|
if (Entry.LowPC == 0)
|
|
break;
|
|
assert(Base <= Entry.LowPC && "Entry base is higher than low PC");
|
|
uint32_t StartOffset = Entry.LowPC - Base;
|
|
uint32_t EndOffset = Entry.HighPC - Base;
|
|
if (encodeULEB128(EndOffset, TempBuffer) > 2)
|
|
break;
|
|
Offsets.push_back({Index, StartOffset, EndOffset});
|
|
++Index;
|
|
}
|
|
|
|
if (Offsets.size() < 2) {
|
|
Index -= Offsets.size();
|
|
return false;
|
|
}
|
|
|
|
support::endian::write(OS, static_cast<uint8_t>(BaseAddressx),
|
|
support::little);
|
|
uint32_t BaseIndex = AddrWriter.getIndexFromAddress(Base, CU);
|
|
encodeULEB128(BaseIndex, OS);
|
|
for (auto &OffsetEntry : Offsets) {
|
|
support::endian::write(OS, static_cast<uint8_t>(OffsetPair),
|
|
support::little);
|
|
encodeULEB128(OffsetEntry.StartOffset, OS);
|
|
encodeULEB128(OffsetEntry.EndOffset, OS);
|
|
Func(OffsetEntry.Index);
|
|
}
|
|
support::endian::write(OS, static_cast<uint8_t>(EndOfList), support::little);
|
|
return true;
|
|
}
|
|
|
|
uint64_t
|
|
DebugRangeListsSectionWriter::addRanges(DebugAddressRangesVector &Ranges) {
|
|
std::lock_guard<std::mutex> Lock(WriterMutex);
|
|
|
|
RangeEntries.push_back(CurrentOffset);
|
|
bool WrittenStartxLength = false;
|
|
std::sort(
|
|
Ranges.begin(), Ranges.end(),
|
|
[](const DebugAddressRange &R1, const DebugAddressRange &R2) -> bool {
|
|
return R1.LowPC < R2.LowPC;
|
|
});
|
|
for (unsigned I = 0; I < Ranges.size();) {
|
|
WrittenStartxLength = false;
|
|
if (emitWithBase<DebugAddressRangesVector, dwarf::RnglistEntries,
|
|
DebugAddressRange>(
|
|
*CUBodyStream, Ranges, *AddrWriter, *CU, I,
|
|
dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
|
|
dwarf::DW_RLE_end_of_list, [](uint32_t Index) -> void {}))
|
|
continue;
|
|
|
|
const DebugAddressRange &Range = Ranges[I];
|
|
support::endian::write(*CUBodyStream,
|
|
static_cast<uint8_t>(dwarf::DW_RLE_startx_length),
|
|
support::little);
|
|
uint32_t Index = AddrWriter->getIndexFromAddress(Range.LowPC, *CU);
|
|
encodeULEB128(Index, *CUBodyStream);
|
|
encodeULEB128(Range.HighPC - Range.LowPC, *CUBodyStream);
|
|
++I;
|
|
WrittenStartxLength = true;
|
|
}
|
|
if (WrittenStartxLength)
|
|
support::endian::write(*CUBodyStream,
|
|
static_cast<uint8_t>(dwarf::DW_RLE_end_of_list),
|
|
support::little);
|
|
CurrentOffset = CUBodyBuffer->size();
|
|
return RangeEntries.size() - 1;
|
|
}
|
|
|
|
void DebugRangeListsSectionWriter::finalizeSection() {
|
|
std::unique_ptr<DebugBufferVector> CUArrayBuffer =
|
|
std::make_unique<DebugBufferVector>();
|
|
std::unique_ptr<raw_svector_ostream> CUArrayStream =
|
|
std::make_unique<raw_svector_ostream>(*CUArrayBuffer);
|
|
constexpr uint32_t SizeOfArrayEntry = 4;
|
|
const uint32_t SizeOfArraySection = RangeEntries.size() * SizeOfArrayEntry;
|
|
for (uint32_t Offset : RangeEntries)
|
|
support::endian::write(*CUArrayStream, Offset + SizeOfArraySection,
|
|
support::little);
|
|
|
|
std::unique_ptr<DebugBufferVector> Header = getDWARF5Header(
|
|
{static_cast<uint32_t>(SizeOfArraySection + CUBodyBuffer.get()->size()),
|
|
5, 8, 0, static_cast<uint32_t>(RangeEntries.size())});
|
|
*RangesStream << *Header;
|
|
*RangesStream << *CUArrayBuffer;
|
|
*RangesStream << *CUBodyBuffer;
|
|
SectionOffset = RangesBuffer->size();
|
|
}
|
|
|
|
void DebugRangeListsSectionWriter::initSection(DWARFUnit &Unit) {
|
|
CUBodyBuffer = std::make_unique<DebugBufferVector>();
|
|
CUBodyStream = std::make_unique<raw_svector_ostream>(*CUBodyBuffer);
|
|
RangeEntries.clear();
|
|
CurrentOffset = 0;
|
|
CU = &Unit;
|
|
}
|
|
|
|
void DebugARangesSectionWriter::addCURanges(uint64_t CUOffset,
|
|
DebugAddressRangesVector &&Ranges) {
|
|
std::lock_guard<std::mutex> Lock(CUAddressRangesMutex);
|
|
CUAddressRanges.emplace(CUOffset, std::move(Ranges));
|
|
}
|
|
|
|
void DebugARangesSectionWriter::writeARangesSection(
|
|
raw_svector_ostream &RangesStream, const CUOffsetMap &CUMap) const {
|
|
// For reference on the format of the .debug_aranges section, see the DWARF4
|
|
// specification, section 6.1.4 Lookup by Address
|
|
// http://www.dwarfstd.org/doc/DWARF4.pdf
|
|
for (const auto &CUOffsetAddressRangesPair : CUAddressRanges) {
|
|
const uint64_t Offset = CUOffsetAddressRangesPair.first;
|
|
const DebugAddressRangesVector &AddressRanges =
|
|
CUOffsetAddressRangesPair.second;
|
|
|
|
// Emit header.
|
|
|
|
// Size of this set: 8 (size of the header) + 4 (padding after header)
|
|
// + 2*sizeof(uint64_t) bytes for each of the ranges, plus an extra
|
|
// pair of uint64_t's for the terminating, zero-length range.
|
|
// Does not include size field itself.
|
|
uint32_t Size = 8 + 4 + 2 * sizeof(uint64_t) * (AddressRanges.size() + 1);
|
|
|
|
// Header field #1: set size.
|
|
support::endian::write(RangesStream, Size, support::little);
|
|
|
|
// Header field #2: version number, 2 as per the specification.
|
|
support::endian::write(RangesStream, static_cast<uint16_t>(2),
|
|
support::little);
|
|
|
|
assert(CUMap.count(Offset) && "Original CU offset is not found in CU Map");
|
|
// Header field #3: debug info offset of the correspondent compile unit.
|
|
support::endian::write(
|
|
RangesStream, static_cast<uint32_t>(CUMap.find(Offset)->second.Offset),
|
|
support::little);
|
|
|
|
// Header field #4: address size.
|
|
// 8 since we only write ELF64 binaries for now.
|
|
RangesStream << char(8);
|
|
|
|
// Header field #5: segment size of target architecture.
|
|
RangesStream << char(0);
|
|
|
|
// Padding before address table - 4 bytes in the 64-bit-pointer case.
|
|
support::endian::write(RangesStream, static_cast<uint32_t>(0),
|
|
support::little);
|
|
|
|
writeAddressRanges(RangesStream, AddressRanges, true);
|
|
}
|
|
}
|
|
|
|
DebugAddrWriter::DebugAddrWriter(BinaryContext *Bc) { BC = Bc; }
|
|
|
|
void DebugAddrWriter::AddressForDWOCU::dump() {
|
|
std::vector<IndexAddressPair> SortedMap(indexToAddressBegin(),
|
|
indexToAdddessEnd());
|
|
// Sorting address in increasing order of indices.
|
|
llvm::sort(SortedMap, llvm::less_first());
|
|
for (auto &Pair : SortedMap)
|
|
dbgs() << Twine::utohexstr(Pair.second) << "\t" << Pair.first << "\n";
|
|
}
|
|
uint32_t DebugAddrWriter::getIndexFromAddress(uint64_t Address, DWARFUnit &CU) {
|
|
std::lock_guard<std::mutex> Lock(WriterMutex);
|
|
const uint64_t CUID = getCUID(CU);
|
|
if (!AddressMaps.count(CUID))
|
|
AddressMaps[CUID] = AddressForDWOCU();
|
|
|
|
AddressForDWOCU &Map = AddressMaps[CUID];
|
|
auto Entry = Map.find(Address);
|
|
if (Entry == Map.end()) {
|
|
auto Index = Map.getNextIndex();
|
|
Entry = Map.insert(Address, Index).first;
|
|
}
|
|
return Entry->second;
|
|
}
|
|
|
|
// Case1) Address is not in map insert in to AddresToIndex and IndexToAddres
|
|
// Case2) Address is in the map but Index is higher or equal. Need to update
|
|
// IndexToAddrss. Case3) Address is in the map but Index is lower. Need to
|
|
// update AddressToIndex and IndexToAddress
|
|
void DebugAddrWriter::addIndexAddress(uint64_t Address, uint32_t Index,
|
|
DWARFUnit &CU) {
|
|
std::lock_guard<std::mutex> Lock(WriterMutex);
|
|
const uint64_t CUID = getCUID(CU);
|
|
AddressForDWOCU &Map = AddressMaps[CUID];
|
|
auto Entry = Map.find(Address);
|
|
if (Entry != Map.end()) {
|
|
if (Entry->second > Index)
|
|
Map.updateAddressToIndex(Address, Index);
|
|
Map.updateIndexToAddrss(Address, Index);
|
|
} else {
|
|
Map.insert(Address, Index);
|
|
}
|
|
}
|
|
|
|
AddressSectionBuffer DebugAddrWriter::finalize() {
|
|
// Need to layout all sections within .debug_addr
|
|
// Within each section sort Address by index.
|
|
AddressSectionBuffer Buffer;
|
|
raw_svector_ostream AddressStream(Buffer);
|
|
for (std::unique_ptr<DWARFUnit> &CU : BC->DwCtx->compile_units()) {
|
|
// Handling the case wehre debug information is a mix of Debug fission and
|
|
// monolitic.
|
|
if (!CU->getDWOId())
|
|
continue;
|
|
const uint64_t CUID = getCUID(*CU.get());
|
|
auto AM = AddressMaps.find(CUID);
|
|
// Adding to map even if it did not contribute to .debug_addr.
|
|
// The Skeleton CU might still have DW_AT_GNU_addr_base.
|
|
DWOIdToOffsetMap[CUID] = Buffer.size();
|
|
// If does not exist this CUs DWO section didn't contribute to .debug_addr.
|
|
if (AM == AddressMaps.end())
|
|
continue;
|
|
std::vector<IndexAddressPair> SortedMap(AM->second.indexToAddressBegin(),
|
|
AM->second.indexToAdddessEnd());
|
|
// Sorting address in increasing order of indices.
|
|
llvm::sort(SortedMap, llvm::less_first());
|
|
|
|
uint8_t AddrSize = CU->getAddressByteSize();
|
|
uint32_t Counter = 0;
|
|
auto WriteAddress = [&](uint64_t Address) -> void {
|
|
++Counter;
|
|
switch (AddrSize) {
|
|
default:
|
|
assert(false && "Address Size is invalid.");
|
|
break;
|
|
case 4:
|
|
support::endian::write(AddressStream, static_cast<uint32_t>(Address),
|
|
support::little);
|
|
break;
|
|
case 8:
|
|
support::endian::write(AddressStream, Address, support::little);
|
|
break;
|
|
}
|
|
};
|
|
|
|
for (const IndexAddressPair &Val : SortedMap) {
|
|
while (Val.first > Counter)
|
|
WriteAddress(0);
|
|
WriteAddress(Val.second);
|
|
}
|
|
}
|
|
|
|
return Buffer;
|
|
}
|
|
AddressSectionBuffer DebugAddrWriterDwarf5::finalize() {
|
|
// Need to layout all sections within .debug_addr
|
|
// Within each section sort Address by index.
|
|
AddressSectionBuffer Buffer;
|
|
raw_svector_ostream AddressStream(Buffer);
|
|
const endianness Endian =
|
|
BC->DwCtx->isLittleEndian() ? support::little : support::big;
|
|
const DWARFSection &AddrSec = BC->DwCtx->getDWARFObj().getAddrSection();
|
|
DWARFDataExtractor AddrData(BC->DwCtx->getDWARFObj(), AddrSec, Endian, 0);
|
|
DWARFDebugAddrTable AddrTable;
|
|
DIDumpOptions DumpOpts;
|
|
constexpr uint32_t HeaderSize = 8;
|
|
DenseMap<uint64_t, uint64_t> UnmodifiedAddressOffsets;
|
|
for (std::unique_ptr<DWARFUnit> &CU : BC->DwCtx->compile_units()) {
|
|
const uint64_t CUID = getCUID(*CU.get());
|
|
const uint8_t AddrSize = CU->getAddressByteSize();
|
|
auto AMIter = AddressMaps.find(CUID);
|
|
// A case where CU has entry in .debug_addr, but we don't modify addresses
|
|
// for it.
|
|
if (AMIter == AddressMaps.end()) {
|
|
AMIter = AddressMaps.insert({CUID, AddressForDWOCU()}).first;
|
|
std::optional<uint64_t> BaseOffset = CU->getAddrOffsetSectionBase();
|
|
if (!BaseOffset)
|
|
continue;
|
|
// Address base offset is to the first entry.
|
|
// The size of header is 8 bytes.
|
|
uint64_t Offset = *BaseOffset - HeaderSize;
|
|
auto Iter = UnmodifiedAddressOffsets.find(Offset);
|
|
if (Iter != UnmodifiedAddressOffsets.end()) {
|
|
DWOIdToOffsetMap[CUID] = Iter->getSecond();
|
|
continue;
|
|
}
|
|
UnmodifiedAddressOffsets[Offset] = Buffer.size() + HeaderSize;
|
|
if (Error Err = AddrTable.extract(AddrData, &Offset, 5, AddrSize,
|
|
DumpOpts.WarningHandler)) {
|
|
DumpOpts.RecoverableErrorHandler(std::move(Err));
|
|
continue;
|
|
}
|
|
|
|
uint32_t Index = 0;
|
|
for (uint64_t Addr : AddrTable.getAddressEntries())
|
|
AMIter->second.insert(Addr, Index++);
|
|
}
|
|
|
|
DWOIdToOffsetMap[CUID] = Buffer.size() + HeaderSize;
|
|
|
|
std::vector<IndexAddressPair> SortedMap(
|
|
AMIter->second.indexToAddressBegin(),
|
|
AMIter->second.indexToAdddessEnd());
|
|
// Sorting address in increasing order of indices.
|
|
llvm::sort(SortedMap, llvm::less_first());
|
|
// Writing out Header
|
|
const uint32_t Length = SortedMap.size() * AddrSize + 4;
|
|
support::endian::write(AddressStream, Length, Endian);
|
|
support::endian::write(AddressStream, static_cast<uint16_t>(5), Endian);
|
|
support::endian::write(AddressStream, static_cast<uint8_t>(AddrSize),
|
|
Endian);
|
|
support::endian::write(AddressStream, static_cast<uint8_t>(0), Endian);
|
|
|
|
uint32_t Counter = 0;
|
|
auto writeAddress = [&](uint64_t Address) -> void {
|
|
++Counter;
|
|
switch (AddrSize) {
|
|
default:
|
|
llvm_unreachable("Address Size is invalid.");
|
|
break;
|
|
case 4:
|
|
support::endian::write(AddressStream, static_cast<uint32_t>(Address),
|
|
Endian);
|
|
break;
|
|
case 8:
|
|
support::endian::write(AddressStream, Address, Endian);
|
|
break;
|
|
}
|
|
};
|
|
|
|
for (const IndexAddressPair &Val : SortedMap) {
|
|
while (Val.first > Counter)
|
|
writeAddress(0);
|
|
writeAddress(Val.second);
|
|
}
|
|
}
|
|
|
|
return Buffer;
|
|
}
|
|
|
|
uint64_t DebugAddrWriter::getOffset(DWARFUnit &Unit) {
|
|
const uint64_t CUID = getCUID(Unit);
|
|
assert(CUID && "Can't get offset, not a skeleton CU.");
|
|
auto Iter = DWOIdToOffsetMap.find(CUID);
|
|
assert(Iter != DWOIdToOffsetMap.end() &&
|
|
"Offset in to.debug_addr was not found for DWO ID.");
|
|
return Iter->second;
|
|
}
|
|
|
|
uint64_t DebugAddrWriterDwarf5::getOffset(DWARFUnit &Unit) {
|
|
auto Iter = DWOIdToOffsetMap.find(getCUID(Unit));
|
|
assert(Iter != DWOIdToOffsetMap.end() &&
|
|
"Offset in to.debug_addr was not found for CU ID.");
|
|
return Iter->second;
|
|
}
|
|
|
|
void DebugLocWriter::init() {
|
|
LocBuffer = std::make_unique<DebugBufferVector>();
|
|
LocStream = std::make_unique<raw_svector_ostream>(*LocBuffer);
|
|
// Writing out empty location list to which all references to empty location
|
|
// lists will point.
|
|
if (!LocSectionOffset && DwarfVersion < 5) {
|
|
const char Zeroes[16] = {0};
|
|
*LocStream << StringRef(Zeroes, 16);
|
|
LocSectionOffset += 16;
|
|
}
|
|
}
|
|
|
|
uint32_t DebugLocWriter::LocSectionOffset = 0;
|
|
void DebugLocWriter::addList(DIEBuilder &DIEBldr, DIE &Die, DIEValue &AttrInfo,
|
|
DebugLocationsVector &LocList) {
|
|
if (LocList.empty()) {
|
|
replaceLocValbyForm(DIEBldr, Die, AttrInfo, AttrInfo.getForm(),
|
|
DebugLocWriter::EmptyListOffset);
|
|
return;
|
|
}
|
|
// Since there is a separate DebugLocWriter for each thread,
|
|
// we don't need a lock to read the SectionOffset and update it.
|
|
const uint32_t EntryOffset = LocSectionOffset;
|
|
|
|
for (const DebugLocationEntry &Entry : LocList) {
|
|
support::endian::write(*LocStream, static_cast<uint64_t>(Entry.LowPC),
|
|
support::little);
|
|
support::endian::write(*LocStream, static_cast<uint64_t>(Entry.HighPC),
|
|
support::little);
|
|
support::endian::write(*LocStream, static_cast<uint16_t>(Entry.Expr.size()),
|
|
support::little);
|
|
*LocStream << StringRef(reinterpret_cast<const char *>(Entry.Expr.data()),
|
|
Entry.Expr.size());
|
|
LocSectionOffset += 2 * 8 + 2 + Entry.Expr.size();
|
|
}
|
|
LocStream->write_zeros(16);
|
|
LocSectionOffset += 16;
|
|
LocListDebugInfoPatches.push_back({0xdeadbeee, EntryOffset}); // never seen
|
|
// use
|
|
replaceLocValbyForm(DIEBldr, Die, AttrInfo, AttrInfo.getForm(), EntryOffset);
|
|
}
|
|
|
|
std::unique_ptr<DebugBufferVector> DebugLocWriter::getBuffer() {
|
|
return std::move(LocBuffer);
|
|
}
|
|
|
|
// DWARF 4: 2.6.2
|
|
void DebugLocWriter::finalize(DIEBuilder &DIEBldr, DIE &Die) {}
|
|
|
|
static void writeEmptyListDwarf5(raw_svector_ostream &Stream) {
|
|
support::endian::write(Stream, static_cast<uint32_t>(4), support::little);
|
|
support::endian::write(Stream, static_cast<uint8_t>(dwarf::DW_LLE_start_end),
|
|
support::little);
|
|
|
|
const char Zeroes[16] = {0};
|
|
Stream << StringRef(Zeroes, 16);
|
|
encodeULEB128(0, Stream);
|
|
support::endian::write(
|
|
Stream, static_cast<uint8_t>(dwarf::DW_LLE_end_of_list), support::little);
|
|
}
|
|
|
|
static void writeLegacyLocList(DIEValue &AttrInfo,
|
|
DebugLocationsVector &LocList,
|
|
DIEBuilder &DIEBldr, DIE &Die,
|
|
DebugAddrWriter &AddrWriter,
|
|
DebugBufferVector LocBuffer, DWARFUnit &CU,
|
|
raw_svector_ostream &LocStream) {
|
|
if (LocList.empty()) {
|
|
replaceLocValbyForm(DIEBldr, Die, AttrInfo, AttrInfo.getForm(),
|
|
DebugLocWriter::EmptyListOffset);
|
|
return;
|
|
}
|
|
|
|
const uint32_t EntryOffset = LocBuffer.size();
|
|
for (const DebugLocationEntry &Entry : LocList) {
|
|
support::endian::write(LocStream,
|
|
static_cast<uint8_t>(dwarf::DW_LLE_startx_length),
|
|
support::little);
|
|
const uint32_t Index = AddrWriter.getIndexFromAddress(Entry.LowPC, CU);
|
|
encodeULEB128(Index, LocStream);
|
|
|
|
support::endian::write(LocStream,
|
|
static_cast<uint32_t>(Entry.HighPC - Entry.LowPC),
|
|
support::little);
|
|
support::endian::write(LocStream, static_cast<uint16_t>(Entry.Expr.size()),
|
|
support::little);
|
|
LocStream << StringRef(reinterpret_cast<const char *>(Entry.Expr.data()),
|
|
Entry.Expr.size());
|
|
}
|
|
support::endian::write(LocStream,
|
|
static_cast<uint8_t>(dwarf::DW_LLE_end_of_list),
|
|
support::little);
|
|
replaceLocValbyForm(DIEBldr, Die, AttrInfo, AttrInfo.getForm(), EntryOffset);
|
|
}
|
|
|
|
static void writeDWARF5LocList(uint32_t &NumberOfEntries, DIEValue &AttrInfo,
|
|
DebugLocationsVector &LocList, DIE &Die,
|
|
DIEBuilder &DIEBldr, DebugAddrWriter &AddrWriter,
|
|
DebugBufferVector &LocBodyBuffer,
|
|
std::vector<uint32_t> &RelativeLocListOffsets,
|
|
DWARFUnit &CU,
|
|
raw_svector_ostream &LocBodyStream) {
|
|
|
|
replaceLocValbyForm(DIEBldr, Die, AttrInfo, dwarf::DW_FORM_loclistx,
|
|
NumberOfEntries);
|
|
|
|
RelativeLocListOffsets.push_back(LocBodyBuffer.size());
|
|
++NumberOfEntries;
|
|
if (LocList.empty()) {
|
|
writeEmptyListDwarf5(LocBodyStream);
|
|
return;
|
|
}
|
|
|
|
std::vector<uint64_t> OffsetsArray;
|
|
bool WrittenStartxLength = false;
|
|
auto writeExpression = [&](uint32_t Index) -> void {
|
|
const DebugLocationEntry &Entry = LocList[Index];
|
|
encodeULEB128(Entry.Expr.size(), LocBodyStream);
|
|
LocBodyStream << StringRef(
|
|
reinterpret_cast<const char *>(Entry.Expr.data()), Entry.Expr.size());
|
|
};
|
|
for (unsigned I = 0; I < LocList.size();) {
|
|
WrittenStartxLength = false;
|
|
if (emitWithBase<DebugLocationsVector, dwarf::LoclistEntries,
|
|
DebugLocationEntry>(
|
|
LocBodyStream, LocList, AddrWriter, CU, I,
|
|
dwarf::DW_LLE_base_addressx, dwarf::DW_LLE_offset_pair,
|
|
dwarf::DW_LLE_end_of_list, writeExpression))
|
|
continue;
|
|
|
|
const DebugLocationEntry &Entry = LocList[I];
|
|
support::endian::write(LocBodyStream,
|
|
static_cast<uint8_t>(dwarf::DW_LLE_startx_length),
|
|
support::little);
|
|
const uint32_t Index = AddrWriter.getIndexFromAddress(Entry.LowPC, CU);
|
|
encodeULEB128(Index, LocBodyStream);
|
|
encodeULEB128(Entry.HighPC - Entry.LowPC, LocBodyStream);
|
|
writeExpression(I);
|
|
++I;
|
|
WrittenStartxLength = true;
|
|
}
|
|
|
|
if (WrittenStartxLength)
|
|
support::endian::write(LocBodyStream,
|
|
static_cast<uint8_t>(dwarf::DW_LLE_end_of_list),
|
|
support::little);
|
|
}
|
|
|
|
void DebugLoclistWriter::addList(DIEBuilder &DIEBldr, DIE &Die,
|
|
DIEValue &AttrInfo,
|
|
DebugLocationsVector &LocList) {
|
|
if (DwarfVersion < 5)
|
|
writeLegacyLocList(AttrInfo, LocList, DIEBldr, Die, *AddrWriter, *LocBuffer,
|
|
CU, *LocStream);
|
|
else
|
|
writeDWARF5LocList(NumberOfEntries, AttrInfo, LocList, Die, DIEBldr,
|
|
*AddrWriter, *LocBodyBuffer, RelativeLocListOffsets, CU,
|
|
*LocBodyStream);
|
|
}
|
|
|
|
uint32_t DebugLoclistWriter::LoclistBaseOffset = 0;
|
|
void DebugLoclistWriter::finalizeDWARF5(DIEBuilder &DIEBldr, DIE &Die) {
|
|
if (LocBodyBuffer->empty()) {
|
|
DIEValue LocListBaseAttrInfo =
|
|
Die.findAttribute(dwarf::DW_AT_loclists_base);
|
|
// Pointing to first one, because it doesn't matter. There are no uses of it
|
|
// in this CU.
|
|
if (!isSplitDwarf() && LocListBaseAttrInfo.getType())
|
|
DIEBldr.replaceValue(&Die, dwarf::DW_AT_loclists_base,
|
|
LocListBaseAttrInfo.getForm(),
|
|
DIEInteger(getDWARF5RngListLocListHeaderSize()));
|
|
return;
|
|
}
|
|
|
|
std::unique_ptr<DebugBufferVector> LocArrayBuffer =
|
|
std::make_unique<DebugBufferVector>();
|
|
std::unique_ptr<raw_svector_ostream> LocArrayStream =
|
|
std::make_unique<raw_svector_ostream>(*LocArrayBuffer);
|
|
|
|
const uint32_t SizeOfArraySection = NumberOfEntries * sizeof(uint32_t);
|
|
// Write out IndexArray
|
|
for (uint32_t RelativeOffset : RelativeLocListOffsets)
|
|
support::endian::write(
|
|
*LocArrayStream,
|
|
static_cast<uint32_t>(SizeOfArraySection + RelativeOffset),
|
|
support::little);
|
|
|
|
std::unique_ptr<DebugBufferVector> Header = getDWARF5Header(
|
|
{static_cast<uint32_t>(SizeOfArraySection + LocBodyBuffer.get()->size()),
|
|
5, 8, 0, NumberOfEntries});
|
|
*LocStream << *Header;
|
|
*LocStream << *LocArrayBuffer;
|
|
*LocStream << *LocBodyBuffer;
|
|
|
|
if (!isSplitDwarf()) {
|
|
DIEValue LocListBaseAttrInfo =
|
|
Die.findAttribute(dwarf::DW_AT_loclists_base);
|
|
if (LocListBaseAttrInfo.getType()) {
|
|
DIEBldr.replaceValue(
|
|
&Die, dwarf::DW_AT_loclists_base, LocListBaseAttrInfo.getForm(),
|
|
DIEInteger(LoclistBaseOffset + getDWARF5RngListLocListHeaderSize()));
|
|
} else {
|
|
DIEBldr.addValue(&Die, dwarf::DW_AT_loclists_base,
|
|
dwarf::DW_FORM_sec_offset,
|
|
DIEInteger(LoclistBaseOffset + Header->size()));
|
|
}
|
|
LoclistBaseOffset += LocBuffer->size();
|
|
}
|
|
clearList(RelativeLocListOffsets);
|
|
clearList(*LocArrayBuffer);
|
|
clearList(*LocBodyBuffer);
|
|
}
|
|
|
|
void DebugLoclistWriter::finalize(DIEBuilder &DIEBldr, DIE &Die) {
|
|
if (DwarfVersion >= 5)
|
|
finalizeDWARF5(DIEBldr, Die);
|
|
}
|
|
|
|
DebugAddrWriter *DebugLoclistWriter::AddrWriter = nullptr;
|
|
|
|
void DebugInfoBinaryPatcher::addUnitBaseOffsetLabel(uint64_t Offset) {
|
|
Offset -= DWPUnitOffset;
|
|
std::lock_guard<std::mutex> Lock(WriterMutex);
|
|
DebugPatches.emplace_back(new DWARFUnitOffsetBaseLabel(Offset));
|
|
}
|
|
|
|
void DebugInfoBinaryPatcher::addDestinationReferenceLabel(uint64_t Offset) {
|
|
Offset -= DWPUnitOffset;
|
|
std::lock_guard<std::mutex> Lock(WriterMutex);
|
|
auto RetVal = DestinationLabels.insert(Offset);
|
|
if (!RetVal.second)
|
|
return;
|
|
|
|
DebugPatches.emplace_back(new DestinationReferenceLabel(Offset));
|
|
}
|
|
|
|
static std::string encodeLE(size_t ByteSize, uint64_t NewValue) {
|
|
std::string LE64(ByteSize, 0);
|
|
for (size_t I = 0; I < ByteSize; ++I) {
|
|
LE64[I] = NewValue & 0xff;
|
|
NewValue >>= 8;
|
|
}
|
|
return LE64;
|
|
}
|
|
|
|
void DebugInfoBinaryPatcher::insertNewEntry(const DWARFDie &DIE,
|
|
uint32_t Value) {
|
|
std::string StrValue = encodeLE(4, Value);
|
|
insertNewEntry(DIE, std::move(StrValue));
|
|
}
|
|
|
|
void DebugInfoBinaryPatcher::insertNewEntry(const DWARFDie &DIE,
|
|
std::string &&Value) {
|
|
const DWARFAbbreviationDeclaration *AbbrevDecl =
|
|
DIE.getAbbreviationDeclarationPtr();
|
|
|
|
// In case this DIE has no attributes.
|
|
uint32_t Offset = DIE.getOffset() + 1;
|
|
size_t NumOfAttributes = AbbrevDecl->getNumAttributes();
|
|
if (NumOfAttributes) {
|
|
std::optional<AttrInfo> Val =
|
|
findAttributeInfo(DIE, AbbrevDecl, NumOfAttributes - 1);
|
|
assert(Val && "Invalid Value.");
|
|
|
|
Offset = Val->Offset + Val->Size - DWPUnitOffset;
|
|
}
|
|
std::lock_guard<std::mutex> Lock(WriterMutex);
|
|
DebugPatches.emplace_back(new NewDebugEntry(Offset, std::move(Value)));
|
|
}
|
|
|
|
void DebugInfoBinaryPatcher::addReferenceToPatch(uint64_t Offset,
|
|
uint32_t DestinationOffset,
|
|
uint32_t OldValueSize,
|
|
dwarf::Form Form) {
|
|
Offset -= DWPUnitOffset;
|
|
DestinationOffset -= DWPUnitOffset;
|
|
std::lock_guard<std::mutex> Lock(WriterMutex);
|
|
DebugPatches.emplace_back(
|
|
new DebugPatchReference(Offset, OldValueSize, DestinationOffset, Form));
|
|
}
|
|
|
|
void DebugInfoBinaryPatcher::addUDataPatch(uint64_t Offset, uint64_t NewValue,
|
|
uint32_t OldValueSize) {
|
|
Offset -= DWPUnitOffset;
|
|
std::lock_guard<std::mutex> Lock(WriterMutex);
|
|
DebugPatches.emplace_back(
|
|
new DebugPatchVariableSize(Offset, OldValueSize, NewValue));
|
|
}
|
|
|
|
void DebugInfoBinaryPatcher::addLE64Patch(uint64_t Offset, uint64_t NewValue) {
|
|
Offset -= DWPUnitOffset;
|
|
std::lock_guard<std::mutex> Lock(WriterMutex);
|
|
DebugPatches.emplace_back(new DebugPatch64(Offset, NewValue));
|
|
}
|
|
|
|
void DebugInfoBinaryPatcher::addLE32Patch(uint64_t Offset, uint32_t NewValue,
|
|
uint32_t OldValueSize) {
|
|
Offset -= DWPUnitOffset;
|
|
std::lock_guard<std::mutex> Lock(WriterMutex);
|
|
if (OldValueSize == 4)
|
|
DebugPatches.emplace_back(new DebugPatch32(Offset, NewValue));
|
|
else if (OldValueSize == 8)
|
|
DebugPatches.emplace_back(new DebugPatch64to32(Offset, NewValue));
|
|
else
|
|
DebugPatches.emplace_back(
|
|
new DebugPatch32GenericSize(Offset, NewValue, OldValueSize));
|
|
}
|
|
|
|
void SimpleBinaryPatcher::addBinaryPatch(uint64_t Offset,
|
|
std::string &&NewValue,
|
|
uint32_t OldValueSize) {
|
|
Patches.emplace_back(Offset, std::move(NewValue));
|
|
}
|
|
|
|
void SimpleBinaryPatcher::addBytePatch(uint64_t Offset, uint8_t Value) {
|
|
auto Str = std::string(1, Value);
|
|
Patches.emplace_back(Offset, std::move(Str));
|
|
}
|
|
|
|
void SimpleBinaryPatcher::addLEPatch(uint64_t Offset, uint64_t NewValue,
|
|
size_t ByteSize) {
|
|
Patches.emplace_back(Offset, encodeLE(ByteSize, NewValue));
|
|
}
|
|
|
|
void SimpleBinaryPatcher::addUDataPatch(uint64_t Offset, uint64_t Value,
|
|
uint32_t OldValueSize) {
|
|
std::string Buff;
|
|
raw_string_ostream OS(Buff);
|
|
encodeULEB128(Value, OS, OldValueSize);
|
|
|
|
Patches.emplace_back(Offset, std::move(Buff));
|
|
}
|
|
|
|
void SimpleBinaryPatcher::addLE64Patch(uint64_t Offset, uint64_t NewValue) {
|
|
addLEPatch(Offset, NewValue, 8);
|
|
}
|
|
|
|
void SimpleBinaryPatcher::addLE32Patch(uint64_t Offset, uint32_t NewValue,
|
|
uint32_t OldValueSize) {
|
|
addLEPatch(Offset, NewValue, 4);
|
|
}
|
|
|
|
std::string SimpleBinaryPatcher::patchBinary(StringRef BinaryContents) {
|
|
std::string BinaryContentsStr = std::string(BinaryContents);
|
|
for (const auto &Patch : Patches) {
|
|
uint32_t Offset = Patch.first;
|
|
const std::string &ByteSequence = Patch.second;
|
|
assert(Offset + ByteSequence.size() <= BinaryContents.size() &&
|
|
"Applied patch runs over binary size.");
|
|
for (uint64_t I = 0, Size = ByteSequence.size(); I < Size; ++I) {
|
|
BinaryContentsStr[Offset + I] = ByteSequence[I];
|
|
}
|
|
}
|
|
return BinaryContentsStr;
|
|
}
|
|
|
|
CUOffsetMap DebugInfoBinaryPatcher::computeNewOffsets(DWARFContext &DWCtx,
|
|
bool IsDWOContext) {
|
|
CUOffsetMap CUMap;
|
|
llvm::sort(DebugPatches, [](const UniquePatchPtrType &V1,
|
|
const UniquePatchPtrType &V2) {
|
|
if (V1.get()->Offset == V2.get()->Offset) {
|
|
if (V1->Kind == DebugPatchKind::NewDebugEntry &&
|
|
V2->Kind == DebugPatchKind::NewDebugEntry)
|
|
return reinterpret_cast<const NewDebugEntry *>(V1.get())->CurrentOrder <
|
|
reinterpret_cast<const NewDebugEntry *>(V2.get())->CurrentOrder;
|
|
|
|
// This is a case where we are modifying first entry of next
|
|
// DIE, and adding a new one.
|
|
return V1->Kind == DebugPatchKind::NewDebugEntry;
|
|
}
|
|
return V1.get()->Offset < V2.get()->Offset;
|
|
});
|
|
|
|
DWARFUnitVector::compile_unit_range CompileUnits =
|
|
IsDWOContext ? DWCtx.dwo_compile_units() : DWCtx.compile_units();
|
|
|
|
for (const std::unique_ptr<DWARFUnit> &CU : CompileUnits)
|
|
CUMap[CU->getOffset()] = {static_cast<uint32_t>(CU->getOffset()),
|
|
static_cast<uint32_t>(CU->getLength())};
|
|
|
|
// Calculating changes in .debug_info size from Patches to build a map of old
|
|
// to updated reference destination offsets.
|
|
uint32_t PreviousOffset = 0;
|
|
int32_t PreviousChangeInSize = 0;
|
|
for (UniquePatchPtrType &PatchBase : DebugPatches) {
|
|
Patch *P = PatchBase.get();
|
|
switch (P->Kind) {
|
|
default:
|
|
continue;
|
|
case DebugPatchKind::PatchValue64to32: {
|
|
PreviousChangeInSize -= 4;
|
|
break;
|
|
}
|
|
case DebugPatchKind::PatchValue32GenericSize: {
|
|
DebugPatch32GenericSize *DPVS =
|
|
reinterpret_cast<DebugPatch32GenericSize *>(P);
|
|
PreviousChangeInSize += 4 - DPVS->OldValueSize;
|
|
break;
|
|
}
|
|
case DebugPatchKind::PatchValueVariable: {
|
|
DebugPatchVariableSize *DPV =
|
|
reinterpret_cast<DebugPatchVariableSize *>(P);
|
|
std::string Temp;
|
|
raw_string_ostream OS(Temp);
|
|
encodeULEB128(DPV->Value, OS);
|
|
PreviousChangeInSize += Temp.size() - DPV->OldValueSize;
|
|
break;
|
|
}
|
|
case DebugPatchKind::DestinationReferenceLabel: {
|
|
DestinationReferenceLabel *DRL =
|
|
reinterpret_cast<DestinationReferenceLabel *>(P);
|
|
OldToNewOffset[DRL->Offset] =
|
|
DRL->Offset + ChangeInSize + PreviousChangeInSize;
|
|
break;
|
|
}
|
|
case DebugPatchKind::ReferencePatchValue: {
|
|
// This doesn't look to be a common case, so will always encode as 4 bytes
|
|
// to reduce algorithmic complexity.
|
|
DebugPatchReference *RDP = reinterpret_cast<DebugPatchReference *>(P);
|
|
if (RDP->PatchInfo.IndirectRelative) {
|
|
PreviousChangeInSize += 4 - RDP->PatchInfo.OldValueSize;
|
|
assert(RDP->PatchInfo.OldValueSize <= 4 &&
|
|
"Variable encoding reference greater than 4 bytes.");
|
|
}
|
|
break;
|
|
}
|
|
case DebugPatchKind::DWARFUnitOffsetBaseLabel: {
|
|
DWARFUnitOffsetBaseLabel *BaseLabel =
|
|
reinterpret_cast<DWARFUnitOffsetBaseLabel *>(P);
|
|
uint32_t CUOffset = BaseLabel->Offset;
|
|
ChangeInSize += PreviousChangeInSize;
|
|
uint32_t CUOffsetUpdate = CUOffset + ChangeInSize;
|
|
CUMap[CUOffset].Offset = CUOffsetUpdate;
|
|
CUMap[PreviousOffset].Length += PreviousChangeInSize;
|
|
PreviousChangeInSize = 0;
|
|
PreviousOffset = CUOffset;
|
|
break;
|
|
}
|
|
case DebugPatchKind::NewDebugEntry: {
|
|
NewDebugEntry *NDE = reinterpret_cast<NewDebugEntry *>(P);
|
|
PreviousChangeInSize += NDE->Value.size();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
CUMap[PreviousOffset].Length += PreviousChangeInSize;
|
|
return CUMap;
|
|
}
|
|
uint32_t DebugInfoBinaryPatcher::NewDebugEntry::OrderCounter = 0;
|
|
|
|
std::string DebugInfoBinaryPatcher::patchBinary(StringRef BinaryContents) {
|
|
std::string NewBinaryContents;
|
|
NewBinaryContents.reserve(BinaryContents.size() + ChangeInSize);
|
|
uint32_t StartOffset = 0;
|
|
uint32_t DwarfUnitBaseOffset = 0;
|
|
uint32_t OldValueSize = 0;
|
|
uint32_t Offset = 0;
|
|
std::string ByteSequence;
|
|
std::vector<std::pair<uint32_t, uint32_t>> LengthPatches;
|
|
// Wasting one entry to avoid checks for first.
|
|
LengthPatches.push_back({0, 0});
|
|
|
|
// Applying all the patches replacing current entry.
|
|
// This might change the size of .debug_info section.
|
|
for (const UniquePatchPtrType &PatchBase : DebugPatches) {
|
|
Patch *P = PatchBase.get();
|
|
switch (P->Kind) {
|
|
default:
|
|
continue;
|
|
case DebugPatchKind::ReferencePatchValue: {
|
|
DebugPatchReference *RDP = reinterpret_cast<DebugPatchReference *>(P);
|
|
uint32_t DestinationOffset = RDP->DestinationOffset;
|
|
assert(OldToNewOffset.count(DestinationOffset) &&
|
|
"Destination Offset for reference not updated.");
|
|
uint32_t UpdatedOffset = OldToNewOffset[DestinationOffset];
|
|
Offset = RDP->Offset;
|
|
OldValueSize = RDP->PatchInfo.OldValueSize;
|
|
if (RDP->PatchInfo.DirectRelative) {
|
|
UpdatedOffset -= DwarfUnitBaseOffset;
|
|
ByteSequence = encodeLE(OldValueSize, UpdatedOffset);
|
|
// In theory reference for DW_FORM_ref{1,2,4,8} can be right on the edge
|
|
// and overflow if later debug information grows.
|
|
if (ByteSequence.size() > OldValueSize)
|
|
errs() << "BOLT-ERROR: Relative reference of size "
|
|
<< Twine::utohexstr(OldValueSize)
|
|
<< " overflows with the new encoding.\n";
|
|
} else if (RDP->PatchInfo.DirectAbsolute) {
|
|
ByteSequence = encodeLE(OldValueSize, UpdatedOffset);
|
|
} else if (RDP->PatchInfo.IndirectRelative) {
|
|
UpdatedOffset -= DwarfUnitBaseOffset;
|
|
ByteSequence.clear();
|
|
raw_string_ostream OS(ByteSequence);
|
|
encodeULEB128(UpdatedOffset, OS, 4);
|
|
} else {
|
|
llvm_unreachable("Invalid Reference form.");
|
|
}
|
|
break;
|
|
}
|
|
case DebugPatchKind::PatchValue32: {
|
|
DebugPatch32 *P32 = reinterpret_cast<DebugPatch32 *>(P);
|
|
Offset = P32->Offset;
|
|
OldValueSize = 4;
|
|
ByteSequence = encodeLE(4, P32->Value);
|
|
break;
|
|
}
|
|
case DebugPatchKind::PatchValue64to32: {
|
|
DebugPatch64to32 *P64to32 = reinterpret_cast<DebugPatch64to32 *>(P);
|
|
Offset = P64to32->Offset;
|
|
OldValueSize = 8;
|
|
ByteSequence = encodeLE(4, P64to32->Value);
|
|
break;
|
|
}
|
|
case DebugPatchKind::PatchValue32GenericSize: {
|
|
DebugPatch32GenericSize *DPVS =
|
|
reinterpret_cast<DebugPatch32GenericSize *>(P);
|
|
Offset = DPVS->Offset;
|
|
OldValueSize = DPVS->OldValueSize;
|
|
ByteSequence = encodeLE(4, DPVS->Value);
|
|
break;
|
|
}
|
|
case DebugPatchKind::PatchValueVariable: {
|
|
DebugPatchVariableSize *PV =
|
|
reinterpret_cast<DebugPatchVariableSize *>(P);
|
|
Offset = PV->Offset;
|
|
OldValueSize = PV->OldValueSize;
|
|
ByteSequence.clear();
|
|
raw_string_ostream OS(ByteSequence);
|
|
encodeULEB128(PV->Value, OS);
|
|
break;
|
|
}
|
|
case DebugPatchKind::PatchValue64: {
|
|
DebugPatch64 *P64 = reinterpret_cast<DebugPatch64 *>(P);
|
|
Offset = P64->Offset;
|
|
OldValueSize = 8;
|
|
ByteSequence = encodeLE(8, P64->Value);
|
|
break;
|
|
}
|
|
case DebugPatchKind::DWARFUnitOffsetBaseLabel: {
|
|
DWARFUnitOffsetBaseLabel *BaseLabel =
|
|
reinterpret_cast<DWARFUnitOffsetBaseLabel *>(P);
|
|
Offset = BaseLabel->Offset;
|
|
OldValueSize = 0;
|
|
ByteSequence.clear();
|
|
auto &Patch = LengthPatches.back();
|
|
// Length to copy between last patch entry and next compile unit.
|
|
uint32_t RemainingLength = Offset - StartOffset;
|
|
uint32_t NewCUOffset = NewBinaryContents.size() + RemainingLength;
|
|
DwarfUnitBaseOffset = NewCUOffset;
|
|
// Length of previous CU = This CU Offset - sizeof(length) - last CU
|
|
// Offset.
|
|
Patch.second = NewCUOffset - 4 - Patch.first;
|
|
LengthPatches.push_back({NewCUOffset, 0});
|
|
break;
|
|
}
|
|
case DebugPatchKind::NewDebugEntry: {
|
|
NewDebugEntry *NDE = reinterpret_cast<NewDebugEntry *>(P);
|
|
Offset = NDE->Offset;
|
|
OldValueSize = 0;
|
|
ByteSequence = NDE->Value;
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert((P->Kind == DebugPatchKind::NewDebugEntry ||
|
|
Offset + ByteSequence.size() <= BinaryContents.size()) &&
|
|
"Applied patch runs over binary size.");
|
|
uint32_t Length = Offset - StartOffset;
|
|
NewBinaryContents.append(BinaryContents.substr(StartOffset, Length).data(),
|
|
Length);
|
|
NewBinaryContents.append(ByteSequence.data(), ByteSequence.size());
|
|
StartOffset = Offset + OldValueSize;
|
|
}
|
|
uint32_t Length = BinaryContents.size() - StartOffset;
|
|
NewBinaryContents.append(BinaryContents.substr(StartOffset, Length).data(),
|
|
Length);
|
|
DebugPatches.clear();
|
|
|
|
// Patching lengths of CUs
|
|
auto &Patch = LengthPatches.back();
|
|
Patch.second = NewBinaryContents.size() - 4 - Patch.first;
|
|
for (uint32_t J = 1, Size = LengthPatches.size(); J < Size; ++J) {
|
|
const auto &Patch = LengthPatches[J];
|
|
ByteSequence = encodeLE(4, Patch.second);
|
|
Offset = Patch.first;
|
|
for (uint64_t I = 0, Size = ByteSequence.size(); I < Size; ++I)
|
|
NewBinaryContents[Offset + I] = ByteSequence[I];
|
|
}
|
|
|
|
return NewBinaryContents;
|
|
}
|
|
|
|
void DebugStrOffsetsWriter::initialize(
|
|
const DWARFSection &StrOffsetsSection,
|
|
const std::optional<StrOffsetsContributionDescriptor> Contr) {
|
|
if (!Contr)
|
|
return;
|
|
|
|
const uint8_t DwarfOffsetByteSize = Contr->getDwarfOffsetByteSize();
|
|
assert(DwarfOffsetByteSize == 4 &&
|
|
"Dwarf String Offsets Byte Size is not supported.");
|
|
uint32_t Index = 0;
|
|
for (uint64_t Offset = 0; Offset < Contr->Size; Offset += DwarfOffsetByteSize)
|
|
IndexToAddressMap[Index++] = support::endian::read32le(
|
|
StrOffsetsSection.Data.data() + Contr->Base + Offset);
|
|
}
|
|
|
|
void DebugStrOffsetsWriter::updateAddressMap(uint32_t Index, uint32_t Address) {
|
|
assert(IndexToAddressMap.count(Index) > 0 && "Index is not found.");
|
|
IndexToAddressMap[Index] = Address;
|
|
StrOffsetSectionWasModified = true;
|
|
}
|
|
|
|
void DebugStrOffsetsWriter::finalizeSection(DWARFUnit &Unit) {
|
|
if (IndexToAddressMap.empty())
|
|
return;
|
|
|
|
std::optional<AttrInfo> AttrVal =
|
|
findAttributeInfo(Unit.getUnitDIE(), dwarf::DW_AT_str_offsets_base);
|
|
assert(AttrVal && "DW_AT_str_offsets_base not present.");
|
|
std::optional<uint64_t> Val = AttrVal->V.getAsSectionOffset();
|
|
assert(Val && "DW_AT_str_offsets_base Value not present.");
|
|
auto RetVal = ProcessedBaseOffsets.insert(*Val);
|
|
if (RetVal.second) {
|
|
// Writing out the header for each section.
|
|
support::endian::write(*StrOffsetsStream, CurrentSectionSize + 4,
|
|
support::little);
|
|
support::endian::write(*StrOffsetsStream, static_cast<uint16_t>(5),
|
|
support::little);
|
|
support::endian::write(*StrOffsetsStream, static_cast<uint16_t>(0),
|
|
support::little);
|
|
for (const auto &Entry : IndexToAddressMap)
|
|
support::endian::write(*StrOffsetsStream, Entry.second, support::little);
|
|
}
|
|
// Will print error if we already processed this contribution, and now
|
|
// skipping it, but it was modified.
|
|
if (!RetVal.second && StrOffsetSectionWasModified)
|
|
errs() << "BOLT-WARNING: skipping string offsets section for CU at offset "
|
|
<< Twine::utohexstr(Unit.getOffset()) << ", but it was modified\n";
|
|
|
|
StrOffsetSectionWasModified = false;
|
|
IndexToAddressMap.clear();
|
|
}
|
|
|
|
void DebugStrWriter::create() {
|
|
StrBuffer = std::make_unique<DebugStrBufferVector>();
|
|
StrStream = std::make_unique<raw_svector_ostream>(*StrBuffer);
|
|
}
|
|
|
|
void DebugStrWriter::initialize() {
|
|
auto StrSection = BC.DwCtx->getDWARFObj().getStrSection();
|
|
(*StrStream) << StrSection;
|
|
}
|
|
|
|
uint32_t DebugStrWriter::addString(StringRef Str) {
|
|
std::lock_guard<std::mutex> Lock(WriterMutex);
|
|
if (StrBuffer->empty())
|
|
initialize();
|
|
auto Offset = StrBuffer->size();
|
|
(*StrStream) << Str;
|
|
StrStream->write_zeros(1);
|
|
return Offset;
|
|
}
|
|
|
|
void DebugAbbrevWriter::addUnitAbbreviations(DWARFUnit &Unit) {
|
|
const DWARFAbbreviationDeclarationSet *Abbrevs = Unit.getAbbreviations();
|
|
if (!Abbrevs)
|
|
return;
|
|
|
|
const PatchesTy &UnitPatches = Patches[&Unit];
|
|
const AbbrevEntryTy &AbbrevEntries = NewAbbrevEntries[&Unit];
|
|
|
|
// We are duplicating abbrev sections, to handle the case where for one CU we
|
|
// modify it, but for another we don't.
|
|
auto UnitDataPtr = std::make_unique<AbbrevData>();
|
|
AbbrevData &UnitData = *UnitDataPtr.get();
|
|
UnitData.Buffer = std::make_unique<DebugBufferVector>();
|
|
UnitData.Stream = std::make_unique<raw_svector_ostream>(*UnitData.Buffer);
|
|
|
|
raw_svector_ostream &OS = *UnitData.Stream.get();
|
|
|
|
// Returns true if AbbrevData is re-used, false otherwise.
|
|
auto hashAndAddAbbrev = [&](StringRef AbbrevData) -> bool {
|
|
llvm::SHA1 Hasher;
|
|
Hasher.update(AbbrevData);
|
|
std::array<uint8_t, 20> Hash = Hasher.final();
|
|
StringRef Key((const char *)Hash.data(), Hash.size());
|
|
auto Iter = AbbrevDataCache.find(Key);
|
|
if (Iter != AbbrevDataCache.end()) {
|
|
UnitsAbbrevData[&Unit] = Iter->second.get();
|
|
return true;
|
|
}
|
|
AbbrevDataCache[Key] = std::move(UnitDataPtr);
|
|
UnitsAbbrevData[&Unit] = &UnitData;
|
|
return false;
|
|
};
|
|
// Take a fast path if there are no patches to apply. Simply copy the original
|
|
// contents.
|
|
if (UnitPatches.empty() && AbbrevEntries.empty()) {
|
|
StringRef AbbrevSectionContents =
|
|
Unit.isDWOUnit() ? Unit.getContext().getDWARFObj().getAbbrevDWOSection()
|
|
: Unit.getContext().getDWARFObj().getAbbrevSection();
|
|
StringRef AbbrevContents;
|
|
|
|
const DWARFUnitIndex &CUIndex = Unit.getContext().getCUIndex();
|
|
if (!CUIndex.getRows().empty()) {
|
|
// Handle DWP section contribution.
|
|
const DWARFUnitIndex::Entry *DWOEntry =
|
|
CUIndex.getFromHash(*Unit.getDWOId());
|
|
if (!DWOEntry)
|
|
return;
|
|
|
|
const DWARFUnitIndex::Entry::SectionContribution *DWOContrubution =
|
|
DWOEntry->getContribution(DWARFSectionKind::DW_SECT_ABBREV);
|
|
AbbrevContents = AbbrevSectionContents.substr(
|
|
DWOContrubution->getOffset(), DWOContrubution->getLength());
|
|
} else if (!Unit.isDWOUnit()) {
|
|
const uint64_t StartOffset = Unit.getAbbreviationsOffset();
|
|
|
|
// We know where the unit's abbreviation set starts, but not where it ends
|
|
// as such data is not readily available. Hence, we have to build a sorted
|
|
// list of start addresses and find the next starting address to determine
|
|
// the set boundaries.
|
|
//
|
|
// FIXME: if we had a full access to DWARFDebugAbbrev::AbbrDeclSets
|
|
// we wouldn't have to build our own sorted list for the quick lookup.
|
|
if (AbbrevSetOffsets.empty()) {
|
|
for (const std::pair<const uint64_t, DWARFAbbreviationDeclarationSet>
|
|
&P : *Unit.getContext().getDebugAbbrev())
|
|
AbbrevSetOffsets.push_back(P.first);
|
|
sort(AbbrevSetOffsets);
|
|
}
|
|
auto It = upper_bound(AbbrevSetOffsets, StartOffset);
|
|
const uint64_t EndOffset =
|
|
It == AbbrevSetOffsets.end() ? AbbrevSectionContents.size() : *It;
|
|
AbbrevContents = AbbrevSectionContents.slice(StartOffset, EndOffset);
|
|
} else {
|
|
// For DWO unit outside of DWP, we expect the entire section to hold
|
|
// abbreviations for this unit only.
|
|
AbbrevContents = AbbrevSectionContents;
|
|
}
|
|
|
|
if (!hashAndAddAbbrev(AbbrevContents)) {
|
|
OS.reserveExtraSpace(AbbrevContents.size());
|
|
OS << AbbrevContents;
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (auto I = Abbrevs->begin(), E = Abbrevs->end(); I != E; ++I) {
|
|
const DWARFAbbreviationDeclaration &Abbrev = *I;
|
|
auto Patch = UnitPatches.find(&Abbrev);
|
|
|
|
encodeULEB128(Abbrev.getCode(), OS);
|
|
encodeULEB128(Abbrev.getTag(), OS);
|
|
encodeULEB128(Abbrev.hasChildren(), OS);
|
|
for (const DWARFAbbreviationDeclaration::AttributeSpec &AttrSpec :
|
|
Abbrev.attributes()) {
|
|
if (Patch != UnitPatches.end()) {
|
|
bool Patched = false;
|
|
// Patches added later take a precedence over earlier ones.
|
|
for (const PatchInfo &PI : llvm::reverse(Patch->second)) {
|
|
if (PI.OldAttr != AttrSpec.Attr)
|
|
continue;
|
|
|
|
encodeULEB128(PI.NewAttr, OS);
|
|
encodeULEB128(PI.NewAttrForm, OS);
|
|
Patched = true;
|
|
break;
|
|
}
|
|
if (Patched)
|
|
continue;
|
|
}
|
|
|
|
encodeULEB128(AttrSpec.Attr, OS);
|
|
encodeULEB128(AttrSpec.Form, OS);
|
|
if (AttrSpec.isImplicitConst())
|
|
encodeSLEB128(AttrSpec.getImplicitConstValue(), OS);
|
|
}
|
|
const auto Entries = AbbrevEntries.find(&Abbrev);
|
|
// Adding new Abbrevs for inserted entries.
|
|
if (Entries != AbbrevEntries.end()) {
|
|
for (const AbbrevEntry &Entry : Entries->second) {
|
|
encodeULEB128(Entry.Attr, OS);
|
|
encodeULEB128(Entry.Form, OS);
|
|
}
|
|
}
|
|
encodeULEB128(0, OS);
|
|
encodeULEB128(0, OS);
|
|
}
|
|
encodeULEB128(0, OS);
|
|
|
|
hashAndAddAbbrev(OS.str());
|
|
}
|
|
|
|
std::unique_ptr<DebugBufferVector> DebugAbbrevWriter::finalize() {
|
|
// Used to create determinism for writing out abbrevs.
|
|
std::vector<AbbrevData *> Abbrevs;
|
|
if (DWOId) {
|
|
// We expect abbrev_offset to always be zero for DWO units as there
|
|
// should be one CU per DWO, and TUs should share the same abbreviation
|
|
// set with the CU.
|
|
// For DWP AbbreviationsOffset is an Abbrev contribution in the DWP file, so
|
|
// can be none zero. Thus we are skipping the check for DWP.
|
|
bool IsDWP = !Context.getCUIndex().getRows().empty();
|
|
if (!IsDWP) {
|
|
for (const std::unique_ptr<DWARFUnit> &Unit : Context.dwo_units()) {
|
|
if (Unit->getAbbreviationsOffset() != 0) {
|
|
errs() << "BOLT-ERROR: detected DWO unit with non-zero abbr_offset. "
|
|
"Unable to update debug info.\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
DWARFUnit *Unit = Context.getDWOCompileUnitForHash(*DWOId);
|
|
// Issue abbreviations for the DWO CU only.
|
|
addUnitAbbreviations(*Unit);
|
|
AbbrevData *Abbrev = UnitsAbbrevData[Unit];
|
|
Abbrevs.push_back(Abbrev);
|
|
} else {
|
|
Abbrevs.reserve(Context.getNumCompileUnits() + Context.getNumTypeUnits());
|
|
std::unordered_set<AbbrevData *> ProcessedAbbrevs;
|
|
// Add abbreviations from compile and type non-DWO units.
|
|
for (const std::unique_ptr<DWARFUnit> &Unit : Context.normal_units()) {
|
|
addUnitAbbreviations(*Unit);
|
|
AbbrevData *Abbrev = UnitsAbbrevData[Unit.get()];
|
|
if (!ProcessedAbbrevs.insert(Abbrev).second)
|
|
continue;
|
|
Abbrevs.push_back(Abbrev);
|
|
}
|
|
}
|
|
|
|
DebugBufferVector ReturnBuffer;
|
|
// Pre-calculate the total size of abbrev section.
|
|
uint64_t Size = 0;
|
|
for (const AbbrevData *UnitData : Abbrevs)
|
|
Size += UnitData->Buffer->size();
|
|
|
|
ReturnBuffer.reserve(Size);
|
|
|
|
uint64_t Pos = 0;
|
|
for (AbbrevData *UnitData : Abbrevs) {
|
|
ReturnBuffer.append(*UnitData->Buffer);
|
|
UnitData->Offset = Pos;
|
|
Pos += UnitData->Buffer->size();
|
|
|
|
UnitData->Buffer.reset();
|
|
UnitData->Stream.reset();
|
|
}
|
|
|
|
return std::make_unique<DebugBufferVector>(ReturnBuffer);
|
|
}
|
|
|
|
static void emitDwarfSetLineAddrAbs(MCStreamer &OS,
|
|
MCDwarfLineTableParams Params,
|
|
int64_t LineDelta, uint64_t Address,
|
|
int PointerSize) {
|
|
// emit the sequence to set the address
|
|
OS.emitIntValue(dwarf::DW_LNS_extended_op, 1);
|
|
OS.emitULEB128IntValue(PointerSize + 1);
|
|
OS.emitIntValue(dwarf::DW_LNE_set_address, 1);
|
|
OS.emitIntValue(Address, PointerSize);
|
|
|
|
// emit the sequence for the LineDelta (from 1) and a zero address delta.
|
|
MCDwarfLineAddr::Emit(&OS, Params, LineDelta, 0);
|
|
}
|
|
|
|
static inline void emitBinaryDwarfLineTable(
|
|
MCStreamer *MCOS, MCDwarfLineTableParams Params,
|
|
const DWARFDebugLine::LineTable *Table,
|
|
const std::vector<DwarfLineTable::RowSequence> &InputSequences) {
|
|
if (InputSequences.empty())
|
|
return;
|
|
|
|
constexpr uint64_t InvalidAddress = UINT64_MAX;
|
|
unsigned FileNum = 1;
|
|
unsigned LastLine = 1;
|
|
unsigned Column = 0;
|
|
unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
|
|
unsigned Isa = 0;
|
|
unsigned Discriminator = 0;
|
|
uint64_t LastAddress = InvalidAddress;
|
|
uint64_t PrevEndOfSequence = InvalidAddress;
|
|
const MCAsmInfo *AsmInfo = MCOS->getContext().getAsmInfo();
|
|
|
|
auto emitEndOfSequence = [&](uint64_t Address) {
|
|
MCDwarfLineAddr::Emit(MCOS, Params, INT64_MAX, Address - LastAddress);
|
|
FileNum = 1;
|
|
LastLine = 1;
|
|
Column = 0;
|
|
Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
|
|
Isa = 0;
|
|
Discriminator = 0;
|
|
LastAddress = InvalidAddress;
|
|
};
|
|
|
|
for (const DwarfLineTable::RowSequence &Sequence : InputSequences) {
|
|
const uint64_t SequenceStart =
|
|
Table->Rows[Sequence.FirstIndex].Address.Address;
|
|
|
|
// Check if we need to mark the end of the sequence.
|
|
if (PrevEndOfSequence != InvalidAddress && LastAddress != InvalidAddress &&
|
|
PrevEndOfSequence != SequenceStart) {
|
|
emitEndOfSequence(PrevEndOfSequence);
|
|
}
|
|
|
|
for (uint32_t RowIndex = Sequence.FirstIndex;
|
|
RowIndex <= Sequence.LastIndex; ++RowIndex) {
|
|
const DWARFDebugLine::Row &Row = Table->Rows[RowIndex];
|
|
int64_t LineDelta = static_cast<int64_t>(Row.Line) - LastLine;
|
|
const uint64_t Address = Row.Address.Address;
|
|
|
|
if (FileNum != Row.File) {
|
|
FileNum = Row.File;
|
|
MCOS->emitInt8(dwarf::DW_LNS_set_file);
|
|
MCOS->emitULEB128IntValue(FileNum);
|
|
}
|
|
if (Column != Row.Column) {
|
|
Column = Row.Column;
|
|
MCOS->emitInt8(dwarf::DW_LNS_set_column);
|
|
MCOS->emitULEB128IntValue(Column);
|
|
}
|
|
if (Discriminator != Row.Discriminator &&
|
|
MCOS->getContext().getDwarfVersion() >= 4) {
|
|
Discriminator = Row.Discriminator;
|
|
unsigned Size = getULEB128Size(Discriminator);
|
|
MCOS->emitInt8(dwarf::DW_LNS_extended_op);
|
|
MCOS->emitULEB128IntValue(Size + 1);
|
|
MCOS->emitInt8(dwarf::DW_LNE_set_discriminator);
|
|
MCOS->emitULEB128IntValue(Discriminator);
|
|
}
|
|
if (Isa != Row.Isa) {
|
|
Isa = Row.Isa;
|
|
MCOS->emitInt8(dwarf::DW_LNS_set_isa);
|
|
MCOS->emitULEB128IntValue(Isa);
|
|
}
|
|
if (Row.IsStmt != Flags) {
|
|
Flags = Row.IsStmt;
|
|
MCOS->emitInt8(dwarf::DW_LNS_negate_stmt);
|
|
}
|
|
if (Row.BasicBlock)
|
|
MCOS->emitInt8(dwarf::DW_LNS_set_basic_block);
|
|
if (Row.PrologueEnd)
|
|
MCOS->emitInt8(dwarf::DW_LNS_set_prologue_end);
|
|
if (Row.EpilogueBegin)
|
|
MCOS->emitInt8(dwarf::DW_LNS_set_epilogue_begin);
|
|
|
|
// The end of the sequence is not normal in the middle of the input
|
|
// sequence, but could happen, e.g. for assembly code.
|
|
if (Row.EndSequence) {
|
|
emitEndOfSequence(Address);
|
|
} else {
|
|
if (LastAddress == InvalidAddress)
|
|
emitDwarfSetLineAddrAbs(*MCOS, Params, LineDelta, Address,
|
|
AsmInfo->getCodePointerSize());
|
|
else
|
|
MCDwarfLineAddr::Emit(MCOS, Params, LineDelta, Address - LastAddress);
|
|
|
|
LastAddress = Address;
|
|
LastLine = Row.Line;
|
|
}
|
|
|
|
Discriminator = 0;
|
|
}
|
|
PrevEndOfSequence = Sequence.EndAddress;
|
|
}
|
|
|
|
// Finish with the end of the sequence.
|
|
if (LastAddress != InvalidAddress)
|
|
emitEndOfSequence(PrevEndOfSequence);
|
|
}
|
|
|
|
// This function is similar to the one from MCDwarfLineTable, except it handles
|
|
// end-of-sequence entries differently by utilizing line entries with
|
|
// DWARF2_FLAG_END_SEQUENCE flag.
|
|
static inline void emitDwarfLineTable(
|
|
MCStreamer *MCOS, MCSection *Section,
|
|
const MCLineSection::MCDwarfLineEntryCollection &LineEntries) {
|
|
unsigned FileNum = 1;
|
|
unsigned LastLine = 1;
|
|
unsigned Column = 0;
|
|
unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
|
|
unsigned Isa = 0;
|
|
unsigned Discriminator = 0;
|
|
MCSymbol *LastLabel = nullptr;
|
|
const MCAsmInfo *AsmInfo = MCOS->getContext().getAsmInfo();
|
|
|
|
// Loop through each MCDwarfLineEntry and encode the dwarf line number table.
|
|
for (const MCDwarfLineEntry &LineEntry : LineEntries) {
|
|
if (LineEntry.getFlags() & DWARF2_FLAG_END_SEQUENCE) {
|
|
MCOS->emitDwarfAdvanceLineAddr(INT64_MAX, LastLabel, LineEntry.getLabel(),
|
|
AsmInfo->getCodePointerSize());
|
|
FileNum = 1;
|
|
LastLine = 1;
|
|
Column = 0;
|
|
Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
|
|
Isa = 0;
|
|
Discriminator = 0;
|
|
LastLabel = nullptr;
|
|
continue;
|
|
}
|
|
|
|
int64_t LineDelta = static_cast<int64_t>(LineEntry.getLine()) - LastLine;
|
|
|
|
if (FileNum != LineEntry.getFileNum()) {
|
|
FileNum = LineEntry.getFileNum();
|
|
MCOS->emitInt8(dwarf::DW_LNS_set_file);
|
|
MCOS->emitULEB128IntValue(FileNum);
|
|
}
|
|
if (Column != LineEntry.getColumn()) {
|
|
Column = LineEntry.getColumn();
|
|
MCOS->emitInt8(dwarf::DW_LNS_set_column);
|
|
MCOS->emitULEB128IntValue(Column);
|
|
}
|
|
if (Discriminator != LineEntry.getDiscriminator() &&
|
|
MCOS->getContext().getDwarfVersion() >= 2) {
|
|
Discriminator = LineEntry.getDiscriminator();
|
|
unsigned Size = getULEB128Size(Discriminator);
|
|
MCOS->emitInt8(dwarf::DW_LNS_extended_op);
|
|
MCOS->emitULEB128IntValue(Size + 1);
|
|
MCOS->emitInt8(dwarf::DW_LNE_set_discriminator);
|
|
MCOS->emitULEB128IntValue(Discriminator);
|
|
}
|
|
if (Isa != LineEntry.getIsa()) {
|
|
Isa = LineEntry.getIsa();
|
|
MCOS->emitInt8(dwarf::DW_LNS_set_isa);
|
|
MCOS->emitULEB128IntValue(Isa);
|
|
}
|
|
if ((LineEntry.getFlags() ^ Flags) & DWARF2_FLAG_IS_STMT) {
|
|
Flags = LineEntry.getFlags();
|
|
MCOS->emitInt8(dwarf::DW_LNS_negate_stmt);
|
|
}
|
|
if (LineEntry.getFlags() & DWARF2_FLAG_BASIC_BLOCK)
|
|
MCOS->emitInt8(dwarf::DW_LNS_set_basic_block);
|
|
if (LineEntry.getFlags() & DWARF2_FLAG_PROLOGUE_END)
|
|
MCOS->emitInt8(dwarf::DW_LNS_set_prologue_end);
|
|
if (LineEntry.getFlags() & DWARF2_FLAG_EPILOGUE_BEGIN)
|
|
MCOS->emitInt8(dwarf::DW_LNS_set_epilogue_begin);
|
|
|
|
MCSymbol *Label = LineEntry.getLabel();
|
|
|
|
// At this point we want to emit/create the sequence to encode the delta
|
|
// in line numbers and the increment of the address from the previous
|
|
// Label and the current Label.
|
|
MCOS->emitDwarfAdvanceLineAddr(LineDelta, LastLabel, Label,
|
|
AsmInfo->getCodePointerSize());
|
|
Discriminator = 0;
|
|
LastLine = LineEntry.getLine();
|
|
LastLabel = Label;
|
|
}
|
|
|
|
assert(LastLabel == nullptr && "end of sequence expected");
|
|
}
|
|
|
|
void DwarfLineTable::emitCU(MCStreamer *MCOS, MCDwarfLineTableParams Params,
|
|
std::optional<MCDwarfLineStr> &LineStr,
|
|
BinaryContext &BC) const {
|
|
if (!RawData.empty()) {
|
|
assert(MCLineSections.getMCLineEntries().empty() &&
|
|
InputSequences.empty() &&
|
|
"cannot combine raw data with new line entries");
|
|
MCOS->emitLabel(getLabel());
|
|
MCOS->emitBytes(RawData);
|
|
return;
|
|
}
|
|
|
|
MCSymbol *LineEndSym = Header.Emit(MCOS, Params, LineStr).second;
|
|
|
|
// Put out the line tables.
|
|
for (const auto &LineSec : MCLineSections.getMCLineEntries())
|
|
emitDwarfLineTable(MCOS, LineSec.first, LineSec.second);
|
|
|
|
// Emit line tables for the original code.
|
|
emitBinaryDwarfLineTable(MCOS, Params, InputTable, InputSequences);
|
|
|
|
// This is the end of the section, so set the value of the symbol at the end
|
|
// of this section (that was used in a previous expression).
|
|
MCOS->emitLabel(LineEndSym);
|
|
}
|
|
|
|
// Helper function to parse .debug_line_str, and populate one we are using.
|
|
// For functions that we do not modify we output them as raw data.
|
|
// Re-constructing .debug_line_str so that offsets are correct for those
|
|
// debug line tables.
|
|
// Bonus is that when we output a final binary we can re-use .debug_line_str
|
|
// section. So we don't have to do the SHF_ALLOC trick we did with
|
|
// .debug_line.
|
|
static void parseAndPopulateDebugLineStr(BinarySection &LineStrSection,
|
|
MCDwarfLineStr &LineStr,
|
|
BinaryContext &BC) {
|
|
DataExtractor StrData(LineStrSection.getContents(),
|
|
BC.DwCtx->isLittleEndian(), 0);
|
|
uint64_t Offset = 0;
|
|
while (StrData.isValidOffset(Offset)) {
|
|
const uint64_t StrOffset = Offset;
|
|
Error Err = Error::success();
|
|
const char *CStr = StrData.getCStr(&Offset, &Err);
|
|
if (Err) {
|
|
errs() << "BOLT-ERROR: could not extract string from .debug_line_str";
|
|
continue;
|
|
}
|
|
const size_t NewOffset = LineStr.addString(CStr);
|
|
assert(StrOffset == NewOffset &&
|
|
"New offset in .debug_line_str doesn't match original offset");
|
|
}
|
|
}
|
|
|
|
void DwarfLineTable::emit(BinaryContext &BC, MCStreamer &Streamer) {
|
|
MCAssembler &Assembler =
|
|
static_cast<MCObjectStreamer *>(&Streamer)->getAssembler();
|
|
|
|
MCDwarfLineTableParams Params = Assembler.getDWARFLinetableParams();
|
|
|
|
auto &LineTables = BC.getDwarfLineTables();
|
|
|
|
// Bail out early so we don't switch to the debug_line section needlessly and
|
|
// in doing so create an unnecessary (if empty) section.
|
|
if (LineTables.empty())
|
|
return;
|
|
// In a v5 non-split line table, put the strings in a separate section.
|
|
std::optional<MCDwarfLineStr> LineStr;
|
|
ErrorOr<BinarySection &> LineStrSection =
|
|
BC.getUniqueSectionByName(".debug_line_str");
|
|
|
|
// Some versions of GCC output DWARF5 .debug_info, but DWARF4 or lower
|
|
// .debug_line, so need to check if section exists.
|
|
if (LineStrSection) {
|
|
LineStr.emplace(*BC.Ctx);
|
|
parseAndPopulateDebugLineStr(*LineStrSection, *LineStr, BC);
|
|
}
|
|
|
|
// Switch to the section where the table will be emitted into.
|
|
Streamer.switchSection(BC.MOFI->getDwarfLineSection());
|
|
|
|
const uint16_t DwarfVersion = BC.Ctx->getDwarfVersion();
|
|
// Handle the rest of the Compile Units.
|
|
for (auto &CUIDTablePair : LineTables) {
|
|
Streamer.getContext().setDwarfVersion(
|
|
CUIDTablePair.second.getDwarfVersion());
|
|
CUIDTablePair.second.emitCU(&Streamer, Params, LineStr, BC);
|
|
}
|
|
|
|
// Resetting DWARF version for rest of the flow.
|
|
BC.Ctx->setDwarfVersion(DwarfVersion);
|
|
|
|
// Still need to write the section out for the ExecutionEngine, and temp in
|
|
// memory object we are constructing.
|
|
if (LineStr)
|
|
LineStr->emitSection(&Streamer);
|
|
}
|
|
|
|
} // namespace bolt
|
|
} // namespace llvm
|