mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-16 23:16:35 +00:00

DenseSet, SmallPtrSet, SmallSet, SetVector, and StringSet recently gained C++23-style insert_range. This patch replaces: Dest.insert(Src.begin(), Src.end()); with: Dest.insert_range(Src);
641 lines
23 KiB
C++
641 lines
23 KiB
C++
//===--- ExceptionAnalyzer.cpp - clang-tidy -------------------------------===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "ExceptionAnalyzer.h"
|
||
|
||
namespace clang::tidy::utils {
|
||
|
||
void ExceptionAnalyzer::ExceptionInfo::registerException(
|
||
const Type *ExceptionType) {
|
||
assert(ExceptionType != nullptr && "Only valid types are accepted");
|
||
Behaviour = State::Throwing;
|
||
ThrownExceptions.insert(ExceptionType);
|
||
}
|
||
|
||
void ExceptionAnalyzer::ExceptionInfo::registerExceptions(
|
||
const Throwables &Exceptions) {
|
||
if (Exceptions.empty())
|
||
return;
|
||
Behaviour = State::Throwing;
|
||
ThrownExceptions.insert_range(Exceptions);
|
||
}
|
||
|
||
ExceptionAnalyzer::ExceptionInfo &ExceptionAnalyzer::ExceptionInfo::merge(
|
||
const ExceptionAnalyzer::ExceptionInfo &Other) {
|
||
// Only the following two cases require an update to the local
|
||
// 'Behaviour'. If the local entity is already throwing there will be no
|
||
// change and if the other entity is throwing the merged entity will throw
|
||
// as well.
|
||
// If one of both entities is 'Unknown' and the other one does not throw
|
||
// the merged entity is 'Unknown' as well.
|
||
if (Other.Behaviour == State::Throwing)
|
||
Behaviour = State::Throwing;
|
||
else if (Other.Behaviour == State::Unknown && Behaviour == State::NotThrowing)
|
||
Behaviour = State::Unknown;
|
||
|
||
ContainsUnknown = ContainsUnknown || Other.ContainsUnknown;
|
||
ThrownExceptions.insert_range(Other.ThrownExceptions);
|
||
return *this;
|
||
}
|
||
|
||
// FIXME: This could be ported to clang later.
|
||
namespace {
|
||
|
||
bool isUnambiguousPublicBaseClass(const Type *DerivedType,
|
||
const Type *BaseType) {
|
||
const auto *DerivedClass =
|
||
DerivedType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl();
|
||
const auto *BaseClass =
|
||
BaseType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl();
|
||
if (!DerivedClass || !BaseClass)
|
||
return false;
|
||
|
||
CXXBasePaths Paths;
|
||
Paths.setOrigin(DerivedClass);
|
||
|
||
bool IsPublicBaseClass = false;
|
||
DerivedClass->lookupInBases(
|
||
[&BaseClass, &IsPublicBaseClass](const CXXBaseSpecifier *BS,
|
||
CXXBasePath &) {
|
||
if (BS->getType()
|
||
->getCanonicalTypeUnqualified()
|
||
->getAsCXXRecordDecl() == BaseClass &&
|
||
BS->getAccessSpecifier() == AS_public) {
|
||
IsPublicBaseClass = true;
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
},
|
||
Paths);
|
||
|
||
return !Paths.isAmbiguous(BaseType->getCanonicalTypeUnqualified()) &&
|
||
IsPublicBaseClass;
|
||
}
|
||
|
||
inline bool isPointerOrPointerToMember(const Type *T) {
|
||
return T->isPointerType() || T->isMemberPointerType();
|
||
}
|
||
|
||
std::optional<QualType> getPointeeOrArrayElementQualType(QualType T) {
|
||
if (T->isAnyPointerType() || T->isMemberPointerType())
|
||
return T->getPointeeType();
|
||
|
||
if (T->isArrayType())
|
||
return T->getAsArrayTypeUnsafe()->getElementType();
|
||
|
||
return std::nullopt;
|
||
}
|
||
|
||
bool isBaseOf(const Type *DerivedType, const Type *BaseType) {
|
||
const auto *DerivedClass = DerivedType->getAsCXXRecordDecl();
|
||
const auto *BaseClass = BaseType->getAsCXXRecordDecl();
|
||
if (!DerivedClass || !BaseClass)
|
||
return false;
|
||
|
||
return !DerivedClass->forallBases(
|
||
[BaseClass](const CXXRecordDecl *Cur) { return Cur != BaseClass; });
|
||
}
|
||
|
||
// Check if T1 is more or Equally qualified than T2.
|
||
bool moreOrEquallyQualified(QualType T1, QualType T2) {
|
||
return T1.getQualifiers().isStrictSupersetOf(T2.getQualifiers()) ||
|
||
T1.getQualifiers() == T2.getQualifiers();
|
||
}
|
||
|
||
bool isStandardPointerConvertible(QualType From, QualType To) {
|
||
assert((From->isPointerType() || From->isMemberPointerType()) &&
|
||
(To->isPointerType() || To->isMemberPointerType()) &&
|
||
"Pointer conversion should be performed on pointer types only.");
|
||
|
||
if (!moreOrEquallyQualified(To->getPointeeType(), From->getPointeeType()))
|
||
return false;
|
||
|
||
// (1)
|
||
// A null pointer constant can be converted to a pointer type ...
|
||
// The conversion of a null pointer constant to a pointer to cv-qualified type
|
||
// is a single conversion, and not the sequence of a pointer conversion
|
||
// followed by a qualification conversion. A null pointer constant of integral
|
||
// type can be converted to a prvalue of type std::nullptr_t
|
||
if (To->isPointerType() && From->isNullPtrType())
|
||
return true;
|
||
|
||
// (2)
|
||
// A prvalue of type “pointer to cv T”, where T is an object type, can be
|
||
// converted to a prvalue of type “pointer to cv void”.
|
||
if (To->isVoidPointerType() && From->isObjectPointerType())
|
||
return true;
|
||
|
||
// (3)
|
||
// A prvalue of type “pointer to cv D”, where D is a complete class type, can
|
||
// be converted to a prvalue of type “pointer to cv B”, where B is a base
|
||
// class of D. If B is an inaccessible or ambiguous base class of D, a program
|
||
// that necessitates this conversion is ill-formed.
|
||
if (const auto *RD = From->getPointeeCXXRecordDecl()) {
|
||
if (RD->isCompleteDefinition() &&
|
||
isBaseOf(From->getPointeeType().getTypePtr(),
|
||
To->getPointeeType().getTypePtr())) {
|
||
// If B is an inaccessible or ambiguous base class of D, a program
|
||
// that necessitates this conversion is ill-formed
|
||
return isUnambiguousPublicBaseClass(From->getPointeeType().getTypePtr(),
|
||
To->getPointeeType().getTypePtr());
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
bool isFunctionPointerConvertible(QualType From, QualType To) {
|
||
if (!From->isFunctionPointerType() && !From->isFunctionType() &&
|
||
!From->isMemberFunctionPointerType())
|
||
return false;
|
||
|
||
if (!To->isFunctionPointerType() && !To->isMemberFunctionPointerType())
|
||
return false;
|
||
|
||
if (To->isFunctionPointerType()) {
|
||
if (From->isFunctionPointerType())
|
||
return To->getPointeeType() == From->getPointeeType();
|
||
|
||
if (From->isFunctionType())
|
||
return To->getPointeeType() == From;
|
||
|
||
return false;
|
||
}
|
||
|
||
if (To->isMemberFunctionPointerType()) {
|
||
if (!From->isMemberFunctionPointerType())
|
||
return false;
|
||
|
||
const auto *FromMember = cast<MemberPointerType>(From);
|
||
const auto *ToMember = cast<MemberPointerType>(To);
|
||
|
||
// Note: converting Derived::* to Base::* is a different kind of conversion,
|
||
// called Pointer-to-member conversion.
|
||
return FromMember->getQualifier() == ToMember->getQualifier() &&
|
||
FromMember->getMostRecentCXXRecordDecl() ==
|
||
ToMember->getMostRecentCXXRecordDecl() &&
|
||
FromMember->getPointeeType() == ToMember->getPointeeType();
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// Checks if From is qualification convertible to To based on the current
|
||
// LangOpts. If From is any array, we perform the array to pointer conversion
|
||
// first. The function only performs checks based on C++ rules, which can differ
|
||
// from the C rules.
|
||
//
|
||
// The function should only be called in C++ mode.
|
||
bool isQualificationConvertiblePointer(QualType From, QualType To,
|
||
LangOptions LangOpts) {
|
||
|
||
// [N4659 7.5 (1)]
|
||
// A cv-decomposition of a type T is a sequence of cv_i and P_i such that T is
|
||
// cv_0 P_0 cv_1 P_1 ... cv_n−1 P_n−1 cv_n U” for n > 0,
|
||
// where each cv_i is a set of cv-qualifiers, and each P_i is “pointer to”,
|
||
// “pointer to member of class C_i of type”, “array of N_i”, or
|
||
// “array of unknown bound of”.
|
||
//
|
||
// If P_i designates an array, the cv-qualifiers cv_i+1 on the element type
|
||
// are also taken as the cv-qualifiers cvi of the array.
|
||
//
|
||
// The n-tuple of cv-qualifiers after the first one in the longest
|
||
// cv-decomposition of T, that is, cv_1, cv_2, ... , cv_n, is called the
|
||
// cv-qualification signature of T.
|
||
|
||
auto isValidP_i = [](QualType P) {
|
||
return P->isPointerType() || P->isMemberPointerType() ||
|
||
P->isConstantArrayType() || P->isIncompleteArrayType();
|
||
};
|
||
|
||
auto isSameP_i = [](QualType P1, QualType P2) {
|
||
if (P1->isPointerType())
|
||
return P2->isPointerType();
|
||
|
||
if (P1->isMemberPointerType())
|
||
return P2->isMemberPointerType() &&
|
||
P1->getAs<MemberPointerType>()->getMostRecentCXXRecordDecl() ==
|
||
P2->getAs<MemberPointerType>()->getMostRecentCXXRecordDecl();
|
||
|
||
if (P1->isConstantArrayType())
|
||
return P2->isConstantArrayType() &&
|
||
cast<ConstantArrayType>(P1)->getSize() ==
|
||
cast<ConstantArrayType>(P2)->getSize();
|
||
|
||
if (P1->isIncompleteArrayType())
|
||
return P2->isIncompleteArrayType();
|
||
|
||
return false;
|
||
};
|
||
|
||
// (2)
|
||
// Two types From and To are similar if they have cv-decompositions with the
|
||
// same n such that corresponding P_i components are the same [(added by
|
||
// N4849 7.3.5) or one is “array of N_i” and the other is “array of unknown
|
||
// bound of”], and the types denoted by U are the same.
|
||
//
|
||
// (3)
|
||
// A prvalue expression of type From can be converted to type To if the
|
||
// following conditions are satisfied:
|
||
// - From and To are similar
|
||
// - For every i > 0, if const is in cv_i of From then const is in cv_i of
|
||
// To, and similarly for volatile.
|
||
// - [(derived from addition by N4849 7.3.5) If P_i of From is “array of
|
||
// unknown bound of”, P_i of To is “array of unknown bound of”.]
|
||
// - If the cv_i of From and cv_i of To are different, then const is in every
|
||
// cv_k of To for 0 < k < i.
|
||
|
||
int I = 0;
|
||
bool ConstUntilI = true;
|
||
auto SatisfiesCVRules = [&I, &ConstUntilI](const QualType &From,
|
||
const QualType &To) {
|
||
if (I > 1) {
|
||
if (From.getQualifiers() != To.getQualifiers() && !ConstUntilI)
|
||
return false;
|
||
}
|
||
|
||
if (I > 0) {
|
||
if (From.isConstQualified() && !To.isConstQualified())
|
||
return false;
|
||
|
||
if (From.isVolatileQualified() && !To.isVolatileQualified())
|
||
return false;
|
||
|
||
ConstUntilI = To.isConstQualified();
|
||
}
|
||
|
||
return true;
|
||
};
|
||
|
||
while (isValidP_i(From) && isValidP_i(To)) {
|
||
// Remove every sugar.
|
||
From = From.getCanonicalType();
|
||
To = To.getCanonicalType();
|
||
|
||
if (!SatisfiesCVRules(From, To))
|
||
return false;
|
||
|
||
if (!isSameP_i(From, To)) {
|
||
if (LangOpts.CPlusPlus20) {
|
||
if (From->isConstantArrayType() && !To->isIncompleteArrayType())
|
||
return false;
|
||
|
||
if (From->isIncompleteArrayType() && !To->isIncompleteArrayType())
|
||
return false;
|
||
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
++I;
|
||
std::optional<QualType> FromPointeeOrElem =
|
||
getPointeeOrArrayElementQualType(From);
|
||
std::optional<QualType> ToPointeeOrElem =
|
||
getPointeeOrArrayElementQualType(To);
|
||
|
||
assert(FromPointeeOrElem &&
|
||
"From pointer or array has no pointee or element!");
|
||
assert(ToPointeeOrElem && "To pointer or array has no pointee or element!");
|
||
|
||
From = *FromPointeeOrElem;
|
||
To = *ToPointeeOrElem;
|
||
}
|
||
|
||
// In this case the length (n) of From and To are not the same.
|
||
if (isValidP_i(From) || isValidP_i(To))
|
||
return false;
|
||
|
||
// We hit U.
|
||
if (!SatisfiesCVRules(From, To))
|
||
return false;
|
||
|
||
return From.getTypePtr() == To.getTypePtr();
|
||
}
|
||
} // namespace
|
||
|
||
static bool canThrow(const FunctionDecl *Func) {
|
||
// consteval specifies that every call to the function must produce a
|
||
// compile-time constant, which cannot evaluate a throw expression without
|
||
// producing a compilation error.
|
||
if (Func->isConsteval())
|
||
return false;
|
||
|
||
const auto *FunProto = Func->getType()->getAs<FunctionProtoType>();
|
||
if (!FunProto)
|
||
return true;
|
||
|
||
switch (FunProto->canThrow()) {
|
||
case CT_Cannot:
|
||
return false;
|
||
case CT_Dependent: {
|
||
const Expr *NoexceptExpr = FunProto->getNoexceptExpr();
|
||
if (!NoexceptExpr)
|
||
return true; // no noexept - can throw
|
||
|
||
if (NoexceptExpr->isValueDependent())
|
||
return true; // depend on template - some instance can throw
|
||
|
||
bool Result = false;
|
||
if (!NoexceptExpr->EvaluateAsBooleanCondition(Result, Func->getASTContext(),
|
||
/*InConstantContext=*/true))
|
||
return true; // complex X condition in noexcept(X), cannot validate,
|
||
// assume that may throw
|
||
return !Result; // noexcept(false) - can throw
|
||
}
|
||
default:
|
||
return true;
|
||
};
|
||
}
|
||
|
||
bool ExceptionAnalyzer::ExceptionInfo::filterByCatch(
|
||
const Type *HandlerTy, const ASTContext &Context) {
|
||
llvm::SmallVector<const Type *, 8> TypesToDelete;
|
||
for (const Type *ExceptionTy : ThrownExceptions) {
|
||
CanQualType ExceptionCanTy = ExceptionTy->getCanonicalTypeUnqualified();
|
||
CanQualType HandlerCanTy = HandlerTy->getCanonicalTypeUnqualified();
|
||
|
||
// The handler is of type cv T or cv T& and E and T are the same type
|
||
// (ignoring the top-level cv-qualifiers) ...
|
||
if (ExceptionCanTy == HandlerCanTy) {
|
||
TypesToDelete.push_back(ExceptionTy);
|
||
}
|
||
|
||
// The handler is of type cv T or cv T& and T is an unambiguous public base
|
||
// class of E ...
|
||
else if (isUnambiguousPublicBaseClass(ExceptionCanTy->getTypePtr(),
|
||
HandlerCanTy->getTypePtr())) {
|
||
TypesToDelete.push_back(ExceptionTy);
|
||
}
|
||
|
||
if (HandlerCanTy->getTypeClass() == Type::RValueReference ||
|
||
(HandlerCanTy->getTypeClass() == Type::LValueReference &&
|
||
!HandlerCanTy->getTypePtr()->getPointeeType().isConstQualified()))
|
||
continue;
|
||
// The handler is of type cv T or const T& where T is a pointer or
|
||
// pointer-to-member type and E is a pointer or pointer-to-member type that
|
||
// can be converted to T by one or more of ...
|
||
if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) &&
|
||
isPointerOrPointerToMember(ExceptionCanTy->getTypePtr())) {
|
||
// A standard pointer conversion not involving conversions to pointers to
|
||
// private or protected or ambiguous classes ...
|
||
if (isStandardPointerConvertible(ExceptionCanTy, HandlerCanTy)) {
|
||
TypesToDelete.push_back(ExceptionTy);
|
||
}
|
||
// A function pointer conversion ...
|
||
else if (isFunctionPointerConvertible(ExceptionCanTy, HandlerCanTy)) {
|
||
TypesToDelete.push_back(ExceptionTy);
|
||
}
|
||
// A a qualification conversion ...
|
||
else if (isQualificationConvertiblePointer(ExceptionCanTy, HandlerCanTy,
|
||
Context.getLangOpts())) {
|
||
TypesToDelete.push_back(ExceptionTy);
|
||
}
|
||
}
|
||
|
||
// The handler is of type cv T or const T& where T is a pointer or
|
||
// pointer-to-member type and E is std::nullptr_t.
|
||
else if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) &&
|
||
ExceptionCanTy->isNullPtrType()) {
|
||
TypesToDelete.push_back(ExceptionTy);
|
||
}
|
||
}
|
||
|
||
for (const Type *T : TypesToDelete)
|
||
ThrownExceptions.erase(T);
|
||
|
||
reevaluateBehaviour();
|
||
return !TypesToDelete.empty();
|
||
}
|
||
|
||
ExceptionAnalyzer::ExceptionInfo &
|
||
ExceptionAnalyzer::ExceptionInfo::filterIgnoredExceptions(
|
||
const llvm::StringSet<> &IgnoredTypes, bool IgnoreBadAlloc) {
|
||
llvm::SmallVector<const Type *, 8> TypesToDelete;
|
||
// Note: Using a 'SmallSet' with 'llvm::remove_if()' is not possible.
|
||
// Therefore this slightly hacky implementation is required.
|
||
for (const Type *T : ThrownExceptions) {
|
||
if (const auto *TD = T->getAsTagDecl()) {
|
||
if (TD->getDeclName().isIdentifier()) {
|
||
if ((IgnoreBadAlloc &&
|
||
(TD->getName() == "bad_alloc" && TD->isInStdNamespace())) ||
|
||
(IgnoredTypes.contains(TD->getName())))
|
||
TypesToDelete.push_back(T);
|
||
}
|
||
}
|
||
}
|
||
for (const Type *T : TypesToDelete)
|
||
ThrownExceptions.erase(T);
|
||
|
||
reevaluateBehaviour();
|
||
return *this;
|
||
}
|
||
|
||
void ExceptionAnalyzer::ExceptionInfo::clear() {
|
||
Behaviour = State::NotThrowing;
|
||
ContainsUnknown = false;
|
||
ThrownExceptions.clear();
|
||
}
|
||
|
||
void ExceptionAnalyzer::ExceptionInfo::reevaluateBehaviour() {
|
||
if (ThrownExceptions.empty())
|
||
if (ContainsUnknown)
|
||
Behaviour = State::Unknown;
|
||
else
|
||
Behaviour = State::NotThrowing;
|
||
else
|
||
Behaviour = State::Throwing;
|
||
}
|
||
|
||
ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException(
|
||
const FunctionDecl *Func, const ExceptionInfo::Throwables &Caught,
|
||
llvm::SmallSet<const FunctionDecl *, 32> &CallStack) {
|
||
if (!Func || CallStack.contains(Func) ||
|
||
(!CallStack.empty() && !canThrow(Func)))
|
||
return ExceptionInfo::createNonThrowing();
|
||
|
||
if (const Stmt *Body = Func->getBody()) {
|
||
CallStack.insert(Func);
|
||
ExceptionInfo Result = throwsException(Body, Caught, CallStack);
|
||
|
||
// For a constructor, we also have to check the initializers.
|
||
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Func)) {
|
||
for (const CXXCtorInitializer *Init : Ctor->inits()) {
|
||
ExceptionInfo Excs =
|
||
throwsException(Init->getInit(), Caught, CallStack);
|
||
Result.merge(Excs);
|
||
}
|
||
}
|
||
|
||
CallStack.erase(Func);
|
||
return Result;
|
||
}
|
||
|
||
auto Result = ExceptionInfo::createUnknown();
|
||
if (const auto *FPT = Func->getType()->getAs<FunctionProtoType>()) {
|
||
for (const QualType &Ex : FPT->exceptions())
|
||
Result.registerException(Ex.getTypePtr());
|
||
}
|
||
return Result;
|
||
}
|
||
|
||
/// Analyzes a single statement on it's throwing behaviour. This is in principle
|
||
/// possible except some 'Unknown' functions are called.
|
||
ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException(
|
||
const Stmt *St, const ExceptionInfo::Throwables &Caught,
|
||
llvm::SmallSet<const FunctionDecl *, 32> &CallStack) {
|
||
auto Results = ExceptionInfo::createNonThrowing();
|
||
if (!St)
|
||
return Results;
|
||
|
||
if (const auto *Throw = dyn_cast<CXXThrowExpr>(St)) {
|
||
if (const auto *ThrownExpr = Throw->getSubExpr()) {
|
||
const auto *ThrownType =
|
||
ThrownExpr->getType()->getUnqualifiedDesugaredType();
|
||
if (ThrownType->isReferenceType())
|
||
ThrownType = ThrownType->castAs<ReferenceType>()
|
||
->getPointeeType()
|
||
->getUnqualifiedDesugaredType();
|
||
Results.registerException(
|
||
ThrownExpr->getType()->getUnqualifiedDesugaredType());
|
||
} else
|
||
// A rethrow of a caught exception happens which makes it possible
|
||
// to throw all exception that are caught in the 'catch' clause of
|
||
// the parent try-catch block.
|
||
Results.registerExceptions(Caught);
|
||
} else if (const auto *Try = dyn_cast<CXXTryStmt>(St)) {
|
||
ExceptionInfo Uncaught =
|
||
throwsException(Try->getTryBlock(), Caught, CallStack);
|
||
for (unsigned I = 0; I < Try->getNumHandlers(); ++I) {
|
||
const CXXCatchStmt *Catch = Try->getHandler(I);
|
||
|
||
// Everything is caught through 'catch(...)'.
|
||
if (!Catch->getExceptionDecl()) {
|
||
ExceptionInfo Rethrown = throwsException(
|
||
Catch->getHandlerBlock(), Uncaught.getExceptionTypes(), CallStack);
|
||
Results.merge(Rethrown);
|
||
Uncaught.clear();
|
||
} else {
|
||
const auto *CaughtType =
|
||
Catch->getCaughtType()->getUnqualifiedDesugaredType();
|
||
if (CaughtType->isReferenceType()) {
|
||
CaughtType = CaughtType->castAs<ReferenceType>()
|
||
->getPointeeType()
|
||
->getUnqualifiedDesugaredType();
|
||
}
|
||
|
||
// If the caught exception will catch multiple previously potential
|
||
// thrown types (because it's sensitive to inheritance) the throwing
|
||
// situation changes. First of all filter the exception types and
|
||
// analyze if the baseclass-exception is rethrown.
|
||
if (Uncaught.filterByCatch(
|
||
CaughtType, Catch->getExceptionDecl()->getASTContext())) {
|
||
ExceptionInfo::Throwables CaughtExceptions;
|
||
CaughtExceptions.insert(CaughtType);
|
||
ExceptionInfo Rethrown = throwsException(Catch->getHandlerBlock(),
|
||
CaughtExceptions, CallStack);
|
||
Results.merge(Rethrown);
|
||
}
|
||
}
|
||
}
|
||
Results.merge(Uncaught);
|
||
} else if (const auto *Call = dyn_cast<CallExpr>(St)) {
|
||
if (const FunctionDecl *Func = Call->getDirectCallee()) {
|
||
ExceptionInfo Excs = throwsException(Func, Caught, CallStack);
|
||
Results.merge(Excs);
|
||
}
|
||
} else if (const auto *Construct = dyn_cast<CXXConstructExpr>(St)) {
|
||
ExceptionInfo Excs =
|
||
throwsException(Construct->getConstructor(), Caught, CallStack);
|
||
Results.merge(Excs);
|
||
} else if (const auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(St)) {
|
||
ExceptionInfo Excs =
|
||
throwsException(DefaultInit->getExpr(), Caught, CallStack);
|
||
Results.merge(Excs);
|
||
} else if (const auto *Coro = dyn_cast<CoroutineBodyStmt>(St)) {
|
||
for (const Stmt *Child : Coro->childrenExclBody()) {
|
||
if (Child != Coro->getExceptionHandler()) {
|
||
ExceptionInfo Excs = throwsException(Child, Caught, CallStack);
|
||
Results.merge(Excs);
|
||
}
|
||
}
|
||
ExceptionInfo Excs = throwsException(Coro->getBody(), Caught, CallStack);
|
||
Results.merge(throwsException(Coro->getExceptionHandler(),
|
||
Excs.getExceptionTypes(), CallStack));
|
||
for (const Type *Throwable : Excs.getExceptionTypes()) {
|
||
if (const auto ThrowableRec = Throwable->getAsCXXRecordDecl()) {
|
||
ExceptionInfo DestructorExcs =
|
||
throwsException(ThrowableRec->getDestructor(), Caught, CallStack);
|
||
Results.merge(DestructorExcs);
|
||
}
|
||
}
|
||
} else {
|
||
for (const Stmt *Child : St->children()) {
|
||
ExceptionInfo Excs = throwsException(Child, Caught, CallStack);
|
||
Results.merge(Excs);
|
||
}
|
||
}
|
||
return Results;
|
||
}
|
||
|
||
ExceptionAnalyzer::ExceptionInfo
|
||
ExceptionAnalyzer::analyzeImpl(const FunctionDecl *Func) {
|
||
ExceptionInfo ExceptionList;
|
||
|
||
// Check if the function has already been analyzed and reuse that result.
|
||
const auto CacheEntry = FunctionCache.find(Func);
|
||
if (CacheEntry == FunctionCache.end()) {
|
||
llvm::SmallSet<const FunctionDecl *, 32> CallStack;
|
||
ExceptionList =
|
||
throwsException(Func, ExceptionInfo::Throwables(), CallStack);
|
||
|
||
// Cache the result of the analysis. This is done prior to filtering
|
||
// because it is best to keep as much information as possible.
|
||
// The results here might be relevant to different analysis passes
|
||
// with different needs as well.
|
||
FunctionCache.try_emplace(Func, ExceptionList);
|
||
} else
|
||
ExceptionList = CacheEntry->getSecond();
|
||
|
||
return ExceptionList;
|
||
}
|
||
|
||
ExceptionAnalyzer::ExceptionInfo
|
||
ExceptionAnalyzer::analyzeImpl(const Stmt *Stmt) {
|
||
llvm::SmallSet<const FunctionDecl *, 32> CallStack;
|
||
return throwsException(Stmt, ExceptionInfo::Throwables(), CallStack);
|
||
}
|
||
|
||
template <typename T>
|
||
ExceptionAnalyzer::ExceptionInfo
|
||
ExceptionAnalyzer::analyzeDispatch(const T *Node) {
|
||
ExceptionInfo ExceptionList = analyzeImpl(Node);
|
||
|
||
if (ExceptionList.getBehaviour() == State::NotThrowing ||
|
||
ExceptionList.getBehaviour() == State::Unknown)
|
||
return ExceptionList;
|
||
|
||
// Remove all ignored exceptions from the list of exceptions that can be
|
||
// thrown.
|
||
ExceptionList.filterIgnoredExceptions(IgnoredExceptions, IgnoreBadAlloc);
|
||
|
||
return ExceptionList;
|
||
}
|
||
|
||
ExceptionAnalyzer::ExceptionInfo
|
||
ExceptionAnalyzer::analyze(const FunctionDecl *Func) {
|
||
return analyzeDispatch(Func);
|
||
}
|
||
|
||
ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::analyze(const Stmt *Stmt) {
|
||
return analyzeDispatch(Stmt);
|
||
}
|
||
|
||
} // namespace clang::tidy::utils
|