Kazu Hirata 4a7643400c
[clang-tools-extra] Use *Set::insert_range (NFC) (#132589)
DenseSet, SmallPtrSet, SmallSet, SetVector, and StringSet recently
gained C++23-style insert_range.  This patch replaces:

  Dest.insert(Src.begin(), Src.end());

with:

  Dest.insert_range(Src);
2025-03-23 00:23:19 -07:00

641 lines
23 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===--- ExceptionAnalyzer.cpp - clang-tidy -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ExceptionAnalyzer.h"
namespace clang::tidy::utils {
void ExceptionAnalyzer::ExceptionInfo::registerException(
const Type *ExceptionType) {
assert(ExceptionType != nullptr && "Only valid types are accepted");
Behaviour = State::Throwing;
ThrownExceptions.insert(ExceptionType);
}
void ExceptionAnalyzer::ExceptionInfo::registerExceptions(
const Throwables &Exceptions) {
if (Exceptions.empty())
return;
Behaviour = State::Throwing;
ThrownExceptions.insert_range(Exceptions);
}
ExceptionAnalyzer::ExceptionInfo &ExceptionAnalyzer::ExceptionInfo::merge(
const ExceptionAnalyzer::ExceptionInfo &Other) {
// Only the following two cases require an update to the local
// 'Behaviour'. If the local entity is already throwing there will be no
// change and if the other entity is throwing the merged entity will throw
// as well.
// If one of both entities is 'Unknown' and the other one does not throw
// the merged entity is 'Unknown' as well.
if (Other.Behaviour == State::Throwing)
Behaviour = State::Throwing;
else if (Other.Behaviour == State::Unknown && Behaviour == State::NotThrowing)
Behaviour = State::Unknown;
ContainsUnknown = ContainsUnknown || Other.ContainsUnknown;
ThrownExceptions.insert_range(Other.ThrownExceptions);
return *this;
}
// FIXME: This could be ported to clang later.
namespace {
bool isUnambiguousPublicBaseClass(const Type *DerivedType,
const Type *BaseType) {
const auto *DerivedClass =
DerivedType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl();
const auto *BaseClass =
BaseType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl();
if (!DerivedClass || !BaseClass)
return false;
CXXBasePaths Paths;
Paths.setOrigin(DerivedClass);
bool IsPublicBaseClass = false;
DerivedClass->lookupInBases(
[&BaseClass, &IsPublicBaseClass](const CXXBaseSpecifier *BS,
CXXBasePath &) {
if (BS->getType()
->getCanonicalTypeUnqualified()
->getAsCXXRecordDecl() == BaseClass &&
BS->getAccessSpecifier() == AS_public) {
IsPublicBaseClass = true;
return true;
}
return false;
},
Paths);
return !Paths.isAmbiguous(BaseType->getCanonicalTypeUnqualified()) &&
IsPublicBaseClass;
}
inline bool isPointerOrPointerToMember(const Type *T) {
return T->isPointerType() || T->isMemberPointerType();
}
std::optional<QualType> getPointeeOrArrayElementQualType(QualType T) {
if (T->isAnyPointerType() || T->isMemberPointerType())
return T->getPointeeType();
if (T->isArrayType())
return T->getAsArrayTypeUnsafe()->getElementType();
return std::nullopt;
}
bool isBaseOf(const Type *DerivedType, const Type *BaseType) {
const auto *DerivedClass = DerivedType->getAsCXXRecordDecl();
const auto *BaseClass = BaseType->getAsCXXRecordDecl();
if (!DerivedClass || !BaseClass)
return false;
return !DerivedClass->forallBases(
[BaseClass](const CXXRecordDecl *Cur) { return Cur != BaseClass; });
}
// Check if T1 is more or Equally qualified than T2.
bool moreOrEquallyQualified(QualType T1, QualType T2) {
return T1.getQualifiers().isStrictSupersetOf(T2.getQualifiers()) ||
T1.getQualifiers() == T2.getQualifiers();
}
bool isStandardPointerConvertible(QualType From, QualType To) {
assert((From->isPointerType() || From->isMemberPointerType()) &&
(To->isPointerType() || To->isMemberPointerType()) &&
"Pointer conversion should be performed on pointer types only.");
if (!moreOrEquallyQualified(To->getPointeeType(), From->getPointeeType()))
return false;
// (1)
// A null pointer constant can be converted to a pointer type ...
// The conversion of a null pointer constant to a pointer to cv-qualified type
// is a single conversion, and not the sequence of a pointer conversion
// followed by a qualification conversion. A null pointer constant of integral
// type can be converted to a prvalue of type std::nullptr_t
if (To->isPointerType() && From->isNullPtrType())
return true;
// (2)
// A prvalue of type “pointer to cv T”, where T is an object type, can be
// converted to a prvalue of type “pointer to cv void”.
if (To->isVoidPointerType() && From->isObjectPointerType())
return true;
// (3)
// A prvalue of type “pointer to cv D”, where D is a complete class type, can
// be converted to a prvalue of type “pointer to cv B”, where B is a base
// class of D. If B is an inaccessible or ambiguous base class of D, a program
// that necessitates this conversion is ill-formed.
if (const auto *RD = From->getPointeeCXXRecordDecl()) {
if (RD->isCompleteDefinition() &&
isBaseOf(From->getPointeeType().getTypePtr(),
To->getPointeeType().getTypePtr())) {
// If B is an inaccessible or ambiguous base class of D, a program
// that necessitates this conversion is ill-formed
return isUnambiguousPublicBaseClass(From->getPointeeType().getTypePtr(),
To->getPointeeType().getTypePtr());
}
}
return false;
}
bool isFunctionPointerConvertible(QualType From, QualType To) {
if (!From->isFunctionPointerType() && !From->isFunctionType() &&
!From->isMemberFunctionPointerType())
return false;
if (!To->isFunctionPointerType() && !To->isMemberFunctionPointerType())
return false;
if (To->isFunctionPointerType()) {
if (From->isFunctionPointerType())
return To->getPointeeType() == From->getPointeeType();
if (From->isFunctionType())
return To->getPointeeType() == From;
return false;
}
if (To->isMemberFunctionPointerType()) {
if (!From->isMemberFunctionPointerType())
return false;
const auto *FromMember = cast<MemberPointerType>(From);
const auto *ToMember = cast<MemberPointerType>(To);
// Note: converting Derived::* to Base::* is a different kind of conversion,
// called Pointer-to-member conversion.
return FromMember->getQualifier() == ToMember->getQualifier() &&
FromMember->getMostRecentCXXRecordDecl() ==
ToMember->getMostRecentCXXRecordDecl() &&
FromMember->getPointeeType() == ToMember->getPointeeType();
}
return false;
}
// Checks if From is qualification convertible to To based on the current
// LangOpts. If From is any array, we perform the array to pointer conversion
// first. The function only performs checks based on C++ rules, which can differ
// from the C rules.
//
// The function should only be called in C++ mode.
bool isQualificationConvertiblePointer(QualType From, QualType To,
LangOptions LangOpts) {
// [N4659 7.5 (1)]
// A cv-decomposition of a type T is a sequence of cv_i and P_i such that T is
// cv_0 P_0 cv_1 P_1 ... cv_n1 P_n1 cv_n U” for n > 0,
// where each cv_i is a set of cv-qualifiers, and each P_i is “pointer to”,
// “pointer to member of class C_i of type”, “array of N_i”, or
// “array of unknown bound of”.
//
// If P_i designates an array, the cv-qualifiers cv_i+1 on the element type
// are also taken as the cv-qualifiers cvi of the array.
//
// The n-tuple of cv-qualifiers after the first one in the longest
// cv-decomposition of T, that is, cv_1, cv_2, ... , cv_n, is called the
// cv-qualification signature of T.
auto isValidP_i = [](QualType P) {
return P->isPointerType() || P->isMemberPointerType() ||
P->isConstantArrayType() || P->isIncompleteArrayType();
};
auto isSameP_i = [](QualType P1, QualType P2) {
if (P1->isPointerType())
return P2->isPointerType();
if (P1->isMemberPointerType())
return P2->isMemberPointerType() &&
P1->getAs<MemberPointerType>()->getMostRecentCXXRecordDecl() ==
P2->getAs<MemberPointerType>()->getMostRecentCXXRecordDecl();
if (P1->isConstantArrayType())
return P2->isConstantArrayType() &&
cast<ConstantArrayType>(P1)->getSize() ==
cast<ConstantArrayType>(P2)->getSize();
if (P1->isIncompleteArrayType())
return P2->isIncompleteArrayType();
return false;
};
// (2)
// Two types From and To are similar if they have cv-decompositions with the
// same n such that corresponding P_i components are the same [(added by
// N4849 7.3.5) or one is “array of N_i” and the other is “array of unknown
// bound of”], and the types denoted by U are the same.
//
// (3)
// A prvalue expression of type From can be converted to type To if the
// following conditions are satisfied:
// - From and To are similar
// - For every i > 0, if const is in cv_i of From then const is in cv_i of
// To, and similarly for volatile.
// - [(derived from addition by N4849 7.3.5) If P_i of From is “array of
// unknown bound of”, P_i of To is “array of unknown bound of”.]
// - If the cv_i of From and cv_i of To are different, then const is in every
// cv_k of To for 0 < k < i.
int I = 0;
bool ConstUntilI = true;
auto SatisfiesCVRules = [&I, &ConstUntilI](const QualType &From,
const QualType &To) {
if (I > 1) {
if (From.getQualifiers() != To.getQualifiers() && !ConstUntilI)
return false;
}
if (I > 0) {
if (From.isConstQualified() && !To.isConstQualified())
return false;
if (From.isVolatileQualified() && !To.isVolatileQualified())
return false;
ConstUntilI = To.isConstQualified();
}
return true;
};
while (isValidP_i(From) && isValidP_i(To)) {
// Remove every sugar.
From = From.getCanonicalType();
To = To.getCanonicalType();
if (!SatisfiesCVRules(From, To))
return false;
if (!isSameP_i(From, To)) {
if (LangOpts.CPlusPlus20) {
if (From->isConstantArrayType() && !To->isIncompleteArrayType())
return false;
if (From->isIncompleteArrayType() && !To->isIncompleteArrayType())
return false;
} else {
return false;
}
}
++I;
std::optional<QualType> FromPointeeOrElem =
getPointeeOrArrayElementQualType(From);
std::optional<QualType> ToPointeeOrElem =
getPointeeOrArrayElementQualType(To);
assert(FromPointeeOrElem &&
"From pointer or array has no pointee or element!");
assert(ToPointeeOrElem && "To pointer or array has no pointee or element!");
From = *FromPointeeOrElem;
To = *ToPointeeOrElem;
}
// In this case the length (n) of From and To are not the same.
if (isValidP_i(From) || isValidP_i(To))
return false;
// We hit U.
if (!SatisfiesCVRules(From, To))
return false;
return From.getTypePtr() == To.getTypePtr();
}
} // namespace
static bool canThrow(const FunctionDecl *Func) {
// consteval specifies that every call to the function must produce a
// compile-time constant, which cannot evaluate a throw expression without
// producing a compilation error.
if (Func->isConsteval())
return false;
const auto *FunProto = Func->getType()->getAs<FunctionProtoType>();
if (!FunProto)
return true;
switch (FunProto->canThrow()) {
case CT_Cannot:
return false;
case CT_Dependent: {
const Expr *NoexceptExpr = FunProto->getNoexceptExpr();
if (!NoexceptExpr)
return true; // no noexept - can throw
if (NoexceptExpr->isValueDependent())
return true; // depend on template - some instance can throw
bool Result = false;
if (!NoexceptExpr->EvaluateAsBooleanCondition(Result, Func->getASTContext(),
/*InConstantContext=*/true))
return true; // complex X condition in noexcept(X), cannot validate,
// assume that may throw
return !Result; // noexcept(false) - can throw
}
default:
return true;
};
}
bool ExceptionAnalyzer::ExceptionInfo::filterByCatch(
const Type *HandlerTy, const ASTContext &Context) {
llvm::SmallVector<const Type *, 8> TypesToDelete;
for (const Type *ExceptionTy : ThrownExceptions) {
CanQualType ExceptionCanTy = ExceptionTy->getCanonicalTypeUnqualified();
CanQualType HandlerCanTy = HandlerTy->getCanonicalTypeUnqualified();
// The handler is of type cv T or cv T& and E and T are the same type
// (ignoring the top-level cv-qualifiers) ...
if (ExceptionCanTy == HandlerCanTy) {
TypesToDelete.push_back(ExceptionTy);
}
// The handler is of type cv T or cv T& and T is an unambiguous public base
// class of E ...
else if (isUnambiguousPublicBaseClass(ExceptionCanTy->getTypePtr(),
HandlerCanTy->getTypePtr())) {
TypesToDelete.push_back(ExceptionTy);
}
if (HandlerCanTy->getTypeClass() == Type::RValueReference ||
(HandlerCanTy->getTypeClass() == Type::LValueReference &&
!HandlerCanTy->getTypePtr()->getPointeeType().isConstQualified()))
continue;
// The handler is of type cv T or const T& where T is a pointer or
// pointer-to-member type and E is a pointer or pointer-to-member type that
// can be converted to T by one or more of ...
if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) &&
isPointerOrPointerToMember(ExceptionCanTy->getTypePtr())) {
// A standard pointer conversion not involving conversions to pointers to
// private or protected or ambiguous classes ...
if (isStandardPointerConvertible(ExceptionCanTy, HandlerCanTy)) {
TypesToDelete.push_back(ExceptionTy);
}
// A function pointer conversion ...
else if (isFunctionPointerConvertible(ExceptionCanTy, HandlerCanTy)) {
TypesToDelete.push_back(ExceptionTy);
}
// A a qualification conversion ...
else if (isQualificationConvertiblePointer(ExceptionCanTy, HandlerCanTy,
Context.getLangOpts())) {
TypesToDelete.push_back(ExceptionTy);
}
}
// The handler is of type cv T or const T& where T is a pointer or
// pointer-to-member type and E is std::nullptr_t.
else if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) &&
ExceptionCanTy->isNullPtrType()) {
TypesToDelete.push_back(ExceptionTy);
}
}
for (const Type *T : TypesToDelete)
ThrownExceptions.erase(T);
reevaluateBehaviour();
return !TypesToDelete.empty();
}
ExceptionAnalyzer::ExceptionInfo &
ExceptionAnalyzer::ExceptionInfo::filterIgnoredExceptions(
const llvm::StringSet<> &IgnoredTypes, bool IgnoreBadAlloc) {
llvm::SmallVector<const Type *, 8> TypesToDelete;
// Note: Using a 'SmallSet' with 'llvm::remove_if()' is not possible.
// Therefore this slightly hacky implementation is required.
for (const Type *T : ThrownExceptions) {
if (const auto *TD = T->getAsTagDecl()) {
if (TD->getDeclName().isIdentifier()) {
if ((IgnoreBadAlloc &&
(TD->getName() == "bad_alloc" && TD->isInStdNamespace())) ||
(IgnoredTypes.contains(TD->getName())))
TypesToDelete.push_back(T);
}
}
}
for (const Type *T : TypesToDelete)
ThrownExceptions.erase(T);
reevaluateBehaviour();
return *this;
}
void ExceptionAnalyzer::ExceptionInfo::clear() {
Behaviour = State::NotThrowing;
ContainsUnknown = false;
ThrownExceptions.clear();
}
void ExceptionAnalyzer::ExceptionInfo::reevaluateBehaviour() {
if (ThrownExceptions.empty())
if (ContainsUnknown)
Behaviour = State::Unknown;
else
Behaviour = State::NotThrowing;
else
Behaviour = State::Throwing;
}
ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException(
const FunctionDecl *Func, const ExceptionInfo::Throwables &Caught,
llvm::SmallSet<const FunctionDecl *, 32> &CallStack) {
if (!Func || CallStack.contains(Func) ||
(!CallStack.empty() && !canThrow(Func)))
return ExceptionInfo::createNonThrowing();
if (const Stmt *Body = Func->getBody()) {
CallStack.insert(Func);
ExceptionInfo Result = throwsException(Body, Caught, CallStack);
// For a constructor, we also have to check the initializers.
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Func)) {
for (const CXXCtorInitializer *Init : Ctor->inits()) {
ExceptionInfo Excs =
throwsException(Init->getInit(), Caught, CallStack);
Result.merge(Excs);
}
}
CallStack.erase(Func);
return Result;
}
auto Result = ExceptionInfo::createUnknown();
if (const auto *FPT = Func->getType()->getAs<FunctionProtoType>()) {
for (const QualType &Ex : FPT->exceptions())
Result.registerException(Ex.getTypePtr());
}
return Result;
}
/// Analyzes a single statement on it's throwing behaviour. This is in principle
/// possible except some 'Unknown' functions are called.
ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException(
const Stmt *St, const ExceptionInfo::Throwables &Caught,
llvm::SmallSet<const FunctionDecl *, 32> &CallStack) {
auto Results = ExceptionInfo::createNonThrowing();
if (!St)
return Results;
if (const auto *Throw = dyn_cast<CXXThrowExpr>(St)) {
if (const auto *ThrownExpr = Throw->getSubExpr()) {
const auto *ThrownType =
ThrownExpr->getType()->getUnqualifiedDesugaredType();
if (ThrownType->isReferenceType())
ThrownType = ThrownType->castAs<ReferenceType>()
->getPointeeType()
->getUnqualifiedDesugaredType();
Results.registerException(
ThrownExpr->getType()->getUnqualifiedDesugaredType());
} else
// A rethrow of a caught exception happens which makes it possible
// to throw all exception that are caught in the 'catch' clause of
// the parent try-catch block.
Results.registerExceptions(Caught);
} else if (const auto *Try = dyn_cast<CXXTryStmt>(St)) {
ExceptionInfo Uncaught =
throwsException(Try->getTryBlock(), Caught, CallStack);
for (unsigned I = 0; I < Try->getNumHandlers(); ++I) {
const CXXCatchStmt *Catch = Try->getHandler(I);
// Everything is caught through 'catch(...)'.
if (!Catch->getExceptionDecl()) {
ExceptionInfo Rethrown = throwsException(
Catch->getHandlerBlock(), Uncaught.getExceptionTypes(), CallStack);
Results.merge(Rethrown);
Uncaught.clear();
} else {
const auto *CaughtType =
Catch->getCaughtType()->getUnqualifiedDesugaredType();
if (CaughtType->isReferenceType()) {
CaughtType = CaughtType->castAs<ReferenceType>()
->getPointeeType()
->getUnqualifiedDesugaredType();
}
// If the caught exception will catch multiple previously potential
// thrown types (because it's sensitive to inheritance) the throwing
// situation changes. First of all filter the exception types and
// analyze if the baseclass-exception is rethrown.
if (Uncaught.filterByCatch(
CaughtType, Catch->getExceptionDecl()->getASTContext())) {
ExceptionInfo::Throwables CaughtExceptions;
CaughtExceptions.insert(CaughtType);
ExceptionInfo Rethrown = throwsException(Catch->getHandlerBlock(),
CaughtExceptions, CallStack);
Results.merge(Rethrown);
}
}
}
Results.merge(Uncaught);
} else if (const auto *Call = dyn_cast<CallExpr>(St)) {
if (const FunctionDecl *Func = Call->getDirectCallee()) {
ExceptionInfo Excs = throwsException(Func, Caught, CallStack);
Results.merge(Excs);
}
} else if (const auto *Construct = dyn_cast<CXXConstructExpr>(St)) {
ExceptionInfo Excs =
throwsException(Construct->getConstructor(), Caught, CallStack);
Results.merge(Excs);
} else if (const auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(St)) {
ExceptionInfo Excs =
throwsException(DefaultInit->getExpr(), Caught, CallStack);
Results.merge(Excs);
} else if (const auto *Coro = dyn_cast<CoroutineBodyStmt>(St)) {
for (const Stmt *Child : Coro->childrenExclBody()) {
if (Child != Coro->getExceptionHandler()) {
ExceptionInfo Excs = throwsException(Child, Caught, CallStack);
Results.merge(Excs);
}
}
ExceptionInfo Excs = throwsException(Coro->getBody(), Caught, CallStack);
Results.merge(throwsException(Coro->getExceptionHandler(),
Excs.getExceptionTypes(), CallStack));
for (const Type *Throwable : Excs.getExceptionTypes()) {
if (const auto ThrowableRec = Throwable->getAsCXXRecordDecl()) {
ExceptionInfo DestructorExcs =
throwsException(ThrowableRec->getDestructor(), Caught, CallStack);
Results.merge(DestructorExcs);
}
}
} else {
for (const Stmt *Child : St->children()) {
ExceptionInfo Excs = throwsException(Child, Caught, CallStack);
Results.merge(Excs);
}
}
return Results;
}
ExceptionAnalyzer::ExceptionInfo
ExceptionAnalyzer::analyzeImpl(const FunctionDecl *Func) {
ExceptionInfo ExceptionList;
// Check if the function has already been analyzed and reuse that result.
const auto CacheEntry = FunctionCache.find(Func);
if (CacheEntry == FunctionCache.end()) {
llvm::SmallSet<const FunctionDecl *, 32> CallStack;
ExceptionList =
throwsException(Func, ExceptionInfo::Throwables(), CallStack);
// Cache the result of the analysis. This is done prior to filtering
// because it is best to keep as much information as possible.
// The results here might be relevant to different analysis passes
// with different needs as well.
FunctionCache.try_emplace(Func, ExceptionList);
} else
ExceptionList = CacheEntry->getSecond();
return ExceptionList;
}
ExceptionAnalyzer::ExceptionInfo
ExceptionAnalyzer::analyzeImpl(const Stmt *Stmt) {
llvm::SmallSet<const FunctionDecl *, 32> CallStack;
return throwsException(Stmt, ExceptionInfo::Throwables(), CallStack);
}
template <typename T>
ExceptionAnalyzer::ExceptionInfo
ExceptionAnalyzer::analyzeDispatch(const T *Node) {
ExceptionInfo ExceptionList = analyzeImpl(Node);
if (ExceptionList.getBehaviour() == State::NotThrowing ||
ExceptionList.getBehaviour() == State::Unknown)
return ExceptionList;
// Remove all ignored exceptions from the list of exceptions that can be
// thrown.
ExceptionList.filterIgnoredExceptions(IgnoredExceptions, IgnoreBadAlloc);
return ExceptionList;
}
ExceptionAnalyzer::ExceptionInfo
ExceptionAnalyzer::analyze(const FunctionDecl *Func) {
return analyzeDispatch(Func);
}
ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::analyze(const Stmt *Stmt) {
return analyzeDispatch(Stmt);
}
} // namespace clang::tidy::utils