mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-29 12:26:08 +00:00

….cpp This is intended to reduce the memory usage while compiling flang sources. There were over 7500 instantiations of function templates defined in the Utils.h file. Most of them were not referenced anywhere outside, except for specialized implementations of getHashValue and isEqual in IterationSpace.cpp. These function were also moved to Utils.cpp.
374 lines
11 KiB
C++
374 lines
11 KiB
C++
//===-- IterationSpace.cpp ------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Lower/IterationSpace.h"
|
|
#include "flang/Evaluate/expression.h"
|
|
#include "flang/Lower/AbstractConverter.h"
|
|
#include "flang/Lower/Support/Utils.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <optional>
|
|
|
|
#define DEBUG_TYPE "flang-lower-iteration-space"
|
|
|
|
namespace {
|
|
|
|
/// This class can recover the base array in an expression that contains
|
|
/// explicit iteration space symbols. Most of the class can be ignored as it is
|
|
/// boilerplate Fortran::evaluate::Expr traversal.
|
|
class ArrayBaseFinder {
|
|
public:
|
|
using RT = bool;
|
|
|
|
ArrayBaseFinder(llvm::ArrayRef<Fortran::lower::FrontEndSymbol> syms)
|
|
: controlVars(syms) {}
|
|
|
|
template <typename T>
|
|
void operator()(const T &x) {
|
|
(void)find(x);
|
|
}
|
|
|
|
/// Get the list of bases.
|
|
llvm::ArrayRef<Fortran::lower::ExplicitIterSpace::ArrayBases>
|
|
getBases() const {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "number of array bases found: " << bases.size() << '\n');
|
|
return bases;
|
|
}
|
|
|
|
private:
|
|
// First, the cases that are of interest.
|
|
RT find(const Fortran::semantics::Symbol &symbol) {
|
|
if (symbol.Rank() > 0) {
|
|
bases.push_back(&symbol);
|
|
return true;
|
|
}
|
|
return {};
|
|
}
|
|
RT find(const Fortran::evaluate::Component &x) {
|
|
auto found = find(x.base());
|
|
if (!found && x.base().Rank() == 0 && x.Rank() > 0) {
|
|
bases.push_back(&x);
|
|
return true;
|
|
}
|
|
return found;
|
|
}
|
|
RT find(const Fortran::evaluate::ArrayRef &x) {
|
|
for (const auto &sub : x.subscript())
|
|
(void)find(sub);
|
|
if (x.base().IsSymbol()) {
|
|
if (x.Rank() > 0 || intersection(x.subscript())) {
|
|
bases.push_back(&x);
|
|
return true;
|
|
}
|
|
return {};
|
|
}
|
|
auto found = find(x.base());
|
|
if (!found && ((x.base().Rank() == 0 && x.Rank() > 0) ||
|
|
intersection(x.subscript()))) {
|
|
bases.push_back(&x);
|
|
return true;
|
|
}
|
|
return found;
|
|
}
|
|
RT find(const Fortran::evaluate::Triplet &x) {
|
|
if (const auto *lower = x.GetLower())
|
|
(void)find(*lower);
|
|
if (const auto *upper = x.GetUpper())
|
|
(void)find(*upper);
|
|
return find(x.GetStride());
|
|
}
|
|
RT find(const Fortran::evaluate::IndirectSubscriptIntegerExpr &x) {
|
|
return find(x.value());
|
|
}
|
|
RT find(const Fortran::evaluate::Subscript &x) { return find(x.u); }
|
|
RT find(const Fortran::evaluate::DataRef &x) { return find(x.u); }
|
|
RT find(const Fortran::evaluate::CoarrayRef &x) {
|
|
assert(false && "coarray reference");
|
|
return {};
|
|
}
|
|
|
|
template <typename A>
|
|
bool intersection(const A &subscripts) {
|
|
return Fortran::lower::symbolsIntersectSubscripts(controlVars, subscripts);
|
|
}
|
|
|
|
// The rest is traversal boilerplate and can be ignored.
|
|
RT find(const Fortran::evaluate::Substring &x) { return find(x.parent()); }
|
|
template <typename A>
|
|
RT find(const Fortran::semantics::SymbolRef x) {
|
|
return find(*x);
|
|
}
|
|
RT find(const Fortran::evaluate::NamedEntity &x) {
|
|
if (x.IsSymbol())
|
|
return find(x.GetFirstSymbol());
|
|
return find(x.GetComponent());
|
|
}
|
|
|
|
template <typename A, bool C>
|
|
RT find(const Fortran::common::Indirection<A, C> &x) {
|
|
return find(x.value());
|
|
}
|
|
template <typename A>
|
|
RT find(const std::unique_ptr<A> &x) {
|
|
return find(x.get());
|
|
}
|
|
template <typename A>
|
|
RT find(const std::shared_ptr<A> &x) {
|
|
return find(x.get());
|
|
}
|
|
template <typename A>
|
|
RT find(const A *x) {
|
|
if (x)
|
|
return find(*x);
|
|
return {};
|
|
}
|
|
template <typename A>
|
|
RT find(const std::optional<A> &x) {
|
|
if (x)
|
|
return find(*x);
|
|
return {};
|
|
}
|
|
template <typename... A>
|
|
RT find(const std::variant<A...> &u) {
|
|
return Fortran::common::visit([&](const auto &v) { return find(v); }, u);
|
|
}
|
|
template <typename A>
|
|
RT find(const std::vector<A> &x) {
|
|
for (auto &v : x)
|
|
(void)find(v);
|
|
return {};
|
|
}
|
|
RT find(const Fortran::evaluate::BOZLiteralConstant &) { return {}; }
|
|
RT find(const Fortran::evaluate::NullPointer &) { return {}; }
|
|
template <typename T>
|
|
RT find(const Fortran::evaluate::Constant<T> &x) {
|
|
return {};
|
|
}
|
|
RT find(const Fortran::evaluate::StaticDataObject &) { return {}; }
|
|
RT find(const Fortran::evaluate::ImpliedDoIndex &) { return {}; }
|
|
RT find(const Fortran::evaluate::BaseObject &x) {
|
|
(void)find(x.u);
|
|
return {};
|
|
}
|
|
RT find(const Fortran::evaluate::TypeParamInquiry &) { return {}; }
|
|
RT find(const Fortran::evaluate::ComplexPart &x) { return {}; }
|
|
template <typename T>
|
|
RT find(const Fortran::evaluate::Designator<T> &x) {
|
|
return find(x.u);
|
|
}
|
|
template <typename T>
|
|
RT find(const Fortran::evaluate::Variable<T> &x) {
|
|
return find(x.u);
|
|
}
|
|
RT find(const Fortran::evaluate::DescriptorInquiry &) { return {}; }
|
|
RT find(const Fortran::evaluate::SpecificIntrinsic &) { return {}; }
|
|
RT find(const Fortran::evaluate::ProcedureDesignator &x) { return {}; }
|
|
RT find(const Fortran::evaluate::ProcedureRef &x) {
|
|
(void)find(x.proc());
|
|
if (x.IsElemental())
|
|
(void)find(x.arguments());
|
|
return {};
|
|
}
|
|
RT find(const Fortran::evaluate::ActualArgument &x) {
|
|
if (const auto *sym = x.GetAssumedTypeDummy())
|
|
(void)find(*sym);
|
|
else
|
|
(void)find(x.UnwrapExpr());
|
|
return {};
|
|
}
|
|
template <typename T>
|
|
RT find(const Fortran::evaluate::FunctionRef<T> &x) {
|
|
(void)find(static_cast<const Fortran::evaluate::ProcedureRef &>(x));
|
|
return {};
|
|
}
|
|
template <typename T>
|
|
RT find(const Fortran::evaluate::ArrayConstructorValue<T> &) {
|
|
return {};
|
|
}
|
|
template <typename T>
|
|
RT find(const Fortran::evaluate::ArrayConstructorValues<T> &) {
|
|
return {};
|
|
}
|
|
template <typename T>
|
|
RT find(const Fortran::evaluate::ImpliedDo<T> &) {
|
|
return {};
|
|
}
|
|
RT find(const Fortran::semantics::ParamValue &) { return {}; }
|
|
RT find(const Fortran::semantics::DerivedTypeSpec &) { return {}; }
|
|
RT find(const Fortran::evaluate::StructureConstructor &) { return {}; }
|
|
template <typename D, typename R, typename O>
|
|
RT find(const Fortran::evaluate::Operation<D, R, O> &op) {
|
|
(void)find(op.left());
|
|
return false;
|
|
}
|
|
template <typename D, typename R, typename LO, typename RO>
|
|
RT find(const Fortran::evaluate::Operation<D, R, LO, RO> &op) {
|
|
(void)find(op.left());
|
|
(void)find(op.right());
|
|
return false;
|
|
}
|
|
RT find(const Fortran::evaluate::Relational<Fortran::evaluate::SomeType> &x) {
|
|
(void)find(x.u);
|
|
return {};
|
|
}
|
|
template <typename T>
|
|
RT find(const Fortran::evaluate::Expr<T> &x) {
|
|
(void)find(x.u);
|
|
return {};
|
|
}
|
|
|
|
llvm::SmallVector<Fortran::lower::ExplicitIterSpace::ArrayBases> bases;
|
|
llvm::SmallVector<Fortran::lower::FrontEndSymbol> controlVars;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void Fortran::lower::ExplicitIterSpace::leave() {
|
|
ccLoopNest.pop_back();
|
|
--forallContextOpen;
|
|
conditionalCleanup();
|
|
}
|
|
|
|
void Fortran::lower::ExplicitIterSpace::addSymbol(
|
|
Fortran::lower::FrontEndSymbol sym) {
|
|
assert(!symbolStack.empty());
|
|
symbolStack.back().push_back(sym);
|
|
}
|
|
|
|
void Fortran::lower::ExplicitIterSpace::exprBase(Fortran::lower::FrontEndExpr x,
|
|
bool lhs) {
|
|
ArrayBaseFinder finder(collectAllSymbols());
|
|
finder(*x);
|
|
llvm::ArrayRef<Fortran::lower::ExplicitIterSpace::ArrayBases> bases =
|
|
finder.getBases();
|
|
if (rhsBases.empty())
|
|
endAssign();
|
|
if (lhs) {
|
|
if (bases.empty()) {
|
|
lhsBases.push_back(std::nullopt);
|
|
return;
|
|
}
|
|
assert(bases.size() >= 1 && "must detect an array reference on lhs");
|
|
if (bases.size() > 1)
|
|
rhsBases.back().append(bases.begin(), bases.end() - 1);
|
|
lhsBases.push_back(bases.back());
|
|
return;
|
|
}
|
|
rhsBases.back().append(bases.begin(), bases.end());
|
|
}
|
|
|
|
void Fortran::lower::ExplicitIterSpace::endAssign() { rhsBases.emplace_back(); }
|
|
|
|
void Fortran::lower::ExplicitIterSpace::pushLevel() {
|
|
symbolStack.push_back(llvm::SmallVector<Fortran::lower::FrontEndSymbol>{});
|
|
}
|
|
|
|
void Fortran::lower::ExplicitIterSpace::popLevel() { symbolStack.pop_back(); }
|
|
|
|
void Fortran::lower::ExplicitIterSpace::conditionalCleanup() {
|
|
if (forallContextOpen == 0) {
|
|
// Exiting the outermost FORALL context.
|
|
// Cleanup any residual mask buffers.
|
|
outermostContext().finalizeAndReset();
|
|
// Clear and reset all the cached information.
|
|
symbolStack.clear();
|
|
lhsBases.clear();
|
|
rhsBases.clear();
|
|
loadBindings.clear();
|
|
ccLoopNest.clear();
|
|
innerArgs.clear();
|
|
outerLoop = std::nullopt;
|
|
clearLoops();
|
|
counter = 0;
|
|
}
|
|
}
|
|
|
|
std::optional<size_t>
|
|
Fortran::lower::ExplicitIterSpace::findArgPosition(fir::ArrayLoadOp load) {
|
|
if (lhsBases[counter]) {
|
|
auto ld = loadBindings.find(*lhsBases[counter]);
|
|
std::optional<size_t> optPos;
|
|
if (ld != loadBindings.end() && ld->second == load)
|
|
optPos = static_cast<size_t>(0u);
|
|
assert(optPos.has_value() && "load does not correspond to lhs");
|
|
return optPos;
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
llvm::SmallVector<Fortran::lower::FrontEndSymbol>
|
|
Fortran::lower::ExplicitIterSpace::collectAllSymbols() {
|
|
llvm::SmallVector<Fortran::lower::FrontEndSymbol> result;
|
|
for (llvm::SmallVector<FrontEndSymbol> vec : symbolStack)
|
|
result.append(vec.begin(), vec.end());
|
|
return result;
|
|
}
|
|
|
|
llvm::raw_ostream &
|
|
Fortran::lower::operator<<(llvm::raw_ostream &s,
|
|
const Fortran::lower::ImplicitIterSpace &e) {
|
|
for (const llvm::SmallVector<
|
|
Fortran::lower::ImplicitIterSpace::FrontEndMaskExpr> &xs :
|
|
e.getMasks()) {
|
|
s << "{ ";
|
|
for (const Fortran::lower::ImplicitIterSpace::FrontEndMaskExpr &x : xs)
|
|
x->AsFortran(s << '(') << "), ";
|
|
s << "}\n";
|
|
}
|
|
return s;
|
|
}
|
|
|
|
llvm::raw_ostream &
|
|
Fortran::lower::operator<<(llvm::raw_ostream &s,
|
|
const Fortran::lower::ExplicitIterSpace &e) {
|
|
auto dump = [&](const auto &u) {
|
|
Fortran::common::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::semantics::Symbol *y) {
|
|
s << " " << *y << '\n';
|
|
},
|
|
[&](const Fortran::evaluate::ArrayRef *y) {
|
|
s << " ";
|
|
if (y->base().IsSymbol())
|
|
s << y->base().GetFirstSymbol();
|
|
else
|
|
s << y->base().GetComponent().GetLastSymbol();
|
|
s << '\n';
|
|
},
|
|
[&](const Fortran::evaluate::Component *y) {
|
|
s << " " << y->GetLastSymbol() << '\n';
|
|
}},
|
|
u);
|
|
};
|
|
s << "LHS bases:\n";
|
|
for (const std::optional<Fortran::lower::ExplicitIterSpace::ArrayBases> &u :
|
|
e.lhsBases)
|
|
if (u)
|
|
dump(*u);
|
|
s << "RHS bases:\n";
|
|
for (const llvm::SmallVector<Fortran::lower::ExplicitIterSpace::ArrayBases>
|
|
&bases : e.rhsBases) {
|
|
for (const Fortran::lower::ExplicitIterSpace::ArrayBases &u : bases)
|
|
dump(u);
|
|
s << '\n';
|
|
}
|
|
return s;
|
|
}
|
|
|
|
void Fortran::lower::ImplicitIterSpace::dump() const {
|
|
llvm::errs() << *this << '\n';
|
|
}
|
|
|
|
void Fortran::lower::ExplicitIterSpace::dump() const {
|
|
llvm::errs() << *this << '\n';
|
|
}
|