mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-04 17:26:05 +00:00

VPlan-native path Context: Patch Series #2 for outer loop vectorization support in LV using VPlan. (RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). Patch series #2 checks that inner loops are still trivially lock-step among all vector elements. Non-loop branches are blindly assumed as divergent. Changes here implement VPlan based predication algorithm to compute predicates for blocks that need predication. Predicates are computed for the VPLoop region in reverse post order. A block's predicate is computed as OR of the masks of all incoming edges. The mask for an incoming edge is computed as AND of predecessor block's predicate and either predecessor's Condition bit or NOT(Condition bit) depending on whether the edge from predecessor block to the current block is true or false edge. Reviewers: fhahn, rengolin, hsaito, dcaballe Reviewed By: fhahn Patch by Satish Guggilla, thanks! Differential Revision: https://reviews.llvm.org/D53349 llvm-svn: 351990
250 lines
9.2 KiB
C++
250 lines
9.2 KiB
C++
//===-- VPlanPredicator.cpp -------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements the VPlanPredicator class which contains the public
|
|
/// interfaces to predicate and linearize the VPlan region.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VPlanPredicator.h"
|
|
#include "VPlan.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "VPlanPredicator"
|
|
|
|
using namespace llvm;
|
|
|
|
// Generate VPInstructions at the beginning of CurrBB that calculate the
|
|
// predicate being propagated from PredBB to CurrBB depending on the edge type
|
|
// between them. For example if:
|
|
// i. PredBB is controlled by predicate %BP, and
|
|
// ii. The edge PredBB->CurrBB is the false edge, controlled by the condition
|
|
// bit value %CBV then this function will generate the following two
|
|
// VPInstructions at the start of CurrBB:
|
|
// %IntermediateVal = not %CBV
|
|
// %FinalVal = and %BP %IntermediateVal
|
|
// It returns %FinalVal.
|
|
VPValue *VPlanPredicator::getOrCreateNotPredicate(VPBasicBlock *PredBB,
|
|
VPBasicBlock *CurrBB) {
|
|
VPValue *CBV = PredBB->getCondBit();
|
|
|
|
// Set the intermediate value - this is either 'CBV', or 'not CBV'
|
|
// depending on the edge type.
|
|
EdgeType ET = getEdgeTypeBetween(PredBB, CurrBB);
|
|
VPValue *IntermediateVal = nullptr;
|
|
switch (ET) {
|
|
case EdgeType::TRUE_EDGE:
|
|
// CurrBB is the true successor of PredBB - nothing to do here.
|
|
IntermediateVal = CBV;
|
|
break;
|
|
|
|
case EdgeType::FALSE_EDGE:
|
|
// CurrBB is the False successor of PredBB - compute not of CBV.
|
|
IntermediateVal = Builder.createNot(CBV);
|
|
break;
|
|
}
|
|
|
|
// Now AND intermediate value with PredBB's block predicate if it has one.
|
|
VPValue *BP = PredBB->getPredicate();
|
|
if (BP)
|
|
return Builder.createAnd(BP, IntermediateVal);
|
|
else
|
|
return IntermediateVal;
|
|
}
|
|
|
|
// Generate a tree of ORs for all IncomingPredicates in WorkList.
|
|
// Note: This function destroys the original Worklist.
|
|
//
|
|
// P1 P2 P3 P4 P5
|
|
// \ / \ / /
|
|
// OR1 OR2 /
|
|
// \ | /
|
|
// \ +/-+
|
|
// \ / |
|
|
// OR3 |
|
|
// \ |
|
|
// OR4 <- Returns this
|
|
// |
|
|
//
|
|
// The algorithm uses a worklist of predicates as its main data structure.
|
|
// We pop a pair of values from the front (e.g. P1 and P2), generate an OR
|
|
// (in this example OR1), and push it back. In this example the worklist
|
|
// contains {P3, P4, P5, OR1}.
|
|
// The process iterates until we have only one element in the Worklist (OR4).
|
|
// The last element is the root predicate which is returned.
|
|
VPValue *VPlanPredicator::genPredicateTree(std::list<VPValue *> &Worklist) {
|
|
if (Worklist.empty())
|
|
return nullptr;
|
|
|
|
// The worklist initially contains all the leaf nodes. Initialize the tree
|
|
// using them.
|
|
while (Worklist.size() >= 2) {
|
|
// Pop a pair of values from the front.
|
|
VPValue *LHS = Worklist.front();
|
|
Worklist.pop_front();
|
|
VPValue *RHS = Worklist.front();
|
|
Worklist.pop_front();
|
|
|
|
// Create an OR of these values.
|
|
VPValue *Or = Builder.createOr(LHS, RHS);
|
|
|
|
// Push OR to the back of the worklist.
|
|
Worklist.push_back(Or);
|
|
}
|
|
|
|
assert(Worklist.size() == 1 && "Expected 1 item in worklist");
|
|
|
|
// The root is the last node in the worklist.
|
|
VPValue *Root = Worklist.front();
|
|
|
|
// This root needs to replace the existing block predicate. This is done in
|
|
// the caller function.
|
|
return Root;
|
|
}
|
|
|
|
// Return whether the edge FromBlock -> ToBlock is a TRUE_EDGE or FALSE_EDGE
|
|
VPlanPredicator::EdgeType
|
|
VPlanPredicator::getEdgeTypeBetween(VPBlockBase *FromBlock,
|
|
VPBlockBase *ToBlock) {
|
|
unsigned Count = 0;
|
|
for (VPBlockBase *SuccBlock : FromBlock->getSuccessors()) {
|
|
if (SuccBlock == ToBlock) {
|
|
assert(Count < 2 && "Switch not supported currently");
|
|
return (Count == 0) ? EdgeType::TRUE_EDGE : EdgeType::FALSE_EDGE;
|
|
}
|
|
Count++;
|
|
}
|
|
|
|
llvm_unreachable("Broken getEdgeTypeBetween");
|
|
}
|
|
|
|
// Generate all predicates needed for CurrBlock by going through its immediate
|
|
// predecessor blocks.
|
|
void VPlanPredicator::createOrPropagatePredicates(VPBlockBase *CurrBlock,
|
|
VPRegionBlock *Region) {
|
|
// Blocks that dominate region exit inherit the predicate from the region.
|
|
// Return after setting the predicate.
|
|
if (VPDomTree.dominates(CurrBlock, Region->getExit())) {
|
|
VPValue *RegionBP = Region->getPredicate();
|
|
CurrBlock->setPredicate(RegionBP);
|
|
return;
|
|
}
|
|
|
|
// Collect all incoming predicates in a worklist.
|
|
std::list<VPValue *> IncomingPredicates;
|
|
|
|
// Set the builder's insertion point to the top of the current BB
|
|
VPBasicBlock *CurrBB = cast<VPBasicBlock>(CurrBlock->getEntryBasicBlock());
|
|
Builder.setInsertPoint(CurrBB, CurrBB->begin());
|
|
|
|
// For each predecessor, generate the VPInstructions required for
|
|
// computing 'BP AND (not) CBV" at the top of CurrBB.
|
|
// Collect the outcome of this calculation for all predecessors
|
|
// into IncomingPredicates.
|
|
for (VPBlockBase *PredBlock : CurrBlock->getPredecessors()) {
|
|
// Skip back-edges
|
|
if (VPBlockUtils::isBackEdge(PredBlock, CurrBlock, VPLI))
|
|
continue;
|
|
|
|
VPValue *IncomingPredicate = nullptr;
|
|
unsigned NumPredSuccsNoBE =
|
|
VPBlockUtils::countSuccessorsNoBE(PredBlock, VPLI);
|
|
|
|
// If there is an unconditional branch to the currBB, then we don't create
|
|
// edge predicates. We use the predecessor's block predicate instead.
|
|
if (NumPredSuccsNoBE == 1)
|
|
IncomingPredicate = PredBlock->getPredicate();
|
|
else if (NumPredSuccsNoBE == 2) {
|
|
// Emit recipes into CurrBlock if required
|
|
assert(isa<VPBasicBlock>(PredBlock) && "Only BBs have multiple exits");
|
|
IncomingPredicate =
|
|
getOrCreateNotPredicate(cast<VPBasicBlock>(PredBlock), CurrBB);
|
|
} else
|
|
llvm_unreachable("FIXME: switch statement ?");
|
|
|
|
if (IncomingPredicate)
|
|
IncomingPredicates.push_back(IncomingPredicate);
|
|
}
|
|
|
|
// Logically OR all incoming predicates by building the Predicate Tree.
|
|
VPValue *Predicate = genPredicateTree(IncomingPredicates);
|
|
|
|
// Now update the block's predicate with the new one.
|
|
CurrBlock->setPredicate(Predicate);
|
|
}
|
|
|
|
// Generate all predicates needed for Region.
|
|
void VPlanPredicator::predicateRegionRec(VPRegionBlock *Region) {
|
|
VPBasicBlock *EntryBlock = cast<VPBasicBlock>(Region->getEntry());
|
|
ReversePostOrderTraversal<VPBlockBase *> RPOT(EntryBlock);
|
|
|
|
// Generate edge predicates and append them to the block predicate. RPO is
|
|
// necessary since the predecessor blocks' block predicate needs to be set
|
|
// before the current block's block predicate can be computed.
|
|
for (VPBlockBase *Block : make_range(RPOT.begin(), RPOT.end())) {
|
|
// TODO: Handle nested regions once we start generating the same.
|
|
assert(!isa<VPRegionBlock>(Block) && "Nested region not expected");
|
|
createOrPropagatePredicates(Block, Region);
|
|
}
|
|
}
|
|
|
|
// Linearize the CFG within Region.
|
|
// TODO: Predication and linearization need RPOT for every region.
|
|
// This traversal is expensive. Since predication is not adding new
|
|
// blocks, we should be able to compute RPOT once in predication and
|
|
// reuse it here. This becomes even more important once we have nested
|
|
// regions.
|
|
void VPlanPredicator::linearizeRegionRec(VPRegionBlock *Region) {
|
|
ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry());
|
|
VPBlockBase *PrevBlock = nullptr;
|
|
|
|
for (VPBlockBase *CurrBlock : make_range(RPOT.begin(), RPOT.end())) {
|
|
// TODO: Handle nested regions once we start generating the same.
|
|
assert(!isa<VPRegionBlock>(CurrBlock) && "Nested region not expected");
|
|
|
|
// Linearize control flow by adding an unconditional edge between PrevBlock
|
|
// and CurrBlock skipping loop headers and latches to keep intact loop
|
|
// header predecessors and loop latch successors.
|
|
if (PrevBlock && !VPLI->isLoopHeader(CurrBlock) &&
|
|
!VPBlockUtils::blockIsLoopLatch(PrevBlock, VPLI)) {
|
|
|
|
LLVM_DEBUG(dbgs() << "Linearizing: " << PrevBlock->getName() << "->"
|
|
<< CurrBlock->getName() << "\n");
|
|
|
|
PrevBlock->clearSuccessors();
|
|
CurrBlock->clearPredecessors();
|
|
VPBlockUtils::connectBlocks(PrevBlock, CurrBlock);
|
|
}
|
|
|
|
PrevBlock = CurrBlock;
|
|
}
|
|
}
|
|
|
|
// Entry point. The driver function for the predicator.
|
|
void VPlanPredicator::predicate(void) {
|
|
// Predicate the blocks within Region.
|
|
predicateRegionRec(cast<VPRegionBlock>(Plan.getEntry()));
|
|
|
|
// Linearlize the blocks with Region.
|
|
linearizeRegionRec(cast<VPRegionBlock>(Plan.getEntry()));
|
|
}
|
|
|
|
VPlanPredicator::VPlanPredicator(VPlan &Plan)
|
|
: Plan(Plan), VPLI(&(Plan.getVPLoopInfo())) {
|
|
// FIXME: Predicator is currently computing the dominator information for the
|
|
// top region. Once we start storing dominator information in a VPRegionBlock,
|
|
// we can avoid this recalculation.
|
|
VPDomTree.recalculate(*(cast<VPRegionBlock>(Plan.getEntry())));
|
|
}
|