mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-17 00:26:43 +00:00
1945 lines
75 KiB
C++
1945 lines
75 KiB
C++
//===- LoopVectorizationLegality.cpp --------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides loop vectorization legality analysis. Original code
|
|
// resided in LoopVectorize.cpp for a long time.
|
|
//
|
|
// At this point, it is implemented as a utility class, not as an analysis
|
|
// pass. It should be easy to create an analysis pass around it if there
|
|
// is a need (but D45420 needs to happen first).
|
|
//
|
|
|
|
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Transforms/Utils/SizeOpts.h"
|
|
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define LV_NAME "loop-vectorize"
|
|
#define DEBUG_TYPE LV_NAME
|
|
|
|
static cl::opt<bool>
|
|
EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
|
|
cl::desc("Enable if-conversion during vectorization."));
|
|
|
|
static cl::opt<bool>
|
|
AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden,
|
|
cl::desc("Enable recognition of non-constant strided "
|
|
"pointer induction variables."));
|
|
|
|
static cl::opt<bool>
|
|
HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
|
|
cl::desc("Allow enabling loop hints to reorder "
|
|
"FP operations during vectorization."));
|
|
|
|
// TODO: Move size-based thresholds out of legality checking, make cost based
|
|
// decisions instead of hard thresholds.
|
|
static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
|
|
"vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
|
|
cl::desc("The maximum number of SCEV checks allowed."));
|
|
|
|
static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
|
|
"pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
|
|
cl::desc("The maximum number of SCEV checks allowed with a "
|
|
"vectorize(enable) pragma"));
|
|
|
|
static cl::opt<LoopVectorizeHints::ScalableForceKind>
|
|
ForceScalableVectorization(
|
|
"scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
|
|
cl::Hidden,
|
|
cl::desc("Control whether the compiler can use scalable vectors to "
|
|
"vectorize a loop"),
|
|
cl::values(
|
|
clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
|
|
"Scalable vectorization is disabled."),
|
|
clEnumValN(
|
|
LoopVectorizeHints::SK_PreferScalable, "preferred",
|
|
"Scalable vectorization is available and favored when the "
|
|
"cost is inconclusive."),
|
|
clEnumValN(
|
|
LoopVectorizeHints::SK_PreferScalable, "on",
|
|
"Scalable vectorization is available and favored when the "
|
|
"cost is inconclusive.")));
|
|
|
|
static cl::opt<bool> EnableHistogramVectorization(
|
|
"enable-histogram-loop-vectorization", cl::init(false), cl::Hidden,
|
|
cl::desc("Enables autovectorization of some loops containing histograms"));
|
|
|
|
/// Maximum vectorization interleave count.
|
|
static const unsigned MaxInterleaveFactor = 16;
|
|
|
|
namespace llvm {
|
|
|
|
bool LoopVectorizeHints::Hint::validate(unsigned Val) {
|
|
switch (Kind) {
|
|
case HK_WIDTH:
|
|
return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
|
|
case HK_INTERLEAVE:
|
|
return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
|
|
case HK_FORCE:
|
|
return (Val <= 1);
|
|
case HK_ISVECTORIZED:
|
|
case HK_PREDICATE:
|
|
case HK_SCALABLE:
|
|
return (Val == 0 || Val == 1);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
|
|
bool InterleaveOnlyWhenForced,
|
|
OptimizationRemarkEmitter &ORE,
|
|
const TargetTransformInfo *TTI)
|
|
: Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
|
|
Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
|
|
Force("vectorize.enable", FK_Undefined, HK_FORCE),
|
|
IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
|
|
Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
|
|
Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
|
|
TheLoop(L), ORE(ORE) {
|
|
// Populate values with existing loop metadata.
|
|
getHintsFromMetadata();
|
|
|
|
// force-vector-interleave overrides DisableInterleaving.
|
|
if (VectorizerParams::isInterleaveForced())
|
|
Interleave.Value = VectorizerParams::VectorizationInterleave;
|
|
|
|
// If the metadata doesn't explicitly specify whether to enable scalable
|
|
// vectorization, then decide based on the following criteria (increasing
|
|
// level of priority):
|
|
// - Target default
|
|
// - Metadata width
|
|
// - Force option (always overrides)
|
|
if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
|
|
if (TTI)
|
|
Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
|
|
: SK_FixedWidthOnly;
|
|
|
|
if (Width.Value)
|
|
// If the width is set, but the metadata says nothing about the scalable
|
|
// property, then assume it concerns only a fixed-width UserVF.
|
|
// If width is not set, the flag takes precedence.
|
|
Scalable.Value = SK_FixedWidthOnly;
|
|
}
|
|
|
|
// If the flag is set to force any use of scalable vectors, override the loop
|
|
// hints.
|
|
if (ForceScalableVectorization.getValue() !=
|
|
LoopVectorizeHints::SK_Unspecified)
|
|
Scalable.Value = ForceScalableVectorization.getValue();
|
|
|
|
// Scalable vectorization is disabled if no preference is specified.
|
|
if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
|
|
Scalable.Value = SK_FixedWidthOnly;
|
|
|
|
if (IsVectorized.Value != 1)
|
|
// If the vectorization width and interleaving count are both 1 then
|
|
// consider the loop to have been already vectorized because there's
|
|
// nothing more that we can do.
|
|
IsVectorized.Value =
|
|
getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
|
|
LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
|
|
<< "LV: Interleaving disabled by the pass manager\n");
|
|
}
|
|
|
|
void LoopVectorizeHints::setAlreadyVectorized() {
|
|
LLVMContext &Context = TheLoop->getHeader()->getContext();
|
|
|
|
MDNode *IsVectorizedMD = MDNode::get(
|
|
Context,
|
|
{MDString::get(Context, "llvm.loop.isvectorized"),
|
|
ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
|
|
MDNode *LoopID = TheLoop->getLoopID();
|
|
MDNode *NewLoopID =
|
|
makePostTransformationMetadata(Context, LoopID,
|
|
{Twine(Prefix(), "vectorize.").str(),
|
|
Twine(Prefix(), "interleave.").str()},
|
|
{IsVectorizedMD});
|
|
TheLoop->setLoopID(NewLoopID);
|
|
|
|
// Update internal cache.
|
|
IsVectorized.Value = 1;
|
|
}
|
|
|
|
bool LoopVectorizeHints::allowVectorization(
|
|
Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
|
|
if (getForce() == LoopVectorizeHints::FK_Disabled) {
|
|
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
|
|
emitRemarkWithHints();
|
|
return false;
|
|
}
|
|
|
|
if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
|
|
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
|
|
emitRemarkWithHints();
|
|
return false;
|
|
}
|
|
|
|
if (getIsVectorized() == 1) {
|
|
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
|
|
// FIXME: Add interleave.disable metadata. This will allow
|
|
// vectorize.disable to be used without disabling the pass and errors
|
|
// to differentiate between disabled vectorization and a width of 1.
|
|
ORE.emit([&]() {
|
|
return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
|
|
"AllDisabled", L->getStartLoc(),
|
|
L->getHeader())
|
|
<< "loop not vectorized: vectorization and interleaving are "
|
|
"explicitly disabled, or the loop has already been "
|
|
"vectorized";
|
|
});
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void LoopVectorizeHints::emitRemarkWithHints() const {
|
|
using namespace ore;
|
|
|
|
ORE.emit([&]() {
|
|
if (Force.Value == LoopVectorizeHints::FK_Disabled)
|
|
return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
|
|
TheLoop->getStartLoc(),
|
|
TheLoop->getHeader())
|
|
<< "loop not vectorized: vectorization is explicitly disabled";
|
|
|
|
OptimizationRemarkMissed R(LV_NAME, "MissedDetails", TheLoop->getStartLoc(),
|
|
TheLoop->getHeader());
|
|
R << "loop not vectorized";
|
|
if (Force.Value == LoopVectorizeHints::FK_Enabled) {
|
|
R << " (Force=" << NV("Force", true);
|
|
if (Width.Value != 0)
|
|
R << ", Vector Width=" << NV("VectorWidth", getWidth());
|
|
if (getInterleave() != 0)
|
|
R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
|
|
R << ")";
|
|
}
|
|
return R;
|
|
});
|
|
}
|
|
|
|
const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
|
|
if (getWidth() == ElementCount::getFixed(1))
|
|
return LV_NAME;
|
|
if (getForce() == LoopVectorizeHints::FK_Disabled)
|
|
return LV_NAME;
|
|
if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
|
|
return LV_NAME;
|
|
return OptimizationRemarkAnalysis::AlwaysPrint;
|
|
}
|
|
|
|
bool LoopVectorizeHints::allowReordering() const {
|
|
// Allow the vectorizer to change the order of operations if enabling
|
|
// loop hints are provided
|
|
ElementCount EC = getWidth();
|
|
return HintsAllowReordering &&
|
|
(getForce() == LoopVectorizeHints::FK_Enabled ||
|
|
EC.getKnownMinValue() > 1);
|
|
}
|
|
|
|
void LoopVectorizeHints::getHintsFromMetadata() {
|
|
MDNode *LoopID = TheLoop->getLoopID();
|
|
if (!LoopID)
|
|
return;
|
|
|
|
// First operand should refer to the loop id itself.
|
|
assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
|
|
assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
|
|
|
|
for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
|
|
const MDString *S = nullptr;
|
|
SmallVector<Metadata *, 4> Args;
|
|
|
|
// The expected hint is either a MDString or a MDNode with the first
|
|
// operand a MDString.
|
|
if (const MDNode *MD = dyn_cast<MDNode>(MDO)) {
|
|
if (!MD || MD->getNumOperands() == 0)
|
|
continue;
|
|
S = dyn_cast<MDString>(MD->getOperand(0));
|
|
for (unsigned Idx = 1; Idx < MD->getNumOperands(); ++Idx)
|
|
Args.push_back(MD->getOperand(Idx));
|
|
} else {
|
|
S = dyn_cast<MDString>(MDO);
|
|
assert(Args.size() == 0 && "too many arguments for MDString");
|
|
}
|
|
|
|
if (!S)
|
|
continue;
|
|
|
|
// Check if the hint starts with the loop metadata prefix.
|
|
StringRef Name = S->getString();
|
|
if (Args.size() == 1)
|
|
setHint(Name, Args[0]);
|
|
}
|
|
}
|
|
|
|
void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
|
|
if (!Name.starts_with(Prefix()))
|
|
return;
|
|
Name = Name.substr(Prefix().size(), StringRef::npos);
|
|
|
|
const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
|
|
if (!C)
|
|
return;
|
|
unsigned Val = C->getZExtValue();
|
|
|
|
Hint *Hints[] = {&Width, &Interleave, &Force,
|
|
&IsVectorized, &Predicate, &Scalable};
|
|
for (auto *H : Hints) {
|
|
if (Name == H->Name) {
|
|
if (H->validate(Val))
|
|
H->Value = Val;
|
|
else
|
|
LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return true if the inner loop \p Lp is uniform with regard to the outer loop
|
|
// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
|
|
// executing the inner loop will execute the same iterations). This check is
|
|
// very constrained for now but it will be relaxed in the future. \p Lp is
|
|
// considered uniform if it meets all the following conditions:
|
|
// 1) it has a canonical IV (starting from 0 and with stride 1),
|
|
// 2) its latch terminator is a conditional branch and,
|
|
// 3) its latch condition is a compare instruction whose operands are the
|
|
// canonical IV and an OuterLp invariant.
|
|
// This check doesn't take into account the uniformity of other conditions not
|
|
// related to the loop latch because they don't affect the loop uniformity.
|
|
//
|
|
// NOTE: We decided to keep all these checks and its associated documentation
|
|
// together so that we can easily have a picture of the current supported loop
|
|
// nests. However, some of the current checks don't depend on \p OuterLp and
|
|
// would be redundantly executed for each \p Lp if we invoked this function for
|
|
// different candidate outer loops. This is not the case for now because we
|
|
// don't currently have the infrastructure to evaluate multiple candidate outer
|
|
// loops and \p OuterLp will be a fixed parameter while we only support explicit
|
|
// outer loop vectorization. It's also very likely that these checks go away
|
|
// before introducing the aforementioned infrastructure. However, if this is not
|
|
// the case, we should move the \p OuterLp independent checks to a separate
|
|
// function that is only executed once for each \p Lp.
|
|
static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
|
|
assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
|
|
|
|
// If Lp is the outer loop, it's uniform by definition.
|
|
if (Lp == OuterLp)
|
|
return true;
|
|
assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
|
|
|
|
// 1.
|
|
PHINode *IV = Lp->getCanonicalInductionVariable();
|
|
if (!IV) {
|
|
LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
|
|
return false;
|
|
}
|
|
|
|
// 2.
|
|
BasicBlock *Latch = Lp->getLoopLatch();
|
|
auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
|
|
if (!LatchBr || LatchBr->isUnconditional()) {
|
|
LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
|
|
return false;
|
|
}
|
|
|
|
// 3.
|
|
auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
|
|
if (!LatchCmp) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
|
|
return false;
|
|
}
|
|
|
|
Value *CondOp0 = LatchCmp->getOperand(0);
|
|
Value *CondOp1 = LatchCmp->getOperand(1);
|
|
Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
|
|
if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
|
|
!(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
|
|
LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Return true if \p Lp and all its nested loops are uniform with regard to \p
|
|
// OuterLp.
|
|
static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
|
|
if (!isUniformLoop(Lp, OuterLp))
|
|
return false;
|
|
|
|
// Check if nested loops are uniform.
|
|
for (Loop *SubLp : *Lp)
|
|
if (!isUniformLoopNest(SubLp, OuterLp))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static IntegerType *getInductionIntegerTy(const DataLayout &DL, Type *Ty) {
|
|
assert(Ty->isIntOrPtrTy() && "Expected integer or pointer type");
|
|
|
|
if (Ty->isPointerTy())
|
|
return DL.getIntPtrType(Ty->getContext(), Ty->getPointerAddressSpace());
|
|
|
|
// It is possible that char's or short's overflow when we ask for the loop's
|
|
// trip count, work around this by changing the type size.
|
|
if (Ty->getScalarSizeInBits() < 32)
|
|
return Type::getInt32Ty(Ty->getContext());
|
|
|
|
return cast<IntegerType>(Ty);
|
|
}
|
|
|
|
static IntegerType *getWiderInductionTy(const DataLayout &DL, Type *Ty0,
|
|
Type *Ty1) {
|
|
IntegerType *TyA = getInductionIntegerTy(DL, Ty0);
|
|
IntegerType *TyB = getInductionIntegerTy(DL, Ty1);
|
|
return TyA->getScalarSizeInBits() > TyB->getScalarSizeInBits() ? TyA : TyB;
|
|
}
|
|
|
|
/// Check that the instruction has outside loop users and is not an
|
|
/// identified reduction variable.
|
|
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
|
|
SmallPtrSetImpl<Value *> &AllowedExit) {
|
|
// Reductions, Inductions and non-header phis are allowed to have exit users. All
|
|
// other instructions must not have external users.
|
|
if (!AllowedExit.count(Inst))
|
|
// Check that all of the users of the loop are inside the BB.
|
|
for (User *U : Inst->users()) {
|
|
Instruction *UI = cast<Instruction>(U);
|
|
// This user may be a reduction exit value.
|
|
if (!TheLoop->contains(UI)) {
|
|
LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if A and B have same pointer operands or same SCEVs addresses
|
|
static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
|
|
StoreInst *B) {
|
|
// Compare store
|
|
if (A == B)
|
|
return true;
|
|
|
|
// Otherwise Compare pointers
|
|
Value *APtr = A->getPointerOperand();
|
|
Value *BPtr = B->getPointerOperand();
|
|
if (APtr == BPtr)
|
|
return true;
|
|
|
|
// Otherwise compare address SCEVs
|
|
return SE->getSCEV(APtr) == SE->getSCEV(BPtr);
|
|
}
|
|
|
|
int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
|
|
Value *Ptr) const {
|
|
// FIXME: Currently, the set of symbolic strides is sometimes queried before
|
|
// it's collected. This happens from canVectorizeWithIfConvert, when the
|
|
// pointer is checked to reference consecutive elements suitable for a
|
|
// masked access.
|
|
const auto &Strides =
|
|
LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>();
|
|
|
|
bool CanAddPredicate = !llvm::shouldOptimizeForSize(
|
|
TheLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
|
|
int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
|
|
CanAddPredicate, false).value_or(0);
|
|
if (Stride == 1 || Stride == -1)
|
|
return Stride;
|
|
return 0;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isInvariant(Value *V) const {
|
|
return LAI->isInvariant(V);
|
|
}
|
|
|
|
namespace {
|
|
/// A rewriter to build the SCEVs for each of the VF lanes in the expected
|
|
/// vectorized loop, which can then be compared to detect their uniformity. This
|
|
/// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop)
|
|
/// with new AddRecs where the step is multiplied by StepMultiplier and Offset *
|
|
/// Step is added. Also checks if all sub-expressions are analyzable w.r.t.
|
|
/// uniformity.
|
|
class SCEVAddRecForUniformityRewriter
|
|
: public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> {
|
|
/// Multiplier to be applied to the step of AddRecs in TheLoop.
|
|
unsigned StepMultiplier;
|
|
|
|
/// Offset to be added to the AddRecs in TheLoop.
|
|
unsigned Offset;
|
|
|
|
/// Loop for which to rewrite AddRecsFor.
|
|
Loop *TheLoop;
|
|
|
|
/// Is any sub-expressions not analyzable w.r.t. uniformity?
|
|
bool CannotAnalyze = false;
|
|
|
|
bool canAnalyze() const { return !CannotAnalyze; }
|
|
|
|
public:
|
|
SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier,
|
|
unsigned Offset, Loop *TheLoop)
|
|
: SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset),
|
|
TheLoop(TheLoop) {}
|
|
|
|
const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
|
|
assert(Expr->getLoop() == TheLoop &&
|
|
"addrec outside of TheLoop must be invariant and should have been "
|
|
"handled earlier");
|
|
// Build a new AddRec by multiplying the step by StepMultiplier and
|
|
// incrementing the start by Offset * step.
|
|
Type *Ty = Expr->getType();
|
|
const SCEV *Step = Expr->getStepRecurrence(SE);
|
|
if (!SE.isLoopInvariant(Step, TheLoop)) {
|
|
CannotAnalyze = true;
|
|
return Expr;
|
|
}
|
|
const SCEV *NewStep =
|
|
SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier));
|
|
const SCEV *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset));
|
|
const SCEV *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset);
|
|
return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap);
|
|
}
|
|
|
|
const SCEV *visit(const SCEV *S) {
|
|
if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop))
|
|
return S;
|
|
return SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter>::visit(S);
|
|
}
|
|
|
|
const SCEV *visitUnknown(const SCEVUnknown *S) {
|
|
if (SE.isLoopInvariant(S, TheLoop))
|
|
return S;
|
|
// The value could vary across iterations.
|
|
CannotAnalyze = true;
|
|
return S;
|
|
}
|
|
|
|
const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) {
|
|
// Could not analyze the expression.
|
|
CannotAnalyze = true;
|
|
return S;
|
|
}
|
|
|
|
static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE,
|
|
unsigned StepMultiplier, unsigned Offset,
|
|
Loop *TheLoop) {
|
|
/// Bail out if the expression does not contain an UDiv expression.
|
|
/// Uniform values which are not loop invariant require operations to strip
|
|
/// out the lowest bits. For now just look for UDivs and use it to avoid
|
|
/// re-writing UDIV-free expressions for other lanes to limit compile time.
|
|
if (!SCEVExprContains(S,
|
|
[](const SCEV *S) { return isa<SCEVUDivExpr>(S); }))
|
|
return SE.getCouldNotCompute();
|
|
|
|
SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset,
|
|
TheLoop);
|
|
const SCEV *Result = Rewriter.visit(S);
|
|
|
|
if (Rewriter.canAnalyze())
|
|
return Result;
|
|
return SE.getCouldNotCompute();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
bool LoopVectorizationLegality::isUniform(Value *V, ElementCount VF) const {
|
|
if (isInvariant(V))
|
|
return true;
|
|
if (VF.isScalable())
|
|
return false;
|
|
if (VF.isScalar())
|
|
return true;
|
|
|
|
// Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
|
|
// never considered uniform.
|
|
auto *SE = PSE.getSE();
|
|
if (!SE->isSCEVable(V->getType()))
|
|
return false;
|
|
const SCEV *S = SE->getSCEV(V);
|
|
|
|
// Rewrite AddRecs in TheLoop to step by VF and check if the expression for
|
|
// lane 0 matches the expressions for all other lanes.
|
|
unsigned FixedVF = VF.getKnownMinValue();
|
|
const SCEV *FirstLaneExpr =
|
|
SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop);
|
|
if (isa<SCEVCouldNotCompute>(FirstLaneExpr))
|
|
return false;
|
|
|
|
// Make sure the expressions for lanes FixedVF-1..1 match the expression for
|
|
// lane 0. We check lanes in reverse order for compile-time, as frequently
|
|
// checking the last lane is sufficient to rule out uniformity.
|
|
return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) {
|
|
const SCEV *IthLaneExpr =
|
|
SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop);
|
|
return FirstLaneExpr == IthLaneExpr;
|
|
});
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isUniformMemOp(Instruction &I,
|
|
ElementCount VF) const {
|
|
Value *Ptr = getLoadStorePointerOperand(&I);
|
|
if (!Ptr)
|
|
return false;
|
|
// Note: There's nothing inherent which prevents predicated loads and
|
|
// stores from being uniform. The current lowering simply doesn't handle
|
|
// it; in particular, the cost model distinguishes scatter/gather from
|
|
// scalar w/predication, and we currently rely on the scalar path.
|
|
return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent());
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorizeOuterLoop() {
|
|
assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
|
|
// Store the result and return it at the end instead of exiting early, in case
|
|
// allowExtraAnalysis is used to report multiple reasons for not vectorizing.
|
|
bool Result = true;
|
|
bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
|
|
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
// Check whether the BB terminator is a BranchInst. Any other terminator is
|
|
// not supported yet.
|
|
auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
|
|
if (!Br) {
|
|
reportVectorizationFailure("Unsupported basic block terminator",
|
|
"loop control flow is not understood by vectorizer",
|
|
"CFGNotUnderstood", ORE, TheLoop);
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Check whether the BranchInst is a supported one. Only unconditional
|
|
// branches, conditional branches with an outer loop invariant condition or
|
|
// backedges are supported.
|
|
// FIXME: We skip these checks when VPlan predication is enabled as we
|
|
// want to allow divergent branches. This whole check will be removed
|
|
// once VPlan predication is on by default.
|
|
if (Br && Br->isConditional() &&
|
|
!TheLoop->isLoopInvariant(Br->getCondition()) &&
|
|
!LI->isLoopHeader(Br->getSuccessor(0)) &&
|
|
!LI->isLoopHeader(Br->getSuccessor(1))) {
|
|
reportVectorizationFailure("Unsupported conditional branch",
|
|
"loop control flow is not understood by vectorizer",
|
|
"CFGNotUnderstood", ORE, TheLoop);
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check whether inner loops are uniform. At this point, we only support
|
|
// simple outer loops scenarios with uniform nested loops.
|
|
if (!isUniformLoopNest(TheLoop /*loop nest*/,
|
|
TheLoop /*context outer loop*/)) {
|
|
reportVectorizationFailure("Outer loop contains divergent loops",
|
|
"loop control flow is not understood by vectorizer",
|
|
"CFGNotUnderstood", ORE, TheLoop);
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Check whether we are able to set up outer loop induction.
|
|
if (!setupOuterLoopInductions()) {
|
|
reportVectorizationFailure("Unsupported outer loop Phi(s)",
|
|
"UnsupportedPhi", ORE, TheLoop);
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
void LoopVectorizationLegality::addInductionPhi(
|
|
PHINode *Phi, const InductionDescriptor &ID,
|
|
SmallPtrSetImpl<Value *> &AllowedExit) {
|
|
Inductions[Phi] = ID;
|
|
|
|
// In case this induction also comes with casts that we know we can ignore
|
|
// in the vectorized loop body, record them here. All casts could be recorded
|
|
// here for ignoring, but suffices to record only the first (as it is the
|
|
// only one that may bw used outside the cast sequence).
|
|
const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
|
|
if (!Casts.empty())
|
|
InductionCastsToIgnore.insert(*Casts.begin());
|
|
|
|
Type *PhiTy = Phi->getType();
|
|
const DataLayout &DL = Phi->getDataLayout();
|
|
|
|
assert((PhiTy->isIntOrPtrTy() || PhiTy->isFloatingPointTy()) &&
|
|
"Expected int, ptr, or FP induction phi type");
|
|
|
|
// Get the widest type.
|
|
if (PhiTy->isIntOrPtrTy()) {
|
|
if (!WidestIndTy)
|
|
WidestIndTy = getInductionIntegerTy(DL, PhiTy);
|
|
else
|
|
WidestIndTy = getWiderInductionTy(DL, PhiTy, WidestIndTy);
|
|
}
|
|
|
|
// Int inductions are special because we only allow one IV.
|
|
if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
|
|
ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
|
|
isa<Constant>(ID.getStartValue()) &&
|
|
cast<Constant>(ID.getStartValue())->isNullValue()) {
|
|
|
|
// Use the phi node with the widest type as induction. Use the last
|
|
// one if there are multiple (no good reason for doing this other
|
|
// than it is expedient). We've checked that it begins at zero and
|
|
// steps by one, so this is a canonical induction variable.
|
|
if (!PrimaryInduction || PhiTy == WidestIndTy)
|
|
PrimaryInduction = Phi;
|
|
}
|
|
|
|
// Both the PHI node itself, and the "post-increment" value feeding
|
|
// back into the PHI node may have external users.
|
|
// We can allow those uses, except if the SCEVs we have for them rely
|
|
// on predicates that only hold within the loop, since allowing the exit
|
|
// currently means re-using this SCEV outside the loop (see PR33706 for more
|
|
// details).
|
|
if (PSE.getPredicate().isAlwaysTrue()) {
|
|
AllowedExit.insert(Phi);
|
|
AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
|
|
}
|
|
|
|
bool LoopVectorizationLegality::setupOuterLoopInductions() {
|
|
BasicBlock *Header = TheLoop->getHeader();
|
|
|
|
// Returns true if a given Phi is a supported induction.
|
|
auto IsSupportedPhi = [&](PHINode &Phi) -> bool {
|
|
InductionDescriptor ID;
|
|
if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
|
|
ID.getKind() == InductionDescriptor::IK_IntInduction) {
|
|
addInductionPhi(&Phi, ID, AllowedExit);
|
|
return true;
|
|
}
|
|
// Bail out for any Phi in the outer loop header that is not a supported
|
|
// induction.
|
|
LLVM_DEBUG(
|
|
dbgs() << "LV: Found unsupported PHI for outer loop vectorization.\n");
|
|
return false;
|
|
};
|
|
|
|
return llvm::all_of(Header->phis(), IsSupportedPhi);
|
|
}
|
|
|
|
/// Checks if a function is scalarizable according to the TLI, in
|
|
/// the sense that it should be vectorized and then expanded in
|
|
/// multiple scalar calls. This is represented in the
|
|
/// TLI via mappings that do not specify a vector name, as in the
|
|
/// following example:
|
|
///
|
|
/// const VecDesc VecIntrinsics[] = {
|
|
/// {"llvm.phx.abs.i32", "", 4}
|
|
/// };
|
|
static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
|
|
const StringRef ScalarName = CI.getCalledFunction()->getName();
|
|
bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
|
|
// Check that all known VFs are not associated to a vector
|
|
// function, i.e. the vector name is emty.
|
|
if (Scalarize) {
|
|
ElementCount WidestFixedVF, WidestScalableVF;
|
|
TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
|
|
for (ElementCount VF = ElementCount::getFixed(2);
|
|
ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
|
|
Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
|
|
for (ElementCount VF = ElementCount::getScalable(1);
|
|
ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
|
|
Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
|
|
assert((WidestScalableVF.isZero() || !Scalarize) &&
|
|
"Caller may decide to scalarize a variant using a scalable VF");
|
|
}
|
|
return Scalarize;
|
|
}
|
|
|
|
/// Returns true if the call return type `Ty` can be widened by the loop
|
|
/// vectorizer.
|
|
static bool canWidenCallReturnType(Type *Ty) {
|
|
auto *StructTy = dyn_cast<StructType>(Ty);
|
|
// TODO: Remove the homogeneous types restriction. This is just an initial
|
|
// simplification. When we want to support things like the overflow intrinsics
|
|
// we will have to lift this restriction.
|
|
if (StructTy && !StructTy->containsHomogeneousTypes())
|
|
return false;
|
|
return canVectorizeTy(StructTy);
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorizeInstrs() {
|
|
BasicBlock *Header = TheLoop->getHeader();
|
|
|
|
// For each block in the loop.
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
// Scan the instructions in the block and look for hazards.
|
|
for (Instruction &I : *BB) {
|
|
if (auto *Phi = dyn_cast<PHINode>(&I)) {
|
|
Type *PhiTy = Phi->getType();
|
|
// Check that this PHI type is allowed.
|
|
if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
|
|
!PhiTy->isPointerTy()) {
|
|
reportVectorizationFailure("Found a non-int non-pointer PHI",
|
|
"loop control flow is not understood by vectorizer",
|
|
"CFGNotUnderstood", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
|
|
// If this PHINode is not in the header block, then we know that we
|
|
// can convert it to select during if-conversion. No need to check if
|
|
// the PHIs in this block are induction or reduction variables.
|
|
if (BB != Header) {
|
|
// Non-header phi nodes that have outside uses can be vectorized. Add
|
|
// them to the list of allowed exits.
|
|
// Unsafe cyclic dependencies with header phis are identified during
|
|
// legalization for reduction, induction and fixed order
|
|
// recurrences.
|
|
AllowedExit.insert(&I);
|
|
continue;
|
|
}
|
|
|
|
// We only allow if-converted PHIs with exactly two incoming values.
|
|
if (Phi->getNumIncomingValues() != 2) {
|
|
reportVectorizationFailure("Found an invalid PHI",
|
|
"loop control flow is not understood by vectorizer",
|
|
"CFGNotUnderstood", ORE, TheLoop, Phi);
|
|
return false;
|
|
}
|
|
|
|
RecurrenceDescriptor RedDes;
|
|
if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
|
|
DT, PSE.getSE())) {
|
|
Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
|
|
AllowedExit.insert(RedDes.getLoopExitInstr());
|
|
Reductions[Phi] = RedDes;
|
|
continue;
|
|
}
|
|
|
|
// We prevent matching non-constant strided pointer IVS to preserve
|
|
// historical vectorizer behavior after a generalization of the
|
|
// IVDescriptor code. The intent is to remove this check, but we
|
|
// have to fix issues around code quality for such loops first.
|
|
auto IsDisallowedStridedPointerInduction =
|
|
[](const InductionDescriptor &ID) {
|
|
if (AllowStridedPointerIVs)
|
|
return false;
|
|
return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
|
|
ID.getConstIntStepValue() == nullptr;
|
|
};
|
|
|
|
// TODO: Instead of recording the AllowedExit, it would be good to
|
|
// record the complementary set: NotAllowedExit. These include (but may
|
|
// not be limited to):
|
|
// 1. Reduction phis as they represent the one-before-last value, which
|
|
// is not available when vectorized
|
|
// 2. Induction phis and increment when SCEV predicates cannot be used
|
|
// outside the loop - see addInductionPhi
|
|
// 3. Non-Phis with outside uses when SCEV predicates cannot be used
|
|
// outside the loop - see call to hasOutsideLoopUser in the non-phi
|
|
// handling below
|
|
// 4. FixedOrderRecurrence phis that can possibly be handled by
|
|
// extraction.
|
|
// By recording these, we can then reason about ways to vectorize each
|
|
// of these NotAllowedExit.
|
|
InductionDescriptor ID;
|
|
if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) &&
|
|
!IsDisallowedStridedPointerInduction(ID)) {
|
|
addInductionPhi(Phi, ID, AllowedExit);
|
|
Requirements->addExactFPMathInst(ID.getExactFPMathInst());
|
|
continue;
|
|
}
|
|
|
|
if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) {
|
|
AllowedExit.insert(Phi);
|
|
FixedOrderRecurrences.insert(Phi);
|
|
continue;
|
|
}
|
|
|
|
// As a last resort, coerce the PHI to a AddRec expression
|
|
// and re-try classifying it a an induction PHI.
|
|
if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) &&
|
|
!IsDisallowedStridedPointerInduction(ID)) {
|
|
addInductionPhi(Phi, ID, AllowedExit);
|
|
continue;
|
|
}
|
|
|
|
reportVectorizationFailure("Found an unidentified PHI",
|
|
"value that could not be identified as "
|
|
"reduction is used outside the loop",
|
|
"NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
|
|
return false;
|
|
} // end of PHI handling
|
|
|
|
// We handle calls that:
|
|
// * Are debug info intrinsics.
|
|
// * Have a mapping to an IR intrinsic.
|
|
// * Have a vector version available.
|
|
auto *CI = dyn_cast<CallInst>(&I);
|
|
|
|
if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
|
|
!isa<DbgInfoIntrinsic>(CI) &&
|
|
!(CI->getCalledFunction() && TLI &&
|
|
(!VFDatabase::getMappings(*CI).empty() ||
|
|
isTLIScalarize(*TLI, *CI)))) {
|
|
// If the call is a recognized math libary call, it is likely that
|
|
// we can vectorize it given loosened floating-point constraints.
|
|
LibFunc Func;
|
|
bool IsMathLibCall =
|
|
TLI && CI->getCalledFunction() &&
|
|
CI->getType()->isFloatingPointTy() &&
|
|
TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
|
|
TLI->hasOptimizedCodeGen(Func);
|
|
|
|
if (IsMathLibCall) {
|
|
// TODO: Ideally, we should not use clang-specific language here,
|
|
// but it's hard to provide meaningful yet generic advice.
|
|
// Also, should this be guarded by allowExtraAnalysis() and/or be part
|
|
// of the returned info from isFunctionVectorizable()?
|
|
reportVectorizationFailure(
|
|
"Found a non-intrinsic callsite",
|
|
"library call cannot be vectorized. "
|
|
"Try compiling with -fno-math-errno, -ffast-math, "
|
|
"or similar flags",
|
|
"CantVectorizeLibcall", ORE, TheLoop, CI);
|
|
} else {
|
|
reportVectorizationFailure("Found a non-intrinsic callsite",
|
|
"call instruction cannot be vectorized",
|
|
"CantVectorizeLibcall", ORE, TheLoop, CI);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Some intrinsics have scalar arguments and should be same in order for
|
|
// them to be vectorized (i.e. loop invariant).
|
|
if (CI) {
|
|
auto *SE = PSE.getSE();
|
|
Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
|
|
for (unsigned Idx = 0; Idx < CI->arg_size(); ++Idx)
|
|
if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, Idx, TTI)) {
|
|
if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(Idx)),
|
|
TheLoop)) {
|
|
reportVectorizationFailure("Found unvectorizable intrinsic",
|
|
"intrinsic instruction cannot be vectorized",
|
|
"CantVectorizeIntrinsic", ORE, TheLoop, CI);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we found a vectorized variant of a function, note that so LV can
|
|
// make better decisions about maximum VF.
|
|
if (CI && !VFDatabase::getMappings(*CI).empty())
|
|
VecCallVariantsFound = true;
|
|
|
|
auto CanWidenInstructionTy = [](Instruction const &Inst) {
|
|
Type *InstTy = Inst.getType();
|
|
if (!isa<StructType>(InstTy))
|
|
return canVectorizeTy(InstTy);
|
|
|
|
// For now, we only recognize struct values returned from calls where
|
|
// all users are extractvalue as vectorizable. All element types of the
|
|
// struct must be types that can be widened.
|
|
return isa<CallInst>(Inst) && canWidenCallReturnType(InstTy) &&
|
|
all_of(Inst.users(), IsaPred<ExtractValueInst>);
|
|
};
|
|
|
|
// Check that the instruction return type is vectorizable.
|
|
// We can't vectorize casts from vector type to scalar type.
|
|
// Also, we can't vectorize extractelement instructions.
|
|
if (!CanWidenInstructionTy(I) ||
|
|
(isa<CastInst>(I) &&
|
|
!VectorType::isValidElementType(I.getOperand(0)->getType())) ||
|
|
isa<ExtractElementInst>(I)) {
|
|
reportVectorizationFailure("Found unvectorizable type",
|
|
"instruction return type cannot be vectorized",
|
|
"CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
|
|
return false;
|
|
}
|
|
|
|
// Check that the stored type is vectorizable.
|
|
if (auto *ST = dyn_cast<StoreInst>(&I)) {
|
|
Type *T = ST->getValueOperand()->getType();
|
|
if (!VectorType::isValidElementType(T)) {
|
|
reportVectorizationFailure("Store instruction cannot be vectorized",
|
|
"CantVectorizeStore", ORE, TheLoop, ST);
|
|
return false;
|
|
}
|
|
|
|
// For nontemporal stores, check that a nontemporal vector version is
|
|
// supported on the target.
|
|
if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
|
|
// Arbitrarily try a vector of 2 elements.
|
|
auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
|
|
assert(VecTy && "did not find vectorized version of stored type");
|
|
if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
|
|
reportVectorizationFailure(
|
|
"nontemporal store instruction cannot be vectorized",
|
|
"CantVectorizeNontemporalStore", ORE, TheLoop, ST);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
} else if (auto *LD = dyn_cast<LoadInst>(&I)) {
|
|
if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
|
|
// For nontemporal loads, check that a nontemporal vector version is
|
|
// supported on the target (arbitrarily try a vector of 2 elements).
|
|
auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
|
|
assert(VecTy && "did not find vectorized version of load type");
|
|
if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
|
|
reportVectorizationFailure(
|
|
"nontemporal load instruction cannot be vectorized",
|
|
"CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// FP instructions can allow unsafe algebra, thus vectorizable by
|
|
// non-IEEE-754 compliant SIMD units.
|
|
// This applies to floating-point math operations and calls, not memory
|
|
// operations, shuffles, or casts, as they don't change precision or
|
|
// semantics.
|
|
} else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
|
|
!I.isFast()) {
|
|
LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
|
|
Hints->setPotentiallyUnsafe();
|
|
}
|
|
|
|
// Reduction instructions are allowed to have exit users.
|
|
// All other instructions must not have external users.
|
|
if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
|
|
// We can safely vectorize loops where instructions within the loop are
|
|
// used outside the loop only if the SCEV predicates within the loop is
|
|
// same as outside the loop. Allowing the exit means reusing the SCEV
|
|
// outside the loop.
|
|
if (PSE.getPredicate().isAlwaysTrue()) {
|
|
AllowedExit.insert(&I);
|
|
continue;
|
|
}
|
|
reportVectorizationFailure("Value cannot be used outside the loop",
|
|
"ValueUsedOutsideLoop", ORE, TheLoop, &I);
|
|
return false;
|
|
}
|
|
} // next instr.
|
|
}
|
|
|
|
if (!PrimaryInduction) {
|
|
if (Inductions.empty()) {
|
|
reportVectorizationFailure("Did not find one integer induction var",
|
|
"loop induction variable could not be identified",
|
|
"NoInductionVariable", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
if (!WidestIndTy) {
|
|
reportVectorizationFailure("Did not find one integer induction var",
|
|
"integer loop induction variable could not be identified",
|
|
"NoIntegerInductionVariable", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
|
|
}
|
|
|
|
// Now we know the widest induction type, check if our found induction
|
|
// is the same size. If it's not, unset it here and InnerLoopVectorizer
|
|
// will create another.
|
|
if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
|
|
PrimaryInduction = nullptr;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Find histogram operations that match high-level code in loops:
|
|
/// \code
|
|
/// buckets[indices[i]]+=step;
|
|
/// \endcode
|
|
///
|
|
/// It matches a pattern starting from \p HSt, which Stores to the 'buckets'
|
|
/// array the computed histogram. It uses a BinOp to sum all counts, storing
|
|
/// them using a loop-variant index Load from the 'indices' input array.
|
|
///
|
|
/// On successful matches it updates the STATISTIC 'HistogramsDetected',
|
|
/// regardless of hardware support. When there is support, it additionally
|
|
/// stores the BinOp/Load pairs in \p HistogramCounts, as well the pointers
|
|
/// used to update histogram in \p HistogramPtrs.
|
|
static bool findHistogram(LoadInst *LI, StoreInst *HSt, Loop *TheLoop,
|
|
const PredicatedScalarEvolution &PSE,
|
|
SmallVectorImpl<HistogramInfo> &Histograms) {
|
|
|
|
// Store value must come from a Binary Operation.
|
|
Instruction *HPtrInstr = nullptr;
|
|
BinaryOperator *HBinOp = nullptr;
|
|
if (!match(HSt, m_Store(m_BinOp(HBinOp), m_Instruction(HPtrInstr))))
|
|
return false;
|
|
|
|
// BinOp must be an Add or a Sub modifying the bucket value by a
|
|
// loop invariant amount.
|
|
// FIXME: We assume the loop invariant term is on the RHS.
|
|
// Fine for an immediate/constant, but maybe not a generic value?
|
|
Value *HIncVal = nullptr;
|
|
if (!match(HBinOp, m_Add(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))) &&
|
|
!match(HBinOp, m_Sub(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))))
|
|
return false;
|
|
|
|
// Make sure the increment value is loop invariant.
|
|
if (!TheLoop->isLoopInvariant(HIncVal))
|
|
return false;
|
|
|
|
// The address to store is calculated through a GEP Instruction.
|
|
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(HPtrInstr);
|
|
if (!GEP)
|
|
return false;
|
|
|
|
// Restrict address calculation to constant indices except for the last term.
|
|
Value *HIdx = nullptr;
|
|
for (Value *Index : GEP->indices()) {
|
|
if (HIdx)
|
|
return false;
|
|
if (!isa<ConstantInt>(Index))
|
|
HIdx = Index;
|
|
}
|
|
|
|
if (!HIdx)
|
|
return false;
|
|
|
|
// Check that the index is calculated by loading from another array. Ignore
|
|
// any extensions.
|
|
// FIXME: Support indices from other sources than a linear load from memory?
|
|
// We're currently trying to match an operation looping over an array
|
|
// of indices, but there could be additional levels of indirection
|
|
// in place, or possibly some additional calculation to form the index
|
|
// from the loaded data.
|
|
Value *VPtrVal;
|
|
if (!match(HIdx, m_ZExtOrSExtOrSelf(m_Load(m_Value(VPtrVal)))))
|
|
return false;
|
|
|
|
// Make sure the index address varies in this loop, not an outer loop.
|
|
const auto *AR = dyn_cast<SCEVAddRecExpr>(PSE.getSE()->getSCEV(VPtrVal));
|
|
if (!AR || AR->getLoop() != TheLoop)
|
|
return false;
|
|
|
|
// Ensure we'll have the same mask by checking that all parts of the histogram
|
|
// (gather load, update, scatter store) are in the same block.
|
|
LoadInst *IndexedLoad = cast<LoadInst>(HBinOp->getOperand(0));
|
|
BasicBlock *LdBB = IndexedLoad->getParent();
|
|
if (LdBB != HBinOp->getParent() || LdBB != HSt->getParent())
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: Found histogram for: " << *HSt << "\n");
|
|
|
|
// Store the operations that make up the histogram.
|
|
Histograms.emplace_back(IndexedLoad, HBinOp, HSt);
|
|
return true;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorizeIndirectUnsafeDependences() {
|
|
// For now, we only support an IndirectUnsafe dependency that calculates
|
|
// a histogram
|
|
if (!EnableHistogramVectorization)
|
|
return false;
|
|
|
|
// Find a single IndirectUnsafe dependency.
|
|
const MemoryDepChecker::Dependence *IUDep = nullptr;
|
|
const MemoryDepChecker &DepChecker = LAI->getDepChecker();
|
|
const auto *Deps = DepChecker.getDependences();
|
|
// If there were too many dependences, LAA abandons recording them. We can't
|
|
// proceed safely if we don't know what the dependences are.
|
|
if (!Deps)
|
|
return false;
|
|
|
|
for (const MemoryDepChecker::Dependence &Dep : *Deps) {
|
|
// Ignore dependencies that are either known to be safe or can be
|
|
// checked at runtime.
|
|
if (MemoryDepChecker::Dependence::isSafeForVectorization(Dep.Type) !=
|
|
MemoryDepChecker::VectorizationSafetyStatus::Unsafe)
|
|
continue;
|
|
|
|
// We're only interested in IndirectUnsafe dependencies here, where the
|
|
// address might come from a load from memory. We also only want to handle
|
|
// one such dependency, at least for now.
|
|
if (Dep.Type != MemoryDepChecker::Dependence::IndirectUnsafe || IUDep)
|
|
return false;
|
|
|
|
IUDep = &Dep;
|
|
}
|
|
if (!IUDep)
|
|
return false;
|
|
|
|
// For now only normal loads and stores are supported.
|
|
LoadInst *LI = dyn_cast<LoadInst>(IUDep->getSource(DepChecker));
|
|
StoreInst *SI = dyn_cast<StoreInst>(IUDep->getDestination(DepChecker));
|
|
|
|
if (!LI || !SI)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: Checking for a histogram on: " << *SI << "\n");
|
|
return findHistogram(LI, SI, TheLoop, LAI->getPSE(), Histograms);
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorizeMemory() {
|
|
LAI = &LAIs.getInfo(*TheLoop);
|
|
const OptimizationRemarkAnalysis *LAR = LAI->getReport();
|
|
if (LAR) {
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
|
|
"loop not vectorized: ", *LAR);
|
|
});
|
|
}
|
|
|
|
if (!LAI->canVectorizeMemory())
|
|
return canVectorizeIndirectUnsafeDependences();
|
|
|
|
if (LAI->hasLoadStoreDependenceInvolvingLoopInvariantAddress()) {
|
|
reportVectorizationFailure("We don't allow storing to uniform addresses",
|
|
"write to a loop invariant address could not "
|
|
"be vectorized",
|
|
"CantVectorizeStoreToLoopInvariantAddress", ORE,
|
|
TheLoop);
|
|
return false;
|
|
}
|
|
|
|
// We can vectorize stores to invariant address when final reduction value is
|
|
// guaranteed to be stored at the end of the loop. Also, if decision to
|
|
// vectorize loop is made, runtime checks are added so as to make sure that
|
|
// invariant address won't alias with any other objects.
|
|
if (!LAI->getStoresToInvariantAddresses().empty()) {
|
|
// For each invariant address, check if last stored value is unconditional
|
|
// and the address is not calculated inside the loop.
|
|
for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
|
|
if (!isInvariantStoreOfReduction(SI))
|
|
continue;
|
|
|
|
if (blockNeedsPredication(SI->getParent())) {
|
|
reportVectorizationFailure(
|
|
"We don't allow storing to uniform addresses",
|
|
"write of conditional recurring variant value to a loop "
|
|
"invariant address could not be vectorized",
|
|
"CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
|
|
// Invariant address should be defined outside of loop. LICM pass usually
|
|
// makes sure it happens, but in rare cases it does not, we do not want
|
|
// to overcomplicate vectorization to support this case.
|
|
if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
|
|
if (TheLoop->contains(Ptr)) {
|
|
reportVectorizationFailure(
|
|
"Invariant address is calculated inside the loop",
|
|
"write to a loop invariant address could not "
|
|
"be vectorized",
|
|
"CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (LAI->hasStoreStoreDependenceInvolvingLoopInvariantAddress()) {
|
|
// For each invariant address, check its last stored value is the result
|
|
// of one of our reductions.
|
|
//
|
|
// We do not check if dependence with loads exists because that is already
|
|
// checked via hasLoadStoreDependenceInvolvingLoopInvariantAddress.
|
|
ScalarEvolution *SE = PSE.getSE();
|
|
SmallVector<StoreInst *, 4> UnhandledStores;
|
|
for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
|
|
if (isInvariantStoreOfReduction(SI)) {
|
|
// Earlier stores to this address are effectively deadcode.
|
|
// With opaque pointers it is possible for one pointer to be used with
|
|
// different sizes of stored values:
|
|
// store i32 0, ptr %x
|
|
// store i8 0, ptr %x
|
|
// The latest store doesn't complitely overwrite the first one in the
|
|
// example. That is why we have to make sure that types of stored
|
|
// values are same.
|
|
// TODO: Check that bitwidth of unhandled store is smaller then the
|
|
// one that overwrites it and add a test.
|
|
erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
|
|
return storeToSameAddress(SE, SI, I) &&
|
|
I->getValueOperand()->getType() ==
|
|
SI->getValueOperand()->getType();
|
|
});
|
|
continue;
|
|
}
|
|
UnhandledStores.push_back(SI);
|
|
}
|
|
|
|
bool IsOK = UnhandledStores.empty();
|
|
// TODO: we should also validate against InvariantMemSets.
|
|
if (!IsOK) {
|
|
reportVectorizationFailure(
|
|
"We don't allow storing to uniform addresses",
|
|
"write to a loop invariant address could not "
|
|
"be vectorized",
|
|
"CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
PSE.addPredicate(LAI->getPSE().getPredicate());
|
|
return true;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorizeFPMath(
|
|
bool EnableStrictReductions) {
|
|
|
|
// First check if there is any ExactFP math or if we allow reassociations
|
|
if (!Requirements->getExactFPInst() || Hints->allowReordering())
|
|
return true;
|
|
|
|
// If the above is false, we have ExactFPMath & do not allow reordering.
|
|
// If the EnableStrictReductions flag is set, first check if we have any
|
|
// Exact FP induction vars, which we cannot vectorize.
|
|
if (!EnableStrictReductions ||
|
|
any_of(getInductionVars(), [&](auto &Induction) -> bool {
|
|
InductionDescriptor IndDesc = Induction.second;
|
|
return IndDesc.getExactFPMathInst();
|
|
}))
|
|
return false;
|
|
|
|
// We can now only vectorize if all reductions with Exact FP math also
|
|
// have the isOrdered flag set, which indicates that we can move the
|
|
// reduction operations in-loop.
|
|
return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
|
|
const RecurrenceDescriptor &RdxDesc = Reduction.second;
|
|
return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
|
|
}));
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
|
|
return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
|
|
const RecurrenceDescriptor &RdxDesc = Reduction.second;
|
|
return RdxDesc.IntermediateStore == SI;
|
|
});
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
|
|
return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
|
|
const RecurrenceDescriptor &RdxDesc = Reduction.second;
|
|
if (!RdxDesc.IntermediateStore)
|
|
return false;
|
|
|
|
ScalarEvolution *SE = PSE.getSE();
|
|
Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
|
|
return V == InvariantAddress ||
|
|
SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
|
|
});
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
|
|
Value *In0 = const_cast<Value *>(V);
|
|
PHINode *PN = dyn_cast_or_null<PHINode>(In0);
|
|
if (!PN)
|
|
return false;
|
|
|
|
return Inductions.count(PN);
|
|
}
|
|
|
|
const InductionDescriptor *
|
|
LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
|
|
if (!isInductionPhi(Phi))
|
|
return nullptr;
|
|
auto &ID = getInductionVars().find(Phi)->second;
|
|
if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
|
|
ID.getKind() == InductionDescriptor::IK_FpInduction)
|
|
return &ID;
|
|
return nullptr;
|
|
}
|
|
|
|
const InductionDescriptor *
|
|
LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
|
|
if (!isInductionPhi(Phi))
|
|
return nullptr;
|
|
auto &ID = getInductionVars().find(Phi)->second;
|
|
if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
|
|
return &ID;
|
|
return nullptr;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isCastedInductionVariable(
|
|
const Value *V) const {
|
|
auto *Inst = dyn_cast<Instruction>(V);
|
|
return (Inst && InductionCastsToIgnore.count(Inst));
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
|
|
return isInductionPhi(V) || isCastedInductionVariable(V);
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isFixedOrderRecurrence(
|
|
const PHINode *Phi) const {
|
|
return FixedOrderRecurrences.count(Phi);
|
|
}
|
|
|
|
bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
|
|
// When vectorizing early exits, create predicates for the latch block only.
|
|
// The early exiting block must be a direct predecessor of the latch at the
|
|
// moment.
|
|
BasicBlock *Latch = TheLoop->getLoopLatch();
|
|
if (hasUncountableEarlyExit()) {
|
|
assert(
|
|
is_contained(predecessors(Latch), getUncountableEarlyExitingBlock()) &&
|
|
"Uncountable exiting block must be a direct predecessor of latch");
|
|
return BB == Latch;
|
|
}
|
|
return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
|
|
}
|
|
|
|
bool LoopVectorizationLegality::blockCanBePredicated(
|
|
BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
|
|
SmallPtrSetImpl<const Instruction *> &MaskedOp) const {
|
|
for (Instruction &I : *BB) {
|
|
// We can predicate blocks with calls to assume, as long as we drop them in
|
|
// case we flatten the CFG via predication.
|
|
if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
|
|
MaskedOp.insert(&I);
|
|
continue;
|
|
}
|
|
|
|
// Do not let llvm.experimental.noalias.scope.decl block the vectorization.
|
|
// TODO: there might be cases that it should block the vectorization. Let's
|
|
// ignore those for now.
|
|
if (isa<NoAliasScopeDeclInst>(&I))
|
|
continue;
|
|
|
|
// We can allow masked calls if there's at least one vector variant, even
|
|
// if we end up scalarizing due to the cost model calculations.
|
|
// TODO: Allow other calls if they have appropriate attributes... readonly
|
|
// and argmemonly?
|
|
if (CallInst *CI = dyn_cast<CallInst>(&I))
|
|
if (VFDatabase::hasMaskedVariant(*CI)) {
|
|
MaskedOp.insert(CI);
|
|
continue;
|
|
}
|
|
|
|
// Loads are handled via masking (or speculated if safe to do so.)
|
|
if (auto *LI = dyn_cast<LoadInst>(&I)) {
|
|
if (!SafePtrs.count(LI->getPointerOperand()))
|
|
MaskedOp.insert(LI);
|
|
continue;
|
|
}
|
|
|
|
// Predicated store requires some form of masking:
|
|
// 1) masked store HW instruction,
|
|
// 2) emulation via load-blend-store (only if safe and legal to do so,
|
|
// be aware on the race conditions), or
|
|
// 3) element-by-element predicate check and scalar store.
|
|
if (auto *SI = dyn_cast<StoreInst>(&I)) {
|
|
MaskedOp.insert(SI);
|
|
continue;
|
|
}
|
|
|
|
if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
|
|
if (!EnableIfConversion) {
|
|
reportVectorizationFailure("If-conversion is disabled",
|
|
"IfConversionDisabled", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
|
|
assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
|
|
|
|
// A list of pointers which are known to be dereferenceable within scope of
|
|
// the loop body for each iteration of the loop which executes. That is,
|
|
// the memory pointed to can be dereferenced (with the access size implied by
|
|
// the value's type) unconditionally within the loop header without
|
|
// introducing a new fault.
|
|
SmallPtrSet<Value *, 8> SafePointers;
|
|
|
|
// Collect safe addresses.
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
if (!blockNeedsPredication(BB)) {
|
|
for (Instruction &I : *BB)
|
|
if (auto *Ptr = getLoadStorePointerOperand(&I))
|
|
SafePointers.insert(Ptr);
|
|
continue;
|
|
}
|
|
|
|
// For a block which requires predication, a address may be safe to access
|
|
// in the loop w/o predication if we can prove dereferenceability facts
|
|
// sufficient to ensure it'll never fault within the loop. For the moment,
|
|
// we restrict this to loads; stores are more complicated due to
|
|
// concurrency restrictions.
|
|
ScalarEvolution &SE = *PSE.getSE();
|
|
SmallVector<const SCEVPredicate *, 4> Predicates;
|
|
for (Instruction &I : *BB) {
|
|
LoadInst *LI = dyn_cast<LoadInst>(&I);
|
|
// Pass the Predicates pointer to isDereferenceableAndAlignedInLoop so
|
|
// that it will consider loops that need guarding by SCEV checks. The
|
|
// vectoriser will generate these checks if we decide to vectorise.
|
|
if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
|
|
isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC,
|
|
&Predicates))
|
|
SafePointers.insert(LI->getPointerOperand());
|
|
Predicates.clear();
|
|
}
|
|
}
|
|
|
|
// Collect the blocks that need predication.
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
// We support only branches and switch statements as terminators inside the
|
|
// loop.
|
|
if (isa<SwitchInst>(BB->getTerminator())) {
|
|
if (TheLoop->isLoopExiting(BB)) {
|
|
reportVectorizationFailure("Loop contains an unsupported switch",
|
|
"LoopContainsUnsupportedSwitch", ORE,
|
|
TheLoop, BB->getTerminator());
|
|
return false;
|
|
}
|
|
} else if (!isa<BranchInst>(BB->getTerminator())) {
|
|
reportVectorizationFailure("Loop contains an unsupported terminator",
|
|
"LoopContainsUnsupportedTerminator", ORE,
|
|
TheLoop, BB->getTerminator());
|
|
return false;
|
|
}
|
|
|
|
// We must be able to predicate all blocks that need to be predicated.
|
|
if (blockNeedsPredication(BB) &&
|
|
!blockCanBePredicated(BB, SafePointers, MaskedOp)) {
|
|
reportVectorizationFailure(
|
|
"Control flow cannot be substituted for a select", "NoCFGForSelect",
|
|
ORE, TheLoop, BB->getTerminator());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We can if-convert this loop.
|
|
return true;
|
|
}
|
|
|
|
// Helper function to canVectorizeLoopNestCFG.
|
|
bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
|
|
bool UseVPlanNativePath) {
|
|
assert((UseVPlanNativePath || Lp->isInnermost()) &&
|
|
"VPlan-native path is not enabled.");
|
|
|
|
// TODO: ORE should be improved to show more accurate information when an
|
|
// outer loop can't be vectorized because a nested loop is not understood or
|
|
// legal. Something like: "outer_loop_location: loop not vectorized:
|
|
// (inner_loop_location) loop control flow is not understood by vectorizer".
|
|
|
|
// Store the result and return it at the end instead of exiting early, in case
|
|
// allowExtraAnalysis is used to report multiple reasons for not vectorizing.
|
|
bool Result = true;
|
|
bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
|
|
|
|
// We must have a loop in canonical form. Loops with indirectbr in them cannot
|
|
// be canonicalized.
|
|
if (!Lp->getLoopPreheader()) {
|
|
reportVectorizationFailure("Loop doesn't have a legal pre-header",
|
|
"loop control flow is not understood by vectorizer",
|
|
"CFGNotUnderstood", ORE, TheLoop);
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// We must have a single backedge.
|
|
if (Lp->getNumBackEdges() != 1) {
|
|
reportVectorizationFailure("The loop must have a single backedge",
|
|
"loop control flow is not understood by vectorizer",
|
|
"CFGNotUnderstood", ORE, TheLoop);
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
|
|
Loop *Lp, bool UseVPlanNativePath) {
|
|
// Store the result and return it at the end instead of exiting early, in case
|
|
// allowExtraAnalysis is used to report multiple reasons for not vectorizing.
|
|
bool Result = true;
|
|
bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
|
|
if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Recursively check whether the loop control flow of nested loops is
|
|
// understood.
|
|
for (Loop *SubLp : *Lp)
|
|
if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::isVectorizableEarlyExitLoop() {
|
|
BasicBlock *LatchBB = TheLoop->getLoopLatch();
|
|
if (!LatchBB) {
|
|
reportVectorizationFailure("Loop does not have a latch",
|
|
"Cannot vectorize early exit loop",
|
|
"NoLatchEarlyExit", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
|
|
if (Reductions.size() || FixedOrderRecurrences.size()) {
|
|
reportVectorizationFailure(
|
|
"Found reductions or recurrences in early-exit loop",
|
|
"Cannot vectorize early exit loop with reductions or recurrences",
|
|
"RecurrencesInEarlyExitLoop", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
|
|
SmallVector<BasicBlock *, 8> ExitingBlocks;
|
|
TheLoop->getExitingBlocks(ExitingBlocks);
|
|
|
|
// Keep a record of all the exiting blocks.
|
|
SmallVector<const SCEVPredicate *, 4> Predicates;
|
|
std::optional<std::pair<BasicBlock *, BasicBlock *>> SingleUncountableEdge;
|
|
for (BasicBlock *BB : ExitingBlocks) {
|
|
const SCEV *EC =
|
|
PSE.getSE()->getPredicatedExitCount(TheLoop, BB, &Predicates);
|
|
if (isa<SCEVCouldNotCompute>(EC)) {
|
|
SmallVector<BasicBlock *, 2> Succs(successors(BB));
|
|
if (Succs.size() != 2) {
|
|
reportVectorizationFailure(
|
|
"Early exiting block does not have exactly two successors",
|
|
"Incorrect number of successors from early exiting block",
|
|
"EarlyExitTooManySuccessors", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
|
|
BasicBlock *ExitBlock;
|
|
if (!TheLoop->contains(Succs[0]))
|
|
ExitBlock = Succs[0];
|
|
else {
|
|
assert(!TheLoop->contains(Succs[1]));
|
|
ExitBlock = Succs[1];
|
|
}
|
|
|
|
if (SingleUncountableEdge) {
|
|
reportVectorizationFailure(
|
|
"Loop has too many uncountable exits",
|
|
"Cannot vectorize early exit loop with more than one early exit",
|
|
"TooManyUncountableEarlyExits", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
|
|
SingleUncountableEdge = {BB, ExitBlock};
|
|
} else
|
|
CountableExitingBlocks.push_back(BB);
|
|
}
|
|
// We can safely ignore the predicates here because when vectorizing the loop
|
|
// the PredicatatedScalarEvolution class will keep track of all predicates
|
|
// for each exiting block anyway. This happens when calling
|
|
// PSE.getSymbolicMaxBackedgeTakenCount() below.
|
|
Predicates.clear();
|
|
|
|
if (!SingleUncountableEdge) {
|
|
LLVM_DEBUG(dbgs() << "LV: Cound not find any uncountable exits");
|
|
return false;
|
|
}
|
|
|
|
// The only supported early exit loops so far are ones where the early
|
|
// exiting block is a unique predecessor of the latch block.
|
|
BasicBlock *LatchPredBB = LatchBB->getUniquePredecessor();
|
|
if (LatchPredBB != SingleUncountableEdge->first) {
|
|
reportVectorizationFailure("Early exit is not the latch predecessor",
|
|
"Cannot vectorize early exit loop",
|
|
"EarlyExitNotLatchPredecessor", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
|
|
// The latch block must have a countable exit.
|
|
if (isa<SCEVCouldNotCompute>(
|
|
PSE.getSE()->getPredicatedExitCount(TheLoop, LatchBB, &Predicates))) {
|
|
reportVectorizationFailure(
|
|
"Cannot determine exact exit count for latch block",
|
|
"Cannot vectorize early exit loop",
|
|
"UnknownLatchExitCountEarlyExitLoop", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
assert(llvm::is_contained(CountableExitingBlocks, LatchBB) &&
|
|
"Latch block not found in list of countable exits!");
|
|
|
|
// Check to see if there are instructions that could potentially generate
|
|
// exceptions or have side-effects.
|
|
auto IsSafeOperation = [](Instruction *I) -> bool {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Load:
|
|
case Instruction::Store:
|
|
case Instruction::PHI:
|
|
case Instruction::Br:
|
|
// These are checked separately.
|
|
return true;
|
|
default:
|
|
return isSafeToSpeculativelyExecute(I);
|
|
}
|
|
};
|
|
|
|
for (auto *BB : TheLoop->blocks())
|
|
for (auto &I : *BB) {
|
|
if (I.mayWriteToMemory()) {
|
|
// We don't support writes to memory.
|
|
reportVectorizationFailure(
|
|
"Writes to memory unsupported in early exit loops",
|
|
"Cannot vectorize early exit loop with writes to memory",
|
|
"WritesInEarlyExitLoop", ORE, TheLoop);
|
|
return false;
|
|
} else if (!IsSafeOperation(&I)) {
|
|
reportVectorizationFailure("Early exit loop contains operations that "
|
|
"cannot be speculatively executed",
|
|
"UnsafeOperationsEarlyExitLoop", ORE,
|
|
TheLoop);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// The vectoriser cannot handle loads that occur after the early exit block.
|
|
assert(LatchBB->getUniquePredecessor() == SingleUncountableEdge->first &&
|
|
"Expected latch predecessor to be the early exiting block");
|
|
|
|
// TODO: Handle loops that may fault.
|
|
Predicates.clear();
|
|
if (!isDereferenceableReadOnlyLoop(TheLoop, PSE.getSE(), DT, AC,
|
|
&Predicates)) {
|
|
reportVectorizationFailure(
|
|
"Loop may fault",
|
|
"Cannot vectorize potentially faulting early exit loop",
|
|
"PotentiallyFaultingEarlyExitLoop", ORE, TheLoop);
|
|
return false;
|
|
}
|
|
|
|
[[maybe_unused]] const SCEV *SymbolicMaxBTC =
|
|
PSE.getSymbolicMaxBackedgeTakenCount();
|
|
// Since we have an exact exit count for the latch and the early exit
|
|
// dominates the latch, then this should guarantee a computed SCEV value.
|
|
assert(!isa<SCEVCouldNotCompute>(SymbolicMaxBTC) &&
|
|
"Failed to get symbolic expression for backedge taken count");
|
|
LLVM_DEBUG(dbgs() << "LV: Found an early exit loop with symbolic max "
|
|
"backedge taken count: "
|
|
<< *SymbolicMaxBTC << '\n');
|
|
UncountableEdge = SingleUncountableEdge;
|
|
return true;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
|
|
// Store the result and return it at the end instead of exiting early, in case
|
|
// allowExtraAnalysis is used to report multiple reasons for not vectorizing.
|
|
bool Result = true;
|
|
|
|
bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
|
|
// Check whether the loop-related control flow in the loop nest is expected by
|
|
// vectorizer.
|
|
if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
|
|
if (DoExtraAnalysis) {
|
|
LLVM_DEBUG(dbgs() << "LV: legality check failed: loop nest");
|
|
Result = false;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We need to have a loop header.
|
|
LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
|
|
<< '\n');
|
|
|
|
// Specific checks for outer loops. We skip the remaining legal checks at this
|
|
// point because they don't support outer loops.
|
|
if (!TheLoop->isInnermost()) {
|
|
assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
|
|
|
|
if (!canVectorizeOuterLoop()) {
|
|
reportVectorizationFailure("Unsupported outer loop",
|
|
"UnsupportedOuterLoop", ORE, TheLoop);
|
|
// TODO: Implement DoExtraAnalysis when subsequent legal checks support
|
|
// outer loops.
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
|
|
return Result;
|
|
}
|
|
|
|
assert(TheLoop->isInnermost() && "Inner loop expected.");
|
|
// Check if we can if-convert non-single-bb loops.
|
|
unsigned NumBlocks = TheLoop->getNumBlocks();
|
|
if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
|
|
LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Check if we can vectorize the instructions and CFG in this loop.
|
|
if (!canVectorizeInstrs()) {
|
|
LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
|
|
if (TheLoop->getExitingBlock()) {
|
|
reportVectorizationFailure("Cannot vectorize uncountable loop",
|
|
"UnsupportedUncountableLoop", ORE, TheLoop);
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
} else {
|
|
if (!isVectorizableEarlyExitLoop()) {
|
|
UncountableEdge = std::nullopt;
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Go over each instruction and look at memory deps.
|
|
if (!canVectorizeMemory()) {
|
|
LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
if (Result) {
|
|
LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
|
|
<< (LAI->getRuntimePointerChecking()->Need
|
|
? " (with a runtime bound check)"
|
|
: "")
|
|
<< "!\n");
|
|
}
|
|
|
|
unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
|
|
if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
|
|
SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
|
|
|
|
if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
|
|
LLVM_DEBUG(dbgs() << "LV: Vectorization not profitable "
|
|
"due to SCEVThreshold");
|
|
reportVectorizationFailure("Too many SCEV checks needed",
|
|
"Too many SCEV assumptions need to be made and checked at runtime",
|
|
"TooManySCEVRunTimeChecks", ORE, TheLoop);
|
|
if (DoExtraAnalysis)
|
|
Result = false;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// Okay! We've done all the tests. If any have failed, return false. Otherwise
|
|
// we can vectorize, and at this point we don't have any other mem analysis
|
|
// which may limit our maximum vectorization factor, so just return true with
|
|
// no restrictions.
|
|
return Result;
|
|
}
|
|
|
|
bool LoopVectorizationLegality::canFoldTailByMasking() const {
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
|
|
|
|
SmallPtrSet<const Value *, 8> ReductionLiveOuts;
|
|
|
|
for (const auto &Reduction : getReductionVars())
|
|
ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
|
|
|
|
// TODO: handle non-reduction outside users when tail is folded by masking.
|
|
for (auto *AE : AllowedExit) {
|
|
// Check that all users of allowed exit values are inside the loop or
|
|
// are the live-out of a reduction.
|
|
if (ReductionLiveOuts.count(AE))
|
|
continue;
|
|
for (User *U : AE->users()) {
|
|
Instruction *UI = cast<Instruction>(U);
|
|
if (TheLoop->contains(UI))
|
|
continue;
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "LV: Cannot fold tail by masking, loop has an outside user for "
|
|
<< *UI << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (const auto &Entry : getInductionVars()) {
|
|
PHINode *OrigPhi = Entry.first;
|
|
for (User *U : OrigPhi->users()) {
|
|
auto *UI = cast<Instruction>(U);
|
|
if (!TheLoop->contains(UI)) {
|
|
LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an "
|
|
"outside user for "
|
|
<< *UI << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The list of pointers that we can safely read and write to remains empty.
|
|
SmallPtrSet<Value *, 8> SafePointers;
|
|
|
|
// Check all blocks for predication, including those that ordinarily do not
|
|
// need predication such as the header block.
|
|
SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp)) {
|
|
LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking.\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
void LoopVectorizationLegality::prepareToFoldTailByMasking() {
|
|
// The list of pointers that we can safely read and write to remains empty.
|
|
SmallPtrSet<Value *, 8> SafePointers;
|
|
|
|
// Mark all blocks for predication, including those that ordinarily do not
|
|
// need predication such as the header block.
|
|
for (BasicBlock *BB : TheLoop->blocks()) {
|
|
[[maybe_unused]] bool R = blockCanBePredicated(BB, SafePointers, MaskedOp);
|
|
assert(R && "Must be able to predicate block when tail-folding.");
|
|
}
|
|
}
|
|
|
|
} // namespace llvm
|