llvm-project/llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h
Florian Hahn e27a21f6a7
[VPlan] Add hasScalarTail, use instead of !CM.foldTailByMasking() (NFC). (#134674)
Now that VPlan is able to fold away redundant branches to the scalar
preheader, we can directly check in VPlan if the scalar tail may
execute. hasScalarTail returns true if the tail may execute.

We know that the scalar tail won't execute if the scalar preheader
doesn't have any predecessors, i.e. is not reachable.

This removes some late uses of the legacy cost model.

PR: https://github.com/llvm/llvm-project/pull/134674
2025-04-11 12:50:59 +01:00

554 lines
21 KiB
C++

//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file provides a LoopVectorizationPlanner class.
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// LoopVectorizationPlanner - drives the vectorization process after having
/// passed Legality checks.
/// The planner builds and optimizes the Vectorization Plans which record the
/// decisions how to vectorize the given loop. In particular, represent the
/// control-flow of the vectorized version, the replication of instructions that
/// are to be scalarized, and interleave access groups.
///
/// Also provides a VPlan-based builder utility analogous to IRBuilder.
/// It provides an instruction-level API for generating VPInstructions while
/// abstracting away the Recipe manipulation details.
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
#include "VPlan.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/InstructionCost.h"
namespace llvm {
class LoopInfo;
class DominatorTree;
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class PredicatedScalarEvolution;
class LoopVectorizeHints;
class OptimizationRemarkEmitter;
class TargetTransformInfo;
class TargetLibraryInfo;
class VPRecipeBuilder;
struct VFRange;
extern cl::opt<bool> EnableVPlanNativePath;
extern cl::opt<unsigned> ForceTargetInstructionCost;
/// VPlan-based builder utility analogous to IRBuilder.
class VPBuilder {
VPBasicBlock *BB = nullptr;
VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
/// Insert \p VPI in BB at InsertPt if BB is set.
template <typename T> T *tryInsertInstruction(T *R) {
if (BB)
BB->insert(R, InsertPt);
return R;
}
VPInstruction *createInstruction(unsigned Opcode,
ArrayRef<VPValue *> Operands, DebugLoc DL,
const Twine &Name = "") {
return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name));
}
VPInstruction *createInstruction(unsigned Opcode,
std::initializer_list<VPValue *> Operands,
DebugLoc DL, const Twine &Name = "") {
return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name);
}
public:
VPBuilder() = default;
VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); }
VPBuilder(VPRecipeBase *InsertPt) { setInsertPoint(InsertPt); }
VPBuilder(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
setInsertPoint(TheBB, IP);
}
/// Clear the insertion point: created instructions will not be inserted into
/// a block.
void clearInsertionPoint() {
BB = nullptr;
InsertPt = VPBasicBlock::iterator();
}
VPBasicBlock *getInsertBlock() const { return BB; }
VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
/// Create a VPBuilder to insert after \p R.
static VPBuilder getToInsertAfter(VPRecipeBase *R) {
VPBuilder B;
B.setInsertPoint(R->getParent(), std::next(R->getIterator()));
return B;
}
/// InsertPoint - A saved insertion point.
class VPInsertPoint {
VPBasicBlock *Block = nullptr;
VPBasicBlock::iterator Point;
public:
/// Creates a new insertion point which doesn't point to anything.
VPInsertPoint() = default;
/// Creates a new insertion point at the given location.
VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
: Block(InsertBlock), Point(InsertPoint) {}
/// Returns true if this insert point is set.
bool isSet() const { return Block != nullptr; }
VPBasicBlock *getBlock() const { return Block; }
VPBasicBlock::iterator getPoint() const { return Point; }
};
/// Sets the current insert point to a previously-saved location.
void restoreIP(VPInsertPoint IP) {
if (IP.isSet())
setInsertPoint(IP.getBlock(), IP.getPoint());
else
clearInsertionPoint();
}
/// This specifies that created VPInstructions should be appended to the end
/// of the specified block.
void setInsertPoint(VPBasicBlock *TheBB) {
assert(TheBB && "Attempting to set a null insert point");
BB = TheBB;
InsertPt = BB->end();
}
/// This specifies that created instructions should be inserted at the
/// specified point.
void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
BB = TheBB;
InsertPt = IP;
}
/// This specifies that created instructions should be inserted at the
/// specified point.
void setInsertPoint(VPRecipeBase *IP) {
BB = IP->getParent();
InsertPt = IP->getIterator();
}
/// Insert \p R at the current insertion point.
void insert(VPRecipeBase *R) { BB->insert(R, InsertPt); }
/// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
/// its underlying Instruction.
VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
Instruction *Inst = nullptr,
const Twine &Name = "") {
DebugLoc DL;
if (Inst)
DL = Inst->getDebugLoc();
VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name);
NewVPInst->setUnderlyingValue(Inst);
return NewVPInst;
}
VPInstruction *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
DebugLoc DL, const Twine &Name = "") {
return createInstruction(Opcode, Operands, DL, Name);
}
VPInstruction *createNaryOp(unsigned Opcode,
std::initializer_list<VPValue *> Operands,
std::optional<FastMathFlags> FMFs = {},
DebugLoc DL = {}, const Twine &Name = "") {
if (FMFs)
return tryInsertInstruction(
new VPInstruction(Opcode, Operands, *FMFs, DL, Name));
return createInstruction(Opcode, Operands, DL, Name);
}
VPInstruction *createOverflowingOp(unsigned Opcode,
std::initializer_list<VPValue *> Operands,
VPRecipeWithIRFlags::WrapFlagsTy WrapFlags,
DebugLoc DL = {}, const Twine &Name = "") {
return tryInsertInstruction(
new VPInstruction(Opcode, Operands, WrapFlags, DL, Name));
}
VPValue *createNot(VPValue *Operand, DebugLoc DL = {},
const Twine &Name = "") {
return createInstruction(VPInstruction::Not, {Operand}, DL, Name);
}
VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
const Twine &Name = "") {
return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name);
}
VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
const Twine &Name = "") {
return tryInsertInstruction(new VPInstruction(
Instruction::BinaryOps::Or, {LHS, RHS},
VPRecipeWithIRFlags::DisjointFlagsTy(false), DL, Name));
}
VPValue *createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL = {},
const Twine &Name = "") {
return tryInsertInstruction(
new VPInstruction(VPInstruction::LogicalAnd, {LHS, RHS}, DL, Name));
}
VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
DebugLoc DL = {}, const Twine &Name = "",
std::optional<FastMathFlags> FMFs = std::nullopt) {
auto *Select =
FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
*FMFs, DL, Name)
: new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
DL, Name);
return tryInsertInstruction(Select);
}
/// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A
/// and \p B.
/// TODO: add createFCmp when needed.
VPValue *createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B,
DebugLoc DL = {}, const Twine &Name = "") {
assert(Pred >= CmpInst::FIRST_ICMP_PREDICATE &&
Pred <= CmpInst::LAST_ICMP_PREDICATE && "invalid predicate");
return tryInsertInstruction(
new VPInstruction(Instruction::ICmp, Pred, A, B, DL, Name));
}
VPInstruction *createPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL = {},
const Twine &Name = "") {
return tryInsertInstruction(
new VPInstruction(Ptr, Offset, GEPNoWrapFlags::none(), DL, Name));
}
VPValue *createInBoundsPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL = {},
const Twine &Name = "") {
return tryInsertInstruction(
new VPInstruction(Ptr, Offset, GEPNoWrapFlags::inBounds(), DL, Name));
}
/// Convert the input value \p Current to the corresponding value of an
/// induction with \p Start and \p Step values, using \p Start + \p Current *
/// \p Step.
VPDerivedIVRecipe *createDerivedIV(InductionDescriptor::InductionKind Kind,
FPMathOperator *FPBinOp, VPValue *Start,
VPValue *Current, VPValue *Step,
const Twine &Name = "") {
return tryInsertInstruction(
new VPDerivedIVRecipe(Kind, FPBinOp, Start, Current, Step, Name));
}
VPInstruction *createScalarCast(Instruction::CastOps Opcode, VPValue *Op,
Type *ResultTy, DebugLoc DL) {
return tryInsertInstruction(
new VPInstructionWithType(Opcode, Op, ResultTy, DL));
}
VPWidenCastRecipe *createWidenCast(Instruction::CastOps Opcode, VPValue *Op,
Type *ResultTy) {
return tryInsertInstruction(new VPWidenCastRecipe(Opcode, Op, ResultTy));
}
VPScalarIVStepsRecipe *
createScalarIVSteps(Instruction::BinaryOps InductionOpcode,
FPMathOperator *FPBinOp, VPValue *IV, VPValue *Step,
VPValue *VF, DebugLoc DL) {
return tryInsertInstruction(new VPScalarIVStepsRecipe(
IV, Step, VF, InductionOpcode,
FPBinOp ? FPBinOp->getFastMathFlags() : FastMathFlags(), DL));
}
//===--------------------------------------------------------------------===//
// RAII helpers.
//===--------------------------------------------------------------------===//
/// RAII object that stores the current insertion point and restores it when
/// the object is destroyed.
class InsertPointGuard {
VPBuilder &Builder;
VPBasicBlock *Block;
VPBasicBlock::iterator Point;
public:
InsertPointGuard(VPBuilder &B)
: Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
InsertPointGuard(const InsertPointGuard &) = delete;
InsertPointGuard &operator=(const InsertPointGuard &) = delete;
~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
};
};
/// TODO: The following VectorizationFactor was pulled out of
/// LoopVectorizationCostModel class. LV also deals with
/// VectorizerParams::VectorizationFactor.
/// We need to streamline them.
/// Information about vectorization costs.
struct VectorizationFactor {
/// Vector width with best cost.
ElementCount Width;
/// Cost of the loop with that width.
InstructionCost Cost;
/// Cost of the scalar loop.
InstructionCost ScalarCost;
/// The minimum trip count required to make vectorization profitable, e.g. due
/// to runtime checks.
ElementCount MinProfitableTripCount;
VectorizationFactor(ElementCount Width, InstructionCost Cost,
InstructionCost ScalarCost)
: Width(Width), Cost(Cost), ScalarCost(ScalarCost) {}
/// Width 1 means no vectorization, cost 0 means uncomputed cost.
static VectorizationFactor Disabled() {
return {ElementCount::getFixed(1), 0, 0};
}
bool operator==(const VectorizationFactor &rhs) const {
return Width == rhs.Width && Cost == rhs.Cost;
}
bool operator!=(const VectorizationFactor &rhs) const {
return !(*this == rhs);
}
};
/// A class that represents two vectorization factors (initialized with 0 by
/// default). One for fixed-width vectorization and one for scalable
/// vectorization. This can be used by the vectorizer to choose from a range of
/// fixed and/or scalable VFs in order to find the most cost-effective VF to
/// vectorize with.
struct FixedScalableVFPair {
ElementCount FixedVF;
ElementCount ScalableVF;
FixedScalableVFPair()
: FixedVF(ElementCount::getFixed(0)),
ScalableVF(ElementCount::getScalable(0)) {}
FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
*(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
}
FixedScalableVFPair(const ElementCount &FixedVF,
const ElementCount &ScalableVF)
: FixedVF(FixedVF), ScalableVF(ScalableVF) {
assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
"Invalid scalable properties");
}
static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
/// \return true if either fixed- or scalable VF is non-zero.
explicit operator bool() const { return FixedVF || ScalableVF; }
/// \return true if either fixed- or scalable VF is a valid vector VF.
bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
};
/// Planner drives the vectorization process after having passed
/// Legality checks.
class LoopVectorizationPlanner {
/// The loop that we evaluate.
Loop *OrigLoop;
/// Loop Info analysis.
LoopInfo *LI;
/// The dominator tree.
DominatorTree *DT;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Target Transform Info.
const TargetTransformInfo &TTI;
/// The legality analysis.
LoopVectorizationLegality *Legal;
/// The profitability analysis.
LoopVectorizationCostModel &CM;
/// The interleaved access analysis.
InterleavedAccessInfo &IAI;
PredicatedScalarEvolution &PSE;
const LoopVectorizeHints &Hints;
OptimizationRemarkEmitter *ORE;
SmallVector<VPlanPtr, 4> VPlans;
/// Profitable vector factors.
SmallVector<VectorizationFactor, 8> ProfitableVFs;
/// A builder used to construct the current plan.
VPBuilder Builder;
/// Computes the cost of \p Plan for vectorization factor \p VF.
///
/// The current implementation requires access to the
/// LoopVectorizationLegality to handle inductions and reductions, which is
/// why it is kept separate from the VPlan-only cost infrastructure.
///
/// TODO: Move to VPlan::cost once the use of LoopVectorizationLegality has
/// been retired.
InstructionCost cost(VPlan &Plan, ElementCount VF) const;
/// Precompute costs for certain instructions using the legacy cost model. The
/// function is used to bring up the VPlan-based cost model to initially avoid
/// taking different decisions due to inaccuracies in the legacy cost model.
InstructionCost precomputeCosts(VPlan &Plan, ElementCount VF,
VPCostContext &CostCtx) const;
public:
LoopVectorizationPlanner(
Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal,
LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI,
PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints,
OptimizationRemarkEmitter *ORE)
: OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM),
IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {}
/// Build VPlans for the specified \p UserVF and \p UserIC if they are
/// non-zero or all applicable candidate VFs otherwise. If vectorization and
/// interleaving should be avoided up-front, no plans are generated.
void plan(ElementCount UserVF, unsigned UserIC);
/// Use the VPlan-native path to plan how to best vectorize, return the best
/// VF and its cost.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
/// Return the VPlan for \p VF. At the moment, there is always a single VPlan
/// for each VF.
VPlan &getPlanFor(ElementCount VF) const;
/// Compute and return the most profitable vectorization factor. Also collect
/// all profitable VFs in ProfitableVFs.
VectorizationFactor computeBestVF();
/// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan
/// according to the best selected \p VF and \p UF.
///
/// TODO: \p VectorizingEpilogue indicates if the executed VPlan is for the
/// epilogue vector loop. It should be removed once the re-use issue has been
/// fixed.
///
/// Returns a mapping of SCEVs to their expanded IR values.
/// Note that this is a temporary workaround needed due to the current
/// epilogue handling.
DenseMap<const SCEV *, Value *> executePlan(ElementCount VF, unsigned UF,
VPlan &BestPlan,
InnerLoopVectorizer &LB,
DominatorTree *DT,
bool VectorizingEpilogue);
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void printPlans(raw_ostream &O);
#endif
/// Look through the existing plans and return true if we have one with
/// vectorization factor \p VF.
bool hasPlanWithVF(ElementCount VF) const {
return any_of(VPlans,
[&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
}
/// Test a \p Predicate on a \p Range of VF's. Return the value of applying
/// \p Predicate on Range.Start, possibly decreasing Range.End such that the
/// returned value holds for the entire \p Range.
static bool
getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
VFRange &Range);
/// \return The most profitable vectorization factor and the cost of that VF
/// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if
/// epilogue vectorization is not supported for the loop.
VectorizationFactor
selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC);
/// Emit remarks for recipes with invalid costs in the available VPlans.
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE);
protected:
/// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
/// according to the information gathered by Legal when it checked if it is
/// legal to vectorize the loop.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
private:
/// Build a VPlan according to the information gathered by Legal. \return a
/// VPlan for vectorization factors \p Range.Start and up to \p Range.End
/// exclusive, possibly decreasing \p Range.End. If no VPlan can be built for
/// the input range, set the largest included VF to the maximum VF for which
/// no plan could be built.
VPlanPtr tryToBuildVPlan(VFRange &Range);
/// Build a VPlan using VPRecipes according to the information gather by
/// Legal. This method is only used for the legacy inner loop vectorizer.
/// \p Range's largest included VF is restricted to the maximum VF the
/// returned VPlan is valid for. If no VPlan can be built for the input range,
/// set the largest included VF to the maximum VF for which no plan could be
/// built.
VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range);
/// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
/// according to the information gathered by Legal when it checked if it is
/// legal to vectorize the loop. This method creates VPlans using VPRecipes.
void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
// Adjust the recipes for reductions. For in-loop reductions the chain of
// instructions leading from the loop exit instr to the phi need to be
// converted to reductions, with one operand being vector and the other being
// the scalar reduction chain. For other reductions, a select is introduced
// between the phi and users outside the vector region when folding the tail.
void adjustRecipesForReductions(VPlanPtr &Plan,
VPRecipeBuilder &RecipeBuilder,
ElementCount MinVF);
#ifndef NDEBUG
/// \return The most profitable vectorization factor for the available VPlans
/// and the cost of that VF.
/// This is now only used to verify the decisions by the new VPlan-based
/// cost-model and will be retired once the VPlan-based cost-model is
/// stabilized.
VectorizationFactor selectVectorizationFactor();
#endif
/// Returns true if the per-lane cost of VectorizationFactor A is lower than
/// that of B.
bool isMoreProfitable(const VectorizationFactor &A,
const VectorizationFactor &B, bool HasTail) const;
/// Returns true if the per-lane cost of VectorizationFactor A is lower than
/// that of B in the context of vectorizing a loop with known \p MaxTripCount.
bool isMoreProfitable(const VectorizationFactor &A,
const VectorizationFactor &B,
const unsigned MaxTripCount, bool HasTail) const;
/// Determines if we have the infrastructure to vectorize the loop and its
/// epilogue, assuming the main loop is vectorized by \p VF.
bool isCandidateForEpilogueVectorization(const ElementCount VF) const;
};
} // namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H