mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-17 16:26:42 +00:00

This PR accounts for scaled reductions in `calculateRegisterUsage` to reflect the fact that the number of lanes in their output is smaller than the VF. Depends on https://github.com/llvm/llvm-project/pull/126437
3822 lines
139 KiB
C++
3822 lines
139 KiB
C++
//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This file contains the declarations of the Vectorization Plan base classes:
|
|
/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
|
|
/// VPBlockBase, together implementing a Hierarchical CFG;
|
|
/// 2. Pure virtual VPRecipeBase serving as the base class for recipes contained
|
|
/// within VPBasicBlocks;
|
|
/// 3. Pure virtual VPSingleDefRecipe serving as a base class for recipes that
|
|
/// also inherit from VPValue.
|
|
/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
|
|
/// instruction;
|
|
/// 5. The VPlan class holding a candidate for vectorization;
|
|
/// These are documented in docs/VectorizationPlan.rst.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|
|
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|
|
|
|
#include "VPlanAnalysis.h"
|
|
#include "VPlanValue.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ADT/ilist.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/Analysis/IVDescriptors.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/FMF.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Support/InstructionCost.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <string>
|
|
|
|
namespace llvm {
|
|
|
|
class BasicBlock;
|
|
class DominatorTree;
|
|
class InnerLoopVectorizer;
|
|
class IRBuilderBase;
|
|
struct VPTransformState;
|
|
class raw_ostream;
|
|
class RecurrenceDescriptor;
|
|
class SCEV;
|
|
class Type;
|
|
class VPBasicBlock;
|
|
class VPBuilder;
|
|
class VPRegionBlock;
|
|
class VPlan;
|
|
class VPLane;
|
|
class VPReplicateRecipe;
|
|
class VPlanSlp;
|
|
class Value;
|
|
class LoopVectorizationCostModel;
|
|
|
|
struct VPCostContext;
|
|
|
|
namespace Intrinsic {
|
|
typedef unsigned ID;
|
|
}
|
|
|
|
using VPlanPtr = std::unique_ptr<VPlan>;
|
|
|
|
/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
|
|
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
|
|
class VPBlockBase {
|
|
friend class VPBlockUtils;
|
|
|
|
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
|
|
|
|
/// An optional name for the block.
|
|
std::string Name;
|
|
|
|
/// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
|
|
/// it is a topmost VPBlockBase.
|
|
VPRegionBlock *Parent = nullptr;
|
|
|
|
/// List of predecessor blocks.
|
|
SmallVector<VPBlockBase *, 1> Predecessors;
|
|
|
|
/// List of successor blocks.
|
|
SmallVector<VPBlockBase *, 1> Successors;
|
|
|
|
/// VPlan containing the block. Can only be set on the entry block of the
|
|
/// plan.
|
|
VPlan *Plan = nullptr;
|
|
|
|
/// Add \p Successor as the last successor to this block.
|
|
void appendSuccessor(VPBlockBase *Successor) {
|
|
assert(Successor && "Cannot add nullptr successor!");
|
|
Successors.push_back(Successor);
|
|
}
|
|
|
|
/// Add \p Predecessor as the last predecessor to this block.
|
|
void appendPredecessor(VPBlockBase *Predecessor) {
|
|
assert(Predecessor && "Cannot add nullptr predecessor!");
|
|
Predecessors.push_back(Predecessor);
|
|
}
|
|
|
|
/// Remove \p Predecessor from the predecessors of this block.
|
|
void removePredecessor(VPBlockBase *Predecessor) {
|
|
auto Pos = find(Predecessors, Predecessor);
|
|
assert(Pos && "Predecessor does not exist");
|
|
Predecessors.erase(Pos);
|
|
}
|
|
|
|
/// Remove \p Successor from the successors of this block.
|
|
void removeSuccessor(VPBlockBase *Successor) {
|
|
auto Pos = find(Successors, Successor);
|
|
assert(Pos && "Successor does not exist");
|
|
Successors.erase(Pos);
|
|
}
|
|
|
|
/// This function replaces one predecessor with another, useful when
|
|
/// trying to replace an old block in the CFG with a new one.
|
|
void replacePredecessor(VPBlockBase *Old, VPBlockBase *New) {
|
|
auto I = find(Predecessors, Old);
|
|
assert(I != Predecessors.end());
|
|
assert(Old->getParent() == New->getParent() &&
|
|
"replaced predecessor must have the same parent");
|
|
*I = New;
|
|
}
|
|
|
|
/// This function replaces one successor with another, useful when
|
|
/// trying to replace an old block in the CFG with a new one.
|
|
void replaceSuccessor(VPBlockBase *Old, VPBlockBase *New) {
|
|
auto I = find(Successors, Old);
|
|
assert(I != Successors.end());
|
|
assert(Old->getParent() == New->getParent() &&
|
|
"replaced successor must have the same parent");
|
|
*I = New;
|
|
}
|
|
|
|
protected:
|
|
VPBlockBase(const unsigned char SC, const std::string &N)
|
|
: SubclassID(SC), Name(N) {}
|
|
|
|
public:
|
|
/// An enumeration for keeping track of the concrete subclass of VPBlockBase
|
|
/// that are actually instantiated. Values of this enumeration are kept in the
|
|
/// SubclassID field of the VPBlockBase objects. They are used for concrete
|
|
/// type identification.
|
|
using VPBlockTy = enum { VPRegionBlockSC, VPBasicBlockSC, VPIRBasicBlockSC };
|
|
|
|
using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
|
|
|
|
virtual ~VPBlockBase() = default;
|
|
|
|
const std::string &getName() const { return Name; }
|
|
|
|
void setName(const Twine &newName) { Name = newName.str(); }
|
|
|
|
/// \return an ID for the concrete type of this object.
|
|
/// This is used to implement the classof checks. This should not be used
|
|
/// for any other purpose, as the values may change as LLVM evolves.
|
|
unsigned getVPBlockID() const { return SubclassID; }
|
|
|
|
VPRegionBlock *getParent() { return Parent; }
|
|
const VPRegionBlock *getParent() const { return Parent; }
|
|
|
|
/// \return A pointer to the plan containing the current block.
|
|
VPlan *getPlan();
|
|
const VPlan *getPlan() const;
|
|
|
|
/// Sets the pointer of the plan containing the block. The block must be the
|
|
/// entry block into the VPlan.
|
|
void setPlan(VPlan *ParentPlan);
|
|
|
|
void setParent(VPRegionBlock *P) { Parent = P; }
|
|
|
|
/// \return the VPBasicBlock that is the entry of this VPBlockBase,
|
|
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
|
|
/// VPBlockBase is a VPBasicBlock, it is returned.
|
|
const VPBasicBlock *getEntryBasicBlock() const;
|
|
VPBasicBlock *getEntryBasicBlock();
|
|
|
|
/// \return the VPBasicBlock that is the exiting this VPBlockBase,
|
|
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
|
|
/// VPBlockBase is a VPBasicBlock, it is returned.
|
|
const VPBasicBlock *getExitingBasicBlock() const;
|
|
VPBasicBlock *getExitingBasicBlock();
|
|
|
|
const VPBlocksTy &getSuccessors() const { return Successors; }
|
|
VPBlocksTy &getSuccessors() { return Successors; }
|
|
|
|
iterator_range<VPBlockBase **> successors() { return Successors; }
|
|
iterator_range<VPBlockBase **> predecessors() { return Predecessors; }
|
|
|
|
const VPBlocksTy &getPredecessors() const { return Predecessors; }
|
|
VPBlocksTy &getPredecessors() { return Predecessors; }
|
|
|
|
/// \return the successor of this VPBlockBase if it has a single successor.
|
|
/// Otherwise return a null pointer.
|
|
VPBlockBase *getSingleSuccessor() const {
|
|
return (Successors.size() == 1 ? *Successors.begin() : nullptr);
|
|
}
|
|
|
|
/// \return the predecessor of this VPBlockBase if it has a single
|
|
/// predecessor. Otherwise return a null pointer.
|
|
VPBlockBase *getSinglePredecessor() const {
|
|
return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
|
|
}
|
|
|
|
size_t getNumSuccessors() const { return Successors.size(); }
|
|
size_t getNumPredecessors() const { return Predecessors.size(); }
|
|
|
|
/// An Enclosing Block of a block B is any block containing B, including B
|
|
/// itself. \return the closest enclosing block starting from "this", which
|
|
/// has successors. \return the root enclosing block if all enclosing blocks
|
|
/// have no successors.
|
|
VPBlockBase *getEnclosingBlockWithSuccessors();
|
|
|
|
/// \return the closest enclosing block starting from "this", which has
|
|
/// predecessors. \return the root enclosing block if all enclosing blocks
|
|
/// have no predecessors.
|
|
VPBlockBase *getEnclosingBlockWithPredecessors();
|
|
|
|
/// \return the successors either attached directly to this VPBlockBase or, if
|
|
/// this VPBlockBase is the exit block of a VPRegionBlock and has no
|
|
/// successors of its own, search recursively for the first enclosing
|
|
/// VPRegionBlock that has successors and return them. If no such
|
|
/// VPRegionBlock exists, return the (empty) successors of the topmost
|
|
/// VPBlockBase reached.
|
|
const VPBlocksTy &getHierarchicalSuccessors() {
|
|
return getEnclosingBlockWithSuccessors()->getSuccessors();
|
|
}
|
|
|
|
/// \return the hierarchical successor of this VPBlockBase if it has a single
|
|
/// hierarchical successor. Otherwise return a null pointer.
|
|
VPBlockBase *getSingleHierarchicalSuccessor() {
|
|
return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
|
|
}
|
|
|
|
/// \return the predecessors either attached directly to this VPBlockBase or,
|
|
/// if this VPBlockBase is the entry block of a VPRegionBlock and has no
|
|
/// predecessors of its own, search recursively for the first enclosing
|
|
/// VPRegionBlock that has predecessors and return them. If no such
|
|
/// VPRegionBlock exists, return the (empty) predecessors of the topmost
|
|
/// VPBlockBase reached.
|
|
const VPBlocksTy &getHierarchicalPredecessors() {
|
|
return getEnclosingBlockWithPredecessors()->getPredecessors();
|
|
}
|
|
|
|
/// \return the hierarchical predecessor of this VPBlockBase if it has a
|
|
/// single hierarchical predecessor. Otherwise return a null pointer.
|
|
VPBlockBase *getSingleHierarchicalPredecessor() {
|
|
return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
|
|
}
|
|
|
|
/// Set a given VPBlockBase \p Successor as the single successor of this
|
|
/// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
|
|
/// This VPBlockBase must have no successors.
|
|
void setOneSuccessor(VPBlockBase *Successor) {
|
|
assert(Successors.empty() && "Setting one successor when others exist.");
|
|
assert(Successor->getParent() == getParent() &&
|
|
"connected blocks must have the same parent");
|
|
appendSuccessor(Successor);
|
|
}
|
|
|
|
/// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
|
|
/// successors of this VPBlockBase. This VPBlockBase is not added as
|
|
/// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no
|
|
/// successors.
|
|
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) {
|
|
assert(Successors.empty() && "Setting two successors when others exist.");
|
|
appendSuccessor(IfTrue);
|
|
appendSuccessor(IfFalse);
|
|
}
|
|
|
|
/// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
|
|
/// This VPBlockBase must have no predecessors. This VPBlockBase is not added
|
|
/// as successor of any VPBasicBlock in \p NewPreds.
|
|
void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
|
|
assert(Predecessors.empty() && "Block predecessors already set.");
|
|
for (auto *Pred : NewPreds)
|
|
appendPredecessor(Pred);
|
|
}
|
|
|
|
/// Set each VPBasicBlock in \p NewSuccss as successor of this VPBlockBase.
|
|
/// This VPBlockBase must have no successors. This VPBlockBase is not added
|
|
/// as predecessor of any VPBasicBlock in \p NewSuccs.
|
|
void setSuccessors(ArrayRef<VPBlockBase *> NewSuccs) {
|
|
assert(Successors.empty() && "Block successors already set.");
|
|
for (auto *Succ : NewSuccs)
|
|
appendSuccessor(Succ);
|
|
}
|
|
|
|
/// Remove all the predecessor of this block.
|
|
void clearPredecessors() { Predecessors.clear(); }
|
|
|
|
/// Remove all the successors of this block.
|
|
void clearSuccessors() { Successors.clear(); }
|
|
|
|
/// Swap successors of the block. The block must have exactly 2 successors.
|
|
// TODO: This should be part of introducing conditional branch recipes rather
|
|
// than being independent.
|
|
void swapSuccessors() {
|
|
assert(Successors.size() == 2 && "must have 2 successors to swap");
|
|
std::swap(Successors[0], Successors[1]);
|
|
}
|
|
|
|
/// The method which generates the output IR that correspond to this
|
|
/// VPBlockBase, thereby "executing" the VPlan.
|
|
virtual void execute(VPTransformState *State) = 0;
|
|
|
|
/// Return the cost of the block.
|
|
virtual InstructionCost cost(ElementCount VF, VPCostContext &Ctx) = 0;
|
|
|
|
/// Return true if it is legal to hoist instructions into this block.
|
|
bool isLegalToHoistInto() {
|
|
// There are currently no constraints that prevent an instruction to be
|
|
// hoisted into a VPBlockBase.
|
|
return true;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void printAsOperand(raw_ostream &OS, bool PrintType = false) const {
|
|
OS << getName();
|
|
}
|
|
|
|
/// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines
|
|
/// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using
|
|
/// consequtive numbers.
|
|
///
|
|
/// Note that the numbering is applied to the whole VPlan, so printing
|
|
/// individual blocks is consistent with the whole VPlan printing.
|
|
virtual void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const = 0;
|
|
|
|
/// Print plain-text dump of this VPlan to \p O.
|
|
void print(raw_ostream &O) const;
|
|
|
|
/// Print the successors of this block to \p O, prefixing all lines with \p
|
|
/// Indent.
|
|
void printSuccessors(raw_ostream &O, const Twine &Indent) const;
|
|
|
|
/// Dump this VPBlockBase to dbgs().
|
|
LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
|
|
#endif
|
|
|
|
/// Clone the current block and it's recipes without updating the operands of
|
|
/// the cloned recipes, including all blocks in the single-entry single-exit
|
|
/// region for VPRegionBlocks.
|
|
virtual VPBlockBase *clone() = 0;
|
|
};
|
|
|
|
/// VPRecipeBase is a base class modeling a sequence of one or more output IR
|
|
/// instructions. VPRecipeBase owns the VPValues it defines through VPDef
|
|
/// and is responsible for deleting its defined values. Single-value
|
|
/// recipes must inherit from VPSingleDef instead of inheriting from both
|
|
/// VPRecipeBase and VPValue separately.
|
|
class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>,
|
|
public VPDef,
|
|
public VPUser {
|
|
friend VPBasicBlock;
|
|
friend class VPBlockUtils;
|
|
|
|
/// Each VPRecipe belongs to a single VPBasicBlock.
|
|
VPBasicBlock *Parent = nullptr;
|
|
|
|
/// The debug location for the recipe.
|
|
DebugLoc DL;
|
|
|
|
public:
|
|
VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands,
|
|
DebugLoc DL = {})
|
|
: VPDef(SC), VPUser(Operands), DL(DL) {}
|
|
|
|
template <typename IterT>
|
|
VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands,
|
|
DebugLoc DL = {})
|
|
: VPDef(SC), VPUser(Operands), DL(DL) {}
|
|
virtual ~VPRecipeBase() = default;
|
|
|
|
/// Clone the current recipe.
|
|
virtual VPRecipeBase *clone() = 0;
|
|
|
|
/// \return the VPBasicBlock which this VPRecipe belongs to.
|
|
VPBasicBlock *getParent() { return Parent; }
|
|
const VPBasicBlock *getParent() const { return Parent; }
|
|
|
|
/// The method which generates the output IR instructions that correspond to
|
|
/// this VPRecipe, thereby "executing" the VPlan.
|
|
virtual void execute(VPTransformState &State) = 0;
|
|
|
|
/// Return the cost of this recipe, taking into account if the cost
|
|
/// computation should be skipped and the ForceTargetInstructionCost flag.
|
|
/// Also takes care of printing the cost for debugging.
|
|
InstructionCost cost(ElementCount VF, VPCostContext &Ctx);
|
|
|
|
/// Insert an unlinked recipe into a basic block immediately before
|
|
/// the specified recipe.
|
|
void insertBefore(VPRecipeBase *InsertPos);
|
|
/// Insert an unlinked recipe into \p BB immediately before the insertion
|
|
/// point \p IP;
|
|
void insertBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator IP);
|
|
|
|
/// Insert an unlinked Recipe into a basic block immediately after
|
|
/// the specified Recipe.
|
|
void insertAfter(VPRecipeBase *InsertPos);
|
|
|
|
/// Unlink this recipe from its current VPBasicBlock and insert it into
|
|
/// the VPBasicBlock that MovePos lives in, right after MovePos.
|
|
void moveAfter(VPRecipeBase *MovePos);
|
|
|
|
/// Unlink this recipe and insert into BB before I.
|
|
///
|
|
/// \pre I is a valid iterator into BB.
|
|
void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I);
|
|
|
|
/// This method unlinks 'this' from the containing basic block, but does not
|
|
/// delete it.
|
|
void removeFromParent();
|
|
|
|
/// This method unlinks 'this' from the containing basic block and deletes it.
|
|
///
|
|
/// \returns an iterator pointing to the element after the erased one
|
|
iplist<VPRecipeBase>::iterator eraseFromParent();
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPDef *D) {
|
|
// All VPDefs are also VPRecipeBases.
|
|
return true;
|
|
}
|
|
|
|
static inline bool classof(const VPUser *U) { return true; }
|
|
|
|
/// Returns true if the recipe may have side-effects.
|
|
bool mayHaveSideEffects() const;
|
|
|
|
/// Returns true for PHI-like recipes.
|
|
bool isPhi() const;
|
|
|
|
/// Returns true if the recipe may read from memory.
|
|
bool mayReadFromMemory() const;
|
|
|
|
/// Returns true if the recipe may write to memory.
|
|
bool mayWriteToMemory() const;
|
|
|
|
/// Returns true if the recipe may read from or write to memory.
|
|
bool mayReadOrWriteMemory() const {
|
|
return mayReadFromMemory() || mayWriteToMemory();
|
|
}
|
|
|
|
/// Returns the debug location of the recipe.
|
|
DebugLoc getDebugLoc() const { return DL; }
|
|
|
|
/// Return true if the recipe is a scalar cast.
|
|
bool isScalarCast() const;
|
|
|
|
protected:
|
|
/// Compute the cost of this recipe either using a recipe's specialized
|
|
/// implementation or using the legacy cost model and the underlying
|
|
/// instructions.
|
|
virtual InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const;
|
|
};
|
|
|
|
// Helper macro to define common classof implementations for recipes.
|
|
#define VP_CLASSOF_IMPL(VPDefID) \
|
|
static inline bool classof(const VPDef *D) { \
|
|
return D->getVPDefID() == VPDefID; \
|
|
} \
|
|
static inline bool classof(const VPValue *V) { \
|
|
auto *R = V->getDefiningRecipe(); \
|
|
return R && R->getVPDefID() == VPDefID; \
|
|
} \
|
|
static inline bool classof(const VPUser *U) { \
|
|
auto *R = dyn_cast<VPRecipeBase>(U); \
|
|
return R && R->getVPDefID() == VPDefID; \
|
|
} \
|
|
static inline bool classof(const VPRecipeBase *R) { \
|
|
return R->getVPDefID() == VPDefID; \
|
|
} \
|
|
static inline bool classof(const VPSingleDefRecipe *R) { \
|
|
return R->getVPDefID() == VPDefID; \
|
|
}
|
|
|
|
/// VPSingleDef is a base class for recipes for modeling a sequence of one or
|
|
/// more output IR that define a single result VPValue.
|
|
/// Note that VPRecipeBase must be inherited from before VPValue.
|
|
class VPSingleDefRecipe : public VPRecipeBase, public VPValue {
|
|
public:
|
|
template <typename IterT>
|
|
VPSingleDefRecipe(const unsigned char SC, IterT Operands, DebugLoc DL = {})
|
|
: VPRecipeBase(SC, Operands, DL), VPValue(this) {}
|
|
|
|
VPSingleDefRecipe(const unsigned char SC, ArrayRef<VPValue *> Operands,
|
|
DebugLoc DL = {})
|
|
: VPRecipeBase(SC, Operands, DL), VPValue(this) {}
|
|
|
|
template <typename IterT>
|
|
VPSingleDefRecipe(const unsigned char SC, IterT Operands, Value *UV,
|
|
DebugLoc DL = {})
|
|
: VPRecipeBase(SC, Operands, DL), VPValue(this, UV) {}
|
|
|
|
static inline bool classof(const VPRecipeBase *R) {
|
|
switch (R->getVPDefID()) {
|
|
case VPRecipeBase::VPDerivedIVSC:
|
|
case VPRecipeBase::VPEVLBasedIVPHISC:
|
|
case VPRecipeBase::VPExpandSCEVSC:
|
|
case VPRecipeBase::VPInstructionSC:
|
|
case VPRecipeBase::VPReductionEVLSC:
|
|
case VPRecipeBase::VPReductionSC:
|
|
case VPRecipeBase::VPReplicateSC:
|
|
case VPRecipeBase::VPScalarIVStepsSC:
|
|
case VPRecipeBase::VPVectorPointerSC:
|
|
case VPRecipeBase::VPVectorEndPointerSC:
|
|
case VPRecipeBase::VPWidenCallSC:
|
|
case VPRecipeBase::VPWidenCanonicalIVSC:
|
|
case VPRecipeBase::VPWidenCastSC:
|
|
case VPRecipeBase::VPWidenGEPSC:
|
|
case VPRecipeBase::VPWidenIntrinsicSC:
|
|
case VPRecipeBase::VPWidenSC:
|
|
case VPRecipeBase::VPWidenSelectSC:
|
|
case VPRecipeBase::VPBlendSC:
|
|
case VPRecipeBase::VPPredInstPHISC:
|
|
case VPRecipeBase::VPCanonicalIVPHISC:
|
|
case VPRecipeBase::VPActiveLaneMaskPHISC:
|
|
case VPRecipeBase::VPFirstOrderRecurrencePHISC:
|
|
case VPRecipeBase::VPWidenPHISC:
|
|
case VPRecipeBase::VPWidenIntOrFpInductionSC:
|
|
case VPRecipeBase::VPWidenPointerInductionSC:
|
|
case VPRecipeBase::VPReductionPHISC:
|
|
case VPRecipeBase::VPPartialReductionSC:
|
|
return true;
|
|
case VPRecipeBase::VPBranchOnMaskSC:
|
|
case VPRecipeBase::VPInterleaveSC:
|
|
case VPRecipeBase::VPIRInstructionSC:
|
|
case VPRecipeBase::VPWidenLoadEVLSC:
|
|
case VPRecipeBase::VPWidenLoadSC:
|
|
case VPRecipeBase::VPWidenStoreEVLSC:
|
|
case VPRecipeBase::VPWidenStoreSC:
|
|
case VPRecipeBase::VPHistogramSC:
|
|
// TODO: Widened stores don't define a value, but widened loads do. Split
|
|
// the recipes to be able to make widened loads VPSingleDefRecipes.
|
|
return false;
|
|
}
|
|
llvm_unreachable("Unhandled VPDefID");
|
|
}
|
|
|
|
static inline bool classof(const VPUser *U) {
|
|
auto *R = dyn_cast<VPRecipeBase>(U);
|
|
return R && classof(R);
|
|
}
|
|
|
|
virtual VPSingleDefRecipe *clone() override = 0;
|
|
|
|
/// Returns the underlying instruction.
|
|
Instruction *getUnderlyingInstr() {
|
|
return cast<Instruction>(getUnderlyingValue());
|
|
}
|
|
const Instruction *getUnderlyingInstr() const {
|
|
return cast<Instruction>(getUnderlyingValue());
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print this VPSingleDefRecipe to dbgs() (for debugging).
|
|
LLVM_DUMP_METHOD void dump() const;
|
|
#endif
|
|
};
|
|
|
|
/// Class to record LLVM IR flag for a recipe along with it.
|
|
class VPRecipeWithIRFlags : public VPSingleDefRecipe {
|
|
enum class OperationType : unsigned char {
|
|
Cmp,
|
|
OverflowingBinOp,
|
|
DisjointOp,
|
|
PossiblyExactOp,
|
|
GEPOp,
|
|
FPMathOp,
|
|
NonNegOp,
|
|
Other
|
|
};
|
|
|
|
public:
|
|
struct WrapFlagsTy {
|
|
char HasNUW : 1;
|
|
char HasNSW : 1;
|
|
|
|
WrapFlagsTy(bool HasNUW, bool HasNSW) : HasNUW(HasNUW), HasNSW(HasNSW) {}
|
|
};
|
|
|
|
struct DisjointFlagsTy {
|
|
char IsDisjoint : 1;
|
|
DisjointFlagsTy(bool IsDisjoint) : IsDisjoint(IsDisjoint) {}
|
|
};
|
|
|
|
private:
|
|
struct ExactFlagsTy {
|
|
char IsExact : 1;
|
|
};
|
|
struct NonNegFlagsTy {
|
|
char NonNeg : 1;
|
|
};
|
|
struct FastMathFlagsTy {
|
|
char AllowReassoc : 1;
|
|
char NoNaNs : 1;
|
|
char NoInfs : 1;
|
|
char NoSignedZeros : 1;
|
|
char AllowReciprocal : 1;
|
|
char AllowContract : 1;
|
|
char ApproxFunc : 1;
|
|
|
|
FastMathFlagsTy(const FastMathFlags &FMF);
|
|
};
|
|
|
|
OperationType OpType;
|
|
|
|
union {
|
|
CmpInst::Predicate CmpPredicate;
|
|
WrapFlagsTy WrapFlags;
|
|
DisjointFlagsTy DisjointFlags;
|
|
ExactFlagsTy ExactFlags;
|
|
GEPNoWrapFlags GEPFlags;
|
|
NonNegFlagsTy NonNegFlags;
|
|
FastMathFlagsTy FMFs;
|
|
unsigned AllFlags;
|
|
};
|
|
|
|
protected:
|
|
void transferFlags(VPRecipeWithIRFlags &Other) {
|
|
OpType = Other.OpType;
|
|
AllFlags = Other.AllFlags;
|
|
}
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, DebugLoc DL = {})
|
|
: VPSingleDefRecipe(SC, Operands, DL) {
|
|
OpType = OperationType::Other;
|
|
AllFlags = 0;
|
|
}
|
|
|
|
template <typename IterT>
|
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, Instruction &I)
|
|
: VPSingleDefRecipe(SC, Operands, &I, I.getDebugLoc()) {
|
|
if (auto *Op = dyn_cast<CmpInst>(&I)) {
|
|
OpType = OperationType::Cmp;
|
|
CmpPredicate = Op->getPredicate();
|
|
} else if (auto *Op = dyn_cast<PossiblyDisjointInst>(&I)) {
|
|
OpType = OperationType::DisjointOp;
|
|
DisjointFlags.IsDisjoint = Op->isDisjoint();
|
|
} else if (auto *Op = dyn_cast<OverflowingBinaryOperator>(&I)) {
|
|
OpType = OperationType::OverflowingBinOp;
|
|
WrapFlags = {Op->hasNoUnsignedWrap(), Op->hasNoSignedWrap()};
|
|
} else if (auto *Op = dyn_cast<PossiblyExactOperator>(&I)) {
|
|
OpType = OperationType::PossiblyExactOp;
|
|
ExactFlags.IsExact = Op->isExact();
|
|
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
|
OpType = OperationType::GEPOp;
|
|
GEPFlags = GEP->getNoWrapFlags();
|
|
} else if (auto *PNNI = dyn_cast<PossiblyNonNegInst>(&I)) {
|
|
OpType = OperationType::NonNegOp;
|
|
NonNegFlags.NonNeg = PNNI->hasNonNeg();
|
|
} else if (auto *Op = dyn_cast<FPMathOperator>(&I)) {
|
|
OpType = OperationType::FPMathOp;
|
|
FMFs = Op->getFastMathFlags();
|
|
} else {
|
|
OpType = OperationType::Other;
|
|
AllFlags = 0;
|
|
}
|
|
}
|
|
|
|
template <typename IterT>
|
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
|
|
CmpInst::Predicate Pred, DebugLoc DL = {})
|
|
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::Cmp),
|
|
CmpPredicate(Pred) {}
|
|
|
|
template <typename IterT>
|
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
|
|
WrapFlagsTy WrapFlags, DebugLoc DL = {})
|
|
: VPSingleDefRecipe(SC, Operands, DL),
|
|
OpType(OperationType::OverflowingBinOp), WrapFlags(WrapFlags) {}
|
|
|
|
template <typename IterT>
|
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
|
|
FastMathFlags FMFs, DebugLoc DL = {})
|
|
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::FPMathOp),
|
|
FMFs(FMFs) {}
|
|
|
|
template <typename IterT>
|
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
|
|
DisjointFlagsTy DisjointFlags, DebugLoc DL = {})
|
|
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::DisjointOp),
|
|
DisjointFlags(DisjointFlags) {}
|
|
|
|
protected:
|
|
template <typename IterT>
|
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
|
|
GEPNoWrapFlags GEPFlags, DebugLoc DL = {})
|
|
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::GEPOp),
|
|
GEPFlags(GEPFlags) {}
|
|
|
|
public:
|
|
static inline bool classof(const VPRecipeBase *R) {
|
|
return R->getVPDefID() == VPRecipeBase::VPInstructionSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPWidenSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPWidenGEPSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPWidenCastSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPWidenIntrinsicSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPReductionSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPReductionEVLSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPReplicateSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPVectorEndPointerSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPVectorPointerSC;
|
|
}
|
|
|
|
static inline bool classof(const VPUser *U) {
|
|
auto *R = dyn_cast<VPRecipeBase>(U);
|
|
return R && classof(R);
|
|
}
|
|
|
|
/// Drop all poison-generating flags.
|
|
void dropPoisonGeneratingFlags() {
|
|
// NOTE: This needs to be kept in-sync with
|
|
// Instruction::dropPoisonGeneratingFlags.
|
|
switch (OpType) {
|
|
case OperationType::OverflowingBinOp:
|
|
WrapFlags.HasNUW = false;
|
|
WrapFlags.HasNSW = false;
|
|
break;
|
|
case OperationType::DisjointOp:
|
|
DisjointFlags.IsDisjoint = false;
|
|
break;
|
|
case OperationType::PossiblyExactOp:
|
|
ExactFlags.IsExact = false;
|
|
break;
|
|
case OperationType::GEPOp:
|
|
GEPFlags = GEPNoWrapFlags::none();
|
|
break;
|
|
case OperationType::FPMathOp:
|
|
FMFs.NoNaNs = false;
|
|
FMFs.NoInfs = false;
|
|
break;
|
|
case OperationType::NonNegOp:
|
|
NonNegFlags.NonNeg = false;
|
|
break;
|
|
case OperationType::Cmp:
|
|
case OperationType::Other:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Set the IR flags for \p I.
|
|
void setFlags(Instruction *I) const {
|
|
switch (OpType) {
|
|
case OperationType::OverflowingBinOp:
|
|
I->setHasNoUnsignedWrap(WrapFlags.HasNUW);
|
|
I->setHasNoSignedWrap(WrapFlags.HasNSW);
|
|
break;
|
|
case OperationType::DisjointOp:
|
|
cast<PossiblyDisjointInst>(I)->setIsDisjoint(DisjointFlags.IsDisjoint);
|
|
break;
|
|
case OperationType::PossiblyExactOp:
|
|
I->setIsExact(ExactFlags.IsExact);
|
|
break;
|
|
case OperationType::GEPOp:
|
|
cast<GetElementPtrInst>(I)->setNoWrapFlags(GEPFlags);
|
|
break;
|
|
case OperationType::FPMathOp:
|
|
I->setHasAllowReassoc(FMFs.AllowReassoc);
|
|
I->setHasNoNaNs(FMFs.NoNaNs);
|
|
I->setHasNoInfs(FMFs.NoInfs);
|
|
I->setHasNoSignedZeros(FMFs.NoSignedZeros);
|
|
I->setHasAllowReciprocal(FMFs.AllowReciprocal);
|
|
I->setHasAllowContract(FMFs.AllowContract);
|
|
I->setHasApproxFunc(FMFs.ApproxFunc);
|
|
break;
|
|
case OperationType::NonNegOp:
|
|
I->setNonNeg(NonNegFlags.NonNeg);
|
|
break;
|
|
case OperationType::Cmp:
|
|
case OperationType::Other:
|
|
break;
|
|
}
|
|
}
|
|
|
|
CmpInst::Predicate getPredicate() const {
|
|
assert(OpType == OperationType::Cmp &&
|
|
"recipe doesn't have a compare predicate");
|
|
return CmpPredicate;
|
|
}
|
|
|
|
GEPNoWrapFlags getGEPNoWrapFlags() const { return GEPFlags; }
|
|
|
|
/// Returns true if the recipe has fast-math flags.
|
|
bool hasFastMathFlags() const { return OpType == OperationType::FPMathOp; }
|
|
|
|
FastMathFlags getFastMathFlags() const;
|
|
|
|
bool hasNoUnsignedWrap() const {
|
|
assert(OpType == OperationType::OverflowingBinOp &&
|
|
"recipe doesn't have a NUW flag");
|
|
return WrapFlags.HasNUW;
|
|
}
|
|
|
|
bool hasNoSignedWrap() const {
|
|
assert(OpType == OperationType::OverflowingBinOp &&
|
|
"recipe doesn't have a NSW flag");
|
|
return WrapFlags.HasNSW;
|
|
}
|
|
|
|
bool isDisjoint() const {
|
|
assert(OpType == OperationType::DisjointOp &&
|
|
"recipe cannot have a disjoing flag");
|
|
return DisjointFlags.IsDisjoint;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void printFlags(raw_ostream &O) const;
|
|
#endif
|
|
};
|
|
|
|
/// Helper to access the operand that contains the unroll part for this recipe
|
|
/// after unrolling.
|
|
template <unsigned PartOpIdx> class VPUnrollPartAccessor {
|
|
protected:
|
|
/// Return the VPValue operand containing the unroll part or null if there is
|
|
/// no such operand.
|
|
VPValue *getUnrollPartOperand(VPUser &U) const;
|
|
|
|
/// Return the unroll part.
|
|
unsigned getUnrollPart(VPUser &U) const;
|
|
};
|
|
|
|
/// This is a concrete Recipe that models a single VPlan-level instruction.
|
|
/// While as any Recipe it may generate a sequence of IR instructions when
|
|
/// executed, these instructions would always form a single-def expression as
|
|
/// the VPInstruction is also a single def-use vertex.
|
|
class VPInstruction : public VPRecipeWithIRFlags,
|
|
public VPUnrollPartAccessor<1> {
|
|
friend class VPlanSlp;
|
|
|
|
public:
|
|
/// VPlan opcodes, extending LLVM IR with idiomatics instructions.
|
|
enum {
|
|
FirstOrderRecurrenceSplice =
|
|
Instruction::OtherOpsEnd + 1, // Combines the incoming and previous
|
|
// values of a first-order recurrence.
|
|
Not,
|
|
SLPLoad,
|
|
SLPStore,
|
|
ActiveLaneMask,
|
|
ExplicitVectorLength,
|
|
/// Creates a scalar phi in a leaf VPBB with a single predecessor in VPlan.
|
|
/// The first operand is the incoming value from the predecessor in VPlan,
|
|
/// the second operand is the incoming value for all other predecessors
|
|
/// (which are currently not modeled in VPlan).
|
|
ResumePhi,
|
|
CalculateTripCountMinusVF,
|
|
// Increment the canonical IV separately for each unrolled part.
|
|
CanonicalIVIncrementForPart,
|
|
BranchOnCount,
|
|
BranchOnCond,
|
|
Broadcast,
|
|
ComputeFindLastIVResult,
|
|
ComputeReductionResult,
|
|
// Takes the VPValue to extract from as first operand and the lane or part
|
|
// to extract as second operand, counting from the end starting with 1 for
|
|
// last. The second operand must be a positive constant and <= VF.
|
|
ExtractFromEnd,
|
|
LogicalAnd, // Non-poison propagating logical And.
|
|
// Add an offset in bytes (second operand) to a base pointer (first
|
|
// operand). Only generates scalar values (either for the first lane only or
|
|
// for all lanes, depending on its uses).
|
|
PtrAdd,
|
|
// Returns a scalar boolean value, which is true if any lane of its (only
|
|
// boolean) vector operand is true.
|
|
AnyOf,
|
|
// Calculates the first active lane index of the vector predicate operand.
|
|
FirstActiveLane,
|
|
};
|
|
|
|
private:
|
|
typedef unsigned char OpcodeTy;
|
|
OpcodeTy Opcode;
|
|
|
|
/// An optional name that can be used for the generated IR instruction.
|
|
const std::string Name;
|
|
|
|
/// Returns true if this VPInstruction generates scalar values for all lanes.
|
|
/// Most VPInstructions generate a single value per part, either vector or
|
|
/// scalar. VPReplicateRecipe takes care of generating multiple (scalar)
|
|
/// values per all lanes, stemming from an original ingredient. This method
|
|
/// identifies the (rare) cases of VPInstructions that do so as well, w/o an
|
|
/// underlying ingredient.
|
|
bool doesGeneratePerAllLanes() const;
|
|
|
|
/// Returns true if we can generate a scalar for the first lane only if
|
|
/// needed.
|
|
bool canGenerateScalarForFirstLane() const;
|
|
|
|
/// Utility methods serving execute(): generates a single vector instance of
|
|
/// the modeled instruction. \returns the generated value. . In some cases an
|
|
/// existing value is returned rather than a generated one.
|
|
Value *generate(VPTransformState &State);
|
|
|
|
/// Utility methods serving execute(): generates a scalar single instance of
|
|
/// the modeled instruction for a given lane. \returns the scalar generated
|
|
/// value for lane \p Lane.
|
|
Value *generatePerLane(VPTransformState &State, const VPLane &Lane);
|
|
|
|
#if !defined(NDEBUG)
|
|
/// Return true if the VPInstruction is a floating point math operation, i.e.
|
|
/// has fast-math flags.
|
|
bool isFPMathOp() const;
|
|
#endif
|
|
|
|
public:
|
|
VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL,
|
|
const Twine &Name = "")
|
|
: VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, DL),
|
|
Opcode(Opcode), Name(Name.str()) {}
|
|
|
|
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
|
|
DebugLoc DL = {}, const Twine &Name = "")
|
|
: VPInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name) {}
|
|
|
|
VPInstruction(unsigned Opcode, CmpInst::Predicate Pred, VPValue *A,
|
|
VPValue *B, DebugLoc DL = {}, const Twine &Name = "");
|
|
|
|
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
|
|
WrapFlagsTy WrapFlags, DebugLoc DL = {}, const Twine &Name = "")
|
|
: VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, WrapFlags, DL),
|
|
Opcode(Opcode), Name(Name.str()) {}
|
|
|
|
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
|
|
DisjointFlagsTy DisjointFlag, DebugLoc DL = {},
|
|
const Twine &Name = "")
|
|
: VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, DisjointFlag, DL),
|
|
Opcode(Opcode), Name(Name.str()) {
|
|
assert(Opcode == Instruction::Or && "only OR opcodes can be disjoint");
|
|
}
|
|
|
|
VPInstruction(VPValue *Ptr, VPValue *Offset, GEPNoWrapFlags Flags,
|
|
DebugLoc DL = {}, const Twine &Name = "")
|
|
: VPRecipeWithIRFlags(VPDef::VPInstructionSC,
|
|
ArrayRef<VPValue *>({Ptr, Offset}), Flags, DL),
|
|
Opcode(VPInstruction::PtrAdd), Name(Name.str()) {}
|
|
|
|
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
|
|
FastMathFlags FMFs, DebugLoc DL = {}, const Twine &Name = "");
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPInstructionSC)
|
|
|
|
VPInstruction *clone() override {
|
|
SmallVector<VPValue *, 2> Operands(operands());
|
|
auto *New = new VPInstruction(Opcode, Operands, getDebugLoc(), Name);
|
|
New->transferFlags(*this);
|
|
return New;
|
|
}
|
|
|
|
unsigned getOpcode() const { return Opcode; }
|
|
|
|
/// Generate the instruction.
|
|
/// TODO: We currently execute only per-part unless a specific instance is
|
|
/// provided.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPInstruction.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the VPInstruction to \p O.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
|
|
/// Print the VPInstruction to dbgs() (for debugging).
|
|
LLVM_DUMP_METHOD void dump() const;
|
|
#endif
|
|
|
|
bool hasResult() const {
|
|
// CallInst may or may not have a result, depending on the called function.
|
|
// Conservatively return calls have results for now.
|
|
switch (getOpcode()) {
|
|
case Instruction::Ret:
|
|
case Instruction::Br:
|
|
case Instruction::Store:
|
|
case Instruction::Switch:
|
|
case Instruction::IndirectBr:
|
|
case Instruction::Resume:
|
|
case Instruction::CatchRet:
|
|
case Instruction::Unreachable:
|
|
case Instruction::Fence:
|
|
case Instruction::AtomicRMW:
|
|
case VPInstruction::BranchOnCond:
|
|
case VPInstruction::BranchOnCount:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Returns true if the underlying opcode may read from or write to memory.
|
|
bool opcodeMayReadOrWriteFromMemory() const;
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override;
|
|
|
|
/// Returns true if the recipe only uses the first part of operand \p Op.
|
|
bool onlyFirstPartUsed(const VPValue *Op) const override;
|
|
|
|
/// Returns true if this VPInstruction produces a scalar value from a vector,
|
|
/// e.g. by performing a reduction or extracting a lane.
|
|
bool isVectorToScalar() const;
|
|
|
|
/// Returns true if this VPInstruction's operands are single scalars and the
|
|
/// result is also a single scalar.
|
|
bool isSingleScalar() const;
|
|
|
|
/// Returns the symbolic name assigned to the VPInstruction.
|
|
StringRef getName() const { return Name; }
|
|
};
|
|
|
|
/// A specialization of VPInstruction augmenting it with a dedicated result
|
|
/// type, to be used when the opcode and operands of the VPInstruction don't
|
|
/// directly determine the result type. Note that there is no separate VPDef ID
|
|
/// for VPInstructionWithType; it shares the same ID as VPInstruction and is
|
|
/// distinguished purely by the opcode.
|
|
class VPInstructionWithType : public VPInstruction {
|
|
/// Scalar result type produced by the recipe.
|
|
Type *ResultTy;
|
|
|
|
public:
|
|
VPInstructionWithType(unsigned Opcode, ArrayRef<VPValue *> Operands,
|
|
Type *ResultTy, DebugLoc DL, const Twine &Name = "")
|
|
: VPInstruction(Opcode, Operands, DL, Name), ResultTy(ResultTy) {}
|
|
|
|
static inline bool classof(const VPRecipeBase *R) {
|
|
// VPInstructionWithType are VPInstructions with specific opcodes requiring
|
|
// type information.
|
|
return R->isScalarCast();
|
|
}
|
|
|
|
static inline bool classof(const VPUser *R) {
|
|
return isa<VPInstructionWithType>(cast<VPRecipeBase>(R));
|
|
}
|
|
|
|
VPInstruction *clone() override {
|
|
SmallVector<VPValue *, 2> Operands(operands());
|
|
auto *New = new VPInstructionWithType(
|
|
getOpcode(), Operands, getResultType(), getDebugLoc(), getName());
|
|
New->setUnderlyingValue(getUnderlyingValue());
|
|
return New;
|
|
}
|
|
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPInstruction.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override {
|
|
// TODO: Compute accurate cost after retiring the legacy cost model.
|
|
return 0;
|
|
}
|
|
|
|
Type *getResultType() const { return ResultTy; }
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A recipe to wrap on original IR instruction not to be modified during
|
|
/// execution, except for PHIs. PHIs are modeled via the VPIRPhi subclass.
|
|
/// Expect PHIs, VPIRInstructions cannot have any operands.
|
|
class VPIRInstruction : public VPRecipeBase {
|
|
Instruction &I;
|
|
|
|
protected:
|
|
/// VPIRInstruction::create() should be used to create VPIRInstructions, as
|
|
/// subclasses may need to be created, e.g. VPIRPhi.
|
|
VPIRInstruction(Instruction &I)
|
|
: VPRecipeBase(VPDef::VPIRInstructionSC, ArrayRef<VPValue *>()), I(I) {}
|
|
|
|
public:
|
|
~VPIRInstruction() override = default;
|
|
|
|
/// Create a new VPIRPhi for \p \I, if it is a PHINode, otherwise create a
|
|
/// VPIRInstruction.
|
|
static VPIRInstruction *create(Instruction &I);
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPIRInstructionSC)
|
|
|
|
VPIRInstruction *clone() override {
|
|
auto *R = create(I);
|
|
for (auto *Op : operands())
|
|
R->addOperand(Op);
|
|
return R;
|
|
}
|
|
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPIRInstruction.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
Instruction &getInstruction() const { return I; }
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
bool usesScalars(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
bool onlyFirstPartUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
/// Update the recipes single operand to the last lane of the operand using \p
|
|
/// Builder. Must only be used for single operand VPIRInstructions wrapping a
|
|
/// PHINode.
|
|
void extractLastLaneOfOperand(VPBuilder &Builder);
|
|
};
|
|
|
|
/// An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use
|
|
/// cast/dyn_cast/isa and execute() implementation. A single VPValue operand is
|
|
/// allowed, and it is used to add a new incoming value for the single
|
|
/// predecessor VPBB.
|
|
struct VPIRPhi : public VPIRInstruction {
|
|
VPIRPhi(PHINode &PN) : VPIRInstruction(PN) {}
|
|
|
|
static inline bool classof(const VPRecipeBase *U) {
|
|
auto *R = dyn_cast<VPIRInstruction>(U);
|
|
return R && isa<PHINode>(R->getInstruction());
|
|
}
|
|
|
|
PHINode &getIRPhi() { return cast<PHINode>(getInstruction()); }
|
|
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// VPWidenRecipe is a recipe for producing a widened instruction using the
|
|
/// opcode and operands of the recipe. This recipe covers most of the
|
|
/// traditional vectorization cases where each recipe transforms into a
|
|
/// vectorized version of itself.
|
|
class VPWidenRecipe : public VPRecipeWithIRFlags {
|
|
unsigned Opcode;
|
|
|
|
protected:
|
|
template <typename IterT>
|
|
VPWidenRecipe(unsigned VPDefOpcode, Instruction &I,
|
|
iterator_range<IterT> Operands)
|
|
: VPRecipeWithIRFlags(VPDefOpcode, Operands, I), Opcode(I.getOpcode()) {}
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands)
|
|
: VPWidenRecipe(VPDef::VPWidenSC, I, Operands) {}
|
|
|
|
~VPWidenRecipe() override = default;
|
|
|
|
VPWidenRecipe *clone() override {
|
|
auto *R = new VPWidenRecipe(*getUnderlyingInstr(), operands());
|
|
R->transferFlags(*this);
|
|
return R;
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenSC)
|
|
|
|
/// Produce a widened instruction using the opcode and operands of the recipe,
|
|
/// processing State.VF elements.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPWidenRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
unsigned getOpcode() const { return Opcode; }
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// VPWidenCastRecipe is a recipe to create vector cast instructions.
|
|
class VPWidenCastRecipe : public VPRecipeWithIRFlags {
|
|
/// Cast instruction opcode.
|
|
Instruction::CastOps Opcode;
|
|
|
|
/// Result type for the cast.
|
|
Type *ResultTy;
|
|
|
|
public:
|
|
VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy,
|
|
CastInst &UI)
|
|
: VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op, UI), Opcode(Opcode),
|
|
ResultTy(ResultTy) {
|
|
assert(UI.getOpcode() == Opcode &&
|
|
"opcode of underlying cast doesn't match");
|
|
}
|
|
|
|
VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy)
|
|
: VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op), Opcode(Opcode),
|
|
ResultTy(ResultTy) {}
|
|
|
|
~VPWidenCastRecipe() override = default;
|
|
|
|
VPWidenCastRecipe *clone() override {
|
|
if (auto *UV = getUnderlyingValue())
|
|
return new VPWidenCastRecipe(Opcode, getOperand(0), ResultTy,
|
|
*cast<CastInst>(UV));
|
|
|
|
return new VPWidenCastRecipe(Opcode, getOperand(0), ResultTy);
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenCastSC)
|
|
|
|
/// Produce widened copies of the cast.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPWidenCastRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
Instruction::CastOps getOpcode() const { return Opcode; }
|
|
|
|
/// Returns the result type of the cast.
|
|
Type *getResultType() const { return ResultTy; }
|
|
};
|
|
|
|
/// A recipe for widening vector intrinsics.
|
|
class VPWidenIntrinsicRecipe : public VPRecipeWithIRFlags {
|
|
/// ID of the vector intrinsic to widen.
|
|
Intrinsic::ID VectorIntrinsicID;
|
|
|
|
/// Scalar return type of the intrinsic.
|
|
Type *ResultTy;
|
|
|
|
/// True if the intrinsic may read from memory.
|
|
bool MayReadFromMemory;
|
|
|
|
/// True if the intrinsic may read write to memory.
|
|
bool MayWriteToMemory;
|
|
|
|
/// True if the intrinsic may have side-effects.
|
|
bool MayHaveSideEffects;
|
|
|
|
public:
|
|
VPWidenIntrinsicRecipe(CallInst &CI, Intrinsic::ID VectorIntrinsicID,
|
|
ArrayRef<VPValue *> CallArguments, Type *Ty,
|
|
DebugLoc DL = {})
|
|
: VPRecipeWithIRFlags(VPDef::VPWidenIntrinsicSC, CallArguments, CI),
|
|
VectorIntrinsicID(VectorIntrinsicID), ResultTy(Ty),
|
|
MayReadFromMemory(CI.mayReadFromMemory()),
|
|
MayWriteToMemory(CI.mayWriteToMemory()),
|
|
MayHaveSideEffects(CI.mayHaveSideEffects()) {}
|
|
|
|
VPWidenIntrinsicRecipe(Intrinsic::ID VectorIntrinsicID,
|
|
ArrayRef<VPValue *> CallArguments, Type *Ty,
|
|
DebugLoc DL = {})
|
|
: VPRecipeWithIRFlags(VPDef::VPWidenIntrinsicSC, CallArguments, DL),
|
|
VectorIntrinsicID(VectorIntrinsicID), ResultTy(Ty) {
|
|
LLVMContext &Ctx = Ty->getContext();
|
|
AttributeSet Attrs = Intrinsic::getFnAttributes(Ctx, VectorIntrinsicID);
|
|
MemoryEffects ME = Attrs.getMemoryEffects();
|
|
MayReadFromMemory = ME.onlyWritesMemory();
|
|
MayWriteToMemory = ME.onlyReadsMemory();
|
|
MayHaveSideEffects = MayWriteToMemory ||
|
|
!Attrs.hasAttribute(Attribute::NoUnwind) ||
|
|
!Attrs.hasAttribute(Attribute::WillReturn);
|
|
}
|
|
|
|
~VPWidenIntrinsicRecipe() override = default;
|
|
|
|
VPWidenIntrinsicRecipe *clone() override {
|
|
return new VPWidenIntrinsicRecipe(*cast<CallInst>(getUnderlyingValue()),
|
|
VectorIntrinsicID, {op_begin(), op_end()},
|
|
ResultTy, getDebugLoc());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenIntrinsicSC)
|
|
|
|
/// Produce a widened version of the vector intrinsic.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this vector intrinsic.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
/// Return the ID of the intrinsic.
|
|
Intrinsic::ID getVectorIntrinsicID() const { return VectorIntrinsicID; }
|
|
|
|
/// Return the scalar return type of the intrinsic.
|
|
Type *getResultType() const { return ResultTy; }
|
|
|
|
/// Return to name of the intrinsic as string.
|
|
StringRef getIntrinsicName() const;
|
|
|
|
/// Returns true if the intrinsic may read from memory.
|
|
bool mayReadFromMemory() const { return MayReadFromMemory; }
|
|
|
|
/// Returns true if the intrinsic may write to memory.
|
|
bool mayWriteToMemory() const { return MayWriteToMemory; }
|
|
|
|
/// Returns true if the intrinsic may have side-effects.
|
|
bool mayHaveSideEffects() const { return MayHaveSideEffects; }
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override;
|
|
};
|
|
|
|
/// A recipe for widening Call instructions using library calls.
|
|
class VPWidenCallRecipe : public VPRecipeWithIRFlags {
|
|
/// Variant stores a pointer to the chosen function. There is a 1:1 mapping
|
|
/// between a given VF and the chosen vectorized variant, so there will be a
|
|
/// different VPlan for each VF with a valid variant.
|
|
Function *Variant;
|
|
|
|
public:
|
|
VPWidenCallRecipe(Value *UV, Function *Variant,
|
|
ArrayRef<VPValue *> CallArguments, DebugLoc DL = {})
|
|
: VPRecipeWithIRFlags(VPDef::VPWidenCallSC, CallArguments,
|
|
*cast<Instruction>(UV)),
|
|
Variant(Variant) {
|
|
assert(
|
|
isa<Function>(getOperand(getNumOperands() - 1)->getLiveInIRValue()) &&
|
|
"last operand must be the called function");
|
|
}
|
|
|
|
~VPWidenCallRecipe() override = default;
|
|
|
|
VPWidenCallRecipe *clone() override {
|
|
return new VPWidenCallRecipe(getUnderlyingValue(), Variant,
|
|
{op_begin(), op_end()}, getDebugLoc());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenCallSC)
|
|
|
|
/// Produce a widened version of the call instruction.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPWidenCallRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
Function *getCalledScalarFunction() const {
|
|
return cast<Function>(getOperand(getNumOperands() - 1)->getLiveInIRValue());
|
|
}
|
|
|
|
operand_range arg_operands() {
|
|
return make_range(op_begin(), op_begin() + getNumOperands() - 1);
|
|
}
|
|
const_operand_range arg_operands() const {
|
|
return make_range(op_begin(), op_begin() + getNumOperands() - 1);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A recipe representing a sequence of load -> update -> store as part of
|
|
/// a histogram operation. This means there may be aliasing between vector
|
|
/// lanes, which is handled by the llvm.experimental.vector.histogram family
|
|
/// of intrinsics. The only update operations currently supported are
|
|
/// 'add' and 'sub' where the other term is loop-invariant.
|
|
class VPHistogramRecipe : public VPRecipeBase {
|
|
/// Opcode of the update operation, currently either add or sub.
|
|
unsigned Opcode;
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPHistogramRecipe(unsigned Opcode, iterator_range<IterT> Operands,
|
|
DebugLoc DL = {})
|
|
: VPRecipeBase(VPDef::VPHistogramSC, Operands, DL), Opcode(Opcode) {}
|
|
|
|
~VPHistogramRecipe() override = default;
|
|
|
|
VPHistogramRecipe *clone() override {
|
|
return new VPHistogramRecipe(Opcode, operands(), getDebugLoc());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPHistogramSC);
|
|
|
|
/// Produce a vectorized histogram operation.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPHistogramRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
unsigned getOpcode() const { return Opcode; }
|
|
|
|
/// Return the mask operand if one was provided, or a null pointer if all
|
|
/// lanes should be executed unconditionally.
|
|
VPValue *getMask() const {
|
|
return getNumOperands() == 3 ? getOperand(2) : nullptr;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A recipe for widening select instructions.
|
|
struct VPWidenSelectRecipe : public VPRecipeWithIRFlags {
|
|
template <typename IterT>
|
|
VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands)
|
|
: VPRecipeWithIRFlags(VPDef::VPWidenSelectSC, Operands, I) {}
|
|
|
|
~VPWidenSelectRecipe() override = default;
|
|
|
|
VPWidenSelectRecipe *clone() override {
|
|
return new VPWidenSelectRecipe(*cast<SelectInst>(getUnderlyingInstr()),
|
|
operands());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenSelectSC)
|
|
|
|
/// Produce a widened version of the select instruction.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPWidenSelectRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
VPValue *getCond() const {
|
|
return getOperand(0);
|
|
}
|
|
|
|
bool isInvariantCond() const {
|
|
return getCond()->isDefinedOutsideLoopRegions();
|
|
}
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return Op == getCond() && isInvariantCond();
|
|
}
|
|
};
|
|
|
|
/// A recipe for handling GEP instructions.
|
|
class VPWidenGEPRecipe : public VPRecipeWithIRFlags {
|
|
bool isPointerLoopInvariant() const {
|
|
return getOperand(0)->isDefinedOutsideLoopRegions();
|
|
}
|
|
|
|
bool isIndexLoopInvariant(unsigned I) const {
|
|
return getOperand(I + 1)->isDefinedOutsideLoopRegions();
|
|
}
|
|
|
|
bool areAllOperandsInvariant() const {
|
|
return all_of(operands(), [](VPValue *Op) {
|
|
return Op->isDefinedOutsideLoopRegions();
|
|
});
|
|
}
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands)
|
|
: VPRecipeWithIRFlags(VPDef::VPWidenGEPSC, Operands, *GEP) {
|
|
SmallVector<std::pair<unsigned, MDNode *>> Metadata;
|
|
(void)Metadata;
|
|
getMetadataToPropagate(GEP, Metadata);
|
|
assert(Metadata.empty() && "unexpected metadata on GEP");
|
|
}
|
|
|
|
~VPWidenGEPRecipe() override = default;
|
|
|
|
VPWidenGEPRecipe *clone() override {
|
|
return new VPWidenGEPRecipe(cast<GetElementPtrInst>(getUnderlyingInstr()),
|
|
operands());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenGEPSC)
|
|
|
|
/// Generate the gep nodes.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPWidenGEPRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override {
|
|
// TODO: Compute accurate cost after retiring the legacy cost model.
|
|
return 0;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return Op == getOperand(0) && isPointerLoopInvariant();
|
|
}
|
|
};
|
|
|
|
/// A recipe to compute a pointer to the last element of each part of a widened
|
|
/// memory access for widened memory accesses of IndexedTy. Used for
|
|
/// VPWidenMemoryRecipes that are reversed.
|
|
class VPVectorEndPointerRecipe : public VPRecipeWithIRFlags,
|
|
public VPUnrollPartAccessor<2> {
|
|
Type *IndexedTy;
|
|
|
|
public:
|
|
VPVectorEndPointerRecipe(VPValue *Ptr, VPValue *VF, Type *IndexedTy,
|
|
GEPNoWrapFlags GEPFlags, DebugLoc DL)
|
|
: VPRecipeWithIRFlags(VPDef::VPVectorEndPointerSC,
|
|
ArrayRef<VPValue *>({Ptr, VF}), GEPFlags, DL),
|
|
IndexedTy(IndexedTy) {}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPVectorEndPointerSC)
|
|
|
|
VPValue *getVFValue() { return getOperand(1); }
|
|
const VPValue *getVFValue() const { return getOperand(1); }
|
|
|
|
void execute(VPTransformState &State) override;
|
|
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
/// Return the cost of this VPVectorPointerRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override {
|
|
// TODO: Compute accurate cost after retiring the legacy cost model.
|
|
return 0;
|
|
}
|
|
|
|
/// Returns true if the recipe only uses the first part of operand \p Op.
|
|
bool onlyFirstPartUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
assert(getNumOperands() <= 2 && "must have at most two operands");
|
|
return true;
|
|
}
|
|
|
|
VPVectorEndPointerRecipe *clone() override {
|
|
return new VPVectorEndPointerRecipe(getOperand(0), getVFValue(), IndexedTy,
|
|
getGEPNoWrapFlags(), getDebugLoc());
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A recipe to compute the pointers for widened memory accesses of IndexTy.
|
|
class VPVectorPointerRecipe : public VPRecipeWithIRFlags,
|
|
public VPUnrollPartAccessor<1> {
|
|
Type *IndexedTy;
|
|
|
|
public:
|
|
VPVectorPointerRecipe(VPValue *Ptr, Type *IndexedTy, GEPNoWrapFlags GEPFlags,
|
|
DebugLoc DL)
|
|
: VPRecipeWithIRFlags(VPDef::VPVectorPointerSC, ArrayRef<VPValue *>(Ptr),
|
|
GEPFlags, DL),
|
|
IndexedTy(IndexedTy) {}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPVectorPointerSC)
|
|
|
|
void execute(VPTransformState &State) override;
|
|
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the recipe only uses the first part of operand \p Op.
|
|
bool onlyFirstPartUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
assert(getNumOperands() <= 2 && "must have at most two operands");
|
|
return true;
|
|
}
|
|
|
|
VPVectorPointerRecipe *clone() override {
|
|
return new VPVectorPointerRecipe(getOperand(0), IndexedTy,
|
|
getGEPNoWrapFlags(), getDebugLoc());
|
|
}
|
|
|
|
/// Return the cost of this VPHeaderPHIRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override {
|
|
// TODO: Compute accurate cost after retiring the legacy cost model.
|
|
return 0;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A pure virtual base class for all recipes modeling header phis, including
|
|
/// phis for first order recurrences, pointer inductions and reductions. The
|
|
/// start value is the first operand of the recipe and the incoming value from
|
|
/// the backedge is the second operand.
|
|
///
|
|
/// Inductions are modeled using the following sub-classes:
|
|
/// * VPCanonicalIVPHIRecipe: Canonical scalar induction of the vector loop,
|
|
/// starting at a specified value (zero for the main vector loop, the resume
|
|
/// value for the epilogue vector loop) and stepping by 1. The induction
|
|
/// controls exiting of the vector loop by comparing against the vector trip
|
|
/// count. Produces a single scalar PHI for the induction value per
|
|
/// iteration.
|
|
/// * VPWidenIntOrFpInductionRecipe: Generates vector values for integer and
|
|
/// floating point inductions with arbitrary start and step values. Produces
|
|
/// a vector PHI per-part.
|
|
/// * VPDerivedIVRecipe: Converts the canonical IV value to the corresponding
|
|
/// value of an IV with different start and step values. Produces a single
|
|
/// scalar value per iteration
|
|
/// * VPScalarIVStepsRecipe: Generates scalar values per-lane based on a
|
|
/// canonical or derived induction.
|
|
/// * VPWidenPointerInductionRecipe: Generate vector and scalar values for a
|
|
/// pointer induction. Produces either a vector PHI per-part or scalar values
|
|
/// per-lane based on the canonical induction.
|
|
class VPHeaderPHIRecipe : public VPSingleDefRecipe {
|
|
protected:
|
|
VPHeaderPHIRecipe(unsigned char VPDefID, Instruction *UnderlyingInstr,
|
|
VPValue *Start, DebugLoc DL = {})
|
|
: VPSingleDefRecipe(VPDefID, ArrayRef<VPValue *>({Start}), UnderlyingInstr, DL) {
|
|
}
|
|
|
|
public:
|
|
~VPHeaderPHIRecipe() override = default;
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPRecipeBase *B) {
|
|
return B->getVPDefID() >= VPDef::VPFirstHeaderPHISC &&
|
|
B->getVPDefID() <= VPDef::VPLastHeaderPHISC;
|
|
}
|
|
static inline bool classof(const VPValue *V) {
|
|
auto *B = V->getDefiningRecipe();
|
|
return B && B->getVPDefID() >= VPRecipeBase::VPFirstHeaderPHISC &&
|
|
B->getVPDefID() <= VPRecipeBase::VPLastHeaderPHISC;
|
|
}
|
|
|
|
/// Generate the phi nodes.
|
|
void execute(VPTransformState &State) override = 0;
|
|
|
|
/// Return the cost of this header phi recipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override = 0;
|
|
#endif
|
|
|
|
/// Returns the start value of the phi, if one is set.
|
|
VPValue *getStartValue() {
|
|
return getNumOperands() == 0 ? nullptr : getOperand(0);
|
|
}
|
|
VPValue *getStartValue() const {
|
|
return getNumOperands() == 0 ? nullptr : getOperand(0);
|
|
}
|
|
|
|
/// Update the start value of the recipe.
|
|
void setStartValue(VPValue *V) { setOperand(0, V); }
|
|
|
|
/// Returns the incoming value from the loop backedge.
|
|
virtual VPValue *getBackedgeValue() {
|
|
return getOperand(1);
|
|
}
|
|
|
|
/// Returns the backedge value as a recipe. The backedge value is guaranteed
|
|
/// to be a recipe.
|
|
virtual VPRecipeBase &getBackedgeRecipe() {
|
|
return *getBackedgeValue()->getDefiningRecipe();
|
|
}
|
|
};
|
|
|
|
/// Base class for widened induction (VPWidenIntOrFpInductionRecipe and
|
|
/// VPWidenPointerInductionRecipe), providing shared functionality, including
|
|
/// retrieving the step value, induction descriptor and original phi node.
|
|
class VPWidenInductionRecipe : public VPHeaderPHIRecipe {
|
|
const InductionDescriptor &IndDesc;
|
|
|
|
public:
|
|
VPWidenInductionRecipe(unsigned char Kind, PHINode *IV, VPValue *Start,
|
|
VPValue *Step, const InductionDescriptor &IndDesc,
|
|
DebugLoc DL)
|
|
: VPHeaderPHIRecipe(Kind, IV, Start, DL), IndDesc(IndDesc) {
|
|
addOperand(Step);
|
|
}
|
|
|
|
static inline bool classof(const VPRecipeBase *R) {
|
|
return R->getVPDefID() == VPDef::VPWidenIntOrFpInductionSC ||
|
|
R->getVPDefID() == VPDef::VPWidenPointerInductionSC;
|
|
}
|
|
|
|
static inline bool classof(const VPValue *V) {
|
|
auto *R = V->getDefiningRecipe();
|
|
return R && classof(R);
|
|
}
|
|
|
|
static inline bool classof(const VPHeaderPHIRecipe *R) {
|
|
return classof(static_cast<const VPRecipeBase *>(R));
|
|
}
|
|
|
|
virtual void execute(VPTransformState &State) override = 0;
|
|
|
|
/// Returns the step value of the induction.
|
|
VPValue *getStepValue() { return getOperand(1); }
|
|
const VPValue *getStepValue() const { return getOperand(1); }
|
|
|
|
/// Update the step value of the recipe.
|
|
void setStepValue(VPValue *V) { setOperand(1, V); }
|
|
|
|
PHINode *getPHINode() const { return cast<PHINode>(getUnderlyingValue()); }
|
|
|
|
/// Returns the induction descriptor for the recipe.
|
|
const InductionDescriptor &getInductionDescriptor() const { return IndDesc; }
|
|
|
|
VPValue *getBackedgeValue() override {
|
|
// TODO: All operands of base recipe must exist and be at same index in
|
|
// derived recipe.
|
|
llvm_unreachable(
|
|
"VPWidenIntOrFpInductionRecipe generates its own backedge value");
|
|
}
|
|
|
|
VPRecipeBase &getBackedgeRecipe() override {
|
|
// TODO: All operands of base recipe must exist and be at same index in
|
|
// derived recipe.
|
|
llvm_unreachable(
|
|
"VPWidenIntOrFpInductionRecipe generates its own backedge value");
|
|
}
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
// The recipe creates its own wide start value, so it only requests the
|
|
// first lane of the operand.
|
|
// TODO: Remove once creating the start value is modeled separately.
|
|
return Op == getStartValue() || Op == getStepValue();
|
|
}
|
|
};
|
|
|
|
/// A recipe for handling phi nodes of integer and floating-point inductions,
|
|
/// producing their vector values.
|
|
class VPWidenIntOrFpInductionRecipe : public VPWidenInductionRecipe {
|
|
TruncInst *Trunc;
|
|
|
|
public:
|
|
VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step,
|
|
VPValue *VF, const InductionDescriptor &IndDesc,
|
|
DebugLoc DL)
|
|
: VPWidenInductionRecipe(VPDef::VPWidenIntOrFpInductionSC, IV, Start,
|
|
Step, IndDesc, DL),
|
|
Trunc(nullptr) {
|
|
addOperand(VF);
|
|
}
|
|
|
|
VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step,
|
|
VPValue *VF, const InductionDescriptor &IndDesc,
|
|
TruncInst *Trunc, DebugLoc DL)
|
|
: VPWidenInductionRecipe(VPDef::VPWidenIntOrFpInductionSC, IV, Start,
|
|
Step, IndDesc, DL),
|
|
Trunc(Trunc) {
|
|
addOperand(VF);
|
|
SmallVector<std::pair<unsigned, MDNode *>> Metadata;
|
|
(void)Metadata;
|
|
if (Trunc)
|
|
getMetadataToPropagate(Trunc, Metadata);
|
|
assert(Metadata.empty() && "unexpected metadata on Trunc");
|
|
}
|
|
|
|
~VPWidenIntOrFpInductionRecipe() override = default;
|
|
|
|
VPWidenIntOrFpInductionRecipe *clone() override {
|
|
return new VPWidenIntOrFpInductionRecipe(
|
|
getPHINode(), getStartValue(), getStepValue(), getVFValue(),
|
|
getInductionDescriptor(), Trunc, getDebugLoc());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenIntOrFpInductionSC)
|
|
|
|
/// Generate the vectorized and scalarized versions of the phi node as
|
|
/// needed by their users.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
VPValue *getVFValue() { return getOperand(2); }
|
|
const VPValue *getVFValue() const { return getOperand(2); }
|
|
|
|
VPValue *getSplatVFValue() {
|
|
// If the recipe has been unrolled (4 operands), return the VPValue for the
|
|
// induction increment.
|
|
return getNumOperands() == 5 ? getOperand(3) : nullptr;
|
|
}
|
|
|
|
/// Returns the first defined value as TruncInst, if it is one or nullptr
|
|
/// otherwise.
|
|
TruncInst *getTruncInst() { return Trunc; }
|
|
const TruncInst *getTruncInst() const { return Trunc; }
|
|
|
|
/// Returns true if the induction is canonical, i.e. starting at 0 and
|
|
/// incremented by UF * VF (= the original IV is incremented by 1) and has the
|
|
/// same type as the canonical induction.
|
|
bool isCanonical() const;
|
|
|
|
/// Returns the scalar type of the induction.
|
|
Type *getScalarType() const {
|
|
return Trunc ? Trunc->getType() : getPHINode()->getType();
|
|
}
|
|
|
|
/// Returns the VPValue representing the value of this induction at
|
|
/// the last unrolled part, if it exists. Returns itself if unrolling did not
|
|
/// take place.
|
|
VPValue *getLastUnrolledPartOperand() {
|
|
return getNumOperands() == 5 ? getOperand(4) : this;
|
|
}
|
|
};
|
|
|
|
class VPWidenPointerInductionRecipe : public VPWidenInductionRecipe,
|
|
public VPUnrollPartAccessor<3> {
|
|
bool IsScalarAfterVectorization;
|
|
|
|
public:
|
|
/// Create a new VPWidenPointerInductionRecipe for \p Phi with start value \p
|
|
/// Start.
|
|
VPWidenPointerInductionRecipe(PHINode *Phi, VPValue *Start, VPValue *Step,
|
|
const InductionDescriptor &IndDesc,
|
|
bool IsScalarAfterVectorization, DebugLoc DL)
|
|
: VPWidenInductionRecipe(VPDef::VPWidenPointerInductionSC, Phi, Start,
|
|
Step, IndDesc, DL),
|
|
IsScalarAfterVectorization(IsScalarAfterVectorization) {}
|
|
|
|
~VPWidenPointerInductionRecipe() override = default;
|
|
|
|
VPWidenPointerInductionRecipe *clone() override {
|
|
return new VPWidenPointerInductionRecipe(
|
|
cast<PHINode>(getUnderlyingInstr()), getOperand(0), getOperand(1),
|
|
getInductionDescriptor(), IsScalarAfterVectorization, getDebugLoc());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenPointerInductionSC)
|
|
|
|
/// Generate vector values for the pointer induction.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Returns true if only scalar values will be generated.
|
|
bool onlyScalarsGenerated(bool IsScalable);
|
|
|
|
/// Returns the VPValue representing the value of this induction at
|
|
/// the first unrolled part, if it exists. Returns itself if unrolling did not
|
|
/// take place.
|
|
VPValue *getFirstUnrolledPartOperand() {
|
|
return getUnrollPart(*this) == 0 ? this : getOperand(2);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A recipe for widened phis. Incoming values are operands of the recipe and
|
|
/// their operand index corresponds to the incoming predecessor block. If the
|
|
/// recipe is placed in an entry block to a (non-replicate) region, it must have
|
|
/// exactly 2 incoming values, the first from the predecessor of the region and
|
|
/// the second from the exiting block of the region.
|
|
class VPWidenPHIRecipe : public VPSingleDefRecipe {
|
|
/// Name to use for the generated IR instruction for the widened phi.
|
|
std::string Name;
|
|
|
|
public:
|
|
/// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start and
|
|
/// debug location \p DL.
|
|
VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr, DebugLoc DL = {},
|
|
const Twine &Name = "")
|
|
: VPSingleDefRecipe(VPDef::VPWidenPHISC, ArrayRef<VPValue *>(), Phi, DL),
|
|
Name(Name.str()) {
|
|
if (Start)
|
|
addOperand(Start);
|
|
}
|
|
|
|
VPWidenPHIRecipe *clone() override {
|
|
llvm_unreachable("cloning not implemented yet");
|
|
}
|
|
|
|
~VPWidenPHIRecipe() override = default;
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenPHISC)
|
|
|
|
/// Generate the phi/select nodes.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns the \p I th incoming VPBasicBlock.
|
|
VPBasicBlock *getIncomingBlock(unsigned I);
|
|
|
|
/// Returns the \p I th incoming VPValue.
|
|
VPValue *getIncomingValue(unsigned I) { return getOperand(I); }
|
|
};
|
|
|
|
/// A recipe for handling first-order recurrence phis. The start value is the
|
|
/// first operand of the recipe and the incoming value from the backedge is the
|
|
/// second operand.
|
|
struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe {
|
|
VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start)
|
|
: VPHeaderPHIRecipe(VPDef::VPFirstOrderRecurrencePHISC, Phi, &Start) {}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPFirstOrderRecurrencePHISC)
|
|
|
|
VPFirstOrderRecurrencePHIRecipe *clone() override {
|
|
return new VPFirstOrderRecurrencePHIRecipe(
|
|
cast<PHINode>(getUnderlyingInstr()), *getOperand(0));
|
|
}
|
|
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this first-order recurrence phi recipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return Op == getStartValue();
|
|
}
|
|
};
|
|
|
|
/// A recipe for handling reduction phis. The start value is the first operand
|
|
/// of the recipe and the incoming value from the backedge is the second
|
|
/// operand.
|
|
class VPReductionPHIRecipe : public VPHeaderPHIRecipe,
|
|
public VPUnrollPartAccessor<2> {
|
|
/// Descriptor for the reduction.
|
|
const RecurrenceDescriptor &RdxDesc;
|
|
|
|
/// The phi is part of an in-loop reduction.
|
|
bool IsInLoop;
|
|
|
|
/// The phi is part of an ordered reduction. Requires IsInLoop to be true.
|
|
bool IsOrdered;
|
|
|
|
/// When expanding the reduction PHI, the plan's VF element count is divided
|
|
/// by this factor to form the reduction phi's VF.
|
|
unsigned VFScaleFactor = 1;
|
|
|
|
public:
|
|
/// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p
|
|
/// RdxDesc.
|
|
VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc,
|
|
VPValue &Start, bool IsInLoop = false,
|
|
bool IsOrdered = false, unsigned VFScaleFactor = 1)
|
|
: VPHeaderPHIRecipe(VPDef::VPReductionPHISC, Phi, &Start),
|
|
RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered),
|
|
VFScaleFactor(VFScaleFactor) {
|
|
assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop");
|
|
}
|
|
|
|
~VPReductionPHIRecipe() override = default;
|
|
|
|
VPReductionPHIRecipe *clone() override {
|
|
auto *R = new VPReductionPHIRecipe(cast<PHINode>(getUnderlyingInstr()),
|
|
RdxDesc, *getOperand(0), IsInLoop,
|
|
IsOrdered, VFScaleFactor);
|
|
R->addOperand(getBackedgeValue());
|
|
return R;
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPReductionPHISC)
|
|
|
|
/// Generate the phi/select nodes.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Get the factor that the VF of this recipe's output should be scaled by.
|
|
unsigned getVFScaleFactor() const { return VFScaleFactor; }
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
const RecurrenceDescriptor &getRecurrenceDescriptor() const {
|
|
return RdxDesc;
|
|
}
|
|
|
|
/// Returns true, if the phi is part of an ordered reduction.
|
|
bool isOrdered() const { return IsOrdered; }
|
|
|
|
/// Returns true, if the phi is part of an in-loop reduction.
|
|
bool isInLoop() const { return IsInLoop; }
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return Op == getStartValue();
|
|
}
|
|
};
|
|
|
|
/// A recipe for forming partial reductions. In the loop, an accumulator and
|
|
/// vector operand are added together and passed to the next iteration as the
|
|
/// next accumulator. After the loop body, the accumulator is reduced to a
|
|
/// scalar value.
|
|
class VPPartialReductionRecipe : public VPSingleDefRecipe {
|
|
unsigned Opcode;
|
|
/// The divisor by which the VF of this recipe's output should be divided
|
|
/// during execution.
|
|
unsigned VFScaleFactor;
|
|
|
|
public:
|
|
VPPartialReductionRecipe(Instruction *ReductionInst, VPValue *Op0,
|
|
VPValue *Op1, unsigned VFScaleFactor)
|
|
: VPPartialReductionRecipe(ReductionInst->getOpcode(), Op0, Op1,
|
|
VFScaleFactor, ReductionInst) {}
|
|
VPPartialReductionRecipe(unsigned Opcode, VPValue *Op0, VPValue *Op1,
|
|
unsigned VFScaleFactor,
|
|
Instruction *ReductionInst = nullptr)
|
|
: VPSingleDefRecipe(VPDef::VPPartialReductionSC,
|
|
ArrayRef<VPValue *>({Op0, Op1}), ReductionInst),
|
|
Opcode(Opcode), VFScaleFactor(VFScaleFactor) {
|
|
[[maybe_unused]] auto *AccumulatorRecipe =
|
|
getOperand(1)->getDefiningRecipe();
|
|
assert((isa<VPReductionPHIRecipe>(AccumulatorRecipe) ||
|
|
isa<VPPartialReductionRecipe>(AccumulatorRecipe)) &&
|
|
"Unexpected operand order for partial reduction recipe");
|
|
}
|
|
~VPPartialReductionRecipe() override = default;
|
|
|
|
VPPartialReductionRecipe *clone() override {
|
|
return new VPPartialReductionRecipe(Opcode, getOperand(0), getOperand(1),
|
|
VFScaleFactor, getUnderlyingInstr());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPPartialReductionSC)
|
|
|
|
/// Generate the reduction in the loop.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPPartialReductionRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
/// Get the binary op's opcode.
|
|
unsigned getOpcode() const { return Opcode; }
|
|
|
|
/// Get the factor that the VF of this recipe's output should be scaled by.
|
|
unsigned getVFScaleFactor() const { return VFScaleFactor; }
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A recipe for vectorizing a phi-node as a sequence of mask-based select
|
|
/// instructions.
|
|
class VPBlendRecipe : public VPSingleDefRecipe {
|
|
public:
|
|
/// The blend operation is a User of the incoming values and of their
|
|
/// respective masks, ordered [I0, M0, I1, M1, I2, M2, ...]. Note that M0 can
|
|
/// be omitted (implied by passing an odd number of operands) in which case
|
|
/// all other incoming values are merged into it.
|
|
VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands)
|
|
: VPSingleDefRecipe(VPDef::VPBlendSC, Operands, Phi, Phi->getDebugLoc()) {
|
|
assert(Operands.size() > 0 && "Expected at least one operand!");
|
|
}
|
|
|
|
VPBlendRecipe *clone() override {
|
|
SmallVector<VPValue *> Ops(operands());
|
|
return new VPBlendRecipe(cast<PHINode>(getUnderlyingValue()), Ops);
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPBlendSC)
|
|
|
|
/// A normalized blend is one that has an odd number of operands, whereby the
|
|
/// first operand does not have an associated mask.
|
|
bool isNormalized() const { return getNumOperands() % 2; }
|
|
|
|
/// Return the number of incoming values, taking into account when normalized
|
|
/// the first incoming value will have no mask.
|
|
unsigned getNumIncomingValues() const {
|
|
return (getNumOperands() + isNormalized()) / 2;
|
|
}
|
|
|
|
/// Return incoming value number \p Idx.
|
|
VPValue *getIncomingValue(unsigned Idx) const {
|
|
return Idx == 0 ? getOperand(0) : getOperand(Idx * 2 - isNormalized());
|
|
}
|
|
|
|
/// Return mask number \p Idx.
|
|
VPValue *getMask(unsigned Idx) const {
|
|
assert((Idx > 0 || !isNormalized()) && "First index has no mask!");
|
|
return Idx == 0 ? getOperand(1) : getOperand(Idx * 2 + !isNormalized());
|
|
}
|
|
|
|
/// Generate the phi/select nodes.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPWidenMemoryRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
// Recursing through Blend recipes only, must terminate at header phi's the
|
|
// latest.
|
|
return all_of(users(),
|
|
[this](VPUser *U) { return U->onlyFirstLaneUsed(this); });
|
|
}
|
|
};
|
|
|
|
/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
|
|
/// or stores into one wide load/store and shuffles. The first operand of a
|
|
/// VPInterleave recipe is the address, followed by the stored values, followed
|
|
/// by an optional mask.
|
|
class VPInterleaveRecipe : public VPRecipeBase {
|
|
const InterleaveGroup<Instruction> *IG;
|
|
|
|
/// Indicates if the interleave group is in a conditional block and requires a
|
|
/// mask.
|
|
bool HasMask = false;
|
|
|
|
/// Indicates if gaps between members of the group need to be masked out or if
|
|
/// unusued gaps can be loaded speculatively.
|
|
bool NeedsMaskForGaps = false;
|
|
|
|
public:
|
|
VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr,
|
|
ArrayRef<VPValue *> StoredValues, VPValue *Mask,
|
|
bool NeedsMaskForGaps, DebugLoc DL)
|
|
: VPRecipeBase(VPDef::VPInterleaveSC, {Addr},
|
|
DL),
|
|
|
|
IG(IG), NeedsMaskForGaps(NeedsMaskForGaps) {
|
|
for (unsigned i = 0; i < IG->getFactor(); ++i)
|
|
if (Instruction *I = IG->getMember(i)) {
|
|
if (I->getType()->isVoidTy())
|
|
continue;
|
|
new VPValue(I, this);
|
|
}
|
|
|
|
for (auto *SV : StoredValues)
|
|
addOperand(SV);
|
|
if (Mask) {
|
|
HasMask = true;
|
|
addOperand(Mask);
|
|
}
|
|
}
|
|
~VPInterleaveRecipe() override = default;
|
|
|
|
VPInterleaveRecipe *clone() override {
|
|
return new VPInterleaveRecipe(IG, getAddr(), getStoredValues(), getMask(),
|
|
NeedsMaskForGaps, getDebugLoc());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPInterleaveSC)
|
|
|
|
/// Return the address accessed by this recipe.
|
|
VPValue *getAddr() const {
|
|
return getOperand(0); // Address is the 1st, mandatory operand.
|
|
}
|
|
|
|
/// Return the mask used by this recipe. Note that a full mask is represented
|
|
/// by a nullptr.
|
|
VPValue *getMask() const {
|
|
// Mask is optional and therefore the last, currently 2nd operand.
|
|
return HasMask ? getOperand(getNumOperands() - 1) : nullptr;
|
|
}
|
|
|
|
/// Return the VPValues stored by this interleave group. If it is a load
|
|
/// interleave group, return an empty ArrayRef.
|
|
ArrayRef<VPValue *> getStoredValues() const {
|
|
// The first operand is the address, followed by the stored values, followed
|
|
// by an optional mask.
|
|
return ArrayRef<VPValue *>(op_begin(), getNumOperands())
|
|
.slice(1, getNumStoreOperands());
|
|
}
|
|
|
|
/// Generate the wide load or store, and shuffles.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPInterleaveRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
|
|
|
|
/// Returns the number of stored operands of this interleave group. Returns 0
|
|
/// for load interleave groups.
|
|
unsigned getNumStoreOperands() const {
|
|
return getNumOperands() - (HasMask ? 2 : 1);
|
|
}
|
|
|
|
/// The recipe only uses the first lane of the address.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return Op == getAddr() && !llvm::is_contained(getStoredValues(), Op);
|
|
}
|
|
|
|
Instruction *getInsertPos() const { return IG->getInsertPos(); }
|
|
};
|
|
|
|
/// A recipe to represent inloop reduction operations, performing a reduction on
|
|
/// a vector operand into a scalar value, and adding the result to a chain.
|
|
/// The Operands are {ChainOp, VecOp, [Condition]}.
|
|
class VPReductionRecipe : public VPRecipeWithIRFlags {
|
|
/// The recurrence kind for the reduction in question.
|
|
RecurKind RdxKind;
|
|
bool IsOrdered;
|
|
/// Whether the reduction is conditional.
|
|
bool IsConditional = false;
|
|
|
|
protected:
|
|
VPReductionRecipe(const unsigned char SC, RecurKind RdxKind,
|
|
FastMathFlags FMFs, Instruction *I,
|
|
ArrayRef<VPValue *> Operands, VPValue *CondOp,
|
|
bool IsOrdered, DebugLoc DL)
|
|
: VPRecipeWithIRFlags(SC, Operands, FMFs, DL), RdxKind(RdxKind),
|
|
IsOrdered(IsOrdered) {
|
|
if (CondOp) {
|
|
IsConditional = true;
|
|
addOperand(CondOp);
|
|
}
|
|
setUnderlyingValue(I);
|
|
}
|
|
|
|
public:
|
|
VPReductionRecipe(RecurKind RdxKind, FastMathFlags FMFs, Instruction *I,
|
|
VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp,
|
|
bool IsOrdered, DebugLoc DL = {})
|
|
: VPReductionRecipe(VPDef::VPReductionSC, RdxKind, FMFs, I,
|
|
ArrayRef<VPValue *>({ChainOp, VecOp}), CondOp,
|
|
IsOrdered, DL) {}
|
|
|
|
~VPReductionRecipe() override = default;
|
|
|
|
VPReductionRecipe *clone() override {
|
|
return new VPReductionRecipe(RdxKind, getFastMathFlags(),
|
|
getUnderlyingInstr(), getChainOp(), getVecOp(),
|
|
getCondOp(), IsOrdered, getDebugLoc());
|
|
}
|
|
|
|
static inline bool classof(const VPRecipeBase *R) {
|
|
return R->getVPDefID() == VPRecipeBase::VPReductionSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPReductionEVLSC;
|
|
}
|
|
|
|
static inline bool classof(const VPUser *U) {
|
|
auto *R = dyn_cast<VPRecipeBase>(U);
|
|
return R && classof(R);
|
|
}
|
|
|
|
/// Generate the reduction in the loop.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of VPReductionRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Return the recurrence kind for the in-loop reduction.
|
|
RecurKind getRecurrenceKind() const { return RdxKind; }
|
|
/// Return true if the in-loop reduction is ordered.
|
|
bool isOrdered() const { return IsOrdered; };
|
|
/// Return true if the in-loop reduction is conditional.
|
|
bool isConditional() const { return IsConditional; };
|
|
/// The VPValue of the scalar Chain being accumulated.
|
|
VPValue *getChainOp() const { return getOperand(0); }
|
|
/// The VPValue of the vector value to be reduced.
|
|
VPValue *getVecOp() const { return getOperand(1); }
|
|
/// The VPValue of the condition for the block.
|
|
VPValue *getCondOp() const {
|
|
return isConditional() ? getOperand(getNumOperands() - 1) : nullptr;
|
|
}
|
|
};
|
|
|
|
/// A recipe to represent inloop reduction operations with vector-predication
|
|
/// intrinsics, performing a reduction on a vector operand with the explicit
|
|
/// vector length (EVL) into a scalar value, and adding the result to a chain.
|
|
/// The Operands are {ChainOp, VecOp, EVL, [Condition]}.
|
|
class VPReductionEVLRecipe : public VPReductionRecipe {
|
|
public:
|
|
VPReductionEVLRecipe(VPReductionRecipe &R, VPValue &EVL, VPValue *CondOp,
|
|
DebugLoc DL = {})
|
|
: VPReductionRecipe(
|
|
VPDef::VPReductionEVLSC, R.getRecurrenceKind(),
|
|
R.getFastMathFlags(),
|
|
cast_or_null<Instruction>(R.getUnderlyingValue()),
|
|
ArrayRef<VPValue *>({R.getChainOp(), R.getVecOp(), &EVL}), CondOp,
|
|
R.isOrdered(), DL) {}
|
|
|
|
~VPReductionEVLRecipe() override = default;
|
|
|
|
VPReductionEVLRecipe *clone() override {
|
|
llvm_unreachable("cloning not implemented yet");
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPReductionEVLSC)
|
|
|
|
/// Generate the reduction in the loop
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// The VPValue of the explicit vector length.
|
|
VPValue *getEVL() const { return getOperand(2); }
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return Op == getEVL();
|
|
}
|
|
};
|
|
|
|
/// VPReplicateRecipe replicates a given instruction producing multiple scalar
|
|
/// copies of the original scalar type, one per lane, instead of producing a
|
|
/// single copy of widened type for all lanes. If the instruction is known to be
|
|
/// uniform only one copy, per lane zero, will be generated.
|
|
class VPReplicateRecipe : public VPRecipeWithIRFlags {
|
|
/// Indicator if only a single replica per lane is needed.
|
|
bool IsUniform;
|
|
|
|
/// Indicator if the replicas are also predicated.
|
|
bool IsPredicated;
|
|
|
|
public:
|
|
template <typename IterT>
|
|
VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands,
|
|
bool IsUniform, VPValue *Mask = nullptr)
|
|
: VPRecipeWithIRFlags(VPDef::VPReplicateSC, Operands, *I),
|
|
IsUniform(IsUniform), IsPredicated(Mask) {
|
|
if (Mask)
|
|
addOperand(Mask);
|
|
}
|
|
|
|
~VPReplicateRecipe() override = default;
|
|
|
|
VPReplicateRecipe *clone() override {
|
|
auto *Copy =
|
|
new VPReplicateRecipe(getUnderlyingInstr(), operands(), IsUniform,
|
|
isPredicated() ? getMask() : nullptr);
|
|
Copy->transferFlags(*this);
|
|
return Copy;
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPReplicateSC)
|
|
|
|
/// Generate replicas of the desired Ingredient. Replicas will be generated
|
|
/// for all parts and lanes unless a specific part and lane are specified in
|
|
/// the \p State.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPReplicateRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
bool isUniform() const { return IsUniform; }
|
|
|
|
bool isPredicated() const { return IsPredicated; }
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return isUniform();
|
|
}
|
|
|
|
/// Returns true if the recipe uses scalars of operand \p Op.
|
|
bool usesScalars(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the recipe is used by a widened recipe via an intervening
|
|
/// VPPredInstPHIRecipe. In this case, the scalar values should also be packed
|
|
/// in a vector.
|
|
bool shouldPack() const;
|
|
|
|
/// Return the mask of a predicated VPReplicateRecipe.
|
|
VPValue *getMask() {
|
|
assert(isPredicated() && "Trying to get the mask of a unpredicated recipe");
|
|
return getOperand(getNumOperands() - 1);
|
|
}
|
|
|
|
unsigned getOpcode() const { return getUnderlyingInstr()->getOpcode(); }
|
|
};
|
|
|
|
/// A recipe for generating conditional branches on the bits of a mask.
|
|
class VPBranchOnMaskRecipe : public VPRecipeBase {
|
|
public:
|
|
VPBranchOnMaskRecipe(VPValue *BlockInMask, DebugLoc DL)
|
|
: VPRecipeBase(VPDef::VPBranchOnMaskSC, {BlockInMask}, DL) {}
|
|
|
|
VPBranchOnMaskRecipe *clone() override {
|
|
return new VPBranchOnMaskRecipe(getOperand(0), getDebugLoc());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPBranchOnMaskSC)
|
|
|
|
/// Generate the extraction of the appropriate bit from the block mask and the
|
|
/// conditional branch.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPBranchOnMaskRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override {
|
|
O << Indent << "BRANCH-ON-MASK ";
|
|
printOperands(O, SlotTracker);
|
|
}
|
|
#endif
|
|
|
|
/// Returns true if the recipe uses scalars of operand \p Op.
|
|
bool usesScalars(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
|
|
/// control converges back from a Branch-on-Mask. The phi nodes are needed in
|
|
/// order to merge values that are set under such a branch and feed their uses.
|
|
/// The phi nodes can be scalar or vector depending on the users of the value.
|
|
/// This recipe works in concert with VPBranchOnMaskRecipe.
|
|
class VPPredInstPHIRecipe : public VPSingleDefRecipe {
|
|
public:
|
|
/// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
|
|
/// nodes after merging back from a Branch-on-Mask.
|
|
VPPredInstPHIRecipe(VPValue *PredV, DebugLoc DL)
|
|
: VPSingleDefRecipe(VPDef::VPPredInstPHISC, PredV, DL) {}
|
|
~VPPredInstPHIRecipe() override = default;
|
|
|
|
VPPredInstPHIRecipe *clone() override {
|
|
return new VPPredInstPHIRecipe(getOperand(0), getDebugLoc());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPPredInstPHISC)
|
|
|
|
/// Generates phi nodes for live-outs (from a replicate region) as needed to
|
|
/// retain SSA form.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPPredInstPHIRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override {
|
|
// TODO: Compute accurate cost after retiring the legacy cost model.
|
|
return 0;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns true if the recipe uses scalars of operand \p Op.
|
|
bool usesScalars(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// A common base class for widening memory operations. An optional mask can be
|
|
/// provided as the last operand.
|
|
class VPWidenMemoryRecipe : public VPRecipeBase {
|
|
protected:
|
|
Instruction &Ingredient;
|
|
|
|
/// Whether the accessed addresses are consecutive.
|
|
bool Consecutive;
|
|
|
|
/// Whether the consecutive accessed addresses are in reverse order.
|
|
bool Reverse;
|
|
|
|
/// Whether the memory access is masked.
|
|
bool IsMasked = false;
|
|
|
|
void setMask(VPValue *Mask) {
|
|
assert(!IsMasked && "cannot re-set mask");
|
|
if (!Mask)
|
|
return;
|
|
addOperand(Mask);
|
|
IsMasked = true;
|
|
}
|
|
|
|
VPWidenMemoryRecipe(const char unsigned SC, Instruction &I,
|
|
std::initializer_list<VPValue *> Operands,
|
|
bool Consecutive, bool Reverse, DebugLoc DL)
|
|
: VPRecipeBase(SC, Operands, DL), Ingredient(I), Consecutive(Consecutive),
|
|
Reverse(Reverse) {
|
|
assert((Consecutive || !Reverse) && "Reverse implies consecutive");
|
|
}
|
|
|
|
public:
|
|
VPWidenMemoryRecipe *clone() override {
|
|
llvm_unreachable("cloning not supported");
|
|
}
|
|
|
|
static inline bool classof(const VPRecipeBase *R) {
|
|
return R->getVPDefID() == VPRecipeBase::VPWidenLoadSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPWidenStoreSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPWidenLoadEVLSC ||
|
|
R->getVPDefID() == VPRecipeBase::VPWidenStoreEVLSC;
|
|
}
|
|
|
|
static inline bool classof(const VPUser *U) {
|
|
auto *R = dyn_cast<VPRecipeBase>(U);
|
|
return R && classof(R);
|
|
}
|
|
|
|
/// Return whether the loaded-from / stored-to addresses are consecutive.
|
|
bool isConsecutive() const { return Consecutive; }
|
|
|
|
/// Return whether the consecutive loaded/stored addresses are in reverse
|
|
/// order.
|
|
bool isReverse() const { return Reverse; }
|
|
|
|
/// Return the address accessed by this recipe.
|
|
VPValue *getAddr() const { return getOperand(0); }
|
|
|
|
/// Returns true if the recipe is masked.
|
|
bool isMasked() const { return IsMasked; }
|
|
|
|
/// Return the mask used by this recipe. Note that a full mask is represented
|
|
/// by a nullptr.
|
|
VPValue *getMask() const {
|
|
// Mask is optional and therefore the last operand.
|
|
return isMasked() ? getOperand(getNumOperands() - 1) : nullptr;
|
|
}
|
|
|
|
/// Generate the wide load/store.
|
|
void execute(VPTransformState &State) override {
|
|
llvm_unreachable("VPWidenMemoryRecipe should not be instantiated.");
|
|
}
|
|
|
|
/// Return the cost of this VPWidenMemoryRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
Instruction &getIngredient() const { return Ingredient; }
|
|
};
|
|
|
|
/// A recipe for widening load operations, using the address to load from and an
|
|
/// optional mask.
|
|
struct VPWidenLoadRecipe final : public VPWidenMemoryRecipe, public VPValue {
|
|
VPWidenLoadRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask,
|
|
bool Consecutive, bool Reverse, DebugLoc DL)
|
|
: VPWidenMemoryRecipe(VPDef::VPWidenLoadSC, Load, {Addr}, Consecutive,
|
|
Reverse, DL),
|
|
VPValue(this, &Load) {
|
|
setMask(Mask);
|
|
}
|
|
|
|
VPWidenLoadRecipe *clone() override {
|
|
return new VPWidenLoadRecipe(cast<LoadInst>(Ingredient), getAddr(),
|
|
getMask(), Consecutive, Reverse,
|
|
getDebugLoc());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenLoadSC);
|
|
|
|
/// Generate a wide load or gather.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
// Widened, consecutive loads operations only demand the first lane of
|
|
// their address.
|
|
return Op == getAddr() && isConsecutive();
|
|
}
|
|
};
|
|
|
|
/// A recipe for widening load operations with vector-predication intrinsics,
|
|
/// using the address to load from, the explicit vector length and an optional
|
|
/// mask.
|
|
struct VPWidenLoadEVLRecipe final : public VPWidenMemoryRecipe, public VPValue {
|
|
VPWidenLoadEVLRecipe(VPWidenLoadRecipe &L, VPValue &EVL, VPValue *Mask)
|
|
: VPWidenMemoryRecipe(VPDef::VPWidenLoadEVLSC, L.getIngredient(),
|
|
{L.getAddr(), &EVL}, L.isConsecutive(),
|
|
L.isReverse(), L.getDebugLoc()),
|
|
VPValue(this, &getIngredient()) {
|
|
setMask(Mask);
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenLoadEVLSC)
|
|
|
|
/// Return the EVL operand.
|
|
VPValue *getEVL() const { return getOperand(1); }
|
|
|
|
/// Generate the wide load or gather.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPWidenLoadEVLRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
// Widened loads only demand the first lane of EVL and consecutive loads
|
|
// only demand the first lane of their address.
|
|
return Op == getEVL() || (Op == getAddr() && isConsecutive());
|
|
}
|
|
};
|
|
|
|
/// A recipe for widening store operations, using the stored value, the address
|
|
/// to store to and an optional mask.
|
|
struct VPWidenStoreRecipe final : public VPWidenMemoryRecipe {
|
|
VPWidenStoreRecipe(StoreInst &Store, VPValue *Addr, VPValue *StoredVal,
|
|
VPValue *Mask, bool Consecutive, bool Reverse, DebugLoc DL)
|
|
: VPWidenMemoryRecipe(VPDef::VPWidenStoreSC, Store, {Addr, StoredVal},
|
|
Consecutive, Reverse, DL) {
|
|
setMask(Mask);
|
|
}
|
|
|
|
VPWidenStoreRecipe *clone() override {
|
|
return new VPWidenStoreRecipe(cast<StoreInst>(Ingredient), getAddr(),
|
|
getStoredValue(), getMask(), Consecutive,
|
|
Reverse, getDebugLoc());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenStoreSC);
|
|
|
|
/// Return the value stored by this recipe.
|
|
VPValue *getStoredValue() const { return getOperand(1); }
|
|
|
|
/// Generate a wide store or scatter.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
// Widened, consecutive stores only demand the first lane of their address,
|
|
// unless the same operand is also stored.
|
|
return Op == getAddr() && isConsecutive() && Op != getStoredValue();
|
|
}
|
|
};
|
|
|
|
/// A recipe for widening store operations with vector-predication intrinsics,
|
|
/// using the value to store, the address to store to, the explicit vector
|
|
/// length and an optional mask.
|
|
struct VPWidenStoreEVLRecipe final : public VPWidenMemoryRecipe {
|
|
VPWidenStoreEVLRecipe(VPWidenStoreRecipe &S, VPValue &EVL, VPValue *Mask)
|
|
: VPWidenMemoryRecipe(VPDef::VPWidenStoreEVLSC, S.getIngredient(),
|
|
{S.getAddr(), S.getStoredValue(), &EVL},
|
|
S.isConsecutive(), S.isReverse(), S.getDebugLoc()) {
|
|
setMask(Mask);
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenStoreEVLSC)
|
|
|
|
/// Return the address accessed by this recipe.
|
|
VPValue *getStoredValue() const { return getOperand(1); }
|
|
|
|
/// Return the EVL operand.
|
|
VPValue *getEVL() const { return getOperand(2); }
|
|
|
|
/// Generate the wide store or scatter.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPWidenStoreEVLRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
if (Op == getEVL()) {
|
|
assert(getStoredValue() != Op && "unexpected store of EVL");
|
|
return true;
|
|
}
|
|
// Widened, consecutive memory operations only demand the first lane of
|
|
// their address, unless the same operand is also stored. That latter can
|
|
// happen with opaque pointers.
|
|
return Op == getAddr() && isConsecutive() && Op != getStoredValue();
|
|
}
|
|
};
|
|
|
|
/// Recipe to expand a SCEV expression.
|
|
class VPExpandSCEVRecipe : public VPSingleDefRecipe {
|
|
const SCEV *Expr;
|
|
ScalarEvolution &SE;
|
|
|
|
public:
|
|
VPExpandSCEVRecipe(const SCEV *Expr, ScalarEvolution &SE)
|
|
: VPSingleDefRecipe(VPDef::VPExpandSCEVSC, {}), Expr(Expr), SE(SE) {}
|
|
|
|
~VPExpandSCEVRecipe() override = default;
|
|
|
|
VPExpandSCEVRecipe *clone() override {
|
|
return new VPExpandSCEVRecipe(Expr, SE);
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPExpandSCEVSC)
|
|
|
|
/// Generate a canonical vector induction variable of the vector loop, with
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPExpandSCEVRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override {
|
|
// TODO: Compute accurate cost after retiring the legacy cost model.
|
|
return 0;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
const SCEV *getSCEV() const { return Expr; }
|
|
};
|
|
|
|
/// Canonical scalar induction phi of the vector loop. Starting at the specified
|
|
/// start value (either 0 or the resume value when vectorizing the epilogue
|
|
/// loop). VPWidenCanonicalIVRecipe represents the vector version of the
|
|
/// canonical induction variable.
|
|
class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe {
|
|
public:
|
|
VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL)
|
|
: VPHeaderPHIRecipe(VPDef::VPCanonicalIVPHISC, nullptr, StartV, DL) {}
|
|
|
|
~VPCanonicalIVPHIRecipe() override = default;
|
|
|
|
VPCanonicalIVPHIRecipe *clone() override {
|
|
auto *R = new VPCanonicalIVPHIRecipe(getOperand(0), getDebugLoc());
|
|
R->addOperand(getBackedgeValue());
|
|
return R;
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPCanonicalIVPHISC)
|
|
|
|
void execute(VPTransformState &State) override {
|
|
llvm_unreachable("cannot execute this recipe, should be replaced by a "
|
|
"scalar phi recipe");
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
/// Returns the scalar type of the induction.
|
|
Type *getScalarType() const {
|
|
return getStartValue()->getLiveInIRValue()->getType();
|
|
}
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if the recipe only uses the first part of operand \p Op.
|
|
bool onlyFirstPartUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
/// Return the cost of this VPCanonicalIVPHIRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override {
|
|
// For now, match the behavior of the legacy cost model.
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
/// A recipe for generating the active lane mask for the vector loop that is
|
|
/// used to predicate the vector operations.
|
|
/// TODO: It would be good to use the existing VPWidenPHIRecipe instead and
|
|
/// remove VPActiveLaneMaskPHIRecipe.
|
|
class VPActiveLaneMaskPHIRecipe : public VPHeaderPHIRecipe {
|
|
public:
|
|
VPActiveLaneMaskPHIRecipe(VPValue *StartMask, DebugLoc DL)
|
|
: VPHeaderPHIRecipe(VPDef::VPActiveLaneMaskPHISC, nullptr, StartMask,
|
|
DL) {}
|
|
|
|
~VPActiveLaneMaskPHIRecipe() override = default;
|
|
|
|
VPActiveLaneMaskPHIRecipe *clone() override {
|
|
auto *R = new VPActiveLaneMaskPHIRecipe(getOperand(0), getDebugLoc());
|
|
if (getNumOperands() == 2)
|
|
R->addOperand(getOperand(1));
|
|
return R;
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPActiveLaneMaskPHISC)
|
|
|
|
/// Generate the active lane mask phi of the vector loop.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A recipe for generating the phi node for the current index of elements,
|
|
/// adjusted in accordance with EVL value. It starts at the start value of the
|
|
/// canonical induction and gets incremented by EVL in each iteration of the
|
|
/// vector loop.
|
|
class VPEVLBasedIVPHIRecipe : public VPHeaderPHIRecipe {
|
|
public:
|
|
VPEVLBasedIVPHIRecipe(VPValue *StartIV, DebugLoc DL)
|
|
: VPHeaderPHIRecipe(VPDef::VPEVLBasedIVPHISC, nullptr, StartIV, DL) {}
|
|
|
|
~VPEVLBasedIVPHIRecipe() override = default;
|
|
|
|
VPEVLBasedIVPHIRecipe *clone() override {
|
|
llvm_unreachable("cloning not implemented yet");
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPEVLBasedIVPHISC)
|
|
|
|
void execute(VPTransformState &State) override {
|
|
llvm_unreachable("cannot execute this recipe, should be replaced by a "
|
|
"scalar phi recipe");
|
|
}
|
|
|
|
/// Return the cost of this VPEVLBasedIVPHIRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override {
|
|
// For now, match the behavior of the legacy cost model.
|
|
return 0;
|
|
}
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A Recipe for widening the canonical induction variable of the vector loop.
|
|
class VPWidenCanonicalIVRecipe : public VPSingleDefRecipe,
|
|
public VPUnrollPartAccessor<1> {
|
|
public:
|
|
VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV)
|
|
: VPSingleDefRecipe(VPDef::VPWidenCanonicalIVSC, {CanonicalIV}) {}
|
|
|
|
~VPWidenCanonicalIVRecipe() override = default;
|
|
|
|
VPWidenCanonicalIVRecipe *clone() override {
|
|
return new VPWidenCanonicalIVRecipe(
|
|
cast<VPCanonicalIVPHIRecipe>(getOperand(0)));
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPWidenCanonicalIVSC)
|
|
|
|
/// Generate a canonical vector induction variable of the vector loop, with
|
|
/// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and
|
|
/// step = <VF*UF, VF*UF, ..., VF*UF>.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPWidenCanonicalIVPHIRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override {
|
|
// TODO: Compute accurate cost after retiring the legacy cost model.
|
|
return 0;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
};
|
|
|
|
/// A recipe for converting the input value \p IV value to the corresponding
|
|
/// value of an IV with different start and step values, using Start + IV *
|
|
/// Step.
|
|
class VPDerivedIVRecipe : public VPSingleDefRecipe {
|
|
/// Kind of the induction.
|
|
const InductionDescriptor::InductionKind Kind;
|
|
/// If not nullptr, the floating point induction binary operator. Must be set
|
|
/// for floating point inductions.
|
|
const FPMathOperator *FPBinOp;
|
|
|
|
/// Name to use for the generated IR instruction for the derived IV.
|
|
std::string Name;
|
|
|
|
public:
|
|
VPDerivedIVRecipe(const InductionDescriptor &IndDesc, VPValue *Start,
|
|
VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step,
|
|
const Twine &Name = "")
|
|
: VPDerivedIVRecipe(
|
|
IndDesc.getKind(),
|
|
dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp()),
|
|
Start, CanonicalIV, Step, Name) {}
|
|
|
|
VPDerivedIVRecipe(InductionDescriptor::InductionKind Kind,
|
|
const FPMathOperator *FPBinOp, VPValue *Start, VPValue *IV,
|
|
VPValue *Step, const Twine &Name = "")
|
|
: VPSingleDefRecipe(VPDef::VPDerivedIVSC, {Start, IV, Step}), Kind(Kind),
|
|
FPBinOp(FPBinOp), Name(Name.str()) {}
|
|
|
|
~VPDerivedIVRecipe() override = default;
|
|
|
|
VPDerivedIVRecipe *clone() override {
|
|
return new VPDerivedIVRecipe(Kind, FPBinOp, getStartValue(), getOperand(1),
|
|
getStepValue());
|
|
}
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPDerivedIVSC)
|
|
|
|
/// Generate the transformed value of the induction at offset StartValue (1.
|
|
/// operand) + IV (2. operand) * StepValue (3, operand).
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPDerivedIVRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override {
|
|
// TODO: Compute accurate cost after retiring the legacy cost model.
|
|
return 0;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
Type *getScalarType() const {
|
|
return getStartValue()->getLiveInIRValue()->getType();
|
|
}
|
|
|
|
VPValue *getStartValue() const { return getOperand(0); }
|
|
VPValue *getStepValue() const { return getOperand(2); }
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// A recipe for handling phi nodes of integer and floating-point inductions,
|
|
/// producing their scalar values.
|
|
class VPScalarIVStepsRecipe : public VPRecipeWithIRFlags,
|
|
public VPUnrollPartAccessor<3> {
|
|
Instruction::BinaryOps InductionOpcode;
|
|
|
|
public:
|
|
VPScalarIVStepsRecipe(VPValue *IV, VPValue *Step, VPValue *VF,
|
|
Instruction::BinaryOps Opcode, FastMathFlags FMFs,
|
|
DebugLoc DL)
|
|
: VPRecipeWithIRFlags(VPDef::VPScalarIVStepsSC,
|
|
ArrayRef<VPValue *>({IV, Step, VF}), FMFs, DL),
|
|
InductionOpcode(Opcode) {}
|
|
|
|
VPScalarIVStepsRecipe(const InductionDescriptor &IndDesc, VPValue *IV,
|
|
VPValue *Step, VPValue *VF, DebugLoc DL = {})
|
|
: VPScalarIVStepsRecipe(
|
|
IV, Step, VF, IndDesc.getInductionOpcode(),
|
|
dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp())
|
|
? IndDesc.getInductionBinOp()->getFastMathFlags()
|
|
: FastMathFlags(),
|
|
DL) {}
|
|
|
|
~VPScalarIVStepsRecipe() override = default;
|
|
|
|
VPScalarIVStepsRecipe *clone() override {
|
|
return new VPScalarIVStepsRecipe(
|
|
getOperand(0), getOperand(1), getOperand(2), InductionOpcode,
|
|
hasFastMathFlags() ? getFastMathFlags() : FastMathFlags(),
|
|
getDebugLoc());
|
|
}
|
|
|
|
/// Return true if this VPScalarIVStepsRecipe corresponds to part 0. Note that
|
|
/// this is only accurate after the VPlan has been unrolled.
|
|
bool isPart0() { return getUnrollPart(*this) == 0; }
|
|
|
|
VP_CLASSOF_IMPL(VPDef::VPScalarIVStepsSC)
|
|
|
|
/// Generate the scalarized versions of the phi node as needed by their users.
|
|
void execute(VPTransformState &State) override;
|
|
|
|
/// Return the cost of this VPScalarIVStepsRecipe.
|
|
InstructionCost computeCost(ElementCount VF,
|
|
VPCostContext &Ctx) const override {
|
|
// TODO: Compute accurate cost after retiring the legacy cost model.
|
|
return 0;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the recipe.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
#endif
|
|
|
|
VPValue *getStepValue() const { return getOperand(1); }
|
|
|
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
|
assert(is_contained(operands(), Op) &&
|
|
"Op must be an operand of the recipe");
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
|
|
/// holds a sequence of zero or more VPRecipe's each representing a sequence of
|
|
/// output IR instructions. All PHI-like recipes must come before any non-PHI recipes.
|
|
class VPBasicBlock : public VPBlockBase {
|
|
friend class VPlan;
|
|
|
|
/// Use VPlan::createVPBasicBlock to create VPBasicBlocks.
|
|
VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
|
|
: VPBlockBase(VPBasicBlockSC, Name.str()) {
|
|
if (Recipe)
|
|
appendRecipe(Recipe);
|
|
}
|
|
|
|
public:
|
|
using RecipeListTy = iplist<VPRecipeBase>;
|
|
|
|
protected:
|
|
/// The VPRecipes held in the order of output instructions to generate.
|
|
RecipeListTy Recipes;
|
|
|
|
VPBasicBlock(const unsigned char BlockSC, const Twine &Name = "")
|
|
: VPBlockBase(BlockSC, Name.str()) {}
|
|
|
|
public:
|
|
~VPBasicBlock() override {
|
|
while (!Recipes.empty())
|
|
Recipes.pop_back();
|
|
}
|
|
|
|
/// Instruction iterators...
|
|
using iterator = RecipeListTy::iterator;
|
|
using const_iterator = RecipeListTy::const_iterator;
|
|
using reverse_iterator = RecipeListTy::reverse_iterator;
|
|
using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// Recipe iterator methods
|
|
///
|
|
inline iterator begin() { return Recipes.begin(); }
|
|
inline const_iterator begin() const { return Recipes.begin(); }
|
|
inline iterator end() { return Recipes.end(); }
|
|
inline const_iterator end() const { return Recipes.end(); }
|
|
|
|
inline reverse_iterator rbegin() { return Recipes.rbegin(); }
|
|
inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
|
|
inline reverse_iterator rend() { return Recipes.rend(); }
|
|
inline const_reverse_iterator rend() const { return Recipes.rend(); }
|
|
|
|
inline size_t size() const { return Recipes.size(); }
|
|
inline bool empty() const { return Recipes.empty(); }
|
|
inline const VPRecipeBase &front() const { return Recipes.front(); }
|
|
inline VPRecipeBase &front() { return Recipes.front(); }
|
|
inline const VPRecipeBase &back() const { return Recipes.back(); }
|
|
inline VPRecipeBase &back() { return Recipes.back(); }
|
|
|
|
/// Returns a reference to the list of recipes.
|
|
RecipeListTy &getRecipeList() { return Recipes; }
|
|
|
|
/// Returns a pointer to a member of the recipe list.
|
|
static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
|
|
return &VPBasicBlock::Recipes;
|
|
}
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPBlockBase *V) {
|
|
return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC ||
|
|
V->getVPBlockID() == VPBlockBase::VPIRBasicBlockSC;
|
|
}
|
|
|
|
void insert(VPRecipeBase *Recipe, iterator InsertPt) {
|
|
assert(Recipe && "No recipe to append.");
|
|
assert(!Recipe->Parent && "Recipe already in VPlan");
|
|
Recipe->Parent = this;
|
|
Recipes.insert(InsertPt, Recipe);
|
|
}
|
|
|
|
/// Augment the existing recipes of a VPBasicBlock with an additional
|
|
/// \p Recipe as the last recipe.
|
|
void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
|
|
|
|
/// The method which generates the output IR instructions that correspond to
|
|
/// this VPBasicBlock, thereby "executing" the VPlan.
|
|
void execute(VPTransformState *State) override;
|
|
|
|
/// Return the cost of this VPBasicBlock.
|
|
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override;
|
|
|
|
/// Return the position of the first non-phi node recipe in the block.
|
|
iterator getFirstNonPhi();
|
|
|
|
/// Returns an iterator range over the PHI-like recipes in the block.
|
|
iterator_range<iterator> phis() {
|
|
return make_range(begin(), getFirstNonPhi());
|
|
}
|
|
|
|
/// Split current block at \p SplitAt by inserting a new block between the
|
|
/// current block and its successors and moving all recipes starting at
|
|
/// SplitAt to the new block. Returns the new block.
|
|
VPBasicBlock *splitAt(iterator SplitAt);
|
|
|
|
VPRegionBlock *getEnclosingLoopRegion();
|
|
const VPRegionBlock *getEnclosingLoopRegion() const;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p
|
|
/// SlotTracker is used to print unnamed VPValue's using consequtive numbers.
|
|
///
|
|
/// Note that the numbering is applied to the whole VPlan, so printing
|
|
/// individual blocks is consistent with the whole VPlan printing.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
using VPBlockBase::print; // Get the print(raw_stream &O) version.
|
|
#endif
|
|
|
|
/// If the block has multiple successors, return the branch recipe terminating
|
|
/// the block. If there are no or only a single successor, return nullptr;
|
|
VPRecipeBase *getTerminator();
|
|
const VPRecipeBase *getTerminator() const;
|
|
|
|
/// Returns true if the block is exiting it's parent region.
|
|
bool isExiting() const;
|
|
|
|
/// Clone the current block and it's recipes, without updating the operands of
|
|
/// the cloned recipes.
|
|
VPBasicBlock *clone() override;
|
|
|
|
protected:
|
|
/// Execute the recipes in the IR basic block \p BB.
|
|
void executeRecipes(VPTransformState *State, BasicBlock *BB);
|
|
|
|
/// Connect the VPBBs predecessors' in the VPlan CFG to the IR basic block
|
|
/// generated for this VPBB.
|
|
void connectToPredecessors(VPTransformState &State);
|
|
|
|
private:
|
|
/// Create an IR BasicBlock to hold the output instructions generated by this
|
|
/// VPBasicBlock, and return it. Update the CFGState accordingly.
|
|
BasicBlock *createEmptyBasicBlock(VPTransformState &State);
|
|
};
|
|
|
|
/// A special type of VPBasicBlock that wraps an existing IR basic block.
|
|
/// Recipes of the block get added before the first non-phi instruction in the
|
|
/// wrapped block.
|
|
/// Note: At the moment, VPIRBasicBlock can only be used to wrap VPlan's
|
|
/// preheader block.
|
|
class VPIRBasicBlock : public VPBasicBlock {
|
|
friend class VPlan;
|
|
|
|
BasicBlock *IRBB;
|
|
|
|
/// Use VPlan::createVPIRBasicBlock to create VPIRBasicBlocks.
|
|
VPIRBasicBlock(BasicBlock *IRBB)
|
|
: VPBasicBlock(VPIRBasicBlockSC,
|
|
(Twine("ir-bb<") + IRBB->getName() + Twine(">")).str()),
|
|
IRBB(IRBB) {}
|
|
|
|
public:
|
|
~VPIRBasicBlock() override {}
|
|
|
|
static inline bool classof(const VPBlockBase *V) {
|
|
return V->getVPBlockID() == VPBlockBase::VPIRBasicBlockSC;
|
|
}
|
|
|
|
/// The method which generates the output IR instructions that correspond to
|
|
/// this VPBasicBlock, thereby "executing" the VPlan.
|
|
void execute(VPTransformState *State) override;
|
|
|
|
VPIRBasicBlock *clone() override;
|
|
|
|
BasicBlock *getIRBasicBlock() const { return IRBB; }
|
|
};
|
|
|
|
/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
|
|
/// which form a Single-Entry-Single-Exiting subgraph of the output IR CFG.
|
|
/// A VPRegionBlock may indicate that its contents are to be replicated several
|
|
/// times. This is designed to support predicated scalarization, in which a
|
|
/// scalar if-then code structure needs to be generated VF * UF times. Having
|
|
/// this replication indicator helps to keep a single model for multiple
|
|
/// candidate VF's. The actual replication takes place only once the desired VF
|
|
/// and UF have been determined.
|
|
class VPRegionBlock : public VPBlockBase {
|
|
friend class VPlan;
|
|
|
|
/// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
|
|
VPBlockBase *Entry;
|
|
|
|
/// Hold the Single Exiting block of the SESE region modelled by the
|
|
/// VPRegionBlock.
|
|
VPBlockBase *Exiting;
|
|
|
|
/// An indicator whether this region is to generate multiple replicated
|
|
/// instances of output IR corresponding to its VPBlockBases.
|
|
bool IsReplicator;
|
|
|
|
/// Use VPlan::createVPRegionBlock to create VPRegionBlocks.
|
|
VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting,
|
|
const std::string &Name = "", bool IsReplicator = false)
|
|
: VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exiting(Exiting),
|
|
IsReplicator(IsReplicator) {
|
|
assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
|
|
assert(Exiting->getSuccessors().empty() && "Exit block has successors.");
|
|
Entry->setParent(this);
|
|
Exiting->setParent(this);
|
|
}
|
|
VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
|
|
: VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exiting(nullptr),
|
|
IsReplicator(IsReplicator) {}
|
|
|
|
public:
|
|
~VPRegionBlock() override {}
|
|
|
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const VPBlockBase *V) {
|
|
return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
|
|
}
|
|
|
|
const VPBlockBase *getEntry() const { return Entry; }
|
|
VPBlockBase *getEntry() { return Entry; }
|
|
|
|
/// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
|
|
/// EntryBlock must have no predecessors.
|
|
void setEntry(VPBlockBase *EntryBlock) {
|
|
assert(EntryBlock->getPredecessors().empty() &&
|
|
"Entry block cannot have predecessors.");
|
|
Entry = EntryBlock;
|
|
EntryBlock->setParent(this);
|
|
}
|
|
|
|
const VPBlockBase *getExiting() const { return Exiting; }
|
|
VPBlockBase *getExiting() { return Exiting; }
|
|
|
|
/// Set \p ExitingBlock as the exiting VPBlockBase of this VPRegionBlock. \p
|
|
/// ExitingBlock must have no successors.
|
|
void setExiting(VPBlockBase *ExitingBlock) {
|
|
assert(ExitingBlock->getSuccessors().empty() &&
|
|
"Exit block cannot have successors.");
|
|
Exiting = ExitingBlock;
|
|
ExitingBlock->setParent(this);
|
|
}
|
|
|
|
/// Returns the pre-header VPBasicBlock of the loop region.
|
|
VPBasicBlock *getPreheaderVPBB() {
|
|
assert(!isReplicator() && "should only get pre-header of loop regions");
|
|
return getSinglePredecessor()->getExitingBasicBlock();
|
|
}
|
|
|
|
/// An indicator whether this region is to generate multiple replicated
|
|
/// instances of output IR corresponding to its VPBlockBases.
|
|
bool isReplicator() const { return IsReplicator; }
|
|
|
|
/// The method which generates the output IR instructions that correspond to
|
|
/// this VPRegionBlock, thereby "executing" the VPlan.
|
|
void execute(VPTransformState *State) override;
|
|
|
|
// Return the cost of this region.
|
|
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override;
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print this VPRegionBlock to \p O (recursively), prefixing all lines with
|
|
/// \p Indent. \p SlotTracker is used to print unnamed VPValue's using
|
|
/// consequtive numbers.
|
|
///
|
|
/// Note that the numbering is applied to the whole VPlan, so printing
|
|
/// individual regions is consistent with the whole VPlan printing.
|
|
void print(raw_ostream &O, const Twine &Indent,
|
|
VPSlotTracker &SlotTracker) const override;
|
|
using VPBlockBase::print; // Get the print(raw_stream &O) version.
|
|
#endif
|
|
|
|
/// Clone all blocks in the single-entry single-exit region of the block and
|
|
/// their recipes without updating the operands of the cloned recipes.
|
|
VPRegionBlock *clone() override;
|
|
};
|
|
|
|
/// VPlan models a candidate for vectorization, encoding various decisions take
|
|
/// to produce efficient output IR, including which branches, basic-blocks and
|
|
/// output IR instructions to generate, and their cost. VPlan holds a
|
|
/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
|
|
/// VPBasicBlock.
|
|
class VPlan {
|
|
friend class VPlanPrinter;
|
|
friend class VPSlotTracker;
|
|
|
|
/// VPBasicBlock corresponding to the original preheader. Used to place
|
|
/// VPExpandSCEV recipes for expressions used during skeleton creation and the
|
|
/// rest of VPlan execution.
|
|
/// When this VPlan is used for the epilogue vector loop, the entry will be
|
|
/// replaced by a new entry block created during skeleton creation.
|
|
VPBasicBlock *Entry;
|
|
|
|
/// VPIRBasicBlock wrapping the header of the original scalar loop.
|
|
VPIRBasicBlock *ScalarHeader;
|
|
|
|
/// Immutable list of VPIRBasicBlocks wrapping the exit blocks of the original
|
|
/// scalar loop. Note that some exit blocks may be unreachable at the moment,
|
|
/// e.g. if the scalar epilogue always executes.
|
|
SmallVector<VPIRBasicBlock *, 2> ExitBlocks;
|
|
|
|
/// Holds the VFs applicable to this VPlan.
|
|
SmallSetVector<ElementCount, 2> VFs;
|
|
|
|
/// Holds the UFs applicable to this VPlan. If empty, the VPlan is valid for
|
|
/// any UF.
|
|
SmallSetVector<unsigned, 2> UFs;
|
|
|
|
/// Holds the name of the VPlan, for printing.
|
|
std::string Name;
|
|
|
|
/// Represents the trip count of the original loop, for folding
|
|
/// the tail.
|
|
VPValue *TripCount = nullptr;
|
|
|
|
/// Represents the backedge taken count of the original loop, for folding
|
|
/// the tail. It equals TripCount - 1.
|
|
VPValue *BackedgeTakenCount = nullptr;
|
|
|
|
/// Represents the vector trip count.
|
|
VPValue VectorTripCount;
|
|
|
|
/// Represents the vectorization factor of the loop.
|
|
VPValue VF;
|
|
|
|
/// Represents the loop-invariant VF * UF of the vector loop region.
|
|
VPValue VFxUF;
|
|
|
|
/// Holds a mapping between Values and their corresponding VPValue inside
|
|
/// VPlan.
|
|
Value2VPValueTy Value2VPValue;
|
|
|
|
/// Contains all the external definitions created for this VPlan. External
|
|
/// definitions are VPValues that hold a pointer to their underlying IR.
|
|
SmallVector<VPValue *, 16> VPLiveIns;
|
|
|
|
/// Mapping from SCEVs to the VPValues representing their expansions.
|
|
/// NOTE: This mapping is temporary and will be removed once all users have
|
|
/// been modeled in VPlan directly.
|
|
DenseMap<const SCEV *, VPValue *> SCEVToExpansion;
|
|
|
|
/// Blocks allocated and owned by the VPlan. They will be deleted once the
|
|
/// VPlan is destroyed.
|
|
SmallVector<VPBlockBase *> CreatedBlocks;
|
|
|
|
/// Construct a VPlan with \p Entry to the plan and with \p ScalarHeader
|
|
/// wrapping the original header of the scalar loop.
|
|
VPlan(VPBasicBlock *Entry, VPIRBasicBlock *ScalarHeader)
|
|
: Entry(Entry), ScalarHeader(ScalarHeader) {
|
|
Entry->setPlan(this);
|
|
assert(ScalarHeader->getNumSuccessors() == 0 &&
|
|
"scalar header must be a leaf node");
|
|
}
|
|
|
|
public:
|
|
/// Construct a VPlan for \p L. This will create VPIRBasicBlocks wrapping the
|
|
/// original preheader and scalar header of \p L, to be used as entry and
|
|
/// scalar header blocks of the new VPlan.
|
|
VPlan(Loop *L);
|
|
|
|
/// Construct a VPlan with a new VPBasicBlock as entry, a VPIRBasicBlock
|
|
/// wrapping \p ScalarHeaderBB and a trip count of \p TC.
|
|
VPlan(BasicBlock *ScalarHeaderBB, VPValue *TC) {
|
|
setEntry(createVPBasicBlock("preheader"));
|
|
ScalarHeader = createVPIRBasicBlock(ScalarHeaderBB);
|
|
TripCount = TC;
|
|
}
|
|
|
|
~VPlan();
|
|
|
|
void setEntry(VPBasicBlock *VPBB) {
|
|
Entry = VPBB;
|
|
VPBB->setPlan(this);
|
|
}
|
|
|
|
/// Prepare the plan for execution, setting up the required live-in values.
|
|
void prepareToExecute(Value *TripCount, Value *VectorTripCount,
|
|
VPTransformState &State);
|
|
|
|
/// Generate the IR code for this VPlan.
|
|
void execute(VPTransformState *State);
|
|
|
|
/// Return the cost of this plan.
|
|
InstructionCost cost(ElementCount VF, VPCostContext &Ctx);
|
|
|
|
VPBasicBlock *getEntry() { return Entry; }
|
|
const VPBasicBlock *getEntry() const { return Entry; }
|
|
|
|
/// Returns the preheader of the vector loop region, if one exists, or null
|
|
/// otherwise.
|
|
VPBasicBlock *getVectorPreheader() {
|
|
VPRegionBlock *VectorRegion = getVectorLoopRegion();
|
|
return VectorRegion
|
|
? cast<VPBasicBlock>(VectorRegion->getSinglePredecessor())
|
|
: nullptr;
|
|
}
|
|
|
|
/// Returns the VPRegionBlock of the vector loop.
|
|
VPRegionBlock *getVectorLoopRegion();
|
|
const VPRegionBlock *getVectorLoopRegion() const;
|
|
|
|
/// Returns the 'middle' block of the plan, that is the block that selects
|
|
/// whether to execute the scalar tail loop or the exit block from the loop
|
|
/// latch. If there is an early exit from the vector loop, the middle block
|
|
/// conceptully has the early exit block as third successor, split accross 2
|
|
/// VPBBs. In that case, the second VPBB selects whether to execute the scalar
|
|
/// tail loop or the exit bock. If the scalar tail loop or exit block are
|
|
/// known to always execute, the middle block may branch directly to that
|
|
/// block. This function cannot be called once the vector loop region has been
|
|
/// removed.
|
|
VPBasicBlock *getMiddleBlock() {
|
|
VPRegionBlock *LoopRegion = getVectorLoopRegion();
|
|
assert(
|
|
LoopRegion &&
|
|
"cannot call the function after vector loop region has been removed");
|
|
auto *RegionSucc = cast<VPBasicBlock>(LoopRegion->getSingleSuccessor());
|
|
if (RegionSucc->getSingleSuccessor() ||
|
|
is_contained(RegionSucc->getSuccessors(), getScalarPreheader()))
|
|
return RegionSucc;
|
|
// There is an early exit. The successor of RegionSucc is the middle block.
|
|
return cast<VPBasicBlock>(RegionSucc->getSuccessors()[1]);
|
|
}
|
|
|
|
const VPBasicBlock *getMiddleBlock() const {
|
|
return const_cast<VPlan *>(this)->getMiddleBlock();
|
|
}
|
|
|
|
/// Return the VPBasicBlock for the preheader of the scalar loop.
|
|
VPBasicBlock *getScalarPreheader() const {
|
|
return cast<VPBasicBlock>(getScalarHeader()->getSinglePredecessor());
|
|
}
|
|
|
|
/// Return the VPIRBasicBlock wrapping the header of the scalar loop.
|
|
VPIRBasicBlock *getScalarHeader() const { return ScalarHeader; }
|
|
|
|
/// Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of
|
|
/// the original scalar loop.
|
|
ArrayRef<VPIRBasicBlock *> getExitBlocks() const { return ExitBlocks; }
|
|
|
|
/// Return the VPIRBasicBlock corresponding to \p IRBB. \p IRBB must be an
|
|
/// exit block.
|
|
VPIRBasicBlock *getExitBlock(BasicBlock *IRBB) const;
|
|
|
|
/// Returns true if \p VPBB is an exit block.
|
|
bool isExitBlock(VPBlockBase *VPBB);
|
|
|
|
/// The trip count of the original loop.
|
|
VPValue *getTripCount() const {
|
|
assert(TripCount && "trip count needs to be set before accessing it");
|
|
return TripCount;
|
|
}
|
|
|
|
/// Set the trip count assuming it is currently null; if it is not - use
|
|
/// resetTripCount().
|
|
void setTripCount(VPValue *NewTripCount) {
|
|
assert(!TripCount && NewTripCount && "TripCount should not be set yet.");
|
|
TripCount = NewTripCount;
|
|
}
|
|
|
|
/// Resets the trip count for the VPlan. The caller must make sure all uses of
|
|
/// the original trip count have been replaced.
|
|
void resetTripCount(VPValue *NewTripCount) {
|
|
assert(TripCount && NewTripCount && TripCount->getNumUsers() == 0 &&
|
|
"TripCount must be set when resetting");
|
|
TripCount = NewTripCount;
|
|
}
|
|
|
|
/// The backedge taken count of the original loop.
|
|
VPValue *getOrCreateBackedgeTakenCount() {
|
|
if (!BackedgeTakenCount)
|
|
BackedgeTakenCount = new VPValue();
|
|
return BackedgeTakenCount;
|
|
}
|
|
|
|
/// The vector trip count.
|
|
VPValue &getVectorTripCount() { return VectorTripCount; }
|
|
|
|
/// Returns the VF of the vector loop region.
|
|
VPValue &getVF() { return VF; };
|
|
|
|
/// Returns VF * UF of the vector loop region.
|
|
VPValue &getVFxUF() { return VFxUF; }
|
|
|
|
void addVF(ElementCount VF) { VFs.insert(VF); }
|
|
|
|
void setVF(ElementCount VF) {
|
|
assert(hasVF(VF) && "Cannot set VF not already in plan");
|
|
VFs.clear();
|
|
VFs.insert(VF);
|
|
}
|
|
|
|
bool hasVF(ElementCount VF) const { return VFs.count(VF); }
|
|
bool hasScalableVF() const {
|
|
return any_of(VFs, [](ElementCount VF) { return VF.isScalable(); });
|
|
}
|
|
|
|
/// Returns an iterator range over all VFs of the plan.
|
|
iterator_range<SmallSetVector<ElementCount, 2>::iterator>
|
|
vectorFactors() const {
|
|
return {VFs.begin(), VFs.end()};
|
|
}
|
|
|
|
bool hasScalarVFOnly() const {
|
|
bool HasScalarVFOnly = VFs.size() == 1 && VFs[0].isScalar();
|
|
assert(HasScalarVFOnly == hasVF(ElementCount::getFixed(1)) &&
|
|
"Plan with scalar VF should only have a single VF");
|
|
return HasScalarVFOnly;
|
|
}
|
|
|
|
bool hasUF(unsigned UF) const { return UFs.empty() || UFs.contains(UF); }
|
|
|
|
unsigned getUF() const {
|
|
assert(UFs.size() == 1 && "Expected a single UF");
|
|
return UFs[0];
|
|
}
|
|
|
|
void setUF(unsigned UF) {
|
|
assert(hasUF(UF) && "Cannot set the UF not already in plan");
|
|
UFs.clear();
|
|
UFs.insert(UF);
|
|
}
|
|
|
|
/// Returns true if the VPlan already has been unrolled, i.e. it has a single
|
|
/// concrete UF.
|
|
bool isUnrolled() const { return UFs.size() == 1; }
|
|
|
|
/// Return a string with the name of the plan and the applicable VFs and UFs.
|
|
std::string getName() const;
|
|
|
|
void setName(const Twine &newName) { Name = newName.str(); }
|
|
|
|
/// Gets the live-in VPValue for \p V or adds a new live-in (if none exists
|
|
/// yet) for \p V.
|
|
VPValue *getOrAddLiveIn(Value *V) {
|
|
assert(V && "Trying to get or add the VPValue of a null Value");
|
|
auto [It, Inserted] = Value2VPValue.try_emplace(V);
|
|
if (Inserted) {
|
|
VPValue *VPV = new VPValue(V);
|
|
VPLiveIns.push_back(VPV);
|
|
assert(VPV->isLiveIn() && "VPV must be a live-in.");
|
|
It->second = VPV;
|
|
}
|
|
|
|
assert(It->second->isLiveIn() && "Only live-ins should be in mapping");
|
|
return It->second;
|
|
}
|
|
|
|
/// Return the live-in VPValue for \p V, if there is one or nullptr otherwise.
|
|
VPValue *getLiveIn(Value *V) const { return Value2VPValue.lookup(V); }
|
|
|
|
/// Return the list of live-in VPValues available in the VPlan.
|
|
ArrayRef<VPValue *> getLiveIns() const {
|
|
assert(all_of(Value2VPValue,
|
|
[this](const auto &P) {
|
|
return is_contained(VPLiveIns, P.second);
|
|
}) &&
|
|
"all VPValues in Value2VPValue must also be in VPLiveIns");
|
|
return VPLiveIns;
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
/// Print the live-ins of this VPlan to \p O.
|
|
void printLiveIns(raw_ostream &O) const;
|
|
|
|
/// Print this VPlan to \p O.
|
|
void print(raw_ostream &O) const;
|
|
|
|
/// Print this VPlan in DOT format to \p O.
|
|
void printDOT(raw_ostream &O) const;
|
|
|
|
/// Dump the plan to stderr (for debugging).
|
|
LLVM_DUMP_METHOD void dump() const;
|
|
#endif
|
|
|
|
/// Returns the canonical induction recipe of the vector loop.
|
|
VPCanonicalIVPHIRecipe *getCanonicalIV() {
|
|
VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock();
|
|
if (EntryVPBB->empty()) {
|
|
// VPlan native path.
|
|
EntryVPBB = cast<VPBasicBlock>(EntryVPBB->getSingleSuccessor());
|
|
}
|
|
return cast<VPCanonicalIVPHIRecipe>(&*EntryVPBB->begin());
|
|
}
|
|
|
|
VPValue *getSCEVExpansion(const SCEV *S) const {
|
|
return SCEVToExpansion.lookup(S);
|
|
}
|
|
|
|
void addSCEVExpansion(const SCEV *S, VPValue *V) {
|
|
assert(!SCEVToExpansion.contains(S) && "SCEV already expanded");
|
|
SCEVToExpansion[S] = V;
|
|
}
|
|
|
|
/// Clone the current VPlan, update all VPValues of the new VPlan and cloned
|
|
/// recipes to refer to the clones, and return it.
|
|
VPlan *duplicate();
|
|
|
|
/// Create a new VPBasicBlock with \p Name and containing \p Recipe if
|
|
/// present. The returned block is owned by the VPlan and deleted once the
|
|
/// VPlan is destroyed.
|
|
VPBasicBlock *createVPBasicBlock(const Twine &Name,
|
|
VPRecipeBase *Recipe = nullptr) {
|
|
auto *VPB = new VPBasicBlock(Name, Recipe);
|
|
CreatedBlocks.push_back(VPB);
|
|
return VPB;
|
|
}
|
|
|
|
/// Create a new VPRegionBlock with \p Entry, \p Exiting and \p Name. If \p
|
|
/// IsReplicator is true, the region is a replicate region. The returned block
|
|
/// is owned by the VPlan and deleted once the VPlan is destroyed.
|
|
VPRegionBlock *createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting,
|
|
const std::string &Name = "",
|
|
bool IsReplicator = false) {
|
|
auto *VPB = new VPRegionBlock(Entry, Exiting, Name, IsReplicator);
|
|
CreatedBlocks.push_back(VPB);
|
|
return VPB;
|
|
}
|
|
|
|
/// Create a new VPRegionBlock with \p Name and entry and exiting blocks set
|
|
/// to nullptr. If \p IsReplicator is true, the region is a replicate region.
|
|
/// The returned block is owned by the VPlan and deleted once the VPlan is
|
|
/// destroyed.
|
|
VPRegionBlock *createVPRegionBlock(const std::string &Name = "",
|
|
bool IsReplicator = false) {
|
|
auto *VPB = new VPRegionBlock(Name, IsReplicator);
|
|
CreatedBlocks.push_back(VPB);
|
|
return VPB;
|
|
}
|
|
|
|
/// Create a VPIRBasicBlock wrapping \p IRBB, but do not create
|
|
/// VPIRInstructions wrapping the instructions in t\p IRBB. The returned
|
|
/// block is owned by the VPlan and deleted once the VPlan is destroyed.
|
|
VPIRBasicBlock *createEmptyVPIRBasicBlock(BasicBlock *IRBB);
|
|
|
|
/// Create a VPIRBasicBlock from \p IRBB containing VPIRInstructions for all
|
|
/// instructions in \p IRBB, except its terminator which is managed by the
|
|
/// successors of the block in VPlan. The returned block is owned by the VPlan
|
|
/// and deleted once the VPlan is destroyed.
|
|
VPIRBasicBlock *createVPIRBasicBlock(BasicBlock *IRBB);
|
|
|
|
/// Returns true if the VPlan is based on a loop with an early exit. That is
|
|
/// the case if the VPlan has either more than one exit block or a single exit
|
|
/// block with multiple predecessors (one for the exit via the latch and one
|
|
/// via the other early exit).
|
|
bool hasEarlyExit() const {
|
|
return ExitBlocks.size() > 1 || ExitBlocks[0]->getNumPredecessors() > 1;
|
|
}
|
|
|
|
/// Returns true if the scalar tail may execute after the vector loop. Note
|
|
/// that this relies on unneeded branches to the scalar tail loop being
|
|
/// removed.
|
|
bool hasScalarTail() const {
|
|
return getScalarPreheader()->getNumPredecessors() != 0;
|
|
}
|
|
};
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) {
|
|
Plan.print(OS);
|
|
return OS;
|
|
}
|
|
#endif
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|